当前位置:文档之家› 力学综合.弹簧类问题教学案

力学综合.弹簧类问题教学案

力学综合.弹簧类问题教学案

2018届高三二轮复习教学案

专题名称:力学综合--弹簧类问题

教学目标:1.总结运用牛顿定律、功能关系解弹簧类问题的基本思路。

2.提高学生分析多个物体、多个过程等复杂力学问题的能力。

例题1:(多选) 如图,轻弹簧竖立在地面上,正上方有一钢球,从A处自由下落,落到B处时

开始与弹簧接触,此时向下压缩弹簧.小球运动到C处时,弹簧对小球的弹力与小球的重力平衡.

小球运动到D处时,到达最低点.不计空气阻力,以下描述正确的有

A.小球由A向B运动的过程中,处于完全失重状态,小球的机械能减少

B.小球由B向C运动的过程中,处于失重状态,小球的机械能减少

C.小球由B向C运动的过程中,处于超重状态,小球的动能增加

D.小球由C向D运动的过程中,处于超重状态,小球的机械能减少

分析:

迁移:(多选)(2017·江苏高考·9)如图所示,三个小球A、B、C的质量均为m,A与B、C间通过

铰链用轻杆连接,杆长为L.B、C置于水平地面上,用一轻质弹簧连接,弹簧处于原长.现A由静

止释放下降到最低点,两轻杆间夹角α由60°变为120°.A、B、C在同一竖直平面内运动,弹簧在

弹性限度内,忽略一切摩擦,重力加速度为g.则此下降过程中()

A.A的动能达到最大前,B受到地面的支持力小于

3

2mg

B.A的动能最大时,B受到地面的支持力等于

3

2mg

C.弹簧的弹性势能最大时,A的加速度方向竖直向下

D.弹簧的弹性势能最大值为

3

2mgL

总结反思:

例题2:(单选)两物块A和B用一轻弹簧连接,静止在水平桌面上,如图甲,现用一竖直向上的

力F拉动物块A,使之向上做匀加速直线运动,如图乙,在物块A开始运动到物块B将要离开桌

面的过程中(弹簧始终处于弹性限度内),下列说法正确的是()

A.力F先减小后增大

B.弹簧的弹性势能一直增大

C.物块A的动能和重力势能一直增大

D.两物块A、B和轻弹簧组成的系统机械能先增大后减小

分析:

迁移:(2017年盐城市二模)如图所示,A、B两物体之间用轻弹簧相连,B、C两物体用不可伸

长的轻绳相连,并跨过轻质光滑定滑轮,C物体放置在固定的光滑斜面上。开始时用手固定C使

绳处于拉直状态但无张力,ab绳竖直,cd绳与斜面平行。已知B的质量为m,C的质量为4m,

弹簧的劲度系数为k,固定斜面倾角α=30°。由静止释放C,C在沿斜面下滑过程中A始终未离

开地面。(已知弹簧的弹性势能的表达式为E P=

2

1

kx2,期中x为弹簧的形变量)重力加速度为g

求:

(1)刚释放C时,C的加速度大小;

(2)C从开始释放到速度最大的过程中,B上升的高度;

(3)若A不离开地面,其质量应满足什么条件。

解:

总结反思:

常见弹簧类问题分析

常见弹簧类问题分析 高考要求 轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视. 弹簧类命题突破要点 1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化. 2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变. 3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再 用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-(21kx 22-2 1 kx 12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p = 2 1kx 2 ,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解. 下面就按平衡、动力学、能量、振动、应用类等中常见的弹簧问题进行分析。 一、与物体平衡相关的弹簧问题 1.(1999年,全国)如图示,两木块的质量分别为m 1和m 2, 两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( ) A.m 1g/k 1 B.m 2g/k 2 C.m 1g/k 2 D.m 2g/k 2 此题若求m l 移动的距离又当如何求解? 参考答案:C

弹簧问题专项复习及练习题(含详细解答)

高三物理第二轮专题复习(一)弹簧类问题 轻弹簧是一理想模型,涉及它的知识点有①形变和弹力,胡克定律②弹性势能弹簧振子等。问题类型: 1、弹簧的瞬时问题 弹簧的两端若有其他物体或力的约束,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。弹簧的弹力不能突变是由弹簧形变的改变要逐渐进行决定的。 2、弹簧的平衡问题 这类题常以单一的问题出现,通常用胡克定律F=Kx和平衡条件来求解,列方程时注意研究对象的选取,注意整体法和隔离法的运用。 3、弹簧的非平衡问题 这类题主要指弹簧在相对位置发生变化时,所引起的合外力加速度速度动能和其它物理量发生变化的情况。弹簧的弹力与形变量成正比例变化,而它引起的物体的加速度速度动量动能等变化不是简单的单调关系,往往有临界值或极值。有些问题要结合简谐运动的特点求解。 4、弹力做功与动量能量的综合问题 弹力是变力,求弹力的冲量和弹力做的功时,不能直接用冲量和功的定义式,一般要用动量定理和动能定理计算。如果弹簧被作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能。 在弹力做功的过程中弹力是个变力,并与动量能量联系,一般以综合题出现。它有机地将动量守恒机械能守恒功能关系和能量转化结合在一起,以考察综合应用能力。分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理动量定理和功能关系等知识解题。 规律:在弹簧-物体系统中,当弹簧处于自然长度时,系统具有最大动能;系统运动中弹簧从自然长度开始到再次恢复自然长度的过程相当于弹性碰撞过程。当弹簧具有最大形变量时,两端物体具有相同的速度,系统具有最大的弹性势能。系统运动中,从任意状态到弹簧形变量最大的状态的过程相当于完全非弹性碰撞的过程。(实际上应为机械能守恒) 典型试题 1、如图所示,轻弹簧下端固定在水平地面上,弹簧位于竖直方向,另一端静止于B点。在B点正上方A点处,有一质量为m的物块,物块从静止开始自由下落。物块落在弹 簧上,压缩弹簧,到达C点时,物块的速度为零。如果弹簧的形变始终未超过 弹性限度,不计空气阻力,下列判断正确的是( B ) A、物块在B点时动能最大 B、从A经B到C,再由C经B到A的全过程中,物块的加速度的最大值大于g C、从A经B到C,再由C经B到A的全过程中,物块做简谐运动 D、如果将物块从B点由静止释放,物块仍能到达C点 2、如图所示,弹簧上端固定在天花板上,下端系一铜球,铜球下端放有通电线圈。 今把铜球拉离平衡位置后释放,此后关于小球的运动情况(不计空气阻力)是() A.做等幅振动B.做阻尼振动 C.振幅不断增大 D.无法判断 3、如图所示,质量相同的木块AB用轻弹簧相连,静止在光滑水平面上。弹簧处 于自然状态。现用水平恒力F向右推A,则从开始推A到弹簧第一次被压缩到最短的过程中,下列

