当前位置:文档之家› 热电阻的接线方式

热电阻的接线方式

热电阻的接线方式
热电阻的接线方式

目前热电阻的引线主要有三种方式

○1二线制:在热电阻的两端各连接一根导线来引出电阻信号的方式叫二线制:这种引线方法很简单,但由于连接导线必然存在引线电阻r,r大小与导线的材质和长度的因素有关,因此这种引线方式只适用于测量精度较低的场合;

○2三线制:在热电阻的根部的一端连接一根引线,另一端连接两根引线的方式称为三线制,这种方式通常与电桥配套使用,可以较好的消除引线电阻的影响,是工业过程控制中的最常用的引线电阻;

○3四线制:在热电阻的根部两端各连接两根导线的方式称为四线制,其中两根引线为热电阻提供恒定电流I,把R转换成电压信号U,再通过另两根引线把U引至二次仪表。可见这种引线方式可完全消除引线的电阻影响,主要用于高精度的温度检测。

热电阻采用三线制接法。采用三线制是为了消除连接导线电阻引起的测量误差。这是因为测量热电阻的电路一般是不平衡电桥。热电阻作为电桥的一个桥臂电阻,其连接导线(从热电阻到中控室)也成为桥臂电阻的一部分,这一部分电阻是未知的且随环境温度变化,造成测量误差。采用三线制,将导线一根接到电桥的电源端,其余两根分别接到热电阻所在的桥臂及与其相邻的桥臂上,这样消除了导线线路电阻带来的测量误差。

热电偶接线端子(欧米茄DRTB系列)

热电偶接线端子 ---可安装于DIN导轨,方便进行检查和故障排除 ?螺丝接线端可提供安全且免维护的连接 ?可用于K、J、T、E、N、R/S和U型分度号热电偶 ?内置小型热电偶母连接器,可进行检查和故障排除 ?全封闭式—无需使用端板 ?可进行DIN导轨安装—宽度小,仅10.7 mm ?带有分度号与"+,-" 连接标识 ?内含书写窗 产品描述 全新DRTB系列热电偶接线盒采用热电偶级合金加工而成,保证可提供精确读数。内置SMP兼容母插座可插接小型热电偶连接器。母连接器让用户可以连接到手持式仪表,用于数据采集、质保合规、功能研究以及故障排除安装或维修等应用。 塑料外壳采用灰色聚酰胺6.6热塑性树脂加工而成,达到UL 94 V0等级(85°C)。这些热电偶接线端为全封闭式,无需使用任何端板。螺钉和夹子都经过镀锌,它们配合使用可提供一种无振动、免维护、抗腐蚀的连接。 DRTB接线盒可安装在标准35 mm DIN导轨或32 mm G型导轨中,可用分度号类型以及正极(+)和负极(-)连接标识它们。导线入口为漏斗形,即便是标准导线,也能实现导线快速插接。 规格:

接线端宽度: 10.7 mm (0.422") 接线端长度/高度: 51 mm (2.008")/42.3 mm (1.666") 安装到35 x 7.5 mm/ 35 x 15 mm DIN导轨中的高度: 43.5 mm (1.713")/51 mm (2.009") 导线最大尺寸: 12 AWG/2.5 mm2 裸线长度: 8 mm (0.31") 扭矩(Nm (in-lb)): 0.4 (3.54) ±10% 额定温度: -40 ~ 85°C (-40 ~ 185°F)

热电阻常用的接线方式及原理

热电阻温度测量原理及常用接线方式 热电阻(如PtIOO )是利用其电阻值随温度的变化而变化这一原理制成的将温度量转换 成电阻量的温度传感器。 温度变送器通过给热电阻施加一已知激励电流测量其两端电压的方 法得到电阻值(电压/电流),再将电阻值转换成温度值,从而实现温度测量。 热电阻和温度变送器之间有三种接线方式:二线制、三线制、四线制。 由于热电阻本身的阻值较小, 随温度变化而引起的电阻变化值更小, 例如,铂电阻在零 度时的阻值R0=100 Q,铜电阻在零度时 R0=100 Qo 因此,在传感器与测量仪器之间的引线 过长会引起较大的测量误差。在实际应用时,通常采用所谓的两线、三线或四线制的方式, 如图所示。 图热电阻的接入方式 在图(a )所示的电路中,电桥输出电压 Vo 为 R r ) 当 R?Rt 、Rr 时, V o [(R t -R r ) 2 式中:Rt 为铂电阻, Rr 为可调电阻,R 为固定电阻,I 为恒流源输出电流值。 1. 二线制 (c )三线制 (d )四线制

二线制的电路如图(b)所示。这是热电阻最简单的接入电路,也是最容易产生较大误差的电路。 图中的两个R是固定电阻。R r是为保持电桥平衡的电位器。二线制的接入电路由于没有 考虑引线电阻和接触电阻,有可能产生较大的误差。如果采用这种电路进行精密温度测量,整个电路必须在使用温度范围内校准。 2.三线制 三线制的电路如图(C)所示。这是热电阻最实用的接入电路,可得到较高的测量精度。 图中的两个R是固定电阻。R是为保持电桥平衡的电位器。三线制的接入电路由于考虑 了引线电阻和接触电阻带来的影响。R11、R12和R l3分别是传感器和驱动电源的引线电阻, 一般说来,R11和R12基本上相等,而R13不引入误差。所以这种接线方式可取得较高的精度。 3.四线制 四线制的电路如图(d)所示。这是热电阻最高精度的接入电路。 图中R ii、R i2、R13和R14都是引线电阻和接触电阻。R ii和R12在恒流源回路,不会引 入误差。R13和R14则在高输入阻抗的仪器放大器的回路中,也不会带来误差。上述三种热电阻传感器的引入电路的输出,都需要后接高输入阻抗、高共模抑制比的仪器放

