当前位置:文档之家› π电子自洽场分子轨道理论及其应用

π电子自洽场分子轨道理论及其应用

π电子自洽场分子轨道理论及其应用
π电子自洽场分子轨道理论及其应用

分子轨道理论的基本要点

分子轨道理论的基本要点→分子轨道的概念 分子轨道的概念分子轨道理论的基本要点 在介绍分子轨道理论的基本要点之前,首先了解一下分子轨道的概念。 通过原子结构理论的学习,我们知道原子中的电子是处于原子核及其它电子所形成的势场中运动的,每个电子都具有一定的空间运动状态和能量。原子中存在着若干种空间运动状态ψ、ψ、ψ……,这些空间运动状态俗称原子轨道,即原子中存在1s、2s、2p……等原子轨道。分子轨道理论设想,在多原子分子中,组成分子的每个电子并不属于某个特定的原子,而是在整个分子的范围内运动。分子中的电子处于所有原子核和其它电子的作用之下,分子中电子的空间运动状态也可以用波函数来描述,这些波函数俗称分子轨道,即分子中电子的空间运动状态叫分子轨道(Molecular orbit),简称MO。 正如原子中存在对应能量的若干原子轨道一样,在分子中也存在对应一定能量的若干分子轨道。像原子结构那样遵循“能量最低原理”将分子中所有电子依次填入各分子轨道中,则可得到分子的电子构型,并由此说明分子的性质,这就是分子轨道理论的基本思路。现将其要点介绍如下。分子轨道理论的基本要点→分子轨道理论的基本要点★★ 分子轨道的概念分子轨道理论的基本要点 1.分子轨道是由原子轨道线性组合而成(linear combination of atomic orbital,简称LCAO),n个原子轨道组合成n个分子轨道。在组合形成的分子轨道中,比组合前原子轨道能量低的称为成键分子轨道,用ψ表示;能量高于组合前原子轨道的称为反键分子轨道,用ψ表示。 例如两个氢原子的1s原子轨道ψA与ψB线性组合,可产生两个分子轨道: ψ=C1(ΨA+ΨB)ψ=C2(ψA-ψB)(式中C1、C2为常数)

分子轨道理论

分子轨道理论 简介 一种化学键理论,是原子轨道理论对分子的自然推广。其基本观点是:物理上存在单个电子的自 身行为,只受分子中的原子核和其他电子平均场的作用,以及泡利不相容原理的制约;数学上则企图将难解的多电子运动方程简化为单电子方程处理。因此,分子轨道理论是一种以单电子近 似为基础的化学键理论。描写单电子行为的波函数称轨道(或轨函),所对应的单电子能量称能级。对于任何分子,如果求得了它的系列分子轨道和能级,就可以像讨论原子结构那样讨论分 子结构,并联系到分子性质的系统解释。有时,即便根据用粗糙的计算方案所得到的部分近似分子轨道和能级,也能分析出很有用处的定性结果。 理论 1. 原子在形成分子时,所有电子都有贡献,分子中的电子不再从属于某个原子,而是在整个分 子空间范围内运动。在分子中电子的空间运动状态可用相应的分子轨道波函数书(称为分子轨道)来描述。分子轨道和原子轨道的主要区别在于: ⑴在原子中,电子的运动只受1个原子核的作用,原子轨道是单核系统;而在分子中,电子则在所有原子核势场作用下运动,分子轨道是多核系统。 分子轨道理论⑵原子轨道的名称用s、p、d…符号表示,而分 子轨道的名称则相应地用c、n、A…符号表示。 2. 分子轨道可以由分子中原子轨道波函数的线性组合(linearcombinationofatomicorbitals , LCAO而得到。有几个原子轨道就可以可组合成几个分子轨道,其中有一部分分子轨道分别由对称性匹配的两个原子轨道叠加而成,两核间电子的概率密度增大,其能量较原来的原子轨道能量低,有利于成键,称为成键分子轨道(bondingmolecularorbital),女口c、n轨道(轴对称轨

分子轨道理论的发展及其应用

分子轨道理论的发展及其应用 北京师范大学段天宇学号201111151097 摘要:分子轨道理论是目前发展最成熟,应用最广泛的化学键理论之一。本文简述了分子轨道理论的基本思想及发展历程,列举了其在配位化学、矿物学、气体吸附领域的应用实例,并对其前景作出展望。 0 前言 化学键是化学学科领域中最为重要的概念之一。通常,化学键被定义为存在于分子或晶体中或两个或多个原子间的,导致形成相对稳定的分子或晶体的强相互作用。从二十世纪初期至今,科学家们为了解释化学键现象相继提出了价键理论、分子轨道理论、配位场理论等化学键理论。其中分子轨道理论(Molecular Orbital Theory)具有容易计算、计算结果得到实验支持的优势,并不断得到完善与拓展,因而自二十世纪五十年代以来,已经逐渐确立了其主导地位[1]。目前,作为相对最为成熟的化学键理论,分子轨道理论的应用已经涵盖了化学研究的几乎全部领域中。 1 分子轨道理论发展 1926至1932年,Mulliken和Hund分别对分子中的电子状态进行分类,得出选择分子中电子量子数的规律,提出了分子轨道理论[2]-[3]。分子轨道理论认为,电子是在整个分子中运动,而不是定域化的。他们还提出了能级相关图和成键、反键轨道等重要概念。 1929年,Lennard-Jones提出原子轨道线性组合(Linear Combination of Atomic Orbitals)的理论[4]。后来,原子轨道线性组合的思想被应用于分子轨道理论中,成为分子轨道理论的基本原理。这一原理指出,原子轨道波函数通过线性组合,即各乘以某一系数相加得到分子轨道波函数。这种组合要遵循三个基本原则,即:组合成分子轨道的原子轨道必须对称性匹配;组成分子轨道的原子轨道须能级相近;原子轨道达到最大程度重叠以降低组成分子轨道的能量。其中,最重要的是对称性匹配原则,对称性相同的原子轨道组合成能量低于自身的成键分子轨道,对称性相反的原子轨道组合成高于自身的反键分子轨道。 1931-1933年,Huckel提出了一种计算简便的分子轨道理论(HMO)[5],是分子轨道理论的重大进展。HMO理论的基本思想是,把两电子间的相互作用近似地当做单电子的平均位场模型处理,导出单电子运动方程: Hψ=Eψ 其中H是该电子的Hamilton算符,ψ是该电子所占据的分子轨道波函数,E为轨道能量。同时,ψ是由原子轨道φk线性组合得到,即 ψ=c1φ 1 +c2φ 2 +?+c kφ k 代入运动方程,利用变分法得到久期方程式 H ij?ES ij=0 其中H和S分别为Hamilton算符和重叠积分的矩阵元,求解久期方程式即可求得分子轨道能量E。这种方法计算简便,发表之处即得到运用,尤其是对于共轭分子性质的讨论取得巨大成功,后来发展成为分子轨道理论的重要分支。 HMO理论虽然简单有效,但只能进行定性讨论,而不能进行严格的定量计算。这个问题的解决,得益于1951年,Roothaan在的Hartree-Fock方程[6]-[7] h fψ k =E kψ k (h f为Hartree-Fock算符)的基础上,将分子 轨道ψ k 写成原子轨道线性组合的形式,得到 Hartree-Fock-Roothaan方程(HFR方程)[8] h f C k=E k C k 而1950年,Boys提出利用Gauss函数研究原子