弹簧类问题

常见弹簧类问题分析 一、与物体平衡相关的弹簧问题 1.(1999年,全国)如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数 分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现 缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为 ( ) A.m1g/k1 B.m2g/k2 C.m1g/k2 D.m2g/k2 此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g /k2,因而m2移动△x=(m1 + m2)·g/k2 - m2g/k2=m l g/k2. 此题若求m l移动的距离又当如何求解? 参考答案:C 2.S1和S2表示劲度系数分别为k1,和k2两根轻质弹簧,k1>k2;A和B表示质量分别为m A和m B的两个小物块,m A>m B,将弹簧与物块按图示方式悬挂起来.现要求两根弹簧的总长度最大则应使( ). A.S1在上,A在上 B.S1在上,B在上 C.S2在上,A在上 D.S2在上,B在上 参考答案:D 3.一根大弹簧内套一根小弹簧,大弹簧比小弹簧长0.2m,它们的一端固定,另一端自由,如图所示,求这两根弹簧的劲度系数k1(大弹簧)和k2(小弹簧)分别 为多少? (参考答案k1=100N/m k2=200N/m) 4.(2001年上海高考)如图所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端

弹簧类问题的几种模型及其处理方法

弹簧类问题的几种模型 及其处理方法 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

弹簧类问题的几种模型及其处理方法 学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂。其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。根据近几年高考的命题特点和知识的考查,笔者就弹簧类问题分为以下几种类型进行分析,供读者参考。 一、弹簧类命题突破要点 1.弹簧的弹力是一种由形变而决定大小和方向的力。当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态。 2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。 3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解。同时要注意弹力做功的特点:弹力做功等于弹性势能增量 的负值。弹性势能的公式,高考不作定量要求,可作定性讨论,因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。 二、弹簧类问题的几种模型 1.平衡类问题 例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。现施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面。在此过程中,m2的重力势能增加了______,m1的重力势能增加了________。 分析:上提m1之前,两物块处于静止的平衡状态,所以有:, ,其中,、分别是弹簧k1、k2的压缩量。 当用力缓慢上提m1,使k2下端刚脱离桌面时,,弹簧k2最终恢复原长,其中,为此时弹簧k1的伸长量。

二轮专题复习-----弹簧类综合问题训练

二轮专题复习:弹簧类综合问题训练 一、考点分析 轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力、胡克定律、物体的平衡、牛顿定律的应用及能的转化与守恒。从近几年高考题,可以看出弹簧类综合问题是高考的热点和重点。 二、与弹簧有关的综合问题基本知识概述 1、弹簧的瞬时问题 弹簧的两端都有其他物体或力的约束时,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。及轻弹簧的弹力不能突变,其弹力与瞬间前相同。 2、弹簧与平衡问题 这类题涉及到的知识是胡克定律,一般用F=kx同时结合物体的平衡条件知识求解。3、弹簧与非平衡问题 这类题主要指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功能和合外力等其它物理量发生变化的情况。需综合分析物体的位置变化与弹簧的长度、形变量有怎样的关系。 4、弹簧与能量的综合问题 在弹力做功的过程中弹力是个变力,并与能量的转化与守恒相联系,分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。 三、处理弹簧问题的一般思路与方法 1、弹簧的弹力是一种由形变而决定大小和方向的力。当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应. 在题目中一般应从弹簧的形变分析入手,先确定弹簧原来的长位置,现在的长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化. 2、因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变. 3、在求弹簧的弹力做功时,往往结合动能定理和功能关系以及能量转化和守恒定律求解。典型示例迁移 1、弹簧弹力瞬时问题 例1、如图所示,木块A与B用一轻弹簧相连,竖直放在木块C上,三 者静置于地面,A、B、C的质量之比是1∶2∶3.设所有接触面都光滑, 当沿水平方向迅速抽出木块C的瞬时,木块A和B的加速度分别是 a A=____ ,a B=____ 解析;由题意可设A、B、C的质量分别为m、2m、3m 以木块A为研究对象,抽出木块C前,木块A受到重力和弹力一对平 衡力,抽出木块C的瞬时,木块A受到重力和弹力的大小和方向均没变,故木块A的瞬时加速度为0 以木块AB为研究对象,由平衡条件可知,木块C对木块B的作用力F cB=3mg 以木块B为研究对象,木块B受到重力、弹力和F cB三力平衡,抽出木块C的瞬时,木块B 受到重力和弹力的大小和方向均没变,F cB瞬时变为0,故木块C的瞬时合外力为竖直向下的3mg。瞬时加速度为1.5g 变式训练1、如图(A)所示,一质量为m的物体系于长度分别为l1、l2的两根细线上,l1