工业铂、铜热电阻校准规程

工业铂、铜热电阻校准规程

1 目的 规范铂、铜热电阻校准的操作,确保铂、铜热电阻的校准结果真实、可靠。 2 范围 本规程适用于-200℃~+850℃整个或部分温度范围使用的工业铂、铜热电阻的校准和使用中检验。 3 职责 工程设备部:负责按本规程执行铂、铜热电阻的校准及校准记录的管理。 4 定义 4.1 热电阻:由一个或多个感温电阻元件组成的,带引线、保护管和接线端子的测温仪器。 4.2 标称电阻值R0:热电阻(或感温元件)在0℃时的期望电阻值。其阻值通常有10Ω、50Ω、100Ω、500Ω、1000Ω,它由制造商申明并标于热电阻上。感温元件常以其标称电阻值表征,例如一个Pt100的感温元件,其标称电阻值为100Ω;Cu50的感温元件,其标称电阻值为50Ω。 4.3 温度/电阻表(分度表):当R0为标称电阻值时,可根据函数关系制成相应的温度/电阻表(分度表)。铂热电阻标称电阻值为100Ω的分度表见表2。其他类型铂热电阻的分度表只要将该分度表中的电阻值乘以R0/100Ω即可(此处的R0为其他类型铂热电阻的标称电阻值)。铜热电阻分度表亦是如此得到。 5 内容 5.1 允差:允差等级是与有效温度范围相对应的。在有效温度范围内,热电阻的电阻值通过分度表查算出的温度t与真实温度的最大偏差不得超过表1给定的允差值。表1适用于任何标称电阻值的热电阻。对于特定的热电阻,若其有效温度范围小于该表规定的范围,应给予说明。 5.2 温度/电阻关系

5.3 外观 5.3.1 热电阻各部分装配正确、可靠、无缺件,外表涂层应牢固,保护管应完整无损,不得有凹痕、划痕和显著锈蚀。 5.3.2 感温元件不得破裂,不得有明显的弯曲现象。 5.3.3 根据测量电路的需要,热电阻可以有两、三或四线制的接线方式,其中A级的热电阻必须是三线制或四线制的接线方式。 5.3.4 每支热电阻在其保护套管上或在其所附的标签上至少应有下列内容的标识:类型代号、标称电阻值R0、有效温度范围、感温元件数、允差等级、制造商名或商标、生产年月。 5.4 校准条件 5.4.1 标准器 5.4.1.1 对标准器的误差要求:从提高校准能力出发,标准仪器及配套设备引入的扩展不确定度与被校热电阻最大允许误差绝对值相比应尽可能小。 5.4.1.2 选用标准器如下:二等标准水银温度计(‐30~+300)℃,过程校准仪。 5.4.1.3 辅助设备如下:恒温槽。 5.4.2 环境条件 5.4.2.1 环境温度:15~35℃; 5.4.2.2 环境湿度:30~80%; 5.4.2.3 电测设备应符合相应的环境要求。 5.4.2.4 无腐蚀性气体。 5.5 校准项目和校准方法 5.5.1 外观:按5.3的要求检查热电阻和感温元件的保护套管外部,应无肉眼可见的损伤。同时按5.3.4的要求检查标识、检定标记等,确定热电阻是否符合管理性的要求。 5.5.2 允差的校准:各等级热电阻的校准点均选择0℃和100℃。 5.5.3 热电阻阻值的测量方法:热电阻的电阻值应从整支热电阻的接线端子起计算。测量顺序如下:“标准→被校1→被校2→…→被校n→被校n→…→被校2→被校1→标准”,如此完成一个循环,每次测量不得少于两个循环,取其平均值进行计算。 5.5.4 R0的校准:在恒温槽中测量热电阻的电阻值,并与标准器测量的温度进行比较,计算其0℃的偏差值△t0,校准时必须要有足够的热平衡时间,待测量数据稳定后方可读数,热电阻应有足够的插入深度,尽可能减少热损失。 5.5.5 R0的计算:恒温槽偏离0℃的值△t由标准温度计测量得到 其值按公式(1)计算:△t=t0 + t修(1) 式中:t0——标准温度计在恒温槽中测得的温度值; t修——标准温度计在0℃时的修正值。 被检热电阻在0℃的温度偏差△t0按公式(2)计算;

热电阻接入电路两线制和三线制接线法的分析

1.10 热电阻接入电路两线制和三线制接线法的分析 热电阻接入电路两线制三线制接线法 1.分析两线制由于引线电阻的误差 图1-12中,r为引线的电阻,R t为Pt电阻,其中由欧姆定律可得: 当R r=R t时(电桥平衡),V0=-I22r 。 从V0的表达式可以看出,引线电阻的影响十分明显,两线制接线法的误差很大。 2.分析三线制如何消除引线电阻的误差 三线制接线法由图1-13所示,由欧姆定律可得: 当R r=R t时,电桥平衡,I1=I2,V0=0。 可见三线制接线法可很好的消除引线电阻,提高热电阻的精度。 工业用热电阻温度计的使用注意事项