分子轨道理论汇总

第三节分子轨道理论(MOT) 一、概述 要点: A、配体原子轨道通过线性组合,构筑与中心原子轨道对称性匹配的配体群轨道。 B、中心原子轨道与配体群轨道组成分子轨道。 C、电子按照能量由低到高的顺序,依次排在分子轨道中。 形成LCAO-MO的三原则: 二、ABn型分子构筑分子轨道的方法

1、步骤 1)列出中心原子A及配位原子B中参与形成分子轨道的原子轨道; 2)将B原子轨道按等价轨道集合分类(由对称操作可彼此交换的轨道称为等价轨道); 3)将每一等价轨道集合作为表示的基,给出表示;再将其分解为不可约表示; 4)用每一组等价轨道集合构筑出对应于上一步所求出的不可约表示的配体群轨道;

5)将对称性相同的配体群轨道与中心原子轨道组合得分子轨道。 三、金属与配体间σ分子轨道(d轨道能级分裂) 1)A原子用ns、np、(n-1)d 9个轨道,每个B原子用3个p(p x、p y、p z)轨道,共27个轨道形成分子轨道。 * 坐标系选择及配体编号

x y z 1 2 3 5 4 6 p x p y p z A 、中心原子取右手坐标系,配体取左手坐标系; B 、每个B 原子上三个p 轨道各用一个向量表示,方向指向波函数正值方向; C 、规定p z 向量指向中心原子,则p x 、p y 向量应存在于垂直于p z 向量的平

面内; D、规定第一个B原子的p x向量与y 轴平行(* 方向相同),则该B原子的p y向量应与z轴平行(* 方向相同); E、其余(6-1)个B原子的p x和p y 向量的方向由O h群对称性决定。 2)O h群将B原子的18个轨道分为如下等价轨道的集合: I、6个p z轨道(可用于形成σ分子轨道) II、12个p x或p y轨道(可用于形成π分子轨道)

分子轨道理论

分子轨道理论 通过原子的壳层结构和玻尔的氢原子理论可以很好的从微观角度认识化学规律,并能用电子因素和空间因素阐明化学物质的结构、性能和应用。原子的成键理论就是基于此而建立的,有助于了解物质的基本物理和化学性质。下面对分子轨道理论做一简要介绍。 由两个原子轨道形成的分子轨道,能级低于原子轨道的称为成键轨道;而能级高于原子轨道的称为反成键轨道。当两个符号相同的s轨道相互靠拢,正重叠可形成σ成键轨道;负 重叠时,则形成σ反键轨道。两个符号相同的p轨道肩并肩排列时,相互靠拢正重叠可形成π成键轨道;负重叠时,则形成π反键轨道。在形成分子的过程中,其他原子靠近某原 子时,该原子能级发生重新排列组合,以有利于形成稳定的分子,这一过程叫轨道杂化。如sp杂化是由一个s轨道与一个p轨道组合而成的两个sp杂化轨道。 不同原子有不同的电子结构,它们利用不同的原子轨道进行组合。例如,分子 原子的1s轨道能级低至-64.87eV,无法与氢原子的1s轨道(-13.6eV)成键,因此1σ基本还是原子的1s内层电子,的2s轨道与H的1s轨道能量相近,对称性匹配,可有效形 成σ键。两个原子间还可形成。 有机化合物的分子大部分是由其所含原子的s和p轨道的价电子结合而成。下图简单表示 图(H的成键和反成键轨道)为两个氢原子以s价电子结合,并以σ键组成氢分子,分子 轨道应有σ成键轨道和σ反键轨道。在基态时两个电子占据σ成键轨道,吸收能量后跃迁至激发态σ反键轨道。图(b),表示碳—碳的成键轨道和反键轨道。 下图为乙烯分子的成键轨道示意图。在该分子中每个C原子用sp轨道和其它三个原子相连,C原子和H原子结合成两个sp—s的σ键,C原子间由sp—sp结合成另一个

