当前位置:文档之家› 全息成像系统

全息成像系统

全息成像系统
全息成像系统

全息成像系统

180°全息投影

产品简介

投影在平面上的立体特效,是通过复杂的光学作用与投影技术在展示台上以立体形式呈现,活灵活现的事物在显示面上浮动,生动有趣,感觉触手可及,栩栩如生。

产品特性

尺寸灵活——三维全息系统硬件设备分为成像区与工作区两部分,可根据不同的应用需求进行尺寸选择。

安装便捷——三维全息系统能根据现有的建筑或安装位置空间来修改硬件的体系和结构,有利于在各种建筑和城市空间里安装。 内容多样——三维全息系统可根据需求随时更换数字内容,振邦视界的专业化操作将成为您完美展示的坚强后盾。

系统组成

180°全息柜柜体(定制)、全息成像玻璃、液晶屏、触摸一体机。系统拓扑图

安装及调试注意事项

一般全息玻璃与屏面呈45°夹角

应用范围

180°全息投影主要应用

于科技馆、展览馆、主题

公园、文化中心、标志性

建筑物内部,以数字内容

形式展示人物、物体或标

识,适合大型场馆的影像

再现及形象展示。

适合表现

细节或内

部结构较

丰富的个

体物品,如名表、名车、珠宝、工业产品、也可表现人物、卡通等,给观众感觉是完全浮现在空气中,具体尺寸可以根据客户的要求灵活设置。

270°全息投影

产品介绍

通过投影技术与光学原理将物体重现,其位置与大小都和以前相同,

即三维立体影像,可以从270°不同的角度欣赏.不受光线影响,演示内容经过特殊软件处理后即可在观众面前显示出亦真亦幻的立体影像,大小尺寸可根据客户要求定制开发。

产品特性

独立展示彰显尊贵感

幻境视象瞬间吸引目光

增加顾客驻足时间

信息量大,高效展现核心优势

卖点

动态呈现展品魅力,激发冲动消费

达到视频和实物完美结合,画面成像逼真,不受环境光强局限 以最吸引人的科技展示方式让立体广告随处可见,对消费者产生无法抗拒的诱惑广告,广告从此彻底告别了平面时代

达到视利用全息式、自由漂浮的绚丽图像来提供亦幻亦真的视觉体验

系统组成

270°全息柜柜体(定制)、全息成像玻璃、液晶屏、触摸一体机。系统拓扑图

安装及调试注意事项

一般全息玻璃与屏面呈45°夹角

应用场所

大型购物中心

用于展示珠宝名表数码产

品等高端精致商品。

房地产行业应用

用于展示户型。

高端酒店、高级会所

用于展示企业LOGO、名

酒名品或者作为装潢风格

体现

其它活动秀场

用于发布会等场所,作为场会布置的亮点运用

360°全息投影

产品介绍

通过投影技术与光学原理将物体重现,其位置与大小都和以前相同,即三维立体影像,可以从360°不同的角度欣赏.不受光线影像,演示内容经过特殊软件处理后即可在观众面前显示出亦真亦幻的立体影像,大小尺寸可根据客户要求定制开发。

系统特性

时尚美观,以高新科技展示产品四面透明的360度空间成像表现色彩鲜艳,有空间感、透视感,形成空中幻象结合实物模型,实现影像与实物的奇特融合互动展示,现场参观者可通过各种手势动作,操纵3D汽车模型的旋转、部件分解。

背景道具可以按真实的空间位置摆布,使多种视觉元素在真实环境下按照真实的空间位置关系透视关系表现出来,视觉内容丰富,场景的立体感强。

形式新颖—与传统的3D显示技术相比,全息成像技术无需佩戴偏光眼镜,可360度多视展示,方便浏览。

物体画面清晰、颜色还原准确、可见视觉层次感好、立体感强 节约成本,振邦视界可最大限度控制成本,同时能够保证质量,并使产品能够长时间使用。

柜体时尚美观,有科技感。顶端四面透明,真正的空间成像色彩鲜艳,对比度,清晰度高;具有空间感,透视感。

系统原理

360度全息幻影成像系统是一种将三维画面悬浮在柜体实景中的半空中成像系统。通过对产品实拍构建三维模型的特殊处理,然后将拍摄的产品影像或产品三维模型影像叠加进场景中,构成了动静结合的产品展示系统。不需要人们佩戴任何偏光眼镜,在完全没有束缚下就可以敬情观看3D幻影立体特效,给人以视觉的冲击,具有强烈的纵深感。

系统组成

方案一

柜体360°全息柜柜体(定制)

服务器Win7/32位、i5、AMD显卡7770、120G固态硬盘、4G 内存

显示系统液晶屏、全息玻璃

控制系统触摸显示器

软件360°全息播放软件(加密狗)

方案二

柜体360°全息柜柜体(定制)

服务器Win7/32位、i5CPU、显卡GT730、120G固态硬盘、4G 内存

显示系统投影机、全息玻璃、投影幕

控制系统触摸显示器

软件360°全息播放软件(加密狗)

系统拓扑图

安装及调试注意事项

柜体须定制,采用短焦镜头投影机,投影机安装完成后将焦距调到最佳,图像模式(投影模式)采用计算机、SRGB、电影等模式(根据不同投影机而定),调试之前确保投影机安装稳固所有线(控制线、电源线、信号线)是否已接上,调试完成后将投影机的所有自动模式关闭(信号自动搜索、自动梯形校正),切勿再动投影机。

项目勘察现场须知:首先了解客户需求结合现场环境、项目预算等因素给客户定制系统,了解该系统的安装位置、是否有电源、如何布线、布什么线等。

计算方法

360度全息柜

序号柜体尺寸

(长X宽X高)

金字塔尺寸

(底边X腰长X高X三角形

高)