弹簧问题专题训练讲解学习

弹簧问题专题训练 类型一静力学问题中的弹簧 如图所示,四处完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中的弹簧的左端固定在墙上②中的弹簧的左端也受到大小也为F 的拉力的作用③中的弹簧的左端拴一小物块,物块在光滑的桌面上滑动④中的弹簧的左端拴一个小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量为零,以L 1、L 2、L 3、L 4依次表示四个弹簧的伸长量,则有:( ) D A .L 2>L 1 B .L 4>L 3 C .L 1>L 3 D .L 2=L 4 类型二在弹簧弹力作用下瞬时加速度的求解 如图所示,竖直放置在水平面上的轻弹簧上叠放着两物块P 、Q,它们的质量 均为2kg ,均处于静止状态.若突然将一个大小为10N 、方向竖直向下的力施 加在物块P 上,则此瞬间,P 对Q 压力的大小为(g 取10m/s 2):( ) C A.5N B.15N C.25N D.35N. 类型三物体在弹簧弹力作用下的动态分析 如图所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均 为m =12kg 的物体A 、B 。物体A 、B 和轻弹簧竖立静止在水平地面上, 现要加一竖直向上的力F 在上面物体A 上,使物体A 开始向上做匀加 速运动,经0.4s 物体B 刚要离开地面,设整个过程中弹簧都处于弹性 限度内,取g =10m/s 2 ,求: (1)此过程中所加外力F 的最大值和最小值。(F 1=45N ,F 2=285N ) (2)此过程中外力F 所做的功。(49.5J ) 类型四物体在弹簧弹力作用下的运动分析 A 、 B 两木块叠放在竖直轻弹簧上,如图所示,已知木块A 、B 质量 分别为0.42 kg 和0.40 kg ,弹簧的劲度系数k=100 N/m ,若在木块A 上作用一个竖直向上的力F ,使A 由静止开始以0.5 m/s 2的加速度竖 直向上做匀加速运动(g=10 m/s 2). (1)使木块A 竖直做匀加速运动的过程中,力F 的最大值; (2)若木块由静止开始做匀加速运动,直到A 、B 分离的过程中,弹簧的弹性势能减少了0.248 J ,求这一过程F 对木块做的功. 类型五传感器问题 两个质量不计的弹簧将一金属块支在箱子的上顶板与下底板之间,箱子 只能沿竖直方向运动,如图所示,两弹簧原长均为0.80m,劲度系数均为 60N/m.当箱以a=2.0m/s 2的加速度匀减速上升时,上、下弹簧的长度分别 为0.70m 和0.60m(g=10m/s 2).若上顶板压力是下底板压力的四分之一, 试判断箱的运动情况。 类型六连接体弹簧中的动力学问题 如图所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A 、 B ,它们的质量分别为m A 、m B ,弹簧的劲度系数为k , C 为一固定挡板。 ○3 ○4 ○2 ○ 1 F F F F F 图一

弹簧类问题分析方法专题

弹簧类问题分析方法专题

弹簧类问题分析方法专题 江西省广丰中学周小勇 高考要求轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视. 弹簧类命题突破要点 1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化. 2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变. 3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,

也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-(21kx 22-21kx 12 ),弹力的功等于弹性势能增量的负值.弹性势能的公式E p =21kx 2 ,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解. 弹簧类问题多为综合性问题,涉及的知识面 广,要求的能力较高,是高考的难点之一. 在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本专题此类问题作一归类分析。 案例探究 一、最大、最小拉力问题 例1. 一个劲度系数为k =600N/m 的轻弹 簧,两端分别连接着质量均为m =15kg 的物体A 、B ,将它们竖直静止地放在水平地面上,

弹簧类问题的几种模型及其处理办法

精心整理 弹簧类问题的几种模型及其处理方法 学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂。其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。根据近几年高考的命题特点和知识的考查,笔者就弹簧类问题分为以下几种类型进行分析,供读者参考。 一、弹簧类命题突破要点 1.弹簧的弹力是一种由形变而决定大小和方向的力。当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形2 3 ,高考不 1 例1.m2此过程中,m 分析:, 分别是 弹簧k1、k2 当用力缓慢上提m1,使k2下端刚脱离桌面时,,弹簧k2最终恢复原长,其中,为此时弹簧k1的伸长量。 答案:m2上升的高度为,增加的重力势能为,m1上升的高度为 ,增加的重力势能为 。

点评:此题是共点力的平衡条件与胡克定律的综合题,题中空间距离的变化,要通过弹簧形变量的计算求出。注意缓慢上提,说明整个系统处于动态平衡过程。 例2.如上图2所示,A物体重2N,B物体重4N,中间用弹簧连接,弹力大小为2N,此时吊A物体的绳的拉力为T,B对地的压力为F,则T、F的数值可能是 A.7N,0??????B.4N,2N?????C.1N,6N???????D.0,6N 分析:对于轻质弹簧来说,既可处于拉伸状态,也可处于压缩状态。所以,此问题要分两种情况进行分析。 (1)若弹簧处于压缩状态,则通过对A、B受力分析可得:, (2, 答案: 点评: 2 例3. 分析: (2 弹力和剪断 ,方向水平向右。 点评:此题属于细线和弹簧弹力变化特点的静力学问题,学生不仅要对细线和弹簧弹力变化特点熟悉,还要对受力分析、力的平衡等相关知识熟练应用,此类问题才能得以解决。 突变类问题总结:不可伸长的细线的弹力变化时间可以忽略不计,因此可以称为“突变弹力”,轻质弹簧的弹力变化需要一定时间,弹力逐渐减小,称为“渐变弹力”。所以,对于细线、弹簧类问题,当外界情况发生变化时(如撤力、变力、剪断),要重新对物体的受力和运动情况进行分析,细线上的弹力可以突变,轻弹簧弹力不能突变,这是处理此类问题的关键。 3.碰撞型弹簧问题