结构化学论文---分子轨道理论

结构论文 分子轨道理论的发展及其应用 2011111510xxxx 一、前言 价建理论、分子轨道理论和配位场理论是三种重要的化学键理论。三、四十年代,价键理论占主要的地位。五十年代以来由于分子轨道理论容易计算且得到实验(光电能谱)的支持,取得了巨大的发展,逐渐占优势。价建理论不但在理论化学上有重要的意义(下文中将详细介绍)。在应用领域也有重要的发展,如分子轨道理论计算有机化合物的吸收光谱用于染料化学;前线分子轨道理论在选矿中的研究等等。 二、简介 1、分子轨道理论产生和发展 在分子轨道理论出现以前,价键理论着眼于成键原子间最外层轨道中未成对的电子在形成化学键时的贡献,能成功地解释了共价分子的空间构型,因而得到了广泛的应用。但如能考虑成键原子的内层电子在成键时贡献,显然更符合成键的实际情况。1932年,美国化学家 Mulliken RS和德国化学家HundF 提出了一种新的共价键理论——分子轨道理论(molecular orbital theory),即MO法。该理论注意了分子的整体性,因此较好地说明了多原子分子的结构。目前,该理论在现代共价键理论中占有很重要的地位。 以下是各个年代提出的关于分子轨道理论的一些重要理论和方法,是分子轨道理论发展过程中的几个里程碑! 1926-1932年,在讨论分子光谱时,Mulliken和Hund提出了分子轨道理论。 认为:电子是在整个分子轨道中运动,不是定域化的。他们还提出能级图、成键、反键轨道等重要的概念。 1931-1933年,Hukel提出了一种简单的分子轨道理论,用于讨论共轭分子 的性质,相当成功。 1950年,Boys用Guass函数研究原子轨道,解决了多中心积分问题,是今 天广为利用的自洽场分子轨道理论的基础,在量子化学的研究中占有重要地位。 1951年,Roothaan在Hartree-Fock方程的基础上,把分子轨道写成原子轨 道的线性组合,得到Roothaan方程。 1952年,福井谦一提出前线分子轨道理论,用以讨论分子的化学活性和分子 间相互作用等,可以解释许多实验结果。 1965年,Woodward和Hoffman提出分子轨道对称守恒原理,发展成讨论基 元反应发生可能性的重要规则。用于指导某些复杂化合物分子的合成。 2、分子轨道理论的含义和一些重要分子轨道的构成方法 1)分子轨道理论的含义

分子轨道理论

分子轨道理论 量子力学处理氢分子共价键的方法,推广到比较复杂分子的另一种理论是分子轨道理论,其主要内容如下: 分子中电子的运动状态,即分子轨道,用波函数ψ表示。分子轨道理论中目前最广泛应用的是原子轨道线性组合法。这种方法假定分子轨道也有不同能层,每一轨道也只能容纳两个自旋相反的电子,电子也是首先占据能量最低的轨道,按能量的增高,依次排上去。按照分子轨道理论,原子轨道的数目与形成的分子轨道数目是相等的,例如两个原子轨道组成两个分子轨道,其中一个分子轨道是由两个原子轨道的波函数相加组成,另一个分子轨道是由两个原子轨道的波函数相减组成: ψ1=φ1+φ2ψ2=φ1-φ2 ψ 1与ψ 2 分别表示两个分子轨道的波函数,φ 1 与φ 2 分别表示两个原子轨 道的波函数。 在分子轨道ψ 1 中,两个原子轨道的波函数的符号相同,亦即波相相同,它们之间的作用犹如波峰与波峰相遇相互加强一样,见图1-17: 在分子轨道ψ 2 中,两个原子轨道的波函数符号不同,亦即波相不同,它们之间的作用犹如波峰与波谷相遇相互减弱一样,波峰与波谷相遇处出现节点(见图1-18)。

两个分子轨道波函数的平方,即为分子轨道电子云密度分布,如图1-19所示。 ,在核间的电子云密度很大,这种轨道从图1-19可以看出,分子轨道ψ 1 ,在核间的电子云密度很小,这种轨道称为反键轨称为成键轨道。分子轨道ψ 1 道。成键轨道和反键轨道的电子云密度分布亦可用等密度线表示,如图1-20所示。 图1-20为截面图,沿键轴旋转一周,即得立体图。图中数字是ψ2数值,由外往里,数字逐渐增大,电子云密度亦逐渐增大。反键轨道在中间有一节面,节面两侧波函数符号相反,在节面上电子云密度为零。 成键轨道与反键轨道对于键轴均呈圆柱形对称,因此它们所形成的键是σ键,成键轨道用σ表示,反键轨道用σ*表示。例如氢分子是由

(完整word版)分子轨道理论

第三节分子轨道理论(MOT ) 、概述 要点: A、配体原子轨道通过线性组合,构 筑与中心原子轨道对称性匹配的体群轨道。 B、中心原子轨道与配体群轨道组成 分子轨道。 C、电子按照能量由低到高的顺序, 依次排在分子轨道中。 形成LCAO-MO 的三原则: 、ABn 型分子构筑分子轨道的方法

1、步骤 1)列出中心原子A 及配位原子B 中参与形成分子轨道的原子轨道; 2)将B 原子轨道按等价轨道集合分类(由对称操作可彼此交换的轨道称为等价轨道); 3)将每一等价轨道集合作为表示的基,给出表示;再将其分解为不可约表示; 4)用每一组等价轨道集合构筑出对应于上一步所求出的不可约表示的配体群轨道;

5)将对称性相同的 配体群轨道 与中 心原子轨道组合得分子轨道。 道能级分裂) 1)A 原子用 ns 、 每个 B 原子用 3 个 p (p x 、p y 、p z ) 轨道, 共 27 个轨道形成分子轨道。 * 坐标系选择及配体编号 、金属与配体间 σ 道( d 轨 np 、(n-1)d 9 个轨道,

5z 左手坐标系; B、每个B 原子上三个p 轨道各用 个向量表示,方向指向波函数正值方向; C、规定p z 向量指向中心原子,则 p x、p y 向量应存在于垂直于p z 向量的

面内; D、规定第一个B 原子的p x 向量与y 轴平行(* 方向相同),则该B 原子 的p y 向量应与z 轴平行(* 同); E、其余(6-1)个B 原子的p x 和p y 向量的方向由O h 群对称性决定。 2)O h 群将B 原子的18 个轨道分为如下等价轨道的集合: I 、 6 个p z 轨道(可用于形成σ 分子轨道) II 、12 个p x 或p y 轨道(可用于形成π 分子轨道)