热电阻温度计是利用导体或半导体的电阻值随温度变化的性质来测量温度的,在工业生产中广泛用来测量(-100~500)℃范围的温度,其主要特点是测温准确度高,便于自动测量。由于热电偶在低温范围中产生的热电势小,因而对测量仪表要求严格,而采用热电阻温度计测量低温是很适宜的。 热电阻温度计按结构形式可分为普通工业型、铠装型及特殊型等。 常用的普通工业型热电阻主要有: 1.铂热电阻:广泛用来测量(-200~850)℃范围内的温度。在少数情况下,低温可测至1K,高温可测至1000℃。其物理、化学性能稳定,复现性好,但价格昂贵。铂热电阻与温度是近似线性关系。其分度号主要有Pt10和Pt100。 2.铜热电阻:广泛用来测量(-50~150)℃范围内的温度。其优点是高纯铜丝容易获得,价格便宜,互换性好,但易于氧化。铜热电阻与温度呈线性关系。其分度号主要有Cu50和Cu100。 铠装热电阻是在铠装热电偶的基础上发展来的,由热电阻、绝缘材料和金属套管三者组合加工而成,其特点是外形尺寸可以做得很小(最小直径可达20毫米),因而反应速度快,有良好的机械性能,耐振耐冲击,具有良好的挠性,且不易受有害介质的侵蚀。 使用热电阻前必须检查它的好环,简易的检查方法是将热电阻从保护管中抽出,用万用表测量其电阻。若万用表读数为“0"或者万用表读数小于R0值,则该热电阻已短路,必须找出短路处进行修复;若万用表读数为“∞",则该热电阻已断路,不能使用;若万用表读数比R0的阻值偏高一些,说明该热电阻是正常的。 热电阻的阻值不正确时,应从下部端点交叉处增减电阻丝,而不应从其它处调整。完全调好后应将电阻丝排列整齐,不能碰接,仍按原样包扎好。 经修复的热电阻,必须经过检定合格后方可使用。 热电阻安装时,其插入深度不小于热电阻保护管外径的8倍~10倍,尽可能使热电阻受热部分增长。热电阻尽可能垂直安装,以防在高温下弯曲变形。热电阻在使用中为了减小辐射热和热传导所产生的误差,应尽量使保护套管表面和被测介质温度接近,减小热电阻保护套管的黑色系数。 当用与热电阻相配的二次仪表测量温度时,热电阻安置在被测温度的现场,而二次仪表则放置在操作室内。如果用不平衡电桥来测量,那么连接热电阻的导线都分布在桥路的一个臂上。由于热电阻与仪表之间一般都有一段较长的距离,因此两根连接导线的电阻随温度的变化,将同热电阻阻值的变化一起加在不平衡电桥的一个臂上,使测量产生较大的误差。为减小这一误差,一般在测温热电阻与仪表连接时,采用三线制接法(图1),即从热电阻引出三根导线,将连接热电阻的两根导线正好分别处于相邻的两个桥臂内(图2)。当环境温度变化而使导线电阻值改变时,其产生的作用正好互相抵消,使桥路输出的不平衡电压不会因之而改变。另一导线电阻R1的变动,仅对供桥电压有极微小的影响,但在准确度范围内。其示意图如下所示:

热电偶安装手册(中英文)

WR系列热电偶 WR Series Thermocouple WZ系列热电阻 WR Series Thermocouple 使用安装手册Installation & Operation Manual 安徽天康(集团)股份有限公司Anhui Tiankang (Group) Shares Co., Ltd

目录 Index 1、概述General Description (1) 2、工作原理Operation Theory (1) 3、结构Configuration (2) 4、主要技术参数Main Technical Parameters (3) 5、安装及使用Installation & Operation (5) 6、可能发生的故障及维修Possible Troubles & Maintenance (7) 7、运输及储存Transportation & Storage (8) 8、订货须知Notices in Ordering (8) 9、型号命名Type Naming (9)

1、概述General Description 工业用热电偶作为温度测量和调节的传感器,通常与显示仪表等配套,以直接测量各种生产过程中-40~1600℃液体、蒸汽和气体介质以及固体表面温度; As sensor for temperature measuring and regulation, industrial-purpose thermocouple is usually connected with display meter and other meters to directly measure temperature of liquid, vapor, gas and solid surface ranging from -40℃to 1600℃. 工业用热电阻作为温度测量和调节的传感器,通常与显示仪表等配套,以直接测量各种生产过程中-200~500℃液体、蒸汽和气体介质以及固体表面温度。 As sensor for temperature measuring and regulation, industrial-purpose thermal resistance is usually connected with display meter and other meters to directly measure temperature of liquid, vapor, gas and solid surface ranging from -200℃to 500℃. 2、工作原理Operation Theory1 热电偶工作原理Operation Theory of Thermocouple 热电偶工作原理是基于两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。 热电偶由两根不同导线(热电极)A和B组成,它们的一端T1是互相焊接的,形成热电偶的测量端T1(也称工作端)。将它插入待测温度的介质中;而热电偶的另一端T0(参比端或自由端)则与显示仪表相连,如果热电偶的测量端与参比端存在温度差,则显示仪表将指出热电偶产生的热电动势。 热电偶的热电动势随着测量端温度的升高而增大,它的大小只与热电偶的材料和热电偶两端的温度有关,而与热电级的长度、直径无关。 Thermocouple is based on physical phenomenon that two conductor of different materials is connected to form return circuit, when temperature on both contact is different, it results in thermoelectric potential in return circuit. 热电阻工作原理Operation Theory of Thermal Resistance 热电阻是利用金属导体或半导体有温度变化时本身电阻也随着发生变化的特性来测量温度的,热电阻的受热部分(感温元件)是用细金属丝均匀地绕在绝缘材料作成的骨架上,当被测介质有温度梯度时,则所测得的温度是感温元件所在范围内介质层的平均温度。 制造热电阻的材料应具有以下特点:大的温度系数,大的电阻率,稳定的化学物理性能和良好的复现性等。在现有的各种纯金属中,铂、铜和镍是制造热电阻的最合适的材料。其中铂因具有易于提纯,在氧化性介质中具有高的稳定性以及良好的复现性等显著的优点,而成为制造热电阻的理想材料。 It is based on that temperature change of material results in change of its resistance. When resistance value changes, the working instrument will display relevant temperature. 3、结构Configuration 感温元件直径及材料Diameter & Material of Thermal Elements 热电偶Thermocouple