《结构力学习题集及答案》(上)-4知识分享

《结构力学习题集及答案》(上)-4

第四章超静定结构计算——力法 一、判断题: 1、判断下列结构的超静定次数。 (1)、(2)、 (a) (b) (3)、(4)、 (5)、(6)、 (7)、 (a)(b) 2、力法典型方程的实质是超静定结构的平衡条件。 仅供学习与交流,如有侵权请联系网站删除谢谢0

仅供学习与交流,如有侵权请联系网站删除 谢谢1 3、超静定结构在荷载作用下的反力和内力,只与各杆件刚度的相对数值有关。 4、在温度变化、支座移动因素作用下,静定与超静定结构都有内力。 5、图a 结构,取图b 为力法基本结构,则其力法方程为δ111X c =。 (a) (b)X 1 6、图a 结构,取图b 为力法基本结构,h 为截面高度,α为线膨胀系数,典型方程中?12122t a t t l h =--()/()。 t 2 1 t l A h (a)(b)X 1 7、图a 所示结构,取图b 为力法基本体系,其力法方程为 。 (a)(b) 1 二、计算题: 8、用力法作图示结构的M 图。

仅供学习与交流,如有侵权请联系网站删除 谢谢2 3m 9、用力法作图示排架的M 图。已知 A = 0.2m 2,I = 0.05m 4,弹性模量为E 0。 q 10、用力法计算并作图示结构M 图。EI =常数。 a a 11、用力法计算并作图示结构的M 图。 ql /2

仅供学习与交流,如有侵权请联系网站删除 谢谢3 12、用力法计算并作图示结构的M 图。 q 3 m 4 m 13、用力法计算图示结构并作出M 图。E I 常数。(采用右图基本结构。) l 2/3l /3 /3 l /3 14、用力法计算图示结构并作M 图。EI =常数。 3m 3m 15、用力法计算图示结构并作M 图。EI =常数。 2m 2m 2m 2m

高中物理弹簧类问题专题练习总结附详细答案

- v 甲 高 中物理弹簧类问题专题练习 1.图中a 、b 为两带正电的小球,带电量都是q ,质量分别为M 和m ;用一绝缘弹簧联结,弹簧的自然长度很小,可忽略不计,达到平衡时,弹簧的长度为d 0。现把一匀强电场作用于两小球,场强的方向由a 指向b ,在两小球的加速度相等的时刻,弹簧的长度为d 。( ) A .若M = m ,则d = d 0 B .若M >m ,则d >d 0 C .若M <m ,则d <d 0 D .d = d 0,与M 、m 无关 2. 如图a 所示,水平面上质量相等的两木块A 、B 态.现用一竖直向上的力F 拉动木块A ,使木块A 向上做匀加速直线运动,如图b 所示.研究从力F 刚作用在木块A 的瞬间到木块B 刚离开地面的瞬 间这个过程,并且选定这个过程中木块A 列图象中可以表示力F 和木块A 的位移x 之间关系的是( 3.如图甲所示,一轻弹簧的两端分别与质量为m 1和m 2的两物块相连接,并且静止在光滑的水平面上.现使m 1瞬时获得水平向右的速度3m/s ,以此刻为时间零点,两物块的速度随时间变化的规律如图乙所示,从图象信息可得( ) A .在t 1、t 3时刻两物块达到共同速度1m/s 且弹簧都是处于压缩状态 B .从t 3到t 4时刻弹簧由伸长状态逐渐恢复原长 C .两物体的质量之比为m 1∶m 2 = 1∶2 D .在t 2时刻两物体的动量之比为P 1∶P 2 =1∶2 4.如图所示,绝缘弹簧的下端固定在斜面底端,弹簧与斜面平行,带电小球Q (可视为质点)固定在光滑绝缘斜面上的M 点,且在通过弹簧中心的直线ab 上。现把与Q 大小相同,带电性也相同的小球P ,从直线ab 上的N 点由静止释放,在小球P 与弹簧接触到速度变为零的过程中( ) A.小球P 的速度是先增大后减小 B.小球P 和弹簧的机械能守恒,且P 速度最大时 所受弹力与库仑力的合力最大 C.小球P 的动能、重力势能、电势能与弹簧的弹 性势能的总和不变 D.小球P 合力的冲量为零 A B C D

弹簧类问题

弹簧类问题 知识梳理 弹簧发生形变,会对与它接触的物体产生力的作用,大小符合胡克定律:,其中k为劲度系数,x为形变量,方向指向弹簧恢复原状方向。 常考题型 题型1:考查弹簧上的受力,注意:大小只看一端。 例1.如图所示,弹簧秤和细线的重力不计,一切摩擦不计,重物的重力10N G ,则弹簧秤A和B的读数分别是() A.10N,20N B.10N,10N C.10N,0 D.0,0 答案:B 题型2:弹簧劲度系数的影响因素及求解。 例1.某弹簧的劲度系数为100N/m,若把该弹簧从中间一分为二,则新弹簧的劲度系数是多少? 答案:200N/m 例2.弹簧受力10N时,长度为10cm;当受力为11N时,长度变为11cm,求该弹簧的劲度系数。 答案:2100N/m 题型3:弹簧与受力、运动、做功的结合。 例1.如图甲所示,倾角θ=37°的粗糙斜面固定在水平面上,斜面足够长。一根轻弹簧一端固定在斜面的底端,另一端与质量m=1.0kg的小滑块(可视为质点)接触,滑块与弹簧不相连,弹簧处于压缩状态。当t=0时释放滑块。在0~0.24s时间内,滑块的加速度a随时间