分子轨道理论

分子轨道理论 同核双原子分子 如您所知,电子在原子中存在于不同能级(例如1s,2s,3d等)的轨道中。这些轨道表示在原子周围任何地方找到电子的概率分布。分子轨道理论提出了这样一个概念,即分子中的电子同样存在于不同的轨道中,这使人们有可能在分子周围的特定点找到电子。为了产生分子的轨道集,我们将分子中键合原子的价原子波函数加在一起。这并不像听起来那样复杂。让我们考虑同核双原子分子中分子式A 2的键合。 也许我们能想到的最简单的分子是氢H 2。正如我们已经讨论过的,要产生氢 每个氢的分子轨道,我们将价原子波函数加在一起以产生氢的分子轨道。H 2 中的 原子仅具有1s轨道,因此我们将两个1s波函数相加。正如您在原子结构研究中所了解的那样,原子波函数可以具有正或负相位-这意味着波函数y的值可以为正或为负。有两种添加波函数的方法:同相(正负两个)或异相(正负另一个)。展示了如何将原子波函数加在一起以产生分子轨道。 图%:两个1s轨道结合形成键和反键MO 同相重叠组合(中的顶部轨道)在两个原子核之间产生电子密度的累积,从而导致该轨道的能量较低。占据s H-H轨道的电子代表H 2的Lewis结构的电子键对,并适当地称为键分子轨道。产生的另一个分子轨道s * HH显示原子核之间的电子密度降低,在存在节点平面的原子核之间的中点达到零值。由于s * HH轨道显示出两个原子核之间键合的减少,这被称为反键分子轨道。由于原子核之间

电子密度的降低,抗键合轨道的能量高于键合轨道和氢1s轨道。在分子H 2 ,没有电子占据反键轨道。 中 总结这些关于键,反键和原子轨道的相对能量的发现,我们可以构建一个轨道相关图,如下所示: 图%:氢的轨道相关图 请注意,分离的原子的轨道写在图的两侧,是水平线,其高度表示它们的相对能量。每个原子轨道上的电子用箭头表示。在图的中间,写下了感兴趣分子的分子轨道。虚线将母原子轨道与子分子轨道连接起来。通常,键合分子轨道的能量低于其母原子轨道中的任何一个。同样,反键轨道的能量高于其母原子轨道中的任何一个。因为我们必须遵守能量守恒定律,所以键合轨道的稳定量必须等于反键合轨道的失稳量,如上所述。 您可能想知道路易斯结构和氢分子的分子轨道处理是否彼此一致。实际上,他们做到了。H 2的路易斯结构为HH,预测每个氢原子之间有一个单键,该键中有两个电子。轨道相关图可以预测相同的事物-两个电子填充一个键合分子轨道。为了进一步证明路易斯理论与MO理论的一致性,我们将对键序的定义(分子中原子之间键的数量)进行形式化。键序是占据反键和键分子轨道的电子对的数量之差。因为氢有一个电子对分子轨道理论认为,H 2在其键合轨道上没有键合,而在反键合轨道上没有键合,因此,H 2的键序为一,这与从路易斯结构得到的结果相同。 为了说明为什么在我们的键序计算中考虑反键电子的数量很重要,让我们考虑制造He 2分子的可能性。He 2的轨道相关图提供于:

有机化学理论课 第十八章 分子轨道理论简介

第十八章分子轨道理论简介 一、教学目的和要求 (1)了解分子轨道理论的原理。 (1)了解周环反应的一般规律。 (2)了解分子轨道对称守恒原理在有机合成中的作用。 二、教学重点与难点 分子轨道理论的原理,周环反应的理论。 三、教学方法和教学学时 1、教学方法:以课堂讲授为主,结合必要的课堂讨论。教学手段以板书和多媒体相结合。 2、教学学时:2学时 四、教学内容 第一节电环化反应 第二节环加成反应 第三节σ迁移反应 第四节周环反应的理论 一、电环化反应机理 二、环加成反应机理 三、σ键迁移反应机理 五、课后作业、思考题 习题:1、2、4、6、11。 §18-1 周环反应的理论 一、周环反应 前面各章讨论的有机化学反应从机理上看主要有两种,一种是离子型反应,另一种是自由基型反应,它们都生成稳定的或不稳定的中间体。还有另一种机理,在反应中不形成离子或自由基中间体,而是由电子重新组织经过四或六中心环的过渡态而进行的。这类反应表明化学键的断裂和生成是同时发生的,它们都对过渡态作出贡献。这种一步完成的多中心反应称为周环反应。 周环反应:反应中无中间体生成,而是通过形成过渡态一步完成的多中心反应。 反应物——→产物

周环反应的特征: (1) 多中心的一步反应,反应进行时键的断裂和生成是同时进行的(协同反 应)。 例如: (2) 反应进行的动力是加热或光照。不受溶剂极性影响,不被酸碱所催化,不受任何引发剂的引发。 (3) 反应有突出的立体选择性,生成空间定向产物。 例如: 二、周环反应的理论 (一) 轨道和成键 周环反应的过程,广泛的应用轨道来描述,这些轨道往往是用图形来表示。有机化学中涉及最多的原子轨道为1p 轨道和2s 轨道。 原子轨道线形组合成分子轨道。当两个等价原子轨道组合时,总是形成两个新的分子轨道,一个是能量比原子轨道低的成键轨道,另一个是能量比原子轨道高的反键轨道。 (二)分子轨道对称守恒原理 原子轨道组合成分子轨道时,遵守轨道对称守恒原理。即当两个原子轨道的对称性相同(位相相同)的则给出成键轨道,两个原子轨道的对称性不同(位相不同)的则给出反键轨道。 CHO + CHO R h υ R = -COOCH 3 成键轨道 原子轨道 X 1 2

