当前位置:文档之家› 地震作用下结构相应自学报告

地震作用下结构相应自学报告

地震作用下结构相应自学报告
地震作用下结构相应自学报告

地震作用下结构相应自学报告运动方程

反应量

反应时程

反应谱

位移,伪速度与伪加速度反应谱

联合反应谱

反应谱应用-确定结构峰值反应

反应谱与设计反应谱

1.运动方程

图1 地面运动时结构响应示意

如图单自由度结构,在地面运动时质点处于动平衡状态,根据达朗贝尔原理,质点动平衡方程可以表示为:

f I+f D+f S=0(1-1)

其中,f I为惯性力,f D为阻尼力,f S为结构给质点的弹性回复力。

在平衡关系的三项中,惯性力取决于质点的绝对加速度,而弹性回复力和阻尼力则分别取决于结构变形和变形速度,即相对变形和相对速度。因此,式(1-1)可表达为:

mu t+cu+ku=0(1-2)

其中,上标t的量为绝对坐标系下的量,无上标的量为地面参考系下的量。对于加速度而言,由于地面参考系与绝对加速度没有相对转动,因此有

u t=u+u g(1-3)

其中u g为地面运动的加速度。将式(1-3)代入(1-2)并进行整理,得到一般单自由度线弹性结构在地震激励下的运动方程:

u+2ζωn u+ωn2u=?u g(1-4)

2.反应量

对于工程结构在地震中的响应,我们一般关心结构在地震中的内力和变形,而对于一些振动敏感的仪器设备,还会关注该处的绝对加速度。对于给定结构,结构内力和变形取决于相对位移,同时相对速度对结构的阻尼力也起到了绝对作用。因此地震中我们应关注结构的相对量u,u和u以及绝对量u t,u t和u t。

3.反应时程

反应时程是指在一次地震中某个结构的特定物理量随时间变化的情况。在单自由度体系中,由结构的质量、刚度性质和地震动的具体输入,可以通过动力学方法计算出位移随时间的变化规律。另一方面,为了简化计算过程并且不失真实的表达结构的振动情况,使用等效静力法来计算结构的内力,这里引入了伪加速度A的概念,其量纲与加速度u相同,数值上为ωn2u,作用在质点上以为静外力对结构内力进行计算。

A=ωn2u(3-1)

4.反应谱

对于一给定地震动,我们在考察结构在该地震动下的响应时,最关心结构的最大响应,包括最大位移、最大速度和最大加速度,此时结构的最大响应只与结构的固有周期和结构的阻尼比有关。将同一阻尼比的不同周期的结构在该地震动作用下的最大位移、速度和加速度分别画在图表中,即得到该地震动的位移、速度和加速度的反应谱。反应谱的横轴为结构的固有周期,纵轴为地震动引起的结构的最大响应,即最大位移、最大速度或最大加速度,对于一特定阻尼比,一个地震动对应一组反应谱,因此,反应谱反映的是地震动的固有特性。图2直观的表现出了反应谱的含义。

图2 反应谱的直观含义

5.位移,伪速度和伪加速度反应谱

5.1位移反应谱

应用动力学方法,对于一给定的地震动,通过式(1-4)可以解出(或数值

的解出)某个结构的整个时间段的位移,而通常对于结构设计而言最关心的是结构的最大位移。将同一阻尼不同周期的单自由度结构在该地震动的作用下解出,并分别求出其各自的最大位移,在最大位移-周期图中形成一条曲线,则该曲线

则为这一地震动在该阻尼条件下的反应谱。完整的位移反应谱还应包含多个阻尼,在图中表现为多条曲线。这样在考察结构在地震下的响应时可以非常直观方便的找到结构位移的最大值。

5.2伪速度反应谱

定义峰值相对伪速度(或叫做峰值伪速度)V如下式(5-1)

V=ωn D=2π

T n

D(5-1)

该物理量V与速度具有相同的量纲,同时又能够简单的表征出体系中的应变能E So如下式(5-2)

E So=ku o2

2=kD2

2

=k(Vωn)2

2

=mV2

2

(5-2)

对于已经通过计算得到位移反应谱的地震动而言,通过式(5-1)可以立即计算出结构的伪加速度反应谱。在实际设计中,由于伪速度反应谱更加直接的反映结构应变能的情况,所以可能使用更加方便,也较真实速度反应谱更加重要。同时在一般情况下,伪速度反应谱的值小于速度真实速度反应谱,所以针对某些速度敏感设备基础的设计上,还需要对其加以区别。

5.3伪加速度反应谱

定义峰值伪加速度A如式(5-3)所示,对于已经计算出速度反应谱的地震动而言,利用该式即可直接计算出伪加速度反应谱。

V=ωn2D(5-3)