t 变化的关系如图乙所示。已知弹簧的劲度系数N/m ,当t =0.14s 时,滑块的速 度v 1=2.0m/s 。g 取l0m/s 2,sin37°=0.6,cos37°=0.8。弹簧弹性势能的表达式为(式中k 为弹簧的劲度系数,x 为弹簧的形变量)。求: (1)斜面对滑块摩擦力的大小f ; (2)t =0.14s 时滑块与出发点间的距离d ; (3)在0~0.44s 时间内,摩擦力做的功W 。 图甲 图乙 答案:解:(1)当t 1=0.14s 时,滑块与弹簧开始分离,此后滑块受重力、斜面的支持力和 摩擦力,滑块开始做匀减速直线运动。由题中的图乙可知,在这段过程中滑块加速度的 大小a 1=10m/s 2 。根据牛顿第二定律有 所以 N (2)当t 1=0.14s 时弹簧恰好恢复原长,所以此时滑块与出发点间的距离d 等于t 0=0时弹簧 的形变量x ,所以在0~0.14s 时间内弹簧弹力做的功。在这段过 程中,根据动能定理有 可求得 d = 0.20 m (3)设从t 1=0.14s 时开始,经时间滑块的速度减为零,则有s 这段时间内滑块运动的距离m 此时t 2=0.14s+=0.34s ,此后滑块将反向做匀加速直线运动,根据牛顿第二定律可求得此时加速度的大小m/s 2 在0.34s~0.44s (s )时间内,滑块反向运动的距离m 所以在0~0.44s 时间内,摩擦力f 做的功 J 例2.轻质弹簧一端固定,另一端与放置于水平桌面上的小物块(可视为质点)相连接。弹簧处于原长时物块位于O 点。现将小物块向右拉至A 点后由静止释放,小物块将沿水平桌面 22.010k =?2 p 1 2 E kx =1sin mg f ma θ+=4.0f =2p p 1 2 W E E kd =-=弹末初2 11sin 02 W mgd fd m θ--=-v 弹1t ?1 11 00.20t a -?= =-v 2 1 1100.202() x a -= =-v 1t ?2sin cos 2.0mg mg a m θμθ -= =20.1t ?=2 222 10.012 x a t =?=12() 1.64W f d x x =-++=-

结构力学专题论文

结构力学专题论文 超静定梁的极限荷载分析与计算 一、 概述 弹性设计方法及其许用应力设计法的最大缺陷是以某一截面上的max σ达到[σ]作为衡量整个结构破坏的标准。事实上,由塑性材料组成的结构(特别是超静定结构)当某一局部的max σ达到了屈服应力时,结构还没有破坏,还能承受更大的荷载。因此弹性设计法不能充分的利用结构的承载能力,是 不够经济的。 塑性分析考虑了材料的塑性性质,其强度要求以结构破坏时的荷载作为标准: max []Pu P p u F F F k ≤= 其中,Pu F 是结构破坏时荷载的极限值,即极限荷载。u k 是相应的安全系数。 对结构进行塑性分析时仍然要用到平衡条件、几何条件、平截面假定,这与弹性分析时相同。另外还要采用以下假设: (1) 材料为理想弹塑性材料。其应力与应变关系如图所示。(图1.1) 图1.1 (2) 比例加载:全部荷载可以用一个荷载参数P 表示,不会出现卸载 现象。 (3) 结构的弹性变形和塑性变形都很小。 从应力与应变图中看出,一旦进入塑性阶段(AB 段),应力与应变不再是一一对应的关系,只有了解全部受力变形过程才能得到结构的弹塑性解答。但塑性分析法只考虑结构破坏状态时对应的极限荷载,所以比弹塑性分析法要简单的多。 值得注意的是,塑性分析只适用于延性比较好的弹塑性材料组成的结 D s σσ

构,而不适用于脆性材料组成的结构,也不适用于对变形条件要求较严的结构。 二、 相关概念 1、极限弯矩 (1)屈服弯矩 随着M 的增大,截面最外层纤维处的应力达到屈服应力s σ时,截面承受的弯矩称作弹性极限弯矩或者屈服弯矩。 e s M W σ= 式中,W 是弹性弯曲截面系数。 (2)极限弯矩 M 不断增大,整个截面的应力达到屈服应力s σ时,截面承受的弯矩称作极限弯矩。 u s s M W σ= s W 是塑性截面系数,其值为等截面轴上、下部分面积对该轴的静矩。 可见,纯弯曲时,M 只与材料的屈服应力s σ和截面的几何尺寸、形状 有关。剪力和轴力对M 的影响可以忽略不计。 2、塑性铰 2.1 概念 当整个截面应力达到屈服极限时,保持极限弯矩不变,两个无限靠近的截面可以发生有限的相对转动,这样的截面称为塑性铰。 2.2 塑性较的特点 (1)塑性铰可以承受极限弯矩。 (2)塑性铰是单向铰。 (3)卸载时塑性铰消失。 (4)随着荷载分布的不同,塑性铰可以出现在不同的位置。 3、破坏机构 结构在极限荷载作用下,由于出现足够多的塑性铰而形成的机构叫做破坏机构。 破坏机构可以在整体结构中形成,比如简支梁;也可以在结构上的某一局部形成,比如多跨连续梁。同一结构荷载不同时,破坏机构一般也不同。 静定结构在弯矩峰值截面形成一个塑性铰后,就形成破坏机构而丧失承载能力。对于超静定结构,因为有多余约束,要形成足够多的塑性铰才能丧失承载能力,这也是我们在做结构时,要设计成超静定结构的重要原因之一。 三、 判定极限荷载时的一般定理