分子轨道理论

分子轨道 分子轨道理论(MO理论)是处理双原子分子及多原子分子结构的一种有效的近似方法,是化学键理论的重要内容。它与价键理论不同,后者着重于用原子轨道的重组杂化成键来理解化学,而前者则注重于分子轨道的认知,即认为分子中的电子围绕整个分子运动。1932年,美国化学家Mulliken RS和德国化学家Hund F 提出了一种新的共价键理论——分子轨道理论(molecular orbital theory),即MO法。该理论注意了分子的整体性,因此较好地说明了多原子分子的结构。目前,该理论在现代共价键理论中占有很重 简介 理论要点 氢分子离子的分子轨道 分子轨道的能量 编辑本段简介 一种化学键理论,是原子轨道理论对分子的自然推广。其基本观点是:物理上存在单个电子的自身行为,只受分子中的原子核和其他电子平均场的作用,以及泡利不相容原理的制约;数学上则企图将难解的多电子运动方程简化为单电子方程处理。因此,分子轨道理论是一种以单电子近似为基础的化学键理论。描写单电子行为的波函数称轨道(或轨函),所对应的单电子能量称能级。对于任何分子,如果求得了它的系列分子轨道和能级,就可以像讨论原子结构那样讨论分子结构,并联系到分子性质的系统解释。有时,即便根据用粗糙的计算方案所得到的部分近似分子轨道和能级,也能分析出很有用处的定性结果。 编辑本段理论要点 1.原子在形成分子时,所有电子都有贡献,分子中的电子不再从属于某个原子,而是在整个分子空间范围内运动。在分子中电子的空间运动状态可用相应的分子轨道波函数ψ(称为分子轨道)来描述。分子轨道和原子轨道的主要区别在于:(1)在原子中,电子的运动只受1个原子核的作用,原子轨道是单核系统;而在分子中,电子则在所有原子核势场作用下运动,分子轨道是多核系统。(2)原 分子轨道理论 子轨道的名称用s、p、d…符号表示,而分子轨道的名称则相应地用ζ、π、δ…符号表示。 2.分子轨道可以由分子中原子轨道波函数的线性组合(linear combination of atomic orbitals,LCAO)而得到。几个原子轨道可组合成几个分子轨道,其中有一半分子轨道分别由正负符号相同的两个原子轨道叠加而成,两核间电子的概率密度增大,其能量较原来的原子轨道能量低,有利于成键,称为成键分子轨道(bonding molecular orbital),如ζ、π轨道

分子轨道理论的发展及其应用

分子轨道理论的发展及其应用 一、前言: 分子轨道理论(MO理论)是处理双原子分子及多原子分子结构的一种有效的近似方法,是化学键理论的重要内容。它与价键理论不同,后者着重于用原子轨道的重组杂化成键来理解化学,而前者则注重于分子轨道的认知,即认为分子中的电子围绕整个分子运动。该理论注意了分子的整体性,因此较好地说明了多原子分子的结构。目前,该理论在现代共价键理论中占有很重要的地位。分子轨道理论描写单电子行为的波函数称轨道(或轨函),所对应的单电子能量称能级。对于任何分子,如果求得了它的系列分子轨道和能级,就可以像讨论原子结构那样讨论分子结构,并联系到分子性质的系统解释。有时,即便根据用粗糙的计算方案所得到的部分近似分子轨道和能级,也能分析出很有用处的定性结果。 二、分子轨道理论产生,分子轨道的含义,常用的构成分子轨道的方法: 1、分子轨道理论产生: 1926一1932年,在讨论分子(特别是双原子分子)光谱时,Mulliken和Hund分别对分子中的电子状态进行分类,得出选择分子中电子量子数的规律,提出了分子轨道理论.分子轨道理论认为,电子是在整个分子中运动,而不是定域化的.他们还提出能级相关图和成键、反键轨道等重要概念.1931一1933年,Huckel提出了一种简单的分子轨道理论(HMO),用以讨论共扼分子的性质,相当成功,是分子轨道理论的重大进展。 1951年,Roohtaan在Hartree一Fock方程的基础上,把分子轨道写成原子轨道的线性组合,得到TRoothaan方程,1950年Boys用Gauss函数研究原子轨道,解决了多中心积分的问题.从Hartree一Fock一Roohtaan方程出发,应用Gauss函数,是今天广为应用的自洽场分子轨道理论的基础,在量子化学的研究中占有重要地位。 1952年,福井谦一提出了前线轨道理论,用以讨论分子的化学活性和分子间的相互作用等,可以解释许多实验结果.1965年,Woodward和Hoffmann提出了分子轨道对称守恒原理,发展成为讨论基元化学反应可能性的重要规则,已成功地用于指导某些复杂有机化合物的合成.上述各个年代提出的基本理论和方法,是分子轨道理论发展过程中的几个里程碑。 2、分子轨道的含义: 分子中的电子能级称为分子轨道。分子轨道可以通过相应的原子轨道线性组合而成。有几个原子轨道相组合,就形成几个分子轨道。在组合产生的分子轨道中,能量低于原子轨道的称为成键轨道;高于原子轨道的称为反键轨道;无对应的(能量相近,对称性匹配)的原子轨道直接生成的称为非键轨道。 原子A及B相互作用,即可形成分子A-B中的两个分子轨道,其中一个分子轨道能量比原来的轨道要低,叫分子的成键轨道;而另一个则比原来要高,叫反键轨道。例如,两个H原子相互作用形成H2分子时,其分子轨道能级上的电子排列情况可用线性组合图来表示,其上反键轨道是空着的。 3、构成分子轨道的方法: [轨迹原则]原子轨道在组成分子轨道时候,必须满足下面三条原则才能有效的组成分子轨道: (1)对称性匹配原则:两个原子轨道的对称性匹配的时候它们才能够组成分子