显示器型号投影机型号

1 0.8x0.8x1.65 0.8x0.69x0.4x0.565

2 1x1x1.65 1x0.866x0.5x0.707 17寸(4:3)

x4

3 1x1x1.65 1.1x0.953x0.55x0.777 19寸(4:3)

x4

4 1x1x1.6

5 1.1x0.953x0.55x0.777 19寸(16:9)

x4

5 1.2x1.2x1.65 1.2x1.039x0.6x0.848 22寸(16:9)

x4

6 1.35x1.35x1.65 1.35x1.169x0.675x0.954 27寸(16:9)

x4

7 1.65x1.65x1.65 1.65x1.429x0.825x1.166 32寸(16:9)

x4

8 2.15x2.15x1.65 2.15x1.863x1.075x1.52 42寸(16:9)

x4

9 2.4x2.4x1.65 2.4x2.079x1.2x1.697 47寸(16:9)

x4

10 2.75x2.75x1.65 2.75x2.383x1.375x1.944 55寸(16:9)

x4

计算公式

金字塔三角形底边长=柜体边长

金字塔腰长=金字塔底边长/1.154

金子塔高=金字塔底边长/2

金字塔三角形高=金字塔底边长/1.414

应用场所

政府机关、企业、橱窗、博物馆及展览馆等应用广泛。

展览会、商场、大厅、广场、休息室等场合使用吸引眼球并提升形象。

适用于商店、橱窗展示、机场、银行和其它人流密集地段的销售产品宣传展示。

适用于娱乐场合、酒吧、KTV房、餐厅作以增强现场气氛使用。

显微成像系统资料

品名型号数量供货单价备注 奥林巴斯生物成像系统显微镜CX31 1套30000元见配置清单奥林巴斯生物显微镜CX23 1套25000元见配置清单备注:以上为人民币含税报价单,含运费和包装培训费,壹年保修期。 生物显微镜CX31技术规格: 用途:可观察普通染色的切片观察。 1.工作条件 1.1 适于在气温为摄氏-40℃~+50℃的环境条件下运输和贮存,在电源220V ( 10%)/50Hz、气温摄氏-5℃~40℃和相对湿度85%的环境条件下运行。 1.2 配置符合中国有关标准要求的插头,或提供适当的转换插座。 2.主要技术指标 2.1 生物显微镜 *2.1.1 光学系统:无限远光学矫正系统,齐焦距离必须为国际标准45mm。 2.1.2 放大倍率:40-1000倍 *2.1.3 载物台:钢丝传动,无齿条结构,尺寸为188mm × 134mm,活动范围为 X轴向76mm × Y轴向50mm,双片标本夹 2.1.4 调焦机构:载物台垂直运动由滚柱(齿条—小齿轮)机构导向,采用粗 微同轴旋钮,粗调行程每一圈为36.8mm,总行程量为25mm,微调行程为每圈 0.2mm,具备粗调限位挡块和张力调整环 2.1.5 聚光镜:带有孔径光阑的阿贝聚光镜,N.A. 1.25,带有蓝色滤色片 *2.1.6 照明系统:内置6V30W卤素灯,内置透射光柯勒照明 *2.1.7 三目观察筒:视场数≥20,瞳距调节范围为48-75mm,铰链式 2.1.8 目镜:10X,带眼罩,视场数≥20带目镜测微尺 *2.1.9 物镜:平场消色差物镜4X(N.A.≥0.1)、10X(N.A.≥0.25)、40X(N.A.≥0.65)、 100X(N.A.≥1.25)

浅谈三维显示技术

浅谈三维显示技术 摘要:目前许多研究者已经把三维显示系统作为下一代最有潜力的显示系统,并已经提出了许多三维显示技术,三维立体显示技术在未来几年必将掀起了一场3D 视觉革命。当前研究中的三维立体显示器件可以分成三类:戴眼镜式、多视点 裸眼式、真三维显示。当前市场上可以看到的三维显示器件主要是戴眼镜式和 多视点裸眼式,上述两种显示技术的主要问题是长时间观看会产生视觉疲劳。 真三维显示可以消除视觉疲劳,特别是近几年,全息立体显示技术发展迅速, 包括硅基液晶、光折变材料、表面等离子体等技术实现新型的全息立体显示方 式。三维显示技术的已成为当前的研究得热点,其中可以真实得再现出与真实 物体一样的深度和视差信息的全息显示技术,被认为是最理想的三维显示。可 以预见在未来的5至10年以后,具有高临场感、浸入式的三维立体显示技术将 无处不在。本文首先介绍了三维显示技术的背景和发展概况,接着简要介绍了 各种三维显示技术的原理及特点。 我们生活的世界是立体的,我们的眼睛在现实世界中获取的视觉信息,有很多都具有立体的三维信息。当然我们在现实生活中所接触到的大量图像信息中也有很多都是平面视觉信息,例如在报纸、杂志、电视机上看到的图片或者视频图像,这些信息均是对三维实物或场景的二维投影表达,从而失去了诸如:立体视差,移动视差等的心理暗示,没有真正的立体感。今天我们周围出现了越来越多用计算机模拟出来的三维景物。它们主要应用于各种各样三维显示的软硬技术中。这些技术无一例外都必须符合人眼立体感知的机理,提供足够多的三维感知因素使人们能有一种强烈的立体感。现有的一些三维技术,虽然能实现一定的三维显示功能,但长时间观看会有头晕、疲惫的感觉,主要原因在于技术设计上。没有很好地考虑人眼立体感知的工作机理。目前国内外已有不少这方面的研究,但大多分布在认知心理学、计算机科学等几个领域内的零散文献中。真实地再现世界始终是成像技术的重要发展方向。近几年来,由于计算机性能和处理能力的大大提高,计算机图形图像技术也得到了快速的发展,进而出现了各种各样的三维图像,并且在三维显示方法和系统实现方面也做了不少研究。 按基本工作原理是否为双目视差将三维立体显示分为两大类。基于双目视差原理的三维立体显示主要有眼镜立体显示和光栅式自由立体显示,这类三维立体显示的技术相对成熟并有相应产品;非基于双目视差原理的三维立体显示主要有全息立体显示、集成成像立体显示和体显示等,这类三维立体显示的技术较不成熟,大多没有相应产品。接下来对这些三维立体显示的器件结构、工作原理以及各自的特性进行阐述。 首先,必须了解什么是视差。视差就是从有一定距离的两个点上观察同一个目标所产生的方向差异。从目标看两个点之间的夹角,叫做这两个点的视差,两点之间的距离称作基线。只要知道视差角度和基线长度,就可以计算出目标和观测者之间的距离。 基于戴眼镜的三维立体显示技术的原理如下:此种三维立体显示是在观看者双眼前各放置一个显示屏, 观看者的左右眼只能分别观看到显示在对应屏 上的左右视差图,从而提供给观看者一种沉浸于虚拟世界的沉浸感。这种立体显示存在单用户性、显示屏分辨率低、及易给眼睛带来不适感等固有缺点。

光电成像系统

光电成像系统 [教学目的] 1、掌握CCD的结构和工作原理、光电成像原理、光电成像光学系统; 2、了解微光像增强器件和纤维光学成像原理。 [教学重点与难点] 重点:CCD的结构和工作原理、光电成像原理、光电成像光学系统的组成。 难点:CCD的结构和工作原理、调制传递函数的分析。 成像转换过程有四个方面的问题需要研究: 能量方面——物体、光学系统和接收器的光度学、辐射度学性质, 解决能否探测到目标的问题 成像特性——能分辨的光信号在空间和时间方面的细致程度,对多 光谱成像还包括它的光谱分辨率 噪声方面——决定接收到的信号不稳定的程度或可靠性 信息传递速率方面 (成像特性、噪声——信息传递问题,决定能被传递的信息量大小) 景噪声景 噪 声 声声 光电成像器件是光电成像系统的核心。 §1 固体摄像器件

