当前位置:文档之家› 立体全息成像技术原理

立体全息成像技术原理

立体全息成像技术原理
立体全息成像技术原理

OFweek光学网讯:全息摄影又称全像摄影(Holography),是光学上极富诱惑的一项技术。我们都有这样的体会,洒在马路的油膜在阳光下会呈现出多种色彩,而在吹起的肥皂泡上也会看到同样的情况,原因是由于肥皂泡两个面的反射光出现了干涉,称光的薄膜干涉现象。光是摄影的生命,而光有很多的特性,如色散和散射,有经验的摄影师可以充分利用这些现象变有害为有利,从而为作品添加一些新奇的效果。照相机镜头是由多组透镜合成的,为避免光在透镜表面的反射损失,人们发明出镜头的镀膜技术,使一定波长的光在反射时相互抵消,以增加进入镜头的光线使成像更清晰。同样,人们利用光波的干涉特性研究出了具有立体效果的全息摄影技术。全息摄影曾一度是科学家进行科研的专利技术,现在普通人经过一定的学习也可以掌握了,如普遍用于信用卡或图书封面的仿伪卡,那是一种立体显像的东西,在阳光下显示着五光十色的反射光。

“全息”这一词我们会感想到很熟悉,联想到耳针中的人体全息图。人耳是人体的一个缩影,上面对应人体各个器官,从这里人们进一步研究出人体的任何一局部都有整个身体的信息,所以称全息图,了解这点对全息摄影也就容易理解了。

全息摄影与普通摄影的区别

一、什么是光的干涉现象

在物理课的力学中我们做过水波的干涉实验,而根据光的波动特性,人们也成功地观察到了光波的干涉与衍射现象。为得到频率相同的二条光线,让光从一个狭缝中同时射向第二屏的两个小孔,两束光在屏后出现了干涉条纹,条纹的出现是因为二束光的波峰与波谷会由于叠加时(同相)光加强,相互抵消时(反相)光减弱。这一现象使美国麻省理工学院的物理学家Stephen Benton发现其后面隐藏着一项高科技,从而对这项技术做出进一步的研究。

二、全息图像的特点

有关全息的原理在1947年就已由英国物理学家丹尼斯伽柏提出了,科学家本人也因此获得了诺贝尔奖。在全息影像拍摄时,记录下光波本身以及二束光相对的位相,位相是由实物与参考光线之间位置差异造成的,从全息照片上的干涉条纹上我们看不到物体的成像,必须使用具有凝聚力的激光来准确瞄准目标照射全息片,从而再现出物光的全部信息。一个叫班顿的人后来又发现了更为简便使用白光还原影像的方法,从而使这项技术逐渐走向实用阶段。美国《国家地理杂志》第一次使用白色光全息片贴在封面时,销售量由一千万份增加到再版后的一千六百万份。这一技术后由美国传到欧洲和其它国家,广泛用于信用卡等仿伪技术。激光全息摄影技术也随之风靡全世界。

全息摄影是利用激光光波的干涉将影像与再现影像记录下来的一种摄影,它与一般的立

体照片技术完全不同,我们可以围着它观看各个侧面,只是摸不到真实的物体,其显着的特点和优势有如下几点:

1、再造出来的立体影像有利于保存珍贵的艺术品资料进行收藏。

2、拍摄时每一点都记录在全息片的任何一点上,一旦照片损坏也关系不大。

3、全息照片的景物立体感强,形象逼真,借助激光器可以在各种展览会上进行展示,会得到非常好的效果。

《全息影像技术》

全息影像技术 全息摄影就是在摄影的同时将上述两类信息同时记录来实现的。采用激光 作为照明光源,并将光源发出的光分为两束,一束直接射向感光片,另一 束经被摄物的反射后再射向感光片。两束光在感光片上叠加产生干涉,感 光底片上各点的感光程度不仅随强度也随两束光的位相关系而不同。所以 全息摄影不仅记录了物体上的反光强度,也记录了位相信息。与普通的摄 影技术相比,全息摄影技术记录了更多的信息,因此容量比普通照片信息 量大得多(百倍甚至千倍以上)。 全息影像的显示,则是通过光源照射在全息图上,这束光源的频率和传输 方向与参考光束完全一样,就可以再现物体的立体图像。观众从不同角度看,就可以看到物体的多个侧面,只不过看得见摸不到,因为记录的只是 影像。 目前最常用的光源是投影机,因为一来光源亮度相对稳定,二来,投影机 还具有放大影像的作用,作为全息展示非常实用。 技术原理 其第一步是利用干涉原理记录物体光波信息,此即拍摄过程:被摄物体在 激光辐照下形成漫射式的物光束;另一部分激光作为参考光束射到全息底 片上,和物光束叠加产生干涉,把物体光波上各点的位相和振幅转换成在 空间上变化的强度,从而利用干涉条纹间的反差和间隔将物体光波的全部 信息记录下来。记录着干涉条纹的底片经过显影、定影等处理程序后,便 成为一张全息图,或称全息照片;其第二步是利用衍射原理再现物体光波 信息,这是成象过程:全息图犹如一个复杂的光栅,在相干激光照射下, 一张线性记录的正弦型全息图的衍射光波一般可给出两个象,即原始象(又称初始象)和共轭象。再现的图像立体感强,具有真实的视觉效应。全息 图的每一部分都记录了物体上各点的光信息,故原则上它的每一部分都能 再现原物的整个图像,通过多次曝光还可以在同一张底片上记录多个不同 的图像,而且能互不干扰地分别显示出来。 全息原理是“一个系统原则上可以由它的边界上的一些自由度完全描述”,是基于黑洞的量子性质提出的一个新的基本原理。其实这个基本原理是联 系量子元和量子位结合的量子论的。其数学证明是,时空有多少维,就有 多少量子元;有多少量子元,就有多少量子位。它们一起组成类似矩阵的 时空有限集,即它们的排列组合集。全息不全,是说选排列数,选空集与 选全排列,有对偶性。即一定维数时空的全息性完全等价于少一个量子位 的排列数全息性;这类似“量子避错编码原理”,从根本上解决了量子计 算中的编码错误造成的系统计算误差问题。而时空的量子计算,类似生物