量子化学

量子化学是理论化学的一个分支学科,是应用量子力学的基本原理和方法,研究化学问题的一门基础科学。 1927年海特勒和伦敦用量子力学基本原理讨论氢分子结构问题,说明了两个氢原子能够结合成一个稳定的氢分子的原因,并且利用相当近似的计算方法,算出其结合能。由此,使人们认识到可以用量子力学原理讨论分子结构问题,从而逐渐形成了量子化学这一分支学科。 量子化学的发展历史可分两个阶段:第一个阶段是1927年到20世纪50年代末,为创建时期。其主要标志是三种化学键理论的建立和发展,分子间相互作用的量子化学研究。在三种化学键理论中,价键理论是由鲍林在海特勒和伦敦的氢分子结构工作的基础上发展而成,其图象与经典原子价理论接近,为化学家所普遍接受。 分子轨道理论是在1928年由马利肯等首先提出,1931年休克尔提出的简单分子轨道理论,对早期处理共轭分子体系起重要作用。分子轨道理论计算较简便,又得到光电子能谱实验的支持,使它在化学键理论中占主导地位。 配位场理论由贝特等在1929年提出,最先用于讨论过渡金属离子在晶体场中的能级分裂,后来又与分子轨道理论结合,发展成为现代的配位场理论。 第二个阶段是20世纪60年代以后。主要标志是量子化学计算方法的研究,其中严格计算的从头算方法、半经验计算的全略微分重叠和间略微分重叠等方法的出现,扩大了量子化学的应用范围,提高了计算精度。 1928~1930年,许莱拉斯计算氦原子,1933年詹姆斯和库利奇计算氢分子,得到了接近实验值的结果。70年代又对它们进行更精确的计算,得到了与实验值几乎完全相同的结果。计算量子化学的发展,使定量的计算扩大到原子数较多的分子,并加速了量子化学向其他学科的渗透。 量子化学的研究范围包括稳定和不稳定分子的结构、性能,及其结构与性能之间的关系;分子与分子之间的相互作用;分子与分子之间的相互碰撞和相互反应等问题。 量子化学可分基础研究和应用研究两大类,基础研究主要是寻求量子化学中的自身规律,建立量子化学的多体方法和计算方法等,多体方法包括化学键理论、密度矩阵理论和传播子理论,以及多级微扰理论、群论和图论在量子化学中的应用等。应用研究是利用量子化学方法处理化学问题,用量子化学的结果解释化学现象。 量子化学的研究结果在其他化学分支学科的直接应用,导致了量子化学对这些学科的渗透,并建立了一些边缘学科,主要有量子有机化学、量子无机化学、量子生物和药物化学、表面吸附和催化中的量子理论、分子间相互作用的量子化学理论和分子反应动力学的量子理论等。 三种化学键理论建立较早,至今仍在不断发展、丰富和提高,它与结构化学和合成化学的发展紧密相联、互相促进。合成化学的研究提供了新型化合物的类型,丰富了化学键理论的内容;同时,化学键理论也指导和预言一些可能的新化合物的合成;结构化学的测定则是理论和实验联系的桥梁。

分子轨道理论

我们把原子通过共用电子对结合的化学键成为共价键(covalent bond)。路易斯(G.N.Lewis)曾经提出原子共用电子对成键的概念,也就是俗称的“八隅律”(高中阶段也只是停留于此) 然而,我们知道很多现实情况都无法用八隅率解释,包括:PCl5,SCl6分子。更重要的是,八隅率从来没有本质上说明共价键的成因:为什么带负电荷的两个分子不会排斥反而是互相配对? 随着近代的量子力学(quantum mechanics)的建立,近代形成了两种现代共价键理论,即是:现代价键理(valence bond theory)简称VB(又叫作电子配对法)以及分子轨道理论(molecular orbital theory)简称MO。价键理论强调了电子对键和成键电子的离域,有了明确的键的概念。也成功的给出了一些键的性质以及分子结构的直观图像。但是在解释H2+氢分子离子的单电子键的存在以及氧分子等有顺磁性或者大Π键的某些分子结构时感到困难。而分子轨道理论可以完美的进行解释,这里我就主要阐述MO法的相关理论。 洪特(Hund)和密里肯(R.S Mulliken)等人提出了新的化学键理论,即是分子轨道理论。这是人们利用量子力学处理氢分子离子而发展起来的。 (一)氢分子离子的成键理论氢分子离子(H2+)是由两个核以及一个电子组成的最简单分子,虽然不稳定,但是确实存在。如何从理论上说明氢分子离子的形成呢?分子轨道理论把氢分子离子作为一个整体处理,认为电子是在两个氢核a和b组成的势场当中运动。电子运动的轨道既不局限在氢核a的周围,也不会局限于氢核b 的周围,而是遍及氢核a和b。这种遍及分子所有核的周围的电子轨道,成为“分子轨道”。 如何形成这样的分子轨道呢?我们必须通过波函数来描述原子当中的运动状态,而波函数是薛定谔方程的解。因为得到精确的薛定谔方程的解很困难,因此我们才取了近似方法,假设分子轨道是各个原子轨道的组成。仍然以氢分子离子为例:当这个单电子出现了一个氢原子核a附近时候,分子轨道Ψ很近似于一个院子轨道Ψa。同样,这个电子出现在另外一个氢原子b附近时候,分子轨道Ψ也很像原子轨道Ψb。不过这个只是两种极端情况,合理的应该是两种极端情况的组合即是Ψa与Ψb的组合。分子轨道理论假定了分子轨道是所属原子轨道的线性组合(linear combination of atomic orbital,简称LCAO),即是相加相减而得得。例如氢分子离子当中就有: ΨI=Ψa+Ψb ΨII=Ψa-Ψb 其中Ψa和Ψb分别是氢原子a以及氢原子b的1s原子轨道。它们的相加相减分别可以得到ΨI以及ΨII。相加可以看出处在相同相位的两个电子波组合时候波峰叠加,这样可以使得波增强。如果两个波函数相减,等于加上一个负的波函

分子轨道理论

理论要点 1.原子在形成分子时,所有电子都有贡献,分子中的电子不再从属于某个原子,而是在整个分子空间范围内运动。在分子中电子的空间运动状态可用相应的分子轨道波函数ψ(称为分子轨道)来描述。分子轨道和原子轨道的主要区别在于:(1)在原子中,电子的运动只受 1个原子核的作用,原子轨道是单核系统;而在分子中,电子则在所有原子核势场作用下运动,分子轨道是多核系统。(2)原 分子轨道理论 子轨道的名称用s、p、d…符号表示,而分子轨道的名称则相应地用σ、π、δ…符号表示。 2.分子轨道可以由分子中原子轨道波函数的线性组合(linear combination of atomic orbitals,LCAO)而得到。几个原子轨道可组合成几个分子轨道,其中有一半分子轨道分别由正负符号相同的两个原子轨道叠加而成,两核间电子的概率密度增大,其能量较原来的原子轨道能量低,有利于成键,称为成键分子轨道(bonding molecular orbital),如σ、π轨道(轴对称轨道);另一半分子轨道分别由正负符号不同的两个原子轨道叠加而成,两核间电子的概率密度很小,其能量较原来的原子轨道能量高,不利于成键,称为反键分子轨道(antibonding molecular orbital),如σ*、π* 轨道(镜面对称轨道,反键轨道的符号上常加“*”以与成键轨道区别)。若组合得到的分子轨道的能量跟组合前的原子轨道能量没有明显差别,所得的分子轨道叫做非键分子轨道。 3.原子轨道线性组合的原则(分子轨道是由原子轨道线性组合而得的): (1)对称性匹配原则 只有对称性匹配的原子轨道才能组合成分子轨道,这称为对称性匹配原则。 原子轨道有s、p、d等各种类型,从它们的角度分布函数的几何图形可以看出,它们对于某些点、线、面等有着不同的空间对称性。对称性是否匹配,可根据两个原子轨道的角度分布图中波瓣的正、负号对于键轴(设为x轴)或对于含键轴的某一平面的对称性决定。