高考物理弹簧类问题专题复习

《弹簧问题专题》教案 一、学习目标 轻弹簧是一种理想化的物理模型,该模型是以轻弹簧为载体,设置复杂的物理情景,可以考查力的概念、物体的平衡、牛顿定律的应用、能的转化与守恒,以及我们分析问题、解决问题的能力,所以在高考命题中时常出现这类问题,也是高考的难点之一。 二、有关弹簧题目类型 1、平衡类问题 2、突变类问题 3、简谐运动型弹簧问题 4、功能关系型弹簧问题 5、碰撞型弹簧问题 6、综合类弹簧问题 三、知能演练 1、平衡类问题 例1.(1999年,全国)如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( ) A.m1g/k 1 B.m2g/k 2 C.m1g/k 2 D.m2g/k 2 解析:我们把m m 12、看成一个系统,当整个系统处于平衡状态时,整个系统受重力和弹力,即 ()()/m m g k x x m g m g k 12211122 +==+则 当上面木块离开弹簧时,m 2受重力和弹力,则 m g k x x m g k x x x m g k C 222222 1212===-=,则所以,应选() //? 【例2】、(2012 浙江)14、如图所示,与水平面夹角为30°的固定斜面上有一质量m=1.0kg 的物体。细绳的一端摩擦不计的定滑轮与固定的弹簧秤相连。物体静止在斜面上,弹簧秤的示数为4.9N 。关于 物体受力的判断(取g=9.8m/s2),下列说法正确的是C A.斜面对物体的摩擦力大小为零 B. 斜面对物体的摩擦力大小为4.9N ,方向沿斜面向上 C. 斜面对物体的摩擦力大小为4.9N ,方向沿斜面向下 D. 斜面对物体的摩擦力大小为4.9N ,方向垂直斜面向上 练习1、(2010山东卷)17.如图所示,质量分别为1m 、2m 的两个物体通过轻弹簧连接,在力F 的作用下一起沿水平方向做匀速直线运动(1m 在地面,2m 在空中),力F 与水平方向成θ角。则1m 所受支持力N 和摩擦力f 正确的是AC A .12sin N m g m g F θ=+- B .12cos N m g m g F θ=+- C .cos f F θ= D .sin f F θ= 2、在水平地面上放一个竖直轻弹簧,弹簧上端与一个质量为2.0kg 的木板相连。若在木板上再作用一个竖直向下的力F 使木板缓慢向下移动0.1米,力F 作功2.5J,此时木板再次处于平衡,力F 的大小为50N ,如图所示,则木板下移0.1米的过程中,弹性势能增加了多少? 解:由于木板压缩弹簧,木板克服弹力做了多少功,弹簧的弹性势能就增加了多少,即:(木板克服弹力做功,就是弹力对木块做负功) , W 弹=-mgx -W F =-4.5J 所以弹性势能增加4.5焦耳 点评:弹力是变力,缓慢下移,F 也是变力,所以弹力功 2、突变类问题 例1、一个轻弹簧一端B 固定,另一端C 与细绳的一端共同拉住一个质量为m 的小球,绳的另一端A 也固定,如图所示,且AC 、BC 与竖直方向夹角分别为21θθ、、,求 (1)烧断细绳瞬间,小球的加速度 k F E mgx W W ?=++=弹50J W Fx ≠=弹 E W ?=-弹弹

有关弹簧问题的专题复习

有关弹簧问题的专题复习 纵观历年高考试题,和弹簧有关的物理试题占有相当的比重,高考命题者常以弹簧为载体设计出各类试题,这类试题涉及到静力学问题、动力学问题、动量守恒和能量守恒问题、振动问题、功能关系问题,几乎贯穿于整个力学知识体系,为了帮助同学们掌握这类试题的分析方法,同时也想借助于弹簧问题,将整个力学知识有机地结合起来,让同学们对整个力学知识体系有完整的认识,特将有关弹簧问题分类研究如下. 一、弹簧中的静力学问题 在含有弹簧的静力学问题中,当弹簧所处的状态没有明确给出时,必须考虑到弹簧既可以处于拉伸状态,也可以处于压缩状态,必须全面分析各种可能性,以防以偏概全. 【例1】(2002年广东省高考题)如图所示,a、b、c为三个物块,M、N 为两个轻质弹簧,R为跨过光滑定滑轮的轻绳,它们均处于平衡状 态.则:() A.有可能N处于拉伸状态而M处于压缩状态 B.有可能N处于压缩状态而M处于拉伸状态 C.有可能N处于不伸不缩状态而M处于拉伸状态 D.有可能N处于拉伸状态而M处于不伸不缩状态 【解析】研究a、N、c系统由于处于平衡状态,N可能处于拉伸 状态,而M可能处于不伸不缩状态或压缩状态;研究a、M、b系 统由于处于平衡状态,M可能处于压缩状态(或处于不伸不缩状态),而N可能处于不伸不缩状态或拉伸状态.综合分析,本题只有A、D正确. 【例2】.如图所示,重力为G的质点M与三根相同的轻质 弹簧相连,静止时,相邻两弹簧间的夹角均为120 ,已知弹 簧A、B对质点的作用力均为2G,则弹簧C对质点的作用 力大小可能为() A.2G B.G C.0 D.3G 【解析】弹簧A、B对M的作用力有两种情况:一是拉伸时对M的拉力,二是压缩时对M的弹力. 若A、B两弹簧都被拉伸,两弹簧拉力与质点M重力的合力方向一定竖直向下,大小为3G,此时弹簧C必被拉伸,对M有竖直向上的大小为3G的拉力,才能使M 处于平衡状态. 若A、B两弹簧都被压缩,同理可知弹簧C对M有竖直向下的大小为G的弹力.A、B两弹簧不可能一个被拉伸,一个被压缩,否则在题设条件下M不可能平衡.故本题选B、D. 【例3】(1999年全国高考题)如图所示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为()