全息照相技术综述

全息照相的基本原理 作者:张新成 学号:20114052021 单位:吉首大学物理与机电工程学院2011级应用物理班 内容摘要: 全息摄影亦称:“全息照相”,一种利用波的干涉记录被摄物体反射(或透射)光波中信息(振幅、相位)的照相技术。全息摄影是通过一束参考光和被摄物体上反射的光叠加在感光片上产生干涉条纹而成。全息摄影不仅记录被摄物体反射光波的振幅(强度),而且还记录反射光波的相对相位。全息图并不直接显示物体的图象。用一束激光或单色光在接近参考光的方向入射,可以在适当的角度上观察到原物的像。这是因为激光束在全息图的干涉条纹上衍射而重现原物的光波。再现的像具有三维立体感。本文试论全息照相的基本原理,来叙述学习本章节后的收获和感想。 关键词: 全息照相,波的干涉,全息照片,全息摄影 引言: “全息”来自希腊字“holos”,意即完全的信息------不仅包括光的振幅信息,还包括位相信息。利用干涉原理,将物光波前以干涉条纹的形式记录下来。由于物光波前的振幅和位相及全部信息都存储在记录介质中,顾晨伟“全息图”。光波照明全息图,由于衍射效应能再现出原始物光波,该光波将产生包含物体I全部信息的三维像。这

个波前记录和再现的过程就是全息术。 1947年匈牙利出生的英国物理学家D.伽柏(D.Gabor)提出全息术的设想,意图提高电子显微镜的分辨本领。方法是完全撇开电子显微物镜,用胶片纪录经物体衍射的末聚焦的电子波,得到全息图。一相干的可见光照明全息图,衍射波将产生原物体放大的光学像。为了检验他的理论,1948年他利用水银灯发出的可见光代替电子波,获得了第一张全息图及其再现像。由于全息图的发明,D.伽柏1971年获得诺贝尔物理奖。20世纪50年代GL诺杰斯(G.L.Rogers)等科学家进一步丰富了波前再现理论。 光波的位相信息是通过与参考光波相干涉,在记录介质上形成干涉图而记录下来,所以要求两束光高度相干。早期由于没有更好的相干光源,在两侧同轴方向产生不可分离的“孪生像”。观察者对虚像聚焦时,会看到由实像引起的离焦像;対实像聚焦时,伴随有离焦的虚像。从而像质大大降低。由于光源相干性的限制以及”孪生像“的问题,全息术研究的进展极大受阻。 1960年,激光的出现为全息术的迅速发展开辟了道路。激光是一种单色性很强的光,是制作全息图最理想的光源。1962年美国密执安大学雷达实验室的 E.N利思(E.N.Leith)和J.乌帕特尼克斯(J.upatnieks)借鉴雷达中载频技术,提出”斜参考光法“。这种方法不像伽柏全息图那样以物体直接透射光作为参考光,而是单独引入分离的倾斜照射的参考光波。依据这种方法采用氦氖激光器拍摄成功第一张三维物体的激光透射全息图。激光照明全息图,可看到清楚的三

《医学影像成像原理》名词解释

《医学影像成像原理》名词解释 第一章 1.X 线摄影(radiography):是X 线通过人体不同组织、器官结构的衰减 作用,产生人体医疗情报信息传递给屏-片系统,再通过显定影处理,最终以X 线平片影像方式表现出来的技术。 2.X 线计算机体层成像(computed tomography,CT):经过准直器的X 线束穿透人体被检测层面;经人体薄层内组织、器官衰减后射出的带有人体信息的X 线束到达检测器,检测器将含有被检体层面信息X 线转变为相应的电信号;通过对电信号放大,A/D 转换器变为数字信号,送给计算机系统处理;计算机按 照设计好的方法进行图像重建和处理,得到人体被检测层面上组织、器官衰减系数(|)分布,并以灰度方式显示人体这一层面上组织、器官的图像。 3.磁共振成像(magnetic resonance imaging,MRI):通过对静磁场(B0)中的人体施加某种特定频率的射频脉冲电磁波,使人体组织中的氢质子(1H)受到激励而发生磁共振现象,当RF 脉冲中止后,1H 在弛豫过程中发射出射频信号 (MR 信号),被接收线圈接收,利用梯度磁场进行空间定位,最后进行图像重建而成像的。 4.计算机X 线摄影(computed radiography,CR):是使用可记录并由激光读出X 线影像信息的成像板(IP)作为载体,经X 线曝光及信息读出处理,形成数字式平片影像。 5.数字X 线摄影(digital radiography,DR):指在具有图像处理功能的计算机控制下,采用一维或二维的X 线探测器直接把X 线影像信息转化为数字信号的技术。 6.影像板(imaging plate,IP):是CR 系统中作为采集(记录)影像信息 的接收器(代替传统X 线胶片),可以重复使用,但没有显示影像的功能。7.平板探测器(flat panel detector,FPD):数字X 线摄影中用来代替屏- 片系统作为X 线信息接收器(探测器)。 8.数字减影血管造影(digital subtraction angiography,DSA):是计算机与常规X 线血管造影相结合的一种检查方法,能减去骨骼、肌肉等背景影像,突出显示血管图像的技术。 9.计算机辅助诊断(computer aided diagnosis,CAD):借助人工智能等技术对医学影像作图像分割、特征提取和定量分析等增加诊断信息,用以辅助医生对各种医学影像进行诊断的技术。 第二章 1.X 线强度(X-ray intensity):指在垂直于X 线传播方向单位面积上、单 位时间内通过光子数量(N)与能量(hν)(hv)乘积的总和。常用X 线强度表 示X 线的量与质。 2.光学密度(density,D):又称黑化度。指X 线胶片经过曝光后,通过 显影等处理在照片上形成的黑化程度。

全息投影定义、原理及分类介绍

全息投影定义、原理及分类介绍 在科技快速发展的今天,人们对视觉要求越来越高,由此能实现裸眼立体3D 显示的全息投影技术的应用也是越来越多,在给人们带来新鲜有趣的视觉体验的同时,也为众多商家提供新的宣传营销方式,打开市场新大门。 全息投影技术在展览展示方式,采用全息投影技术的全息成像柜可以使立体影像不借助任何屏幕或介质而直接悬浮在设备外的自由空间,任意角度看都是三维影像展现。产品种类多样分有全息展示柜、180度全息展示柜、270度全息展示柜、360度全息展示柜、全息金字塔、大中小型全息金字塔定制、全息投影设备、3D投影成像设备、全息玻璃柜等,可根据用户使用需求使用场地进行定制。未来全息投影技术市场发展潜力将是无可估量的。 一、什么是全息投影全息投影技术是近些年来流行的一种高科技技术,它是采用一种国外进口的全息膜配合投影再加以影像内容来展示产品的一种推广手段。它提供了神奇的全息影像,可以在玻璃上或亚克力材料上成像。这种全新的互动展示技术将装饰性和实用性融为一体,在没有图像时完全透明,给使用者以全新的互动感受,成为当今一种最时尚的产品展示和市场推广手段。全息投影设备包括:全息投影仪,全息投影幕,全息投影膜,全息投影内容制作等。航天科工数字展示事业部提供3D全息投影成像系统项目策划、3D全息投影成像展示内容制作、 二、全息技术的原理全息投影技术是利用干涉和衍射原理记录并再现物体真实的三维图像的记录和再现的技术。 其第一步是利用干涉原理记录物体光波信息,此即拍摄过程:被摄物体在激光辐照下形成漫射式的物光束;另一部分激光作为参考光束射到全息底片上,和物光束叠加产生干涉,把物体光波上各点的位相和振幅转换成在空间上变化的强度,从而利用干涉条纹间的反差和间隔将物体光波的全部信息记录下来。记录着干涉条纹的底片经过显影、定影等处理程序后,便成为一张全息图,或称全息照片;其第二步是利用衍射原理再现物体光波信息,这是成象过程:全息图犹如一个复杂的光栅,在相干激光照射下,一张线性记录的正弦型全息图的衍射光波一般可给出两个象,即原始象(又称初始象)和共轭象。再现的图像立