固体摄像器件的功能:把入射到传感器光敏面上按空间分布的光强信息(可见光、红外辐射等),转换为按时序串行输出的电信号——视频信号,而视频信号能再现入射的光辐射图像。 固体摄像器件主要有三大类: 电荷耦合器件(Charge Coupled Device,即CCD) 互补金属氧化物半导体图像传感器(即CMOS) 电荷注入器件(Charge Injenction Device,即CID) 一、电荷耦合摄像器件 电荷耦合器件(CCD)特点)——以电荷作为信号 CCD的基本功能——电荷存储和电荷转移 CCD工作过程——信号电荷的产生、存储、传输和检测的过程1.电荷耦合器件的基本原理 (1)电荷存储 构成CCD的基本单元是MOS(金属-氧化物-半导体)电容器 电荷耦合器件必须工作在瞬态和深度耗尽状态 (2)电荷转移 以三相表面沟道CCD为例 表面沟道器件,即SCCD(Surface Channel CCD)——转移沟道在界面的CCD器件

高清全景监控系统

高清全景监控系统 广东百泰科技有限公司高清全景监控系统,是一套基于全景图像采集获取、拼接生成及浏览交互等技术的“点-面智能联动摄像机系统”,结合海量视频数据智能分析技术,可实现高清全景视频图像信息处理及交互应用。系统采用了高清全景监控系统、超高分辨率图像实时处理、ISP智能图像算法设计、海量图像分布式存储等多种前沿技术,通过一台180°高清全景摄像机与一台1080P全高清高速球有机嵌合,匹配专用软件,组成一套点面联动的智能化高清全景监控系统系统。通过单台摄像机就能对180°或360°度范围进行成像,并实现对成像区域内所有目标进行从点到面的同步高清监控,达到无缝监控、点面兼顾的效果。 本产品及技术可应用于各种需要了解城市地理信息,以及不同细节层次的准实时动态真实影像情况的可视化城市管理应用场合,能够基于GPS信息将其与GIS地理信息系统相结合,可提供给安防、城管、交通、消防、城市规划等各类具有城市地理信息及可视化城市管理需求的行业人员使用。 一、技术特色 全景:单台摄像机就能对180°或360°度视角范围进行成像。 高清:1080P全高清视频传输和录像。 超微光感知技术:采用双阶 3D 去噪算法、自动增益控制、自动背光补偿等技术,超低照度、超低噪声、全彩色,宽动态全景摄像,在光线暗淡的情况下依然能呈现彩色画面。 一键式点面联动:针对目前监控摄像机“看得清却看不全”“看得全却看不清”的矛盾,将高清高速球的“点”与全景摄像机的“面”搭配组合,实现由“面”及“点”的一键式操控,点击全景画面的任何一个位置,系统可立即调度高速球转到预定监视点,配准精度高达0.05°,响应时间小于0.1秒,使监控全局与局部细节一览无遗。 支持多分辨率采集和多码流传输。 IP66高防护等级,全天候室内外应用。 二、实景视频演示 低照度效果演示

立体显示工作原理

立体显示技术介绍 一、.什么是立体显示? 立体显示或者称为3D显示,是指采用光学等多种技术手段来模拟实现人眼的立体视觉特性,将空间物体以3D信息再现出来,呈现出具有纵深感的立体图像的一种显示方式。相比于2D显示,3D显示提供给观看者更加强有力的沉浸感和震撼力。 人们之所以能够轻易地判断出物体在空间中的位置及不同物体间的相对位置,是因为人眼具有立体视觉。人们用以感知空间的主要生理机能有焦点调节、两眼集合、双目视差及单眼移动视差等。其中,双目视差担负着立体空间知觉的核心任务。焦点调节是为了把所注视的物体清晰地成像到视网膜上的眼球动作;两眼集合是当人在注视某个物体时左右眼视线往注视点上交汇而产生的眼球动作;双目视差是指由于人的左右眼从不同角度观看物体,从而成像于左右眼视网膜上的图像略有差异;单眼移动视差是指当观看者或被观看物体发生移动时人眼将看到物体的不同侧面。3D显示就是以人眼的立体视觉特性为基础的。 二、立体显示的实现方法 立体显示的实现方法可分为两大类,为助视3D显示和裸眼3D显示。 ?助视3D显示是靠眼睛佩戴助视设备来实现,如大家熟悉的偏光眼镜,这方面技术已成熟,但是也存在一定的缺陷,如亮度低,佩戴舒适度差等。 ?裸眼3D显示是通过光栅、集体成像、体3D和全息技术来实现3D立体成像,人眼无需佩戴任何设备,应用前景广泛,是目前显示研究的重点课题。 1.什么是光栅3D显示? 光栅3D显示器由光栅和2D显示器精密耦合而成。其中,光栅作为分光元件,对光线传播的路径进行一定方式的控制,使观看者的左右眼观看到不同的视差图像。可应用于手机、笔记本电脑显示和电视。如光栅3D显示手机就是采用双摄像头采集图像形成3D效果来实