热电偶维修作业指导书

热电偶维修作业指导书 一、编制目的:为了提高园区仪表维护人员的技术水平,在生产维护中能及时处理仪 表故障,特编制此指导书。 二、适用范围:本作业指导书适用于自动化仪表专业班组维护人员处理石油化工装置测 温热电偶的各种故障,并提供安全指导 三、热电偶测温基本原理和结构形式: 1.热电偶的测温原理: 图1-7.1热电偶工作原理图 如图1-7.1所示,将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B的两个接点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一定大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。热电偶的一端将A、B两种导体焊在一起,置于温度为t的被测介质中,称为工作端;另一端称为自由端,放在温度为t0的恒定温度下。当工作端的被测介质温度发生变化时,热电势随之发生变化,将热电势送入显示仪表进行显示或记录,或送入微机进行处理,即可获得温度值。当组成热电偶的热电极的材料均匀时,其热电势的大小与热电极本身的长度和直径大小无关,只与热电极材料的成分及两端的温度有关。热电偶两端的热电势差可用下式表示: E t=e AB(t)-e AB(t0) 式中: E t -----热电偶的热电势; e AB(t)-----温度为t时工作端的热电势; e AB(t0)-----温度为t0时自由端的热电势; 2.热电偶的结构(如下图): 2006

图1-7.2 1)普通型热电偶普通型热电偶按其安装时的连接型式可分为固定螺纹连 接、固定法兰连接、活动法兰连接、无固定装置等多种形式。虽然它们的结 构和外形不尽相同,但其基本组成部分大致是一样的。通常都是由热电极、 绝缘材料、保护套管和接线盒等主要部分组成。 2)铠装热电偶铠装热电偶是由热电偶丝、绝缘材料和金属套管三者经拉伸加 工而成的坚实组合体。它可以做得很细、很长,在使用中可以随测量需要任意弯 曲。套管材料般为铜、不锈钢或镍基高温合金等。热电极与套管之间填满了绝缘 材料的粉末,常用的绝缘材料有氧化镁、氧化铝等。铠装热电偶的主要特点是 测量端热容量小,动态响应快;机械强度高;挠性好,可安装在结构复杂的装 置上,因此已被广泛用在许多工业部门中。 3.三种常用热电偶分度号及补偿导线: 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100oC。我厂常用的热电偶有三种,如表1-7.1所示: 表1-7.1 4.热电偶的检查: 1).外观检查:热电偶的热接点应焊接牢固,表面光滑,无气孔,无明显的缺损及裂纹。热电偶的瓷管、绝缘层、保护套管、接线座、垫片及头盖应完好无损。 2).对于使用中的热电偶应定期检查其热电特性,检定周期一般为3~5年。重要的及特殊使用的场合,按实际需要定期检查。 3).保护套管一般4~5年检查一次,对于安装在腐蚀及磨损严重部位的保护套管,停工检查期间均应检查。使用于2.5MPa以下的保护管应能承受1.5倍的工作压力而无渗漏,用于高压容器的热电偶保护套管使用前应经探伤或拍片检查,达到二级合格标准。 四、热电偶维修作业危害分析和安全措施 1.在维修前询问工艺,如果该点带联锁,则要开出联锁作业票,切除联锁后才能维修,防止联锁动作 2.在检查补偿导线时,摇绝缘只能使用500V兆欧表,并且要将补偿导线两端脱离回路,防止摇绝缘时损坏仪表。 3.在现场高空作业时必须采取安全措施,搭好脚手架和系好合格安全带,防止跌落伤人。4.在拆卸热电偶套管时,如果要用到铁锤敲打,要注意抓好板手,正确击打,防止铁锤打偏伤手。 5.在拆卸生产现场热电偶套管时,必须要先将管道介质放空,防止介质喷出伤人,同时要穿戴好防护衣服和眼镜。 6.在检查高温热电偶时要穿戴好防护衣服和手套,防止烫伤。