凸透镜成像规律练习题全

“靠近”,则对光线起会 )平行于主光轴的光线,经折射后过透镜焦点。

像清晰 五. 凸透镜成像规律:说明几点: ① 焦点是凸透镜成实像和虚像的分界点,时不成像,成实像,成虚像。 f u =f u >f u <② 二倍焦距处是像大小的分界点,时,成等大实像,时,成缩小的实像, f u 2=f u 2>时,成放大实像或放大虚像。 ③ 成实像特点:成实像时,物、像在镜的两侧 f u 2<且倒立,同时,,像变小,,像变大,物像移动方向一致。 ④ 成虚 ↑u ↓v ↑↓v u 像的特点:成虚像时,物、像在镜同侧,且正立、放大,同时,,像变大, ↑↑v u 像变小,像物移动方向也一致。 ↓↓v u ⑤ 成实像时,物、像距离最小值为4倍焦距(即)。 f 4口诀:一焦分虚实,分正倒;二焦分大小;物近(与焦点的距离)像远大,物远(与焦点 的距离)像近小;实像异侧倒,虚像同侧正;像距大(于物距)像放大,像距小(于物距) 像缩小。 例7: 将一支点燃的蜡烛放在一个凸透镜前30cm 处,在透镜另一侧的光屏上得到清晰等 大的像。若把蜡烛从原来的位置向此透镜方向移动20cm ,则此时蜡烛经该透镜所成的像是 ( ) A .放大的虚像 B .等大的虚像 C .缩小 的实像 D .缩小的虚像 例8、关于实像和虚像,下列说法正确的是: ( ) A 、实像能用光屏承接,虚像也能用光屏承接 B 、实像是光的折射形成的,虚像是光的反射形成的 C 、实像是实际光线会聚而成的,虚像是光线反向延长线会聚而成的 D 、实像是实 际存在的像,虚像是实际不存在的像,是人的幻觉形成的 六、对凸透镜成像规律的科学探究题 例9: 在做“探究凸透镜成像”的实验中: (1)将凸透镜正对太阳光,在透镜的另一侧移动光屏,在距透镜10cm 处,屏上呈现出最 小最亮的光斑,则此凸透镜焦距约是__________cm ; (2)小莉同学做实验时,发现烛焰在光屏上的像偏高,如图7所示,若要使烛焰成像在 光屏中心,只调节光屏,应将光屏向__________(填“上”、“下”)调节; (3)若将烛焰移至距凸透镜15cm 处,移动光屏,使烛焰在屏上得到倒立、_______清晰 的实像,_______就是应用这一原理制成的(填“照相机”、 “幻灯机”或“放大镜”)。 巩固练习: 1.如图8所示,一玻璃砖内有一凸形气泡,一束平行光垂直射 向玻璃砖的侧面,通过玻璃砖后,光线将会( ) A.仍然平行 B.会聚 C.发散 D.无法确定 2.一束光在空气中经凸透镜折射后,下列说法中正确的是( )A.一定是平行光束 B.一定是会聚光束 C.折射光束比原来的光束会聚一些 D.一定是发散光束

双目视觉成像原理

双目视觉成像原理 1.引言 双目立体视觉(Binocular Stereo Vision)是机器视觉的一种重要形式,它是基于视差原理并利用成像设备从不同的位置获取被测物体的两幅图像,通过计算图像对应点间的位置偏差,来获取物体三维几何信息的方法。融合两只眼睛获得的图像并观察它们之间的差别,使我们可以获得明显的深度感,建立特征间的对应关系,将同一空间物理点在不同图像中的映像点对应起来,这个差别,我们称作视差(Disparity)图。 双目立体视觉测量方法具有效率高、精度合适、系统结构简单、成本低等优点,非常适合于制造现场的在线、非接触产品检测和质量控制。对运动物体(包括动物和人体形体)测量中,由于图像获取是在瞬间完成的,因此立体视觉方法是一种更有效的测量方法。双目立体视觉系统是计算机视觉的关键技术之一,获取空间三维场景的距离信息也是计算机视觉研究中最基础的内容。 2.双目立体视觉系统 立体视觉系统由左右两部摄像机组成。如图一所示,图中分别以下标L和r标注左、 右摄像机的相应参数。世界空间中一点A(X,Y,Z)在左右摄像机的成像面C L 和C R 上的像点 分别为al(ul,vl)和ar(ur,vr)。这两个像点是世界空间中同一个对象点A的像,称为“共轭点”。知道了这两个共轭像点,分别作它们与各自相机的光心Ol和Or的连线,即投影线alOl和arOr,它们的交点即为世界空间中的对象点A(X,Y,Z)。这就是立体视觉的基本原理。 图1:立体视觉系统 3.双目立体视觉相关基本理论说明

3.1 双目立体视觉原理 双目立体视觉三维测量是基于视差原理,图2所示为简单的平视双目立体成像原 理图,两摄像机的投影中心的连线的距离,即基线距为b 。摄像机坐标系的原点在摄像机镜头的光心处,坐标系如图2所示。事实上摄像机的成像平面在镜头的光心后,图2中将左右成像平面绘制在镜头的光心前f 处,这个虚拟的图像平面坐标系O1uv 的u 轴和v 轴与和摄像机坐标系的x 轴和y 轴方向一致,这样可以简化计算过程。左右图像坐标系的原点在摄像机光轴与平面的交点O1和O2。空间中某点P 在左图像和右图像中相应的坐标分别为P1(u1,v1)和P2(u2,v2)。假定两摄像机的图像在同一个平面上,则点P 图像坐标的Y 坐标相同,即v1=v2。由三角几何关系得到: c c 1z x f u = c c 2z )b -x (f u = v 1 c c 21z y f v v == 上式中(x c ,y c ,z c )为点P 在左摄像机坐标系中的坐标,b 为基线距,f 为两个摄 像机的焦距,(u1,v1)和(u2,v2)分别为点P 在左图像和右图像中的坐标。 视差定义为某一点在两幅图像中相应点的位置差: 图2:双目立体成像原理图 由此可计算出空间中某点P 在左摄像机坐标系中的坐标为: 因此,只要能够找到空间中某点在左右两个摄像机像面上的相应点,并且通过摄像机标定获得摄像机的内外参数,就可以确定这个点的三维坐标。 双目立体视觉的系统结构以及精度分析 由上述双目视觉系统的基本原理可知,为了获得三维空间中某点的三维坐标,需要在