光电成像

光电测试考试资料整理 第一章: 1.试述光电成像技术对视见光谱域的延伸以及所受到的限制。 答:[1]电磁波的波动方程该方程电磁波传递图像信息物空间和像空间 的定量关系,通过经典电磁场理论可以处理电磁波全部的成像问题 [2]收到的限制:当电磁波的波长增大时,所能获得的图像分辨力将显著降低。 对波长超过毫米量级的电磁波而言,用有限孔径和焦距的成像系统所获得的 图像分辨力将会很低。因此实际上己排除了波长较长的电磁波的成像作用。 目前光电成像对光谱长波阔的延伸仅扩展到亚毫米波成像。除了衍射造成分辨力下降限制了将长波电磁波用于成像外,用于成像的电磁波也存在一个短波限。通常把这个短波限确定在X射线(Roentgen射线)与y射线(Gamma射线)波段。这是因为波长更短的辐射具有极强的穿透能力,所以,宇宙射线难以在普通条件下聚焦成像。 2.光电成像技术在哪些领域得到广泛的应用?光电成像技术突破了人眼的哪些限制? 答:[1]应用:(1)人眼的视觉特性(2)各种辐射源及目标、背景特性(3)大气光学特性对辐射传输的影响(4)成像光学系统(5)光辐射探测器及致冷器(6)信号的电子学处理(7)图像的显示 [2]突破了人眼的限制:(1)可以拓展人眼对不可见辐射的接受能力(2)可以拓展人眼对微弱光图像的探测能力(3)可以捕捉人眼无法分辨的细节(4)可以将超快速现象存储下来 3.光电成像器件可分为哪两大类?各有什么特点? 答:[1]直视型:用于直接观察的仪器中,器件本身具有图像的转换、增强及显示等部分,可直接显示输出图像,通常使用光电发射效应,也成像管.[2]电视型:于电视摄像和热成像系统中。器件本身的功能是完成将二维空间的可见光图像或辐射图像转换成一维时间的视频电信号使用光电发射效应或光电导效应,不直接显示图像. 4.什么是变像管?什么是像增强器?试比较二者的异同。 答:[1]变像管:接收非可见辐射图像,如红外变像管等,特点是入射图像和出射图像的光谱不同。[2]像增强器:接收微弱可见光辐射图像,如带有微通道板的像增强器等,特点是入射图像极其微弱,经过器件内部电子图像能量增强后通过荧光屏输出人眼能够正常观看的光学图像。[3]异同、相同点:二者均属于直视型光电成像器件。不同点:主要是二者工作波段不同,变像管主要完成图像的电磁波谱转换,像增强器主要完成图像的亮度增强。 5.反映光电成像系统光电转换能力的参数有哪些? 答:[1]转换系数(增益)[2]光电灵敏度(响应度)-峰值波长,截止波长 6.光电成像过程通常包括哪几种噪声? 答:主要包括:(1)散粒噪声(2)产生一复合噪声(3)温度噪声(4)热噪声(5)低频噪声(1/f噪声)(6)介质损耗噪声(7)电荷藕合器件(CCD)的转移噪声 第二章: 1.人眼的视觉分为哪三种响应?明、暗适应各指什么? 答:[1]三种响应:明视觉、暗视觉、中介视觉。人眼的明暗视觉适应分为明适应和暗适应[2]明适应:对视场亮度由暗突然到亮的适应,大约需要2~3min[3]暗适应:对视场亮度由亮突然到暗的适应,暗适应通常需要45min,充分暗适应则需要一个多小时。 2.何为人眼的绝对视觉阈、阈值对比度和光谱灵敏度? 答:[1]人眼的绝对视觉阈:在充分暗适应的状态下,全黑视场中,人眼感觉到的最小光刺激值。[2]阈值对比度:时间不限,使用双眼探测一个亮度大于背景亮度的圆盘,察觉概率为50%时,不同背景亮度下的对比度。[3]光谱灵敏度(光谱光视效率):人眼对各种不同波长的辐射光有不同的灵敏度(响应)。 3.试述人眼的分辨力的定义及其特点。 答:[1]定义:人眼能区分两发光点的最小角距离称为极限分辨角θ,其倒数为人眼分辨力。 [2]特点:眼睛的分辨力与很多因素有关,从内因分析,与眼睛的构造有关(此处不再讨论)。从外因分析,主要是决定于目标的亮度与对比度,但眼睛会随外界条件的不同,自动进行适应,因而可得到不同的极限分辨角。当背景亮度降低或对比度减小时,人眼的分辨力显著地降低。于中央凹处人眼的分辨力最高,故人眼在观察物体时,总是在不断地运动以促使各个被观察的物体依次地落在中央凹处,使被观察物体看得最清楚。 4.简述下列定义:(1)图像信噪比(2)图像对比度(3)图像探测方程 答:[1]图像信噪比:图像信号与噪声之比[2]图像对比度:指的是一幅图像中明暗区 域最亮的白和最暗的黑之间不同亮度层级的测量,即指一幅图像灰度反差的大小。 [3]当关系式成立时,表明图像可探测到,反之将不能探测。

2016年第二批技术攻关计划项目指引重20160148高性能通用DSP

2016年第二批技术攻关计划项目指南 重20160148:高性能通用DSP芯片关键技术研发 重20160243:高性能低功耗安全SOC芯片研发 重20160282:小基站可编程宽带射频收发芯片关键技术研发 重20160308:基于3片式硅基液晶(LCOS)的4K投影系统研发 重20160309:可重构的物联网智能感知关键技术研发 重20160310:面向社区矫正定位跟踪的可穿戴装置研发 重20160311:基于国产安全芯片的移动支付终端研发 重20160312:新版纸币的鉴伪识别关键技术研发 重20160313:面向多信号源的一体化小型基站装置研发 重20160314:基于集成成像的真三维视屏显示系统研究 重20160315:智能轮胎压力监测系统研发 重20160316:用于植物生长的全光谱LED光源模组研发 重20160317:LED 芯片级封装(CSP)关键技术研究 重20160318:碳化硅功率器件关键技术研发 重20160319:大气颗粒物在线监测技术研发 重20160320:低温锡膏的研发 重20160321:高通量基因测序核心工具酶的开发 重20160322:新一代干燥型基因诊断试剂的关键技术研发 重20160323:亲水树脂填料分离纯化新型血浆蛋白的关键技术研发 重20160324:微生态活菌制品工艺及其生产设备的研究与开发 重20160325:肿瘤靶向性T-CTL免疫细胞治疗 重20160326:肿瘤光学治疗的纳米光敏剂研发 重20160327:幽门螺杆菌抗体谱与胃癌相关性的研究及试剂盒的开发 重20160328:基于物联网技术的糖尿病院外监护平台关键技术研发 重20160329:乙酰基亚硝基脲(ENU)化学诱变创制猪种质资源关键技术研发 重20160330:再生骨料混凝土用缓释高效减水剂关键技术研究 重20160331:挥发性有机物净化催化剂研发 重20160332:边坡稳定性预测预报及垮塌控制技术研究 重20160333:常温高效市政污泥干化关键技术研发 重20160334:多功能抗病原微生物新型空气净化系统关键技术研发 重20160335:智能电动平衡车专用控制电路研发 重20160336:用于高频大功率电子系统的氮化镓高迁移率电子器件(GaN HEMT)研发重20160337:超低照度图像传感芯片及无线低功耗被动红外安全相机研发 重20160338:适用iOS的高速存储电路研发 重20160339:电子纸显示驱动单芯片研发 重20160340:硅基高速光耦系列芯片关键技术研发 重20160341:超低功耗高压超结功率器件关键技术研发 重20160342:单层石墨烯在锂离子动力电池隔膜中应用研发 重20160343:医用三维石墨烯水凝胶制备关键技术研发