热电阻热电偶检定设备

WZJ-T系列热电偶、热电阻自动校验装置 江苏金湖创伟自动化仪表科技有限公司 概述 WZJ-T型热电偶、热电阻自动校验装置是本公司在科研单位和许多客户的支持下,通过对同类产品先进技术的吸收并加以改良发展而成,是目前国内比较先进的自动检定装置。装置以32位微型计算机为主体,由6 1/2位进口高准确度数字多用表、低电势多通道扫描器、高稳定度数字化控制器、专用输入/输出接口卡、打印机和先进且功能齐全的专用软件配置而成。实现对各种工作用热电偶、热电阻的全自动检定。 特点 自动化程度高:整个检定过程除需检定员将热电偶、热电阻捆扎、装炉(槽)和接线外,剩余工作均在计算机的控制下由装置自动完成(自动控温、自动检测、自动计算、自动打印检测结果、自动储存检测数据等)。 硬件技术先进,采用全数字化技术,由通用数字集成电路组成模块化结构,并设有较完善的手动/自动切换功能,对炉温控制、通道切换、数据采集等主要操作,既可自动进行,亦可手动进行。 软件技术领先,采用全屏幕多画面显示技术,全部采用菜单式选择与人机对话方式进行操作,支持鼠标。在Windows环境下,采用CODEBASE VISUAL C 和VISUAL FOXPRO及汇编语言混合编制程序,运行速度快,界面新颖,数据管理安全,用户参与灵活。 标准化程度高:检定点、检定记录及检定结果可按规程、标准要求设定和按用户实际需求及计量管理要求设定。 炉温控制精度高:检定时间短,采用优化的炉温控制算法及自校正技术,使本装置升温速度快、控温时间短、恒温时间长,一般常规三个检定点,两小时左右即可完成检定工作(包括出具检定结果报表)。 检测准确度高,功能齐全:由分辨率为0.1uV 6 1/2位进口高准确度数字多用表采集数据,采用仿人工智能技术进行数据判断与处理。检定数据自动存储,掉电数据保护,冷端温度自动补偿,超温报警,检定点热电势值、热电势误差值、温度误差值和允许误差值等同时算出,并可对每一支被检元件给出一张检测结果表(检定证书或检定结果通知书),对铂铑10-铂热电偶不仅给出固定点热电势值,还同时给出整电势值。能动态显示检定炉(槽)内实际温度、温度变化率、控温曲线及恒温曲线的图形放大等功能。 设置有全套系统自检程序:可对数字多用表、主控箱、可控硅调压器、专用I/0接口卡等进行功能自检,检查上述部件是否工作正常,指出故障部件及原因,以利于装置的维护和故障判断与排除。设置有完整的使用、操作帮助程序,可随时进行查询及提供帮助。 装置设计独特:结构合理,制作工艺先进,质保体系完善,采用模块式结构,维护、更换、升级方便,关键部件均选用进口优质元器件,出厂前经严格的老化筛选和检验,确保产品质量。 数据存档功能:可以为用户进行数据后续处理及计量管理提供方便。如用户需要,本公司还可以向用户提供数据管理及处理方面的技术支持。 主要技术指标 检定温度范围 热电偶300℃~1100℃;热电阻0~300℃。 检定热电偶、热电阻种类 工作用热电偶:S、K、E、J、N、EA2、B、T、(U、L)型;

Pt100热电阻的三种接线方式

Pt100热电阻的三种接线方式 发布时间:10-08-05 来源:点击量:2596 字段选择:大中小

WZP-17□Y-□-L-□-□-(-50℃~120℃) WZP-27□Y-□-L-□-□-(-50℃~120℃) WZP-27□Y-□-L-□-□-(-50℃~120℃)-M12×1

分度号:Pt100、Pt1000 规格:φ6、φ5、φ4、φ3,管长L=30~300mm,引出线为三线制或四线制精度:B、A、1/3B~1/10B 温度范围:-100~120℃ 材料:不锈钢;接插件为螺纹锁紧航空插头,耐热温度120℃ WZP-27□Y-□-L/L1-□-□-(-50℃~500℃) 分度号:Pt100 规格:φ6、φ5,管长L=30~300mm,引出线为三线制或四线制 精度:B、A、1/3B~1/10B 温度范围:-100~500 材料:不锈钢;接插件为螺纹锁紧航空插头,耐热温度120℃

外加焊接护套型WZPT-27□Y-□-L-□□-(-50~120℃)-M12×1 分度号:Pt100 规格:φ6、φ5,管长L=30~300mm,引出线为三线制或四线制 精度:B、A、1/3B~1/10B 温度范围:-100~120℃ 材料:不锈钢;接插件为钢球锁紧航空插头,耐热温度120℃ 1、Pt100热电阻的三种接线方式在原理上的不同: 二线制和三线制是用电桥法测量,最后给出的是温度值与模拟量输出值的关系。四线没有电桥,完全只是用恒流源发送,电压计测量,最后给出测量电阻值。 2、Pt100热电阻的三种接线方式对测量精度的影响 连接导线的电阻和接触电阻会对Pt100铂电阻测温精度产生较大影响,铂电阻三线制或者四线制接线方式能有效消除这种影响。与热电阻连接的检测设备(温控仪、PLC输入等)都有四个接线端子:I+、I-、V+、V-。其中,I+、I-端是为了给热电阻提供恒定的电流,V+、V-是用来监测热电阻的电压变化,依次检测

热电阻接线接线方式分类(特制材料)

热电阻的引线接线方式主要有三种方式 ○1二线制热电阻:在热电阻的两端各连接一根导线来引出电阻信号的方式叫二线制:这种引线方法很简单,但由于连接导线必然存在引线电阻r,r大小与导线的材质和长度的因素有关,因此这种引线方式只适用于测量精度较低的场合 ○2三线制热电阻:在热电阻的根部的一端连接一根引线,另一端连接两根引线的方式称为三线制,这种方式通常与电桥配套使用,可以较好的消除引线电阻的影响,是工业过程控制中的最常用的。 ○3四线制热电阻:在热电阻的根部两端各连接两根导线的方式称为四线制,其中两根引线为热电阻提供恒定电流I,把R转换成电压信号U,再通过另两根引线把U引至二次仪表。可见这种引线方式可完全消除引线的电阻影响,主要用于高精度的温度检测 1.接线方式的不同,在检测原理上的区别: 二线和三线是用电桥法测量,最后给出的是温度值与模拟量输出值的关系。 四线没有电桥,完全只是用恒流源发送,电压计测量,最后给出测量电阻值。 2.为什么会产生不同的接线方式: 因为热电阻的阻值小,因此连接导线的电阻以及接触电阻会对其测温精度产生较大影响,所以引入三线制或者四线制就是要消除这些影响。 与热电阻连接的检测设备(温控表、PLC输入等)都有四个接线端子。I+、I-、V+、V-。 其中,I+、I-端是为了给热电阻提供恒定的电流,V+、V-是用来监测热电阻的电压变化,依次检测温度变化。 4线就是从热电阻两端引出4线,和4个端子连接。 3线就是引出3线,这需要检测设备方的I-\V-短接。 2线就使引出2线,这需要检测设备方的I-\V-、I+/V+短接。