全息投影技术

全息投影技术 全息投影技术是近年来兴起的一种高科技技术,它是一种利用干涉和衍射原理记录并再现物体真实的三维图像。它正以一种全新的事物改变着人们对那些传统舞台的声光电技术的审美态度。这种全息投影技术应时代而来,被广泛的应用于社会的各个方面。 如右图,这是英国一家高级酒店推出的利用全息投影技术指引入住者到达指定房间的,画面上鲜活的人物空间成像色彩鲜艳,对比度、清晰度都非常高,空间感、透视感很强。这种技术用科幻般的效果营造着虚拟与 全息技术是利用干涉和衍射原理记录并再现物体真实的三维图像的记录和再现的技术。 其第一步是利用干涉原理记录物体光波信息,此即拍摄过程:被摄物体在激光辐照下形成漫射式的物光束;另一部分激光作为参考光束射到全息底片上,和物光束叠加产生干涉,把物体光波上各点的位相和振幅转换成在空间上变化的强度,从而利用干涉条纹间的反差和间隔将物体光波的全部信息记录下来。记录着干涉条纹的底片经过显影、定影等处理程序后,便成为一张全息图,或称全息照片; 其第二步是利用衍射原理再现物体光波信息,这是成象过程:全息图犹如一个复杂的光栅,在相干激光照射下,一张线性记录的正弦型全息图的衍射光波一般可给出两个象,即原始象(又称初始象)和共轭象。再现的图像立体感强,具有真实的视觉效应。全息图的每一部分都记录了物体上各点的光信息,故原则上它的每一部分都能再现原物的整个图像,通过多次曝光还可以在同一张底片上记录多个不同的图像,而且能互不干扰地分别显示出来。国内比较牛的有清华,中国科技,中国光电研究院,浙江大学,国防科技大学,上海交大,江苏大学等。除光学全息外,还发展了红外、微波和超声全息技术,这些全息技术在军事侦察和监视上有重要意义。

led液晶显示器的驱动原理

led液晶显示器的驱动原理 LED液晶显示器的驱动原理 艾布纳科技有限公司 前两次跟大家介绍有关液晶显示器操作的基本原理, 那是针对液晶本身的特性,与 TFT LCD 本身结构上的操作原理来做介绍. 这次我们针对 TFT LCD 的整体系统面来做介绍, 也就是对其驱动原理来做介绍, 而其驱动原理仍然因为一些架构上差异的关系, 而有所不同. 首先我们来介绍由于 Cs(storage capacitor)储存 电容架构不同, 所形成不同驱动系统架构的原理. Cs(storage capacitor)储存电容的架构 一般最常见的储存电容架构有两种, 分别是Cs on gate与Cs on common这两种. 这两种顾名思义就可以知道, 它的主要差别就在于储存电容是利用gate走线或是common走线来完成的. 在上一篇文章中, 我曾提到, 储存电容主要是为了让充好电的电压,能保持到下一次更新画面的时候之用. 所以我们就必须像在 CMOS 的制程之中, 利用不同层的走线, 来形成平行板电容. 而在TFT LCD的制程之中, 则是利用显示电极与gate走线或是common走线,所形成的平行板电容,来制作出储存电容Cs.

图1就是这两种储存电容架构, 从图中我们可以很明显的知道, Cs on gate由于不必像Cs on common一样, 需要增加一条额外的common走线, 所以它的开口率(Aperture ratio)会比较大. 而开口率的大小, 是影响面板的亮度与设计的重要因素. 所以现今面板的设计大多使用Cs on gate的方式. 但是由于Cs on gate的方式, 它的储存电容是由下一条的gate走线与显示电极之间形成的.(请见图2的Cs on gate与Cs on common的等效电路) 而gate走线, 顾名思义就是接到每一个TFT 的gate端的走线, 主要就是作为gate driver送出信号, 来打开TFT, 好让TFT对显示电极作充放电的动作. 所以当下一条gate走线, 送出电压要打开下一个TFT时 , 便会影响到储存电容上储存电压的大小. 不过由于下一条gate走线打开到关闭的时间很短,(以1024*768分辨率, 60Hz更新频率的面板来说. 一条gate走线打开的时间约为20us, 而显示画面更新的时间约为16ms, 所以相对而言, 影响有限.) 所以当下一条gate走线关闭, 回复到原先的电压, 则Cs储存电容的电压, 也会随之恢复到正常. 这也是为什么, 大多数的储存电容设计都是采用Cs on gate的方式的原因.