高清网络监控摄像机监控系统设计方案

高清网络监控摄像机监控系统设计方案 技 术 设 计 方 案 介 绍

第一章公司简介 质量方针:以人为本、质量第一 公司成立至今,坚持以领先的技术、优良的商品、完善的售后服务、微利提取的原则服务于社会。我公司为您提供的产品,关键设备采用高质量进口合格产品,一般设备及材料采用国内大型企业或合资企业的产品,各种产品企业都通过 ISO9001国际质量体系认证。有一支精良的安防建设队伍,由专业技术人员为您设计,现场有专业技术人员带领施工,有良好职业道德施工人员。我公司用户拥有优质的设计施工质量和优质的售后服务保障。 客户哲学:全新理念、一流的技术、丰富的经验,开创数字新生活 专注——维护世界第一中小企业管理品牌、跟踪业界一流信息技术、传播经营管理理念是吉伟永恒不变的追求,吉伟坚持“全新的理念、一流的技术、丰富的经验、优质的服务”,专注于核心竞争力的建设是吉伟取得今天成功的根本,也必将是吉伟再创辉煌的基础! 分享——“道不同,不相谋”,吉伟在公司团队之间、渠道伙伴、客户之间均倡导平等、共赢、和谐、协同的合作文化,在迎接外部挑战的过程中,我们共同期待发展和超越,共同分享激情与快乐!“合作的智慧”是决定吉伟青春永葆的最终动力! 我公司全体员工愿与社会各界携手共创未来!我们秉承真诚合作精神向广大客户提供相关的系统解决方案,设备销售及技术支持,价格合理,欢迎来人来电咨询、洽谈业务!

第二章什么是高清网络监控摄像机 随着社会不断进步,经济快速发展和技术突飞猛进,公共秩序安全、生产安全、财产安全等越来越受到人们的重视,从而使以视频信息为特征的视频监控更为广泛地被应用在各行业领域,从传统的安防监控向管理和生产经营监控发展,从室内到无人值守特定场合应用的监控。 传统的监控模式已不能满足政府“平安城市”、金融系统、高等教育、监管、监狱、文博等行业对安防的需求,而拥有网络化、智能化、数字化、远程化特点的网络视频监控系统则成为新的应用趋势,并形成一个高效、安全、先进的网络视频监控体系。 网络视频监控系统中,H.264编码压缩算法得以成功推广,随着用户的逐步认可、价格的降低及功能的完善,必然迎来高清网络摄像机主导未来视频监控领域的时代。

超微型显微成像系统(中英文版)

一、超微型显微成像系统产品介绍如下所示: 1.功能和用途 1.1功能 1.1.1系统组件包括显微镜镜体、固定板、GRIN透镜、CMOS、图像采集卡及采集软件等。 1.1.2在单细胞分辨水平,记录一群神经元的钙信号。 1.1.3适用于自由活动动物的在体实验。 1.1.4通过植入GRIN透镜,可以实现深脑成像。 1.1.5系统体积小、重量轻,不影响小鼠自由运动和行为实验。 2.1用途: 2.1.1用于行为动物在体钙成像的超微型显微成像系统。 2.1.2检测新型可遗传编码的乙酰胆碱和多巴胺等探针的荧光变化,即可实时监测乙酰胆碱、多巴胺等浓度的动态变化情况。 二、产品彩图:

Miniature Fluorescent Microscope 1.1 function 1.1.1 System Components include Miniscope body、Base Plate、GRIN Lens、CMOS、DAQ card and software; 1.1.2 Record the calcium signal of a group of neurons at the single cell resolution level; 1.1.3 experiments for freely moving animals; 1.1.4 Deep brain imaging can be achieved by implanting a GRIN lens; 1.1.5 The system is small in size and light in weight, and does not affect the free movement and behavioral experiments of mice. 2.1 Uses: 2.1.1 Ultra-microscopic microscopic imaging system for in vivo calcium imaging of behavioral animals. 2.1.2 To detect the changes in the fluorescence of new genetically-encoded probes such as acetylcholine and dopamine, the dynamic changes of concentrations of acetylcholine and dopamine can be monitored in real time.

纹影仪成像系统

纹影法又称施利伦(schlieren)方法,是一种经典的光学显示技术。其基本原理是利用光在被测流场中的折射率梯度正比于流场的气流密度原理,将流场中密度梯度的变化转变为记录平面上相对光强的变化,使可压缩流场中的激波、压缩波等密度变化剧烈的区域成为可观察、可分辨的图像,从而记录下来。把具有高时间分辨本领的告诉相机与纹影法结合起来,便成为高速纹影法。该方法在轰爆与冲击波物理实验中,用于显示流场、冲击波阵面及在透明介质中的传播、观察高压力下自由表面的微物质喷射、界面上的波系状况、界面不稳定性以及高压下火花放电等弱冲击波的发展等,是一种有着广泛用途的光学测试技术。 纹影系统按照光线通过被测流场区的形状,分为平行光纹影系统和锥形光纹影系统两大类,但二者成像原理相同。锥形光纹影系统的结构简单,其灵敏度比平行光纹影系统更高,但是这种纹影系统由于是同一条光线反复经过被测区,会导致被观察区的图像失真。而平行光纹影系统能够真实地反映被观察区密度的变化,在实验中得到了更为广泛的应用。平行光纹影系统分为透射式和反射式两种,透射式的光学成像质量好,但对视场要求比较大,要加工大口径的纹影透镜又比较困难,反射式的光学成像虽然带有轴外光线成像造成的彗差和像散两类象,但是只要在光路上采用“Z”形布置和在仪器使用时将光刀刀口面调整到系统的子午焦平面和径向焦平面上,就可以减少两类象差,从而得到满意的结果。透射式纹影系统、反射式纹影系统组成如下图: 图1:透射式纹影系统组成图

图2:反射式纹影系统组成图 纹影仪是实现纹影法的基本仪器,常被用于配合相机或高速相机观察透明介质因各种因素引起的分布、传播过程以及扰动强度等。如研究激光与物质作用、分层流、多项流、传热与传至、激波、超声波流、燃烧、火焰、爆炸、高压放电、等离子体、内弹道及某些化学反应等学科的流场密度变化科学研究。其常见样式如下: 使用纹影仪观察燃油喷雾在整个燃烧室内发展变化的应用举例:

显微镜成像系统技术参数

显微镜成像系统技术参数 总体要求:配置三目显微镜、CCD、图文采集系统、电脑等。 一、显微镜技术参数 1、正置显微镜 2、用途:可观察普通染色的切片,适合染色切片观察等广泛生命科学领域的研究。 3、技术要求 3.1、光学系统:IC2S无限远色差反差双重校正光学系统,45mm国际标准物镜齐焦距离。 3.2、调焦:谐波齿轮精细同轴粗微调焦机构,内置免调节防下滑机构,不使用易损坏的外调节松紧调节环,调焦行程25mm,可设置调焦上限。 3.3、明场照明装置: 3.3.1、内置透射光科勒照明器,12V 50W卤素灯; 3.3.2、带杯罩式反射光收集器; 3.3.3、集成式双侧单手亮度调整转盘,可在调焦时方便同时调整光源亮度;3.3.4、集成式减光片转轮和0.25/0.06/0.015减光片; 3.3.5、带白平衡滤色片。 3.4、载物台:高抗磨损性圆角、无槽金属阳极化处理载物台,带控制手柄。3.5、观察镜筒: 3.5.1、超宽视野三目镜筒,视场数≥23mm,倾角30度。 *3.5.2、目镜筒360度自由旋转、上下自由翻转,实现40mm观察高度调节 3.5.3、瞳距48-75mm可调 3.6、目镜 3.6.1、10倍超宽视野目镜,高眼点设计,视场数≥23mm 3.6.2、两个目镜均具有屈光度校正功能 3.6.3、物镜:针对正置显微镜应用优化的高分辨率、高透过率物镜 平场消色差物镜5×,数值孔径:NA≥0.12; 平场消色差物镜10×,数值孔径:NA≥0.25; 平场消色差物镜20×,数值孔径:NA≥0.45; 平场消色差物镜40×,数值孔径:NA≥0.65; 平场消色差物镜100×,数值孔径:NA≥1.25 3.6.4、物镜转换器:6位物镜转盘,一体化设计,增强光路稳定;国际标准的M27物镜接口,具有齐焦功能。 *3.6.7、聚光镜:非摆动式高分辨率多功能聚光镜:NA≥0.9/1.25。在5x物镜观察下,无需摆动操作;带科勒照明调整后锁定装置。

集成成像方向性再现

集成成像方向性再现 纪超超1,邓欢1, 王琼华1,2 (1 四川大学电子信息学院,成都,610065) (2 四川大学视觉合成图形图像技术国家重点学科实验室,成都,610065)摘要:文中提出了一种聚焦模式下的集成成像方向性再现的方法。该方法通过像素提取实现极小的观看视角供单人观看3D图像,同时在一定的观看区域内可以控制重建3D图像的观看方向。通过理论分析和像素提取实验证明了该方法具有可行性。该方法有望实现在一台电视同时播放多套3D节目,其应用潜力巨大。 关键字:集成成像;方向性再现;像素提取 Integral Imaging Directional Reconstruction Chao-Chao Ji1, Huan Deng1, and Qiong-Hua Wang1,2, (1 School of Electronics and Information Engineering, Sichuan University, Chengdu 610065,China) (2 State Key Laboratory of Fundamental Science on Synthetic Vision, Sichuan University, Chengdu 610065, China) Abstract: In this paper we propose an integral imaging directional reconstruction method in focused mode. The proposed method can provide a very small viewing angle and three-dimensional (3D) images only for one person through pixel extraction. In addition, it can control the viewing direction of the reconstructed 3D images within a view zone. According to theoretical analysis and the experimental results, we demonstrate the feasibility of the proposed method.it is possible for a TV to show multiple 3D programs at the same time. Keywords: integral imaging; directional reconstruction; pixel extraction. 1 引言 在目前众多三维(3D)图像显示技术中,集成成像显示技术能够提供全真色彩与全视差的3D图像且不需任何辅助的设备,是最有希望较快实现3D电视的技术之一[1-3]。一个集成成像显示系统的观看特性通常可通过图像分辨率、观看视角、图像深度等参数表征。对于一个常规的集成成像系统,如果显示面板的分辨率固定,其三个参数之间有一个平

光电成像技术

2014-2015 第一学期 光电成像技术 ——红外热成像技术的发展及其应用 院系电子工程学院光电子技术系 班级光信1104 姓名王凯 学号05113123 班内序号14 考核成绩

红外热成像技术的发展及其应用 摘要:用红外热成像技术,探测目标物体的红外辐射,并通过光电转换、信号处理等手段,将目标物体的温度分布图像转换成视频图像的设备,我们称为红外热成像仪。 关键字:红外线,红外热成像技术,发展及其应用 一、引言 1800年英国的天文学家Mr.William Herschel 用分光棱镜将太阳光分解成从红色到紫色的单色光,依次测量不同颜色光的热效应。他发现,当水银温度计移到红色光边界以外,人眼看不见任何光线的黑暗区的时候,温度反而比红光区更高。反复试验证明,在红光外侧,确实存在一种人眼看不见的“热线”,后来称为“红外线”,也就是“红外辐射”。 二、红外热成像技术 我们人眼能够感受到的可见光波长为:0.38—0.78微米。通常我们将比0.78微米长的电磁波,称为红外线。自然界中,一切物体都会辐射红外线,因此利用探测器测定目标本身和背景之间的红外线差,可以得到不同的红外图像,称为热图像。同一目标的热图像和可见光图像是不同,它不是人眼所能看到的可见光图像,而是目标表面温度分布图像,或者说,红外热图像是人眼不能直接看到目标的表面温度分布,变成人眼可以看到的代表目标表面温度分布的热图像。 用红外热成像技术,探测目标物体的红外辐射,并通过光电转换、信号处理等手段,将目标物体的温度分布图像转换成视频图像的设备,我们称为红外热成像仪。红外热成像仪大致分为致冷型和非致冷型两大类。 目前,世界上最先进的红外热像仪(热成像仪或红外热成像仪),其温度灵敏度可达0.03℃。 1、红外热像仪的工作原理 红外热像仪可将不可见的红外辐射转换成可见的图像。物体的红外辐射经过镜头聚焦到探测器上,探测器将产生电信号,电信号经过放大并数字化到热像仪的电子处理部分,再转换成我们能在显示器上看到的红外图像。