3.不同的接线方式对精度的影响: 2线,电流回路和电压测量回路合二为1,精度差。(二线制的误差主要在电流回路在电缆中产生一定压降造成的测量误差) 3线,电流回路的参考位和电压测量回路的参考位为一条线。精度稍好。 4线,电路回路和电压测量回路独立分开,精度高,但费线。另外,A级精度的热电阻是不能用2线制连接的。 注释:RTD-电阻温度检测器 热电阻不带变送器,输出的是电阻信号; 带变送器,可输出4—20mA标准信号。 SIEMENS 温变产品有热电偶,热电阻变送器。 PLC模块中有专门的热电阻(RTD)和热电偶( TC)模块的。直接选用这样的模块就可以了,它接受热电阻(阻值)和热电偶(毫伏值)信号。 问 有那么8个PT100热电阻要进PLC柜,那么:
(1)可否用30X0.75平方的软线一根线布过来?还是每个热电阻用单独的线布进来??
(2)不需要屏蔽线吧?
(3)线缆长度20米的话,误差不会太太大吧?
(4)0.75的线径够了吧?
谢谢 答

热电偶的接线问题

热电偶的接线问题 来源:无线测温 https://www.doczj.com/doc/45630698.html, 在材料的热处理(加工)过程中,常需要对温度进行准确的测量,以便对整个过程进行平稳地控制。尤其是实验条件下,对所测量的温度的准确度要求很高。在这些领域温度的测量通常采用热电偶传感器来实现。热电偶本身具有经济、测量误差小等优点。由于热电偶在测量中产生的电信号是毫伏级的,若在热电偶与测量设备的导线连接点上处理不当就会产生错误的测量结果。尤其在现场处理温度测量值困难,需要将不同的测量点的信号集中引到中心测量站来分析时,或在热处理过程中,需对几个测温点同时并行监测或模拟分析时,需要在热电偶回路中通过接点引线,此时必须保证在测量点和测量设备之间的电路的所有材料特性一致且连接点无误差,才能避免电路产生的任何测量误差。 热电偶的测温范围可从-200℃∽1600℃,不同型号的热电偶的测温范围也不同。按组成热电偶的材料副的不同,可分为J、K、T型等型号,见表1。表1 常见的热电偶型号热电偶型号材料副温度范围(℃)热偶电压(mV) J Fe-CuNi -210∽1200 -8.1∽69.5 K Ni-CrNi -200∽1372 -5.9∽54.9 T Cu-CuNi -200∽400 -5.6∽20.9 R Pt-PtRh13 -50∽1768 -0.2∽21.1 B PtRh6-PtRh30 -60∽1820 -0.006∽13.8 S Pt-PtRh10% -50∽1768 -0.2∽18.7 热电偶是由二种不同材料的金属丝组成的(例如铜线和铜镍合金线)。它们的一端通过焊接或搭接成一点作为测温头,另一端彼此绝缘地连接到测量设备上。当热作用于测温头时,在这两种不同的材料之间就会产生一种可测量的热

热电偶测温原理及常见故障

热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 常用的热电偶材料有: 热电偶分度号热电极材料 正极负极 S 铂铑10 纯铂 R 铂铑13 纯铂 B 铂铑30 铂铑6 K 镍铬镍硅 T 纯铜铜镍 J 铁铜镍 N 镍铬硅镍硅 E 镍铬铜镍 2.热电偶的种类及结构形成

(1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。 在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。 热电偶冷端补偿原理 热电偶测量温度时要求其冷端(测量端为热端,通过引线与测量电路连接的端称为冷端)的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。若测量时,冷端的(环境)温度变化,将影响严重测量的准确性。在冷端采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿。 热电偶的冷端补偿通常采用在冷端串联一个由热电阻构成的电桥。电桥的三个桥臂为标准电阻,另外有一个桥臂由(铜)热电阻构成。当冷端温度变化(比如升高),热电偶产生的热电势也将变化(减小),而此时串联电桥中的热电阻阻值也将变化并使电桥两端的电压也发生变化(升高)。如果参数选择得好且接线正确,电桥产生的电压正好与热电势随温度变化而变化的量相等,整个热电偶测量回路的总输出电压(电势)正好真实反映了所测量的温度值。这就是热电偶的冷端补偿原理。

级配热电阻用温度仪表检定装置技术报告

(.级)配热电阻用温度仪表检定装置技术报告

————————————————————————————————作者:————————————————————————————————日期:

计量标准技术报告 计量标准名称(0.5级)配热电阻用温度仪表检定装置计量标准负责人肖军飞 建标单位名称(公章)大唐耒阳发电厂 填写日期2011.8.8

目录 一、建立计量标准的目的…………………………………………………… ( ) 二、计量标准的工作原理及其组成……………………………………( ) 三、计量标准器及主要配套设备…………………………………………( ) 四、计量标准的主要技术指标………………………………………() 五、环境条件……………………………………………………………( ) 六、计量标准的量值溯源和传递框图………………………………………( ) 七、计量标准的重复性试验…………………………………………………( ) 八、计量标准的稳定性考核……………………………………………………( ) 九、检定或校准结果的测量不确定度评定…………………………………( ) 十、检定或校准结果的验证…………………………………………………( ) 十一、结论……………………………………………………………………( ) 十二、附加说明…………………………………………………………………( )

一、建立计量标准的目的 保障生产过程中测点准确性和有效期,使各测量元件在规定的量程和事件内使用,保障人身和设备安全,保证量值的完整传递。 二、计量标准的工作原理及其组成 检定时标准仪器、设备和仪表按下图进行接线,采用寻找转换点法或输入被检点标称电量值法,按检定规程相关规定进行检定。

什么是热电阻两线三线或四线制的方式

由于热电阻本身的阻值较小,随温度变化而引起的电阻变化值更小,例如,铂电阻在零度时的阻值R0=100Ω,铜电阻在零度时R0=100Ω。因此,在传感器与测量仪器之间的引线过长会引起较大的测量误差。在实际应用时,通常采用所谓的两线、三线或四线制的方式,如图所示。 (a ) 电路原理 (b ) 二线制 (c ) 三线制 (d ) 四线制 图 热电阻的接入方式 在图(a )所示的电路中,电桥输出电压Vo 为 当R>>Rt 、Rr 时, 式中:Rt 为铂电阻, Rr 为可调电阻,R 为固定电阻,I 为恒流源输出电流值。 Vo

1.二线制 二线制的电路如图(b)所示。这是热电阻最简单的接入电路,也是最容易产生较大误差的电路。 是为保持电桥平衡的电位器。二线制的接入电图中的两个R是固定电阻。R r 路由于没有考虑引线电阻和接触电阻,有可能产生较大的误差。如果采用这种电路进行精密温度测量,整个电路必须在使用温度范围内校准。 2.三线制 三线制的电路如图(c)所示。这是热电阻最实用的接入电路,可得到较高的测量精度。 是为保持电桥平衡的电位器。三线制的接入电图中的两个R是固定电阻。R r 路由于考虑了引线电阻和接触电阻带来的影响。R l1、R l2和R l3分别是传感器和驱动电源的引线电阻,一般说来,R l1和R l2基本上相等,而R l3不引入误差。所以这种接线方式可取得较高的精度。 3.四线制 四线制的电路如图(d)所示。这是热电阻最高精度的接入电路。 图中R l1、R l2、R l3和R l4都是引线电阻和接触电阻。R l1和R l2在恒流源回路,不会引入误差。R l3和R l4则在高输入阻抗的仪器放大器的回路中,也不会带来误差。 上述三种热电阻传感器的引入电路的输出,都需要后接高输入阻抗、高共模抑制比的仪器放大器。 热电阻的应用原理 热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。 1.热电阻测温原理及材料 热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用甸、镍、锰和铑等材料制造热电阻。 2.热电阻的结构 (1)精通型热电阻工业常用热电阻感温元件(电阻体)的结构及特点见表 2-1-11。从热电阻的测温原理可知,被测温度的变化是直接通过热电阻阻值的变化来测量的,因此,热电阻体的引出线等各种导线电阻的变化会给温度测量带来影响。为消除引线电阻的影响同般采用三线制或四线制,有 (2)铠装热电阻铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,如图2-1-7所示,它的外径一般为φ2~φ8mm,最小可达φmm。与普通型热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击;③能弯曲,便于安装④使用寿命长。 (3)端面热电阻端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面,其结构如图2-1-8所示。它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。 (4)隔爆型热电阻隔爆型热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。隔爆型热电阻可用于Bla~B3c级区内具有爆炸危险场所的温度测量。

热电阻与热电偶的安装方法

热电偶与热电阻的安装方法 一、热电偶与热电阻的安装与检修实训 1、学会使用热电偶,热电阻进行温度测量; 2、掌握热电偶与热电阻的安装方法; 3、掌握热电偶,热电阻与二次仪表的连接方法. 二、热电偶与热电阻的选型 1、被测量对象的温度范围在200℃以下的选用热电阻. 2、被测量对象的温度范围在200℃以上的选用热电偶. 三、热电偶与热电阻的安装要求 对热电偶与热电阻的安装,应注意有利于测温准确,安全可靠及维修方便,而且不影响设备运行和生产操作.要满足以上要求,在选择对热电偶和热电阻 的安装部位和插入深度时要注意以下几点: 1、为了使热电偶和热电阻的测量端与被测介质之间有充分的热交换,应合理选择测点位置,尽量避免在阀门,弯头及管道和设备的死角附近装设热电偶或热电阻. 2、带有保护套管的热电偶和热电阻有传热和散热损失,为了减少测量误差,热电偶和热电阻应该有足够的插入深度: 2.1 对于测量管道中心流体温度的热电偶,一般都应将其测量端插入到管道中心处(垂直安装或倾斜安装).如被测流体的管道直径是200毫米,那热电偶或热电阻插入深度应选择100毫米; 2.2 对于高温高压和高速流体的温度测量(如主蒸汽温度),为了减小保护套对流体的阻力和防止保护套在流体作用下发生断裂,可采取保护管浅插方式 或采用热套式热电偶.浅插式的热电偶保护套管,其插入主蒸汽管道的深度应不小于75mm;热套式热电偶的标准插入深度为100mm; 2.3 假如需要测量是烟道内烟气的温度,尽管烟道直径为4m,热电偶或热 电阻插入深度1m即可. 2.4 当测量原件插入深度超过1m时,应尽可能垂直安装,或加装支撑架和保护套管.