全息照相实验的报告材料

全息照相实验报告 程子豪 2010035012 少年班01 一、实验目的: 1.了解全息照相记录和再现的基本原理和主要特点; 2.学习全息照相的操作技术; 3.观察和分析全息图的成像特性。 二、实验原理: 2.1全息照相原理的文字表述: 普通照相底片上所记录的图像只反映了物体上各点发光(辐射光或反射光)的强弱变化,显示的只是物体的二维平面像,丧失了物体的三维特征。全息照相则不同,它是借助于相干的参考光束和物光束相互干涉来记录物光振幅和相位的全部信息。这样的照相把物光束的振幅和相位两种信息全部记录下来,因而称为全息照相。 全息照相的基本原理早在1948年就由伽伯(D. Gabor)发现,但是由于受光源的限制(全息照相要求光源有很好的时间相干性和空间相干性),在激光出现以前,对全息技术的研究进展缓慢,在60年代激光出现以后,全息技术得到了迅速的发展。目前,全息技术在干涉计量、信息存储、光学滤波以及光学模拟计算等方面得到了越来越广泛的应用。伽伯也因此而获得了1971年度的诺贝尔物理学奖。 全息照相在记录物光的相位和强度分布时,利用了光的干涉。从光的干涉原理可知:当两束相干光波相遇,发生干涉叠加时,其合强度不仅依赖于每一束光各自的强度,同时也依赖于这两束光波之间的相位差。在全息照相中就是引进了一束与物光相干的参考光,使这两束光在感光底片处发生干涉叠加,感光底片将与物光有关的振幅和位相分别以干涉条纹的反差和条纹的间隔形式记录下来,经过适当的处理,便得到一张全息照片。 具体来说,全息照相包括以下两个过程: 1、波前的全息记录 利用干涉的方法记录物体散射的光波在某一个波前平面上的复振幅分布,这就是波前的全息记录。通过干涉方法能够把物体光波在某波前的位相分布转换成光强分布,从而被照相底片记录下来,因为我们知道,两个干涉光波的振幅比和位相差决定着干涉条纹的强度分布,所以在干涉条纹中就包含了物光波的振幅和位相信息。典型的全息记录过程是这样的:从激光器发出的相干光波被分束镜分成两束,一束经反射、扩束后照在被摄物体上,经物体的反射或透射的光再射到感光底片上,这束光称为物光波;另一束经反射、扩束后直接照射在感光底片上,这束光称为参考光波。由于这两束光是相干的,所以在感光底片上就形成并记录了明暗相间的干涉条纹。干涉条纹的形状和疏密反映了物光的位相分布的情况,而条纹明暗的反差反映了物光的振幅,感光底片上将物光的信息都记录下来了,经过显影、定影处理后,便形成与光栅相似结构的全息图—全息照片。所以全息图不是别的,正是参考光波和物光波干涉图样的记录。显然,全息照片本身和原来物体没有任何相似之处。 2、衍射再现 物光波前的再现利用了光波的衍射。用一束参考光(在大多数情况下是与记录全息图时用的参考光波完全相同)照射在全息图上,就好像在一块复杂光栅上发生衍射,在衍射光波中将包含有原来的物光波,因此当观察者迎着物光波方向观察时,便可看到物体的再现像。这是一个虚像,它具有原始物体的一切特征。此外还有一个实像,称为共轭像。应该指出,共轭波所形成的实像的三维结构与原物并不完全相似。

三大独家全息投影显示技术解析

三大独家全息投影显示技术解析 昨日,小编跟大家简单说了几个全息投影系统的微显示 模组几个大厂的方案。德州仪器的 DLP Pico 1080p 高清投 影、奇景光电的 Lcos 发射式投影系列、 3M 面向消费级家 庭娱乐公共设置的投影系统。那么今天,小编还是继续跟大 家分享关于全息投影显示技术相关内容。 要知道,在之前的投影机市场,投影光源主要以 led 主,自 06 年三菱推出首款 40 英寸激光电视样机以来, 14 年国际激光显示技术产业化前期创新发展与技术沉淀, 16 年的时候, 激光投影市场才逐渐被打开, 就去年的市场数 据显示,激光投影产品销量已经达到 11 万台,相比上一年 增长了 4 倍之多。激光显示作为第四代显示技术,在我国以 中科院光电研究院为首提前 20 多年布局研发抢占先机,逐 步引导了全球激光显示技术的发展。 在“中国制造 2025“战略 ,未来极有可能由中国品牌引领全球激光显示产业创 新。 目前,微投影技术正在向着光电集成芯片的方向发展,从而 衍生出各式各样的微投影集成显示芯片,其中最常见的就包 括: MEMS 光扫描微投影、 LCD (液晶微型投影技术)透射 微投影、 DLP (由德州仪器开发的数字光学处理技术)以及 LCoS (硅基液晶)反射式微投影 四种主要的显示技术。 光源为 经过

、微视(MicroVision )MEMS 扫描镜及Pico 激光束扫描系统微视(MicroVision )发明的单个微型MEMS 扫描镜组 从16 年底,美国微视公司就与意法半导体(ST )宣布合作开发、生产、销售及推广激光束扫描(LBS )技术,其中LBS 解决方案开发的内容就包括微型投影仪和平视显示器 HUD )。目前,在微电机系统(MEMS )技术已经在硅基片中构成了完整的微显示器,无须再制造附加的上层结构。 MicroVision MEMS 扫描镜结构与原理MEMS 扫描镜内部构造 MEMS 镜组件中有一个反射镜悬浮在常平架(Gimbal Frame )内,常平架上有一个微加工的通电线圈。MEMS 裸片周围安装有永磁体,用于提供磁场。在MEMS 镜组件工作时,只要给MEMS 线圈施加一个电流,就能在常平架上产生一个磁力扭矩,并沿旋转轴的两个方向产生分量。扭矩的两个分量分别负责常平架围绕挠曲悬架旋转和扫描镜谐振模式振

凸透镜成像规律及其探究实验

凸透镜成像规律及其探究实验 一、选择题(共10小题) 1、(2006?潍坊)在探究凸透镜成像的实验中,当烛焰、凸透镜、光屏位于如图所示的位置时,烛焰在光 屏上呈现一个清晰的缩小的像,要使烛焰在光屏上呈现一个 清晰的放大的像,调节的方法是() A、透镜不动,蜡烛向透镜移动,光屏向透镜移动 B、透镜不动,蜡烛向透镜移动,光屏远离透镜移动 C、透镜不动,蜡烛远离透镜移动,光屏远离透镜移动 D、透镜不动,蜡烛远离透镜移动,光屏向透镜移动 2、(2008?柳州)如图所示是探究凸透镜成像规律的实验装置, 将点燃的蜡烛放在离透镜较远处,移动光屏使烛焰在屏上成一 缩小实像,然后只将蜡烛向透镜逐渐移近,那么() A、光屏上出现等大的实像 B、光屏上出现放大的实像 C、光屏上出现缩小的实像 D、透过凸透镜可能会看到放大的像 3、如图是用来研究凸透镜成像规律的实验装置示意图(屏 未画出),当蜡烛和透镜放在图示位置时,通过移动光屏, 可以在光屏上得到与物体等大的像.若透镜位置不变,将蜡 烛移到刻度为30cm处,则() A、移动光屏,可以在屏上得到倒立放大的像 B、移动光屏,可以在屏上得到倒立缩小的像 C、移动光屏,可以在屏上得到正立放大的像 D、不论光屏移到什么位置,都不能在屏上得到清晰的像 4、(2010?乌鲁木齐)物体S(未画出)经凸透镜L成像于M处的光屏上.若将光屏移至N处,仍要在屏上得到物体S的像,则在凸透镜L左侧P处放置的透镜是()