根据式(3-1),伪加速度相对于加速度能够更加直接的用等效静力法来计算结构的峰值内力。与伪速度反应谱不同的是,伪加速度与真实加速度谱的曲线更加接近,在阻尼为0时两者没有差别,但随着阻尼加大,两者的差别逐渐加大。

6.联合反应谱

对于位移反应谱、伪速度反应谱和伪加速度反应谱,当计算得到其中一个后,根据结构的固有周期等条件可以计算出其他反应谱,因此三个反应谱之间是有大量重复信息的。在如图3所示坐标系下,可以用一条曲线表达位移、伪速度和伪加速度反应谱,曲线上一点分别向四个坐标轴作垂线,即可得到该点所表示的周期和它所对应的峰值反应。

图3 D-V-A联合反应谱

7.反应谱应用—确定结构峰值反应

对于已经确定反应谱的地震动,我们可以通过简单的查图的方法确定某一周期单自由度结构体系的峰值反应,从而采用静力学的方法即可找到地震中结构的最大反应,包括最大变形、最大内力等。使用反应谱进行结构峰值反应的计算,可以有效避免大量的动力计算,使结构动力问题转化为静力问题。

8.反应谱与设计反应谱

在结构设计中,采用某一次地震的反应谱是明显不恰当的,同时真实地震反应谱往往是非常复杂的,记录的大量的非共性的地震动信息,在使用上也造成的不便。因此,我们希望能够建立一套便于进行抗震设计的反应谱,它由一系列直

线或光滑曲线组成,同时又能够表征一般地震的共性的信息,即保障结构抗震设计的安全性,同时又使得该反应谱在计算上具有可行性。

首先收集大量的某一地区的地震动,在一特定阻尼下,将这一组地震动的特性表现在D-V-A联合反应谱中,分别求这一组曲线的均值和变异系数。将均值曲线和均值加一倍标准差两条曲线画出后,发现该曲线基本分为三段,分别垂直于A轴、V轴和D轴,用三个轴的垂线进行近似,再乘以相应的放大系数,即可得到联合坐标系下的D-V-A联合设计反应谱,最后根据需要再将曲线从联合坐标轴中提取出来,分别制成位移、伪速度、伪加速度设计反应谱。

设计反应谱的作用是对结构进行抗震设计,需要代表未来可能发生地震的普遍性,而相对的某一地震的反应谱,设计反应谱已经有了很大差别。但从设计谱的绘制方法和目的来看,应理解这种差异。

水平地震作用计算

上海市工程建设规范《建筑抗震设计规程》(DGJ08-9-2013)强制性条文 3 抗震设计的基本要求 3.1.1 抗震设防的所有建筑应按现行国家标准《建筑工程抗震设防分类标准》GB 50223 确定其抗震设防类别及其抗震设防标准。 3.3.1选择建筑场地时,应根据工程需要和地震活动情况、工程地质和地震地质的有关资料,对抗震有利、一般、不利和危险地段做出综合评价。对不利地段,应提出避开要求,当无法避开时应采取有效的措施。对危险地段,严禁建造甲、乙类的建筑,不应建造丙类的建筑。 3.4.1建筑设计应根据抗震概念设计的要求明确建筑形体的规则性。不规则的建筑应按规定采取加强措施;特别不规则的建筑应进行专门研究和论证,采取特别的加强措施;严重不规则的建筑不应采用。 注:形体指建筑平面形状和立面、竖向剖面的变化。 3.5.2结构体系应符合下列各项要求: 1应具有明确的计算简图和合理的地震作用传递途径。 2应避免因部分结构或构件破坏而导致整个结构丧失抗震能力或对重力荷载的承载能力。 3应具备必要的抗震承载力,良好的变形能力和消耗地震能量的能力。 4对可能出现的薄弱部位,应采取措施提高其抗震能力。 3.7.1 非结构构件,包括建筑非结构构件和建筑附属机电设备,自身及其与结构主体的连接,应进行抗震设计。 3.7.4框架结构的围护墙和隔墙,应估计其设置对结构抗震的不利影响,避免不合理设置而导致主体结构的破坏。 3.9.1抗震结构对材料和施工质量的特别要求,应在设计文件上注明。 3.9.2 结构材料性能指标,应符合下列要求: 1 砌体结构材料应符合下列规定: 1)普通砖和多孔砖的强度等级不应低于MU10,其砌筑砂浆强度等级不应低于 M5; 2)混凝土小型空心砌块的强度等级不应低于MU7.5,其砌筑砂浆强度等级不应 低于Mb7.5。 2混凝土结构的材料应符合下列规定: 1) 混凝土的强度等级,框支梁、框支柱及抗震等级为一级的框架梁、柱、节点核 芯区,不应低于C30;构造柱、芯柱、圈梁及其它各类构件不应低于C20; 2) 抗震等级为一级、二级、三级的框架和斜撑构件(含梯段),其纵向受力钢筋采 用普通钢筋时,钢筋的抗拉强度实测值与屈服强度实测值的比值不应小于 1.25;钢筋的屈服强度实测值与屈服强度标准值的比值不应大于1.3,且钢筋 在最大拉力下的总伸长率实测值不应小于9%。 3钢结构的钢材应符合下列规定: 1) 钢材的屈服强度实测值与抗拉强度实测值的比值不应大于0.85; 2) 钢材应有明显的屈服台阶,且伸长率不应小于20%; 3) 钢材应有良好的焊接性和合格的冲击韧性。