热电阻及答案

计量检定员考核试题(热电阻) 单位姓名得分 一、填空(每题4′) 1.目前国际上采用的温标是温标,于起开始实行。2.工业铂、铜热电阻的检定规程号为,其检定周期最长不超过年。3.检定热电阻时,标准器选用温度计;检定铜热电阻时,也可采用 温度计。 4.检定热电阻时,应选用成套工作的级测温电桥;接触热电势小于μV 的四点转换开关。 5.检定热电阻时,选用的油恒温槽其工作区域的垂直温差不大于℃; 水平温差不大于℃; 6.检定工业铂、铜热电阻在100℃的电阻值时,水沸点槽或油恒温槽的温度T b偏离100℃之值应不大于℃,炉温变化10min不超过℃。 7.二线制热电阻的电阻值偏差的检定,应包括的电阻值;测量其电阻时,应在热电阻的每个接线柱接出二根导线,然后按进行接线测量。8.检定热电阻时,当α超差而在0℃、℃点的允许偏差均合格,应增加在热电阻的温度检定。 9.在热电阻温度计中,R0和R100分别表示和时的电阻值。10.分度号Pt10、 Pt100铂热电阻的R100/ R0 = ;分度号Cu50、 Cu100 铂热电阻的R100/ R0 = 。 二、选择题(每题3′) 1.水的三相点是℃。()A)-273.16 B)0.01 C)0 D)100 2.在相同的温度变化范围内,分度号Pt100铂热电阻比Pt10铂热电阻变化范围大,因而灵敏度较:()A)高 B)低 C)一样 3.一般的情况,铜热电阻的测温范围比铂热电阻的测温范围:()A)宽 B)窄 C)一样4.热电阻温度计是借金属丝的电阻随温度变化的原理工作的。下述有关与热电阻温

度计配套的金属丝的说法,不合适的是:()A)经常采用铂丝 B)也有利用铜丝 C)也有采用镍丝 C)也有采用锰铜丝 D)通常不采用金丝 5.温度越高,铂、镍、铜等材料的电阻值越() A)大 B)小 C)不变 三、简答题(45′) 1.为什么检定热电阻时,通过热电阻的电流应不大于1mA ? 2.简述铠装热电阻有什么的优点? 3.一支测温热电阻,分度号看不清,你如何用简单方法鉴别出热电阻分度号?

pt100热电阻接线

Pt100热电阻两线制、三线制和四线制接线对测温精度的影响 1、Pt100热电阻的三种接线方式在原理上的不同: 二线制和三线制是用电桥法测量,最后给出的是温度值与模拟量输出值的关系。四线没有电桥,完全只是用恒流源发送,电压计测量,最后给出测量电阻值。 2、Pt100热电阻的三种接线方式对测量精度的影响 连接导线的电阻和接触电阻会对Pt100铂电阻测温精度产生较大影响,铂电阻三线制或者四线制接线方式能有效消除这种影响。与热电阻连接的检测设备(温控仪、PLC输入等)都有四个接线端子:I+、I-、V+、V-。其中,I+、I-端是为了给热电阻提供恒定的电流,V+、V-是用来监测热电阻的电压变化,依次检测温度变化。请参阅下图: (1)四线制就是从热电阻两端引出4线,接线时电路回路和电压测量回路独立分开接线,测量精度高,需要导线多。(2)三线制就是引出三线,Pt100B铂电阻接线时电流回路的参端和电压测量回路的参考为一条线(即检测设备的I-端子和V-端子短接)。精度稍好。(3)两线制就使引出两线,Pt100B铂电阻接线时接线时电流回路和电压测量回路合二为一(即检测设备的I-端子和V-端子短接、I+端子和V+短接短接)。测量精度差。 模块中A、B两个端子是用来接收电压信号的,一般是毫伏级电压信号。C端是一个电流输出端子,工作时由采集模块输出一个恒定的电流信号。这样在热电阻C、B端会流过一个恒定的电流,当温度变化时,热电阻的阻值变化,这样,A、B端的电压信号就随着温度的变化而线性变化。达到测温的目的。

其实有两线制、三线制、四线制三种, 如上图中,A\B\C三点好比另个图中的3、2、1三点及另个图中的兰、绿、黄 这样子,简单的接线把蓝绿黄对应A、B、C或3、2、1接起来就OK了, 当然如果你的变送器只有两个接线端子,你只需要把蓝绿线接进去就行了。 两线制在测量精度不是很高的情况下使用 三线制应用较广泛 四线制用于精度高的场合。 热电阻温度测量原理及常用接线方式 热电阻(如Pt100)是利用其电阻值随温度的变化而变化这一原理制成的将温度量转换成电阻量的温度传感器。温度变送器通过给热电阻施加一已知激励电流测量其两端电压的方法得到电阻值(电压/ 电流),再将电阻值转换成温度值,从而实现温度测量。 热电阻和温度变送器之间有三种接线方式:二线制、三线制、四线制。 二线制 如图1。变送器通过导线L1、L2给热电阻施加激励电流I,测得电势V1、V2。 计算得Rt: 由于连接导线的电阻RL1、RL2无法测得而被计入到热电阻的电阻值中,使测量结果产生附加误差。如在100℃时Pt100热电阻的热电阻率为0.379Ω/℃,这时若导线的电阻值为2Ω,则会引起的测量误差为5.3 ℃。 三线制

相关主题
文本预览
相关文档 最新文档