A、B、C、D、 5、(2009?江西)如图所示,F为凸透镜的两个焦点,A′B′为物体AB的像,则物体AB在() A、图中Ⅰ区域,比A′B′大,箭头方向向上 B、图中Ⅱ区域,比A′B′大,箭头方向向下 C、图中Ⅲ区域,比A′B′大,箭头方向向上 D、图中Ⅳ区域,比A′B′小,箭头方向向下 6、(2006?沈阳)在阳光充足的教室内.小阳手持一个焦距为10cm的凸透镜在白墙和窗户之间移动,可以在墙上看到窗户的像,这个像是() A、倒立、等大的 B、倒立、缩小的 C、正立、放大的 D、正立、缩小的 7、用一个凸透镜成像时,下面说法中正确的是() A、实像总是倒立的,虚像总是正立的 B、实像和虚像都可能是放大或缩小的 C、成实像时,物体离凸透镜越近,像越大 D、成虚像时,物体离凸透镜越近,像越大 8、(2010?河南)如图所示,a、b、c、d是距凸透镜不同距离的四个点.F为焦点.下列几种光学仪器的成像原理与物体在不同点时的成像情况相对应,下列说法正确的是() A、幻灯机是根据物体放在c点时的成像特点制成的 B、照相机是根据物体放在d点时的成像特点制成的 C、使用放大镜时的成像情况与物体放在a点时的成像情况相似 D、人眼看物体时的成像情况与物体放在F点时的成像情况相似 9、(2008?辽宁)某班同学在“探究凸透镜成像规律”的实验中,记录并绘 制了物体到凸透镜的距离u跟像到凸透镜的距离v之间关系的图象,如图 所示,下列判断正确的是() A、该凸透镜的焦距是10cm B、当u=15cm时,在光屏上能得到一个放大的像 C、当u=25cm时成缩小的像,照相机就是根据这一原理制成的

全息照相实验实验报告

物理与光电工程学院 光电信息技术实验报告 姓名:张皓景 学号:20111359069 班级:光信息科学与技术专业2011级2班实验名称:全息照相实验 任课教师:裴世鑫

一、实验目的 1.了解光学全息照相的基本原理及其主要特点。 2.学习全息照相的拍摄方法和实验技术。 3.了解全息照相再现物像的性质、观察方法。 二、实验仪器 三、实验装置示意图 5底片 图1 全息照相光路 四、实验原理 全息照相是一种二步成像的照相技术。第一步采用相干光照明,利用干涉原理,把物体

在感光材料(全息干版)处的光波波前纪录下来,称为全息图。第二步利用衍射原理,按一定条件用光照射全息图,原先被纪录的物体光波的波前,就会重新激活出来在全息图后继续传播,就像原物仍在原位发出的一样。需要注意的是我们看到的“物”并不是实际物体,而是与原物完全相同的一个三维像。 1.全息照相的纪录——光的干涉 由光的波动理论知道,光波是电磁波。一列单色波可表示为: 2cos(t )r x A πω?λ =+- (1) 式中,A 为振幅,ω 为圆频率,λ 为波长,φ 为波源的初相位。 一个实际物体发射或反射的光波比较复杂,但是一般可以看成是由许多不同频率的单色光波的叠加: 1 2cos(t )n i i i i i r x A πω?λ==+- ∑ (2) 因此,任何一定频率的光波都包含着振幅(A )和位相(ωt+φ-2πr/λ)两大信息。 全息照相的一种实验装置的光路如图(1)所示。激光器射出的激光束通过分光板分成两束,一束经透镜扩束后照射到被摄物体上,再经物体表面反射(或透射)后照射到感光底片(全息干版)上,这部分光叫物光。另一束经反射镜改变光路,再由透镜扩大后直接投射到全息干版上,这部分光称为参考光。由于激光是相干光,物光和参考光在全息底片上叠加,形成干涉条纹。因为从被摄物体上各点反射出来的物光,在振幅上和相位上都不相同,所以底片上各处的干涉条纹也不相同。强度不同使条纹明暗程度不同,相位不同使条纹的密度、形状不同。因此,被摄物体反射光中的全部信息都以不同明暗程度和不同疏密分布的干涉条纹形式记录下来,经显影、定影等处理后,就得到一张全息照片。这种全息照片和普通照片截然不同,一般在全息照片上只有通过高倍显微镜才能看到明暗程度不同、疏密程度不同的干涉条纹。由于干涉条纹密度很高,所以要求记录介质有较高的分辨率,通常达1000 条线/毫米以上,故不能用普通照相底片拍摄全息图。 2.全息照相的再现——光的衍射 由于全息照相在感光板上纪录的不是被摄物的直接形象,而是复杂的干涉条纹,因此全息照片实际上相当于一个衍射光栅,物象再现的过程实际是光的衍射现象。要看到被摄物体的像,必须用一束同参考光的波长和传播方向完全相同的光束照射全息照片,这束光叫再现光。这样在原先拍摄时放置物体的方向上就能看到与原物形象完全一样的立体虚像。如图2 所示把拍摄好的全息底片放回原光路中,用参考光波照射全息片时,经过底片衍射后有三部分光波射出。 0 级衍射光——它是入射再现光波的衰减。 +1 级衍射光——它是发散光,将形成一个虚像。如果此光波被观察者的眼睛接收,就等于接收了原被摄物发出的光波,因而能看到原物体的再现像。

全息投影技术分类_发展及应用

全息投影技术分类_发展及应用 在科技快速发展的今天,人们对视觉要求越来越高,由此能实现裸眼立体3D 显示的全息投影技术的应用也是越来越多,在给人们带来新鲜有趣的视觉体验的同时,也为众多商家提供新的宣传营销方式,打开市场新大门。 全息投影技术在展览展示方式,采用全息投影技术的全息成像柜可以使立体影像不借助任何屏幕或介质而直接悬浮在设备外的自由空间,任意角度看都是三维影像展现。产品种类多样分有全息展示柜、180度全息展示柜、270度全息展示柜、360度全息展示柜、全息金字塔、大中小型全息金字塔定制、全息投影设备、3D投影成像设备、全息玻璃柜等,可根据用户使用需求使用场地进行定制。未来全息投影技术市场发展潜力将是无可估量的。 一、什么是全息投影全息投影技术是近些年来流行的一种高科技技术,它是采用一种国外进口的全息膜配合投影再加以影像内容来展示产品的一种推广手段。它提供了神奇的全息影像,可以在玻璃上或亚克力材料上成像。这种全新的互动展示技术将装饰性和实用性融为一体,在没有图像时完全透明,给使用者以全新的互动感受,成为当今一种最时尚的产品展示和市场推广手段。全息投影设备包括:全息投影仪,全息投影幕,全息投影膜,全息投影内容制作等。航天科工数字展示事业部提供3D全息投影成像系统项目策划、3D全息投影成像展示内容制作、 二、全息技术的原理全息投影技术是利用干涉和衍射原理记录并再现物体真实的三维图像的记录和再现的技术。 其第一步是利用干涉原理记录物体光波信息,此即拍摄过程:被摄物体在激光辐照下形成漫射式的物光束;另一部分激光作为参考光束射到全息底片上,和物光束叠加产生干涉,把物体光波上各点的位相和振幅转换成在空间上变化的强度,从而利用干涉条纹间的反差和间隔将物体光波的全部信息记录下来。记录着干涉条纹的底片经过显影、定影等处理程序后,便成为一张全息图,或称全息照片;其第二步是利用衍射原理再现物体光波信息,这是成象过程:全息图犹如一个复杂的光栅,在相干激光照射下,一张线性记录的正弦型全息图的衍射光波一般可给出两个象,即原始象(又称初始象)和共轭象。再现的图像立