弹簧类问题

弹簧类专题训练 一、单项题 1、如图所示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数 分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处 于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在 这过程中下面木块移动的距离为( ) 2、物块1、2放在光滑水平面上加用轻质弹簧相连,如图1所示.今对物块1、2分别施以方向相反的水平力F 1、F 2.且F 1大于F 2,则弹簧秤的示数( ) A .一定等于F 1+F 2 B .一定等于F 1—F 2 C 、一定大于F 2小于F 1 D .条件不足,无法确定 3.如图所示,四根相同的轻质弹簧都处于竖直状态,上端都受到大小皆为F 的拉力作用,针对以下四种情况:(1)中的弹簧下端固定在地上;(2)中的弹簧悬挂着物块A 而保持静止;(3)中的弹簧拉着物块B 匀加速上升;(4)中的弹簧拉着物块C 匀加速下降。设四根弹簧的伸长量依次分别为1l ?、2l ?、3l ?、4l ?,则有( ) A .1l ?<2l ? B 、2l ?=4l ? C .3l ?<1l ? D .4l ?<3l ? 4.质量分别为m 和m 2的物块A 、B 用轻弹簧相连,设两物块与接触面间的动摩擦因数都相同。当用水平力F 作用于B 上且两物块在粗糙的水平面上,共同向右加速运动时,弹簧的伸长量为1x ,如图甲所示;当用同样大小的力F 竖直共叼加速提升两物块时,弹簧的伸长量为2x ,如图乙所示;当用同样大小的力F 沿固定斜面向上拉两物块使之共同加速运动时,弹簧的伸长量为3x ,如图丙所示则321::x x x 等于 ( ) A .1:1:1 B .1:2:3 C .1:2:1 D .无法确定 5.如图所示,小车上有一直立木板,木板上方有一槽,槽内固定一定滑轮,跨过定滑轮的轻 绳上一端系一重球,另一端系在弹簧秤上,弹簧秤固定在小车上,开始时小车处在静止 状态,重球紧挨直立木板,则下列说法正确的是 ( ) A. 若小车匀加速向右运动,弹簧秤读数及小车对地面压力均增大 1 2 F 1 F 2

弹簧类问题专题盘点

弹簧类问题专题 一、弹簧弹力大小问题 弹簧弹力的大小可根据胡克定律计算(在弹性限度内),即F=kx,其中x是弹簧的形变量(与原长相比的伸长量或缩短量,不是弹簧的实际长度)。 高中研究的弹簧都是轻弹簧(不计弹簧自身的质量,也不会有动能的)。 不论弹簧处于何种运动状态(静止、匀速或变速),轻弹簧两端所受的弹力一定等大反向。证明如下:以轻弹簧为对象,设两端受到的弹力分别为F1、F2,根据牛顿第二定律, F1+F2=ma,由于m=0,因此F1+F2=0,即F1.F2一定等大反向。 弹簧的弹力属于接触力,弹簧两端必须都与其它物体接触才可能有弹力。如果弹簧的一端和其它物体脱离接触,或处于拉伸状态的弹簧突然被剪断,那么弹簧两端的弹力都将立即 变为零。 在弹簧两端都保持与其它物体接触的条件下,弹簧弹力的大小F=kx与形变量x成正比。由于形变量的改变需要一定时间,因此这种情况下,弹力的大小不会突然改变,即弹簧弹力大小的改变需要一定的时间。(这一点与绳不同,高中物理研究中,是不考虑绳的形变的, 因此绳两端所受弹力的改变可以是瞬时的。) 例1.质量分别为m和2m的小球P、Q用细线相连,P用轻弹簧悬挂在天花板下,开始 系统处于静止。下列说法中正确的是 A.若突然剪断细线,则剪断瞬间P、Q的加速度大小均为g B.若突然剪断细线,则剪断瞬间P、Q的加速度大小分别为0和g C.若突然剪断弹簧,则剪断瞬间P、Q的加速度大小均为g D.若突然剪断弹簧,则剪断瞬间P、Q的加速度大小分别为3g和0 分析与解:剪断细线瞬间,细线拉力突然变为零,弹簧对P的拉力仍为3mg竖直向上,因此剪断瞬间P的加速度为向上2g,而Q的加速度为向下g;剪断弹簧瞬间,弹簧弹力突然变为零,细线对P、Q的拉力也立即变为零,因此P、Q的加速度均为竖直向下,大小均为g。选C。 例2.如图所示,小球P、Q质量均为m,分别用轻弹簧b和细线c悬挂在天花板下,再 用另一细线d、e与左边的固定墙相连,静止时细线d、e水平,b、c与竖直方向夹角均为 θ=37?。下列判断正确的是 A.剪断d瞬间P的加速度大小为0.6g B.剪断d瞬间P的加速度大小为0.75g C.剪断e前c的拉力大小为0.8mg D.剪断e后瞬间c的拉力大小为1.25mg 分析与解:剪断d瞬间弹簧b对小球的拉力大小和方向都未来得及发生变化,因此重力和弹簧拉力的合力与剪断前d对P的拉力大小相等,为0.75mg,因此加速度大小为0.75g,