超高清内窥镜摄像系统技术参数

超高清内窥镜摄像系统技术 参数 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

超高清内窥镜摄像系统技术参数 一超高清摄像机 、超高清摄像系统逐行扫描数字化主机分辨率 × 、超高清摄像系统,有效像素≥万视频输出: : 图像处理模块,保证出血时图像亮度不下降。 *、细节增强功能(边缘增强血管增强),可保证图像整体亮度及色彩还原性。*、具有除烟雾功能,可提供更清楚的图像效果。 、摄像机主机与光源直接连接,实时控制亮度调节。 *、多种语音模式,可选中文界面,可接键盘输入存储患者资料。 、预设多种内镜操作模式与自定义编辑。 、影像记录快照:储存图像格式为,分辨率是全高清()移动盘存储 、高清变焦适配器—变焦适配器 .灯光源≧ .灯泡使用寿命> 小时 .锁键式光纤插口,可使用多种不同直径导光束 ,可兼容、、等导光束 .含休眠模式,降低光源损耗 二冷光源 .色温 三医用监视器 . 寸监视器,分配率超精细:()×()() .全彩色:万色(比特×色)高灰度: .高对比度的水平取像(技术)液晶面板实现了上下左右达°液晶显示的高标准的超广角性能。具有可抑制随广角而改变的灰度及色彩的高品质的发色特性残骛楼諍锩瀨濟溆塹籟婭骒。 .两路输入双画面显示,多种输出接口:两种输入视频可同时显示,分别为两分割画面的画外画形式及主画面中显示副画面的画中画形式,在一台监视器上同时对两个画面进行确认,节省空间。根据安装的选件模块,、及等信号可以通过画中画和画外画显示同一信号。酽锕极額閉镇桧猪訣锥顧荭。 .配备()伽玛:配备广播领域具有的视频监视器标准的伽玛()。同时还采用医用数字成像及以灰色标度标准函数() 为通信()标准的伽玛彈贸摄尔霁毙攬砖卤庑诒尔。 四、导光束 进口Ф , 可高温高压消毒 五、进口 ° . 钴镍合金材质,蓝宝石镜面 . 激光无缝焊接,密封性强 . 全高清,大视野清晰影像 . 兼容各品牌系统 .可高温高压 进口 °鼻窦镜支 . 钴镍合金材质,蓝宝石镜面 . 激光无缝焊接,密封性强 . 全高清,大视野清晰影像 . 兼容各品牌系统 .可高温高压

光电成像系统复习

光电成像系统基础理论 第一章: 1. 人眼视觉性能的局限性; (1)灵敏度的限制:光线很差时人的视觉能力很差; (2)分辨力的限制:没有足够的视角和对比度就难以辨识; (3)时间上的限制:变化过去的影像无法存留在视觉上; (4)空间上的限制:离开的空间人眼将无法观察; (5)光谱上的限制:人眼局限于电磁波的可见光区; 因此,眼睛的直观视觉只能有条件地提供图像信息,为了突破人眼的限制催生了光电成像技术这门学科。扩展视见光谱范围、视见灵敏度和时空限制。 2.光电成像系统的分类以及各自的工作方式; (1)直视型光电成像系统 工作方式:①通过外光电效应将入射的辐射图像转换为电子图像;②由电场或电磁场的聚焦加速作用进行能量增强以及通过二次发射作用进行电子倍增;③经过增强的电子图像轰击荧光屏,激发荧光屏产生可见光图像。 (2)电视型光电成像系统 工作方式:①接收二维的光学图像或热图像,②利用光敏面的光电效应或热电效应将其转换为二维电荷图像并进行适当时间的存储,③然后通过电子束扫描或电荷耦合转移等方式, 输出一维时间的视频信号。 3.变像管与像增强器的异同。 变像管:接受非可见辐射图像的直视型光电成像器件:红外变像管、紫外变像管和X 射线变像管等。 共同特点:入射图像的光谱和出射图像的光谱完全不同,输出图像的光谱是可见光。像增强器:接受微弱可见光图像的直视型光电成像器件:级联式像增强器、带微通道板的像增强器、负电子亲和势光阴极的像增强器等。 共同特点:输入的光学图像极其微弱,经器件内电子图像的能量增强和数量倍增后通过荧光屏输出可见光学图像。 第二章: 1. 绝对视觉阈、阈值对比度、光谱灵敏度; 人眼的绝对视觉阈 所谓人眼的绝对视觉阈,是在充分暗适应的状态下,全黑视场中,人眼感觉到的最小光刺激值(用照度表示,单位lx),在10-9数量级。 人眼的阈值对比度 阈值对比度是指在一定背景下把目标鉴别出来所必须的目标在背景中的衬度(对比度C)。C的倒数成为反衬灵敏度。 人眼的光谱灵敏度 人眼对不同波长的光具有不同的灵敏度响应,不同人的眼睛,对波长灵敏度响应也有差异。 在可见光区域内,任意波长与555 nm波长处的辐射功率之比称为光谱灵敏度,其构成的曲线就称为光谱响应曲线。 2.约翰逊准则对探测水平的分级及其各自的定义;

全景高清监控系统

全景高清监控系统 广东百泰科技有限公司高清全景摄像机系统是一套基于全景图像采集获取、拼接生成及浏览交互等技术的“点-面智能联动摄像机系统”,结合海量视频数据智能分析技术,可实现高清全景视频图像信息处理及交互应用。产品及技术适用于安防监控、城市管理、智能交通、消防、城市规划等各类具有城市地理信息及可视化管理需求的行业人员使用。可应用于区域边界卡口、重要道路节点、人员密集场所、城区交叉口、水库、林区、车站码头以及首脑机关和水电油气、金融等重点要害部位的公共安全风险防控,提高管理部门应对突发事件的处置能力。 百泰高清全景摄像机系统采用了新一代高清全景视频实时变换、超高分辨率图像实时处理、ISP智能图像算法设计、海量图像分布式存储等多种前沿技术,通过一台180°高清全景摄像机与一台1080P全高清高速球有机嵌合,匹配专用软件,组成一套点面联动的智能化全景高清监控系统。通过单台摄像机就能对180°或360°度范围进行成像,并实现对成像区域内所有目标进行从点到面的同步高清监控,达到无缝监控、点面兼顾的效果。 一、技术特色 全景:单台摄像机就能对180°或360°度视角范围进行成像。 高清:1080P全高清视频传输和录像。 超微光感知技术:采用双阶 3D 去噪算法,超低照度、超低噪声、全彩色,宽动态。 全景+高速球“一键式”点面联动:针对目前监控摄像机“看得清却看不全” “看得全却看不清”的矛盾,将高清高速球的“点”与全景摄像机的“面” 搭配组合,实现由“面”及“点”的一键式操控,点击全景画面的任何一个位置,系统可立即调度高速球转到预定监视点,配准精度高达0.05°,响应时间小于0.1秒,使监控全局与局部细节一览无遗。 室内外应用,IP66防护等级。 二、实景视频演示

光电成像原理复习指南(含答案)