分子轨道理论及基态与激发态(可编辑修改word版)

分子轨道理论及基态与激发态 分子轨道理论基本概念 一、分子轨道:(molecular orbital) 描述分子中电子运动的波函数,指具有特定能量的某电 子在相互键合的两个或多个原子核附近空间出现的概率最大的区域。 分子轨道由原子轨道线性组合而成。 二、成键三原则: 能量相近、最大重叠、对称性匹配。 只有对称性相同的两个原子轨道才能组成分子轨道。 σ对称:一个原子轨道,取X 轴作为对称轴,旋转180°,轨道符号不变。 如S,Px,d x2-y2为σ对称。 π对称:一个原子轨道,取X 轴作为对称轴,旋转180°,轨道符号改变。 Py,Pz,d xy是π对称。 由σ对称的原子轨道组成的键——σ键 由π对称的原子轨道组成的键——π键 三、成键轨道与反键轨道 分子轨道与原子轨道的联系: 轨道守恒——2 个原子轨道线性组合,产生 2 个分子轨道; 能量守恒——2 个分子轨道的总能量等于2 个原子轨道的总能量; 能量变化——每个分子轨道的能量不同于原子轨道的能量 组合结果—定会出现能量高低不同的两个分子轨道。——这是原子轨道线性组合的方式不同所致。 波函数同号的原子轨道相重叠,原子核间的电子云密度增大,形成的分子轨道的能量比各 原子轨道能量都低,成为成键分子轨道。 波函数异号的原子轨道相重叠,原子核间的电子云密度减小,形成的分子轨道的能量比各 原子轨道能量都高,成为反键分子轨道。 四、电子填入分子轨道时服从以下原则: 1、能量最低原理:电子在原子或分子中将优先占据能量最低的轨道。 2、保利不相容原理:在同一原子或分子中、同一轨道上只能有两个电子,且自旋方向必须相反。 3、洪特规则:在能量相同的轨道中(简并轨道),电子将以自旋平行的方式、分占尽可能多的轨道 基态与激发态 当分子中的所有电子都遵从构造原理的这三个原则时,分子所处的最低能量状态——基态。通常情况下,分子处于基态。 激发态:当分子获取能量后,分子中的电子排布不完全遵从构造原理,分子处于能量较高的状态——激发态,是原子或分子吸收一定的能量后,电子被激发到较高能级但尚未电离的状态。激发态一般是指电子激发态,气体受热时分子平动能增加,液体和固体受热时分子振动能增加,但没有电子被激发,这些状态都不是激发

第一章有机化合物结构理论

第一章有机化合物的结构理论 研究有机化合物,首先要研究其电子结构和成键作用,研究有机物中多原子间主要的共价键结合,对其描述可用价键理论和分子轨道理论。 一.Lewis结构模型 1.几个基本概念 Lewis结构是有机化学中常用的,最简单的成键模型。它基于以下的概念:离子键的成键能力来自相反电荷的静电引力,共价键的结合力,则来自原子间电子对的共享。Lewis结构的起点是原子和共价电子。用元素符号表示原子实(atomic core)——核和内层电子。原子实所带的正电荷数目等于价电子数,此正电荷称为原子实电荷。第三周期以后的元素的d电子包括在其原子实内。 价层占有度:与每个原子紧相邻的总电子数为起其价层占有度(Valence Shell Occupancy),它等于该原子外层未共享电子总数及该原子各键上成键电子总数之和,如H的VSO≤2,第二周期原子VSO≤8,第三周期原子VSO≤10,12. 形式电荷(Formal Charge) FC = 原子实电荷 - 电子主权数(Electron Ownership) EO = 未共享电子数 + 成键电子数/2 如:HO 中,H的FC = 1–1 = 0 ,O的FC = 6–7 = -1 在一个结构式中,形式电荷的代数和必等于该结构的总电荷。2.Lewis结构的书写程序: (1)计算出各原子所能贡献的价电子总数,若处理对象是正负离子,则分别加减相应的数值。 (2)写出各原子实符号,并填入由上步计算所得的电子数。填入时应符合多原子的价层占有度。 (3)在不违反上述步骤的原则下,尽量使结构式中的价键数目最多,未共享电子数最少。 (4)计算出每一原子的形式电荷,并标明其电荷分布情况。其中,分子为电中性者最稳定,相反电荷靠近者较稳定,相同电荷距离越远越稳定。 如:NO2 (1)价电子数= 5 + 6 * 2 = 17 (2) O N O ....=.-...... (3)形式电荷:O(左)= 6 - 6=0, O(右)= 6 - 7= -1, N = 5 – 4 = +1 因此,NO2的Lewis结构为 O N O ....=.-...... +- 3.分子结构的几何形状 写出正确的Lewis结构式后,可按电子对互斥原理,大致描述分子的几何形状。将每对未共享电子及每个键(不论是单键还是双键)都算作一个组: 电子组数为2,几何形状呈直线形