【实验报告】全息照相实验报告

全息照相实验报告 【实验目的】 1.了解全息照相的基本原理。 2.掌握全息照相以及底片的冲洗方法。 3.观察物象再现。 【实验仪器】 防震光学平台、氦氖激光器、高频滤波器)、扩束透镜(两个)、分束器、反射镜(两个)、全息Ⅰ型干版、显影液和定影液及暗房设备。 【实验原理】 全息照相与普通照相无论是在远离上还是在方发生都有本质的区别。普通照相是用几何光学的方法记录物体上各点的发光强度分部,得到的是二维平面像,像上各点的照度与物体上的各点发光强度一一对应。而全息照相的记录对象是整个物体发出的光波(即物体上各点发出的光波的叠加),借助于参考光用干涉的方法记录这个物光波的振幅和位相(周相)分布,即记录下物光波与参考光波相干后的全部信息。此时,记录信息底片上得到的不是物体的像,而是细密的干涉条纹,就好像一个复杂无比的衍射光栅,必须经过适当的再照明,才能重建原来的无广播,从而再现物体的三维立体像。由于底片上任何一小部分都包含整个物体的信息,因此,只利用拍摄的全息底片的一小部分也能再现整个物像。 1.全息记录 全息照相的光路图如下图所示:

感光底板 用激光光源照射物体,物体因漫反射发出物光波。波场上没一点的振幅和相位都是空间坐标的函数。我们用O表示物光波没一点的复振幅与相位。用同一激光管员经分光板分出的另一部分光直接照射到地板上,这个光波称为参考光波,它的振幅和相位也是空间坐标的函数,其复振幅和位相用R表示,草考光通常为平面或球面波。这样在记录信息的底板上的总光场是物光与参考光的叠加。叠加后的复振幅为O+R,如图从而底板上各点的发光强度分布为 I(OR)(O*R*)OO*RR*OR*O*RIOIROR*O*R (式1) 式子中,O*与R*分别是O和R的共轭量;I。,IR分别为物光波和参考光波独立照射底版时的放光强度。 2.物相再现 3.底板经过曝光冲洗后,形成各处透光率不同的全息照片,它相当于一个复杂的光栅。一般来说,光透过这样的全息照片时,振幅以及位相都要发生变化。如果令 t=透过光的复振幅/入射光的复振幅(式2) 则复振幅透过率t一般为复数。但对于平面吸收型全息照片t为实数。如果曝光及冲洗合适,可使得 tt0KI (式3)

医学影像成像原理复习题汇编

㈠名词解释 ⒈CT值:CT影像中每个像素所对应的物质对X线线性平均衰减量大小的表示。CT值定义为 将人体被测组织的吸收系数与水的吸收系数的相对值 ⒉TR(重复时间):从90°脉冲开始至下一次90°脉冲开始的时间间隔。 ⒊SNR(信噪比):图像中的信号能量与噪声能量之比。 ⒋PACS(图像存档与传输系统):是适应医学影像领域数字化、网络化、信息化发展势的要求,一数字成像、计算机技术和网络技术为基础,以全面解决医学影像获取、显示、处理、储存、 传输和经管为目的的综合性规划方案及系统。 ⒌螺距:(pitch,P)有关螺旋CT的一个概念。对单层螺旋CT,各厂家对此定义是统一的, 即螺距=球管旋转360度的进床距离/准直宽度。也即扫描时床进速度与扫描层厚之比。 ⒍阳极效应:又称足跟效应,是指在通过X线管长轴且垂直于有效焦点平面内,近阳极端X线 强度弱,近阴极端强,最大值约在10°处,其分布是非对称性的,这种现象称为阳极效应。阳极倾角越小,阳极效应越明显。 ⒎自旋-晶格弛豫:又称纵向弛豫(longitudinal relaxation)或T1弛豫。指平行于外磁场Bo方向的磁化矢量的指数性恢复的过程。 ⒏灵敏度:(Sensitivity)也称敏感度,在MR范畴内,是反映磁性核的MR信号可检测程 度的指标。 ㈡简答与分析论述题 ⒈分析CR成像基本原理 答:X射线入射基于光激励荧光粉(PSP)的成像板(IP)产生一帧潜影(latent image),潜影存储于成像板中。用激光激励成像板,成像板会发射出和潜影能量分布一致的光,这些光 被捕捉后被转换成电信号,从而潜影被转换成可以传输和存储的数字图像。 ⒉分析MRI空间分辨力优化的方法与作用 答:⑴调整扫描矩阵、FOV 扫描矩阵的大小决定序列中相位编码梯度的步数及频率编码步数,即数据的采样点数。FOV一定时,相位编码步数越多,体素的尺寸就越小,图像分辨力就越高。 ⑵调整层面厚度为了尽量减小部分容积效应的影响,一般应该选择较薄的层面进行扫描。 ⑶增加NEX ⒊简述MRI成像过程 答:通过对静磁场(Bo)中的人体施加某种特定频率的射频脉冲(RF)电磁波,使人体组织中的 氢质子受到激励而发生磁共振现象,当RF脉冲中止后,氢质子在弛豫过程中发射出射频信号,被接收线圈接收,再利用梯度磁场进行空间定位,最后进行图像重建而成像。 ⒋磁共振成像系统主要有哪几部分组成? 答:磁体、梯度系统、射频系统和计算机系统组成。 ⑴磁铁系统 ①静磁场:又称主磁场。 ②梯度场:用来产生并控制磁场中的梯度,以实现NMR信号的空间编码。这个系统有三组线圈,产生x、y、z三个方向的梯度场,线圈组的磁场叠加起来,可得到任意方向的梯度场。 ⑵射频系统 ①射频(RF)发生器:产生短而强的射频场,以脉冲方式加到样品上,使样品中的氢核产生NMR现象。 ②射频(RF)接收器:接收NMR信号,放大后进入图像处理系统。 ⑶计算机图像重建系统 由射频接收器送来的信号经A/D转换器,把模拟信号转换成数学信号,根据与观察层面各体 素的对应关系,经计算机处理,得出层面图像数据,再经D/A转换器,加到图像显示器上, 按NMR的大小,用不同的灰度等级显示出欲观察层面的图像。 ⒌何为薄层扫描,其优点是什么?