复习指南 注:答案差不多能在书上找到的都标注页数了,实在找不到的或者PPT上的才打在题后面了,用红色和题干区分。特此感谢为完善本文档所做出贡献的各位大哥。(页码标的是白廷柱、金伟其编著的光电成像原理与技术一书) 1.光电成像系统有哪几部分组成?试述光电成像对视见光谱域的延伸以及所受到的限制(长波限制和短波限制)。(辐射源,传输介质,光学成像系统,光电转换器件,信息处理装置。P2-4) 答:辐射源,传输介质,光学成像系统,光电转换器件,信息处理装置。 [1]电磁波的波动方程该方程电磁波传递图像信息物空间和像空间的定量关系,通过经典电磁场理论可以处理电磁波全部的成像问题 [2]收到的限制:当电磁波的波长增大时,所能获得的图像分辨力将显著降低。对波长超过毫米量级的电磁波而言,用有限孔径和焦距的成像系统所获得的图像分辨力将会很低。因此实际上己排除了波长较长的电磁波的成像作用。目前光电成像对光谱长波阔的延伸仅扩展到亚毫米波成像。除了衍射造成分辨力下降限制了将长波电磁波用于成像外,用于成像的电磁波也存在一个短波限。通常把这个短波限确定在X 射线(Roentgen 射线)与y 射线(Gamma 射线)波段。这是因为波长更短的辐射具有极强的穿透能力,所以,宇宙射线难以在普通条件下聚焦成像。 2.光电成像技术在哪些领域得到广泛的应用?光电成像技术突破了人眼的哪些限制?(P5) 答:[1]应用:(1)人眼的视觉特性(2)各种辐射源及目标、背景特性(3)大气光学特性对辐射传输的影响(4)成像光学系统(5)光辐射探测器及致冷器(6)信号的电子学处理(7)图像的显示 [2]突破了人眼的限制:(1)可以拓展人眼对不可见辐射的接受能力(2)可以拓展人眼对微弱光图像的探测能力(3)可以捕捉人眼无法分辨的细节( 4)可以将超快速现象存储下来 3.光电成像器件可分为哪两大类?各有什么特点?(P8)固体成像器件主要有哪两类?(P9,CCD CMOS) 答:[1]直视型:用于直接观察的仪器中,器件本身具有图像的转换、增强及显示等部分,可直接显示输出图像,通常使用光电发射效应,也成像管.[2]电视型:于电视摄像和热成像系统中。器件本身的功能是完成将二维空间的可见光图像或辐射图像转换成一维时间的视频电信号使用光电发射效应或光电导效应,不直接显示图像. 电荷耦合器件,简称CCD;自扫描光电二极管阵列,简称SSPD,又称MOS图像传感器 4.什么是像管?由哪几部分组成?(P8第一段后部) 器件本身具有图像的转换、增强及显示等部分,它的工作方式是:通过外光电效应将入射的辐射图像转换为电子图像,而后由电场或电磁场的聚焦加速作用进行能量增强以及通过二次发射作用进行电子倍增,经过增强的电子图像轰击荧光屏,激发荧光屏产生可见光图像。这样的器件通常称为像管。 基本结构包括有:光电发射体、电子光学系统、微通道板(电子倍增器件)、荧光屏以及保持高真空工作环境的管壳等。 5.像管的成像包括哪些物理过程?其相应的物理依据是什么?(P8第一段工作方式) (1)像管的成像过程包括3个过程 A、将接收的微弱的可见光图像或不可见的辐射图像转换成电子图 像B、使电子图像聚焦成像并获得能量增强或数量倍增C、将获得增强后的电子图像转

高清录像系统

NES 手术显微镜录像 系统工作站 上海同济大学高科技企业 上海新眼光医疗器械股份有限公司

NES手术显微镜录像系统工作站 产品简介 随着计算机影像信息化技术的飞速发展。影像数字化存储和管理、观视与高清医学影像传输, 已经日益成为各级医院,录像设备升级 的重要方面。使医院影像分析与存储水 平提高、手段更新,同时也为将来医院 影像信息联网打下良好的基础。 为满足医生和医院管理工作者 对HD高清成像的需求,本单位应用计 算机新技术联合日本Ikegami 、SONY医疗专用CCD成像专家,对高档手术显微镜高清录像系统进行软硬件的组合配套,可与ZEISS TOPCON MOLLER 六六视觉等各种手术显微镜配接,实现了录像系统通过软件进行存储、刻录和美国TTI高清光学接口一套解决方案, 一、产品特点与人性化 1.安全性系统对断电等突发事件自动保护设计,确保数据安全可靠。 2.友好性界面友好直观,操作性强。 3.实用性系统具有强大高清录像及快速编辑功能。 4.独一性本高清成像专为高像素设计,

二、功能及参数 1、采用最先进的图像硬压缩技术,支持HDMI高清视频信号及1920X1080高清录像。 2、支持蓝光、可直接刻录DVD、VCD可进行编辑、剪切 3、支持无线脚踏开关技术:一为控制拍照,二为控制 录像,可一人独立完成 4、支持高清录像的快速剪切,合并简单方更。 5、进行灵活方便的分类及统计,查询和统计结果 6、支持手术过程中的2000万以上高像素的数码成像。 7、网络版可方便与医院内部联网,网络影像数据库成为大型医院的最佳选择方案;下图选购配置 高清数码单反相机2000万像素成像高清800万像素动态录像及1200万静态成像

正置显微成像系统

正置显微成像系统 1.主机 (1)光学系统:无限远校正光学系统,保证光通过目镜到物镜整个光路中的所有棱镜及镜片时的绝对平行; (2)具有明场具有顶部摄像出口; (3)五位物镜转换器; (4)放大倍数:40X-400X; (5)透射光照明:卤素灯光源; (6)调焦:带有同轴粗、微调焦装置;调焦旋钮高度可调节、操作舒适; (7)宽视野三目镜筒,倾角30度 (8)载物台:低位置同轴驱动旋钮的高抗磨损性陶瓷覆盖层载物台; 2. 光学部件 (1)万能聚光镜:带有孔径光阑的聚光镜 (2)物镜:4X或5X(NA=0.12)工作距离≥12mm 10X(NA=0.25)工作距离≥6mm 40X(NA=0.65)工作距离≥0.36mm 100X(NA=1.25)工作距离≥0.17mm (3)目镜:10X宽视野目镜 3. 图像捕捉及分析系统 摄录系统:与显微镜同品牌高分辨率显微成像系统 有效像素≥1000万像素

像素面积:3.4u x 3.4u 彩色深度:36位RGB色彩深度 4. 软件:图像分析系统基本平台: (1)用户界面,工作流程导向用户界面,操作容易和符合人工学要求。优化的数据处理为快速采集图像和大量数据集显示,直观的设定实验条件给快速设置和采集单色通道图像,多次采集后做图像叠加。(2)采图,高速图象采集。完全控制照相机性能如曝光,增益,binning,黑的,白的和伽马值,局部图象采集。图象显示和管理,大图象视窗在采集中或后复览显示单通道,多通道图像。 (3)图象滑动杆作快速地在大量数据集中滚动,实验树结构管理数据如储存、重新命名、拷贝、删除、输出为tif,avi,jpeg.接触实验条件来输出为XML或使用在另外的实验中。

相关主题
文本预览
相关文档 最新文档