分子轨道理论

分子轨道理论 2011级弘毅学堂化学班 2011301040014 田健吾 分子轨道理论(又称MO法)是建立在量子力学理论体系基础之上的理论,以薛定谔波动方程为基础。通过对原子轨道的线性组合(LCAO,linear combination of atomic orbitals)来确定其组合而成的分子轨道的形状以及能量高低。 分子轨道理论与现有的其他几种理论的比较 现有的常用分析分子构型与能量的理论有路易斯结构理论,VESPER theory,VB法,杂化轨道理论与MO法。此外还有建立于VB法上的共振理论,这些理论在各自适用范围内对分子进行处理各有其优点:路易斯结构理论最为简单,仅需考虑最外层电子数为8(氢为2)来调整共用电子对数即可,但是局限性也相对较大,仅能粗略分析共用电子对情况,不能预测与解释分子构型与能量;VESPER理论也是较为简单的理论,但是在处理很多的分子中都取得了非常好的结果,如对甲烷、六氟化硫等分子的构型,都能很成功的预测与解释,使用起来十分方便。缺点也比较明显:过于强调价层电子的排斥效应而忽略了其内层电子以

及轨道之间相互作用对构型的影响,特别是涉及到过渡金属配合物的John-Taller效应的时候,就完全无法解释,由于没有考虑到具体中心离子与配体轨道的作用,这是可想而知的结果;经典VB法基于自旋反平行的两电子波函数符号一致,通过组合使得体系能量降低而形成稳定分子。有单电子原子轨道与另一原子上填充单电子的原子轨道相结合形成共价键或带成对电子的轨道与另一原子中的空轨道重叠形成配位键两种。经典VB法也是较为朴素的理论之一,因此局限性也是较大的,只能得出与参与成键的AO形状及伸展方向相同的分子构型,对于甲烷等分子的构型就完全不能解释,此时则需要引入杂化轨道理论,杂化轨道理论总体思想是通过两个或多个原子轨道的组合变形,使得达到成键轨道重叠最大的目的,从而使得体系能量达到较低的值。但是Pauling对于杂化轨道理论的解释特别是对电子的激发与轨道杂化的能量来源的解释比较牵强,用薛定谔波动方程来理解其杂化过程可能可以用原子接近时对其各自波动方程的势能项有影响,从而改变了其原子轨道的形状来解释,但是如此也并不能解释电子的激发是如何进行的,除此之外,是否势能项的变化真的总是朝着使得轨道变形后趋向于与其他原子轨道重叠更充分的方向进行,这还是一个很大的问题。并且杂化轨道理论过于强调参与杂化的几个轨道对成键的影响,而忽略了其他轨道之间的相互作用,这必然会导致一些误差。 此外,由于未从整个分子的层面来考虑问题,上述理论也认

结构化学期中考试2012(附答案)

结构化学基础期中考试 班级:学号:姓名:分数: 一、判断正误(20分) 1. ( √ )所谓定态是指电子的几率密度分布不随时间改变的状态. 2. ( × )类氢离子体系中, n不同l相同的所有轨道的角度分布函数都是相同的. 3. ( × )电子云图中黑点越密之处表示那里的电子越多 4. (√ ) 氢原子中原子轨道的能量由主量子数n 来决定 5. (× ) d区元素外层电子构型是ns1~2 6. ( × )类氢离子体系的实波函数与复波函数有一一对应的关系. 7. (√ )氢原子基态在r=a0的单位厚度的球壳内电子出现的几率最大. 8. (× )处理多电子原子时, 中心力场模型完全忽略了电子间的相互作用. 9. (√ )可以用洪特规则确定谱项的能量顺序. 10. (× )波函数 是几率密度. 11. (√ )当原子中电子从高能级跃迁到低能级时,两能级间的能量相差越大,则辐 射出的电磁波的波长越短。 12. (√ )波函数ψ是描述微观粒子运动的数学函数式 13. (√ ) 微观粒子的特性主要是波、粒二象性 14. (√ ) 2p 有三个轨道,最多可以容纳6 个电子 15. (× ) n =1 时,l 可取0 和1 16. ( × )主量子数n=3 时,有3s,3p,3d,3f 等四种原子轨道 17. (√ ) 一组n,l,m 组合确定一个波函数 18. ( √ ) 一组n,l,m,ms组合可表述核外电子一种运动状态 20. (√ )电负性越大的元素的原子越容易获得电子

二、选择正确答案(15分) 1. [ C ] 立方势箱的能量2 2 43ml h E =,粒子的状态数是 (A) 1 (B) 2 (C) 3 (D) 6 2. [ C ] 立方箱中E <15h ma 2 28的能量范围内有多少个能级 (A) 3 (B) 5 (C) 6 (D) 8 3. [ D ] 若考虑电子的自旋, 类氢离子n=3的简并度为 (A) 3 (B) 6 (C) 9 (D) 18 4. [ D ] 某原子的电子组态为1s 22s 22p 63s 14d 5, 则其基态谱项为 (A) 5S (B) 7S (C) 5D (D) 7D 5. [ C ] 下面那种分子π电子离域能最大 (A) 已三烯 (B) 正已烷 (C) 苯 (D) 环戊烯负离子 6. [ D ] He 原子的基态波函数是哪一个 (A) )2()1()2()1(s 1s 1ββψψ (B) )2()1()2()1(s 1s 1ααψψ (C) )]2()1()2()1()[2()1(s 1s 1αββαψψ+ (D) )]2()1()2()1()[2()1(s 1s 1αββαψψ- 7. [ D ] 量子力学的一个轨道 (A) 与玻尔理论中的原子轨道等同 (B) 指n 具有一定数值时的一个波函数 (C) 指n 、l 具有一定数值时的一个波函数 (D) 指n 、l 、m 三个量子数具有一定数值时的一个波函数。 8. [ D ] 在多电子原子中,各电子具有下列量子数,其中能量最高的电子是 (A) 2,1,-1,1/2. (B) 2,0,0,-1/2 (C) 3,1,1,-1/2 (D) 3,2,-1,1/2 9. [ D ]首先提出能量量子化假定的科学家是 (A) Einstein (B) Bohr (C) Schrodinger (D) Planck 10. [ B ]微粒在间隔为1eV 的二能级之间跃迁所产生的光谱线的波数应为 (A) 4032cm -1 (B) 8066cm -1 (C) 16130cm -1 (D) 2016cm -1 (1eV=1.602×10-19J)

相关主题
文本预览
相关文档 最新文档