全息投影技术的发展及应用前景

《光信息存储》期末论文题目全息投影技术的发展及应用前景班级光信1102班 姓名张林君 学号 20112830 完成日期 2013/12/12 成绩

全息投影技术的发展及应用前景 摘要:全息技术最早于1948年由斯盖伯(Dennis Gabor )提出,经过研究发展,2003年首次成功应用于全息投影技术中。全息投影技术应时代而来,被广泛的应用于社会的各个方面,它对传统舞台声光电技术的颠覆,及其带给人们的虚实结合的梦幻立体感受,犹如 LED 显示屏在舞台的广泛应用一样,其也必将成为未来几年舞台的“新宠儿”,也具有划时代的意义。 关键词:全息投影发展史应用前景 一、全息技术的发展历史 全息影像是就是实现真实的三维图像的记录和再现,用户不需要佩戴带立体眼镜或其他任何的辅助设备,就可以在不同的角度裸眼观看影像。 1947年,匈牙利人丹尼斯盖博(Dennis Gabor)在研究电子显微镜的过程中,提出了全息摄影术(Holography)这样一种全新的成像概念。由于全息摄影术的发明,丹尼斯盖博在1971年获得了诺贝尔奖。 1962年,美国人雷斯和阿帕特尼克斯在基本全息术的基础上,将通信行业中“侧视雷达”理论应用在全息术上,发明了离轴全息技术,带动全息技术进入了全新的发展阶段。这一技术采用离轴光记录全息图像,然后利用离轴再现光得到三个空间相互分离的衍射分量,可以清晰的观察到所需的图像,有效克服了图成像质量差的问题。

1969年,本顿发明了彩虹全息术,能在白炽灯光下观察到明亮的立体成像。其基本特征是,在适当的位置加入一个一定宽度的狭缝,限制再现光波以降低像的色模糊,根据人眼水平排列的特性,牺牲垂直方向物体信息,保留水平方向物体信息,从而降低对光源的要求。 20世纪60年代末期,古德曼和劳伦斯等人提出了新的全息概念——数字全息技术,开创了精确全息技术的时代。到了90年代,随着高分辨率CCD的出现,人们开始用CCD等光敏电子元件代替传统的感光胶片或新型光敏等介质记录全息图,并用数字方式通过电脑模拟光学衍射来呈现影像,使得全息图的记录和再现真正实现了数字化。 2001年德国国家实验室首创研发了全息膜技术,使三维图像的再现成为可能。经过7年的发展,全息膜已经从第一代的1英寸栅格状网眼hoe全息单元升级到了如今的第四代0.2毫米97%透光度HoloPro全息膜。依靠这薄薄的透明膜,无论是T形台上的流光溢彩,还是舞台上虚幻影像,都可实现。全息膜的价格自然不菲,据介绍,透光率为70%的全息膜市场价都达到1800-2200元/平米。 360度幻影成像是全息投影目前最具魔幻效果的技术,由丹麦公司ViZoo在2006年研发出来。他们用全息膜搭建了一个倒金字塔形的三角漏斗几何模型,由四台投影机投射的视频图像,在漏斗里经过一系列的光学衍射后汇合成为全息图像,看起来就像有实物漂浮在空中。这一系统还可以配加触摸屏,现场观众可通过各种手势和动作,操纵3D产品模型进行旋转,或部件分解。这样,观众就能深入地了解展示的产品性能。因此,这个全息显示系统一经面世,就迅速成为

液晶显示器工作原理

液晶显示器工作原理 现在市场上的液晶显示器都采用了TFT液晶面板,这种液晶面板的是目前最先进的液晶显示器技术,从结构上看,液晶屏由两片线性偏光器和一层液晶所构成。其中,两片线性偏光器分别位于液晶显示器的内外层,每片只允许透过一个方向的光线,它们放置的方向成90度交叉(水平、垂直),也就是说,如果光线保持一个方向射入,必定只能通过某一片线性偏光器,而无法透过另一片,默认状态下,两片线性偏光器间会维持一定的电压差,滤光片上的薄膜晶体管就会变成一个个的小开关,液晶分子排列方向发生变化,不对射入的光线产生任何影响,液晶显示屏会保持黑色。一旦取消线性偏光器间的电压差,液晶分子会保持其初始状态,将射入光线扭转90度,顺利透过第二片线性偏光器,液晶屏幕就亮起来了。当然这是一个很简单的原理模型,真正的液晶显示器内还有更复杂的电路结构。 红绿蓝三原色大家都知道,当这三种颜色同时混合时就会产生白色,这当然实在三原色强度一样的情况下才能够显示器纯正的白色,这样,从图中我们可以看见液晶面板的每一个像素中都有三种原色,这三种原色如果强度不同变化就可以产生不同的混色效果,这样全屏就有1024×768这样的像素,所以真实分辨率就是1024×768。低端的液晶显示板,各个基色只能表现6位色,即2的6次方=64种颜色.可以很简单的得出,每个独立像素可以表现的最大颜色数是64×64× 64=262144种颜色,高端液晶显示板利用FRC技术使得每个基色则可以表现8位色,即2的8次方=256种颜色,则像素能表现的最大颜色数为 256×256×256=16777216种颜色.这种显示板显示的画面色彩更丰富,层次感也好.现在基本上显示器都拥有FRC技术,可以显示器16777216种颜色 什么是TFT-LCD 其中彩色LCD又分为STN和TFT两种屏,其中TFT-LCD是英文Thin Film Transi stor-Liquid Crystal Display的缩写,即薄膜晶体管液晶显示器,也就是大家 常说的真彩液晶显示屏,显示效果较好;而DSTN-LCD,即双扫瞄液晶显示器,则是STN-LCD的一种显示 液晶是一种介于液体和固体之间的特殊物质,它具有液体的流态性质和固体的光学性质。当液晶受到电压的影响时,就会改变它的物理性质而发生形变,此时通过它的光的折射角度就会发生变化,而产生色彩。 液晶屏幕后面有一个背光,这个光源先穿过第一层偏光板,再来到液晶体上,而当光线透过液晶体时,就会产生光线的色泽改变,从液晶体射出来的光线,还得必须经过一块彩色滤光片以及第二块偏光板。由于两块偏光板的偏振方向成90度,再加上电压的变化和一些其它的装置,液晶显示器就能显示我们想要的颜色了。 液晶显示有主动式和被动式两种,其实这两种的成像原理大同小异,只是背光源和偏光板的设计和方向有所不同。主动式液晶显示器又使用了fet场效晶体管以及共通电极,这样可以让液晶体在下一次的电压改变前一直保持电位状态。这样主动式液晶显示器就不会产生在被动式液晶显示器中常见的鬼影、或是画面延迟的残像等。现在最流行的主动式液晶屏幕是tft(thin film transistor薄

相关主题
文本预览
相关文档 最新文档