高中物理弹簧类问题专题练习经典总结附详细答案

高中物理弹簧类问题专题练习 、;用一绝缘弹簧联结,和mq,质量分别为a1.图中Mb为两带正电的小球,带电量都是。现把一匀强电场作用弹簧的自然长度很小,可忽略不计,达到平衡时,弹簧的长度为d0),在两小球的加速度相等的时刻,弹簧的长度为d。(于两小球,场强的方向由a指向b >dm,则d B.若M>A.若M = m,则d = d 00a b 、M无关m D.d = d,与C.若M<m,则d<d 00 m M 整个系统处于平衡状B用一轻弹簧相连接,、2. 如图a所示,水平面上质量相等的两木块A向 上做匀加速直线运动,使木块A.现用一竖直向上的力F拉动木块A,态 F 刚离开地面的瞬B研究从力F刚作用在木块A的瞬间到木块b如图所示. 的起始位置为坐标原点,则下A间这个过程,并且选定这个过程中木块A A )列图象中可以表示力F和木块A的位移x之间关系的是( B B F F F F a b x x x x O O O O D C B A 的两物块相连接,并且静止在光滑的m和3.如图甲所示,一轻弹簧的两端分别与质量为m21两物块的速度随时间以此刻为时间零点,水平面上.现使m瞬时获得水平向右的速度3m/s,1) 变化的规律如图乙所示,从图象信息可得( A.在t、t时刻两物块达到共同速度1m/s且弹簧都是处于压缩状态31时刻弹簧由伸长状态

逐渐恢复原长t.从t到B43 /m/s v2 m = 1∶C .两物体的质量之比为m∶213 m1 2 ∶∶t时刻两物体的动量之比为PP =1 D.在m2 2212 1 v0 /s tttttmm4 3 1 2 2 1 1 -乙甲(可视为质.如图所示,绝缘弹簧的下端固定在斜面底端,弹簧与斜面平行,带电小球Q4大小相同,Q上。现把与点)固定在光滑绝缘斜面上的M点,且在通过弹簧中心的直线ab与弹簧接触到速度变为N带电性也相同的小球P,从直线ab上的点由静止释放,在小球P 零 的过程中()a 的速度是先增大后减小A.小球PQ 和弹簧的机械能守恒,且PP速度最大时 B.小球P M 所受弹力与库仑力的合力最大N 的动能、重力势能、电势能与弹簧的弹 C.小球P 性势能的总和不变b 合力的冲量为零PD.小球 、B两木块叠放在竖直轻弹簧上,如图所示,已知木块A、B如图所示,5、A质量分别为0.42 kg和0.40 kg,弹簧的劲度系数k=100 N/m ,若在木块A上作用一个竖直向上的力F,使A 22. )=10 m/sg的加速度竖直向上做匀加速运动(0.5 m/s由静止开始以. (1)使木块A竖直做匀加速运动的过程中,力F的最大值; B分离的过)若木块由静止开始做匀加速运动,直到A、(2 ,求这一过程F对程中,弹簧的弹性势能减少了0.248 J. 木块做的功 弹簧相连,m的物体B如图,质量为m的物体A经一轻质弹簧与下方地面上的质量为6、21

高中物理弹簧类问题专题练习(经典总结附详细答案)

- v 甲 高中物理弹簧类问题专题练习 1.图中a 、b 为两带正电的小球,带电量都是q ,质量分别为M 和m ;用一绝缘弹簧联结,弹簧的自然长度很小,可忽略不计,达到平衡时,弹簧的长度为d 0。现把一匀强电场作用于两小球,场强的方向由a 指向b ,在两小球的加速度相等的时刻,弹簧的长度为d 。( ) A .若M = m ,则d = d 0 B .若M >m ,则d >d 0 C .若M <m ,则d <d 0 D .d = d 0,与M 、m 无关 2. 如图a 所示,水平面上质量相等的两木块A 、B 用一轻弹簧相连接,整个系统处于平衡状态.现用一竖直向上的力F 拉动木块A ,使木块A 向上做匀加速直线运动,如图b 所示.研究从力F 刚作用在木块A 的瞬间到木块B 刚离开地面的瞬 间这个过程,并且选定这个过程中木块A 列图象中可以表示力F 和木块A 的位移x 之间关系的是( 3.如图甲所示,一轻弹簧的两端分别与质量为m 1和m 2的两物块相连接,并且静止在光滑的水平面上.现使m 1瞬时获得水平向右的速度3m/s ,以此刻为时间零点,两物块的速度随时间变化的规律如图乙所示,从图象信息可得( ) A .在t 1、t 3时刻两物块达到共同速度1m/s 且弹簧都是处于压缩状态 B .从t 3到t 4时刻弹簧由伸长状态逐渐恢复原长 C .两物体的质量之比为m 1∶m 2 = 1∶2 D .在t 2时刻两物体的动量之比为P 1∶P 2 =1∶2 4.如图所示,绝缘弹簧的下端固定在斜面底端,弹簧与斜面平行,带电小球Q (可视为质 点)固定在光滑绝缘斜面上的M 点,且在通过弹簧中心的直线ab 上。现把与Q 大小相同,带电性也相同的小球P ,从直线ab 上的N 点由静止释放,在小球P 与弹簧接触到速度变为零的过程中( ) A.小球P 的速度是先增大后减小 B.小球P 和弹簧的机械能守恒,且P 速度最大时 所受弹力与库仑力的合力最大 C.小球P 的动能、重力势能、电势能与弹簧的弹 性势能的总和不变 D.小球P 合力的冲量为零 5、如图所示,A 、B 两木块叠放在竖直轻弹簧上,如图所示,已知木块A 、B 质量分别为0.42 kg 和0.40 kg ,弹簧的劲度系数k =100 N/m ,若在木块A 上作用一个竖直向上的力F ,使A 由静止开始以0.5 m/s 2的加速度竖直向上做匀加速运动(g =10 m/s 2). A B C D b

相关主题
文本预览
相关文档 最新文档