5平地震作用下框架结构的位移和内力计算

第五章 横向地震作用下框架结构的位移和内力 5.1横向框架自振周期的计算 结构自震周期采用经验公式: 552.08.159.22035.022.0035.022.03 1=?+=?+=B H T s 5.2水平地震作用及楼层地震剪力的计算. 本办公楼楼的高度不超过40m ,质量和刚度沿高度分布比较均匀,变形以剪切变形为主,故可采用底部剪力法计算用。 结构等效总重力荷载为: kN 39485) 8259482825066(85.085.0eq =+?+?==∑i G G 兰州市,抗震设防烈度8度,设计基本地震加速度0.10g ,多遇地震下 08.0max =α。设计地震分组第一组,二类场地,场地特征周期为0.35s 053 .008 .01)55 .0035( )( 9 .0max 2g 1=??==αηαγT T 结构总水平地震作用标准值: kN 213839485 053.0eq 1Ek =?==G F α 因为:s 53.01=T >s 49.035.04.14.1g =?=T ,所以应考虑顶部附加水平地震作用。又因为:s 35.0g =T ≤0.35s ,故顶部附加地震作用系数为: 1142.007 .055.008.007.008.016=+?=+=T δ 顶部附加水平地震作用为: kN 24221381142.0Ek 66=?==?F F δ 各质点横向水平地震作用按下式计算:

()6Ek 6 1 1δ-= ∑=F H G H G F j j j i i i (=i 1,2, (6) 地震作用下各楼层水平地震层间剪力为: ∑==n i j j i F V (i =1,2, (6) 各质点的横向水平地震作用及楼层地震剪力计算见表12。 表5—1 楼层地震剪力计算表 图5-1水平地震作用分布图 图5-2楼层地震剪力剪力分布图

地下结构地震破坏形式与抗震分析方法综述

地下结构地震破坏形式与抗震分析方法综述 摘要:随着人口的在激增以及经济的发展,人们的需求也开始狂飙式的增长。然而,城市的空间有限,地面空间已经被充分利用,人们的视线开始转为地下,地下结构的开发缓解了城市的地面压力。然而,由于地下结构的抗震技术的发展还并不成熟,在地震后,往往会造成地下结构的损坏甚至直接丧失继续工作的能力,给人们的财产安全带来威胁,影响人们的正常生活。因此在此文中对地下结构的震害形式以及近年来地下结构抗震分析的研究成果进行展示。以加深对地下结构震害的了解,并引起人们对地下结构抗震减震的重视。 关键词:地下结构抗震,震害形式,抗震分析,抗震减震 0 引言 地震是自然界自然界一种常见的自然灾害,地球上每年约发生500多万次地震,即每天要发生上万次地震。其中绝大多数太小或太远以至于人们感觉不到。真正能对人类造成严重危害的地震大约有一二十次,能造成特别严重灾害的地震大约有一两次。然而,这种地震不仅仅会给损害人们的财产安全,更有甚者会威胁到生命安全。 以往的抗震研究主要集中在地上建筑。认为地下结构受到的外界环境较少,各方向约束较多,刚度较大,且高度较小,加之过去地下结构的建设规模相对较少,地下结构受地震作用引起的结构的严重破坏的相关资料也较少,因此地下结构的工程抗震研究及设计长期未得到足够的重视。 1923年日本关东大地震(M8.2),震区内116座铁路隧道,有82座受到破坏;1952 年美国加州克恩郡地震(M7.6),造成南太平洋铁路的四座隧道损坏严重;1976年唐山地震(M7.8),唐山市给水系统完全瘫痪,秦京输油管道发生五处破坏;1978年日本伊豆尾岛地震(M7.0)震后出现了横贯隧道的断裂,隧道衬砌出现了一系列的破坏;特别是1995年日本阪神大地震(M7.2)中,神户市及阪神地区几座城市的供水系统和污水排放系统受到严重破坏,其中神户市供系统完全破坏,并基本丧失功能。神户市部分地铁车站和区间隧道受到不同程度的破坏,其中大开站最为严重,一半以上的中柱完全倒塌,导致顶板坍塌和上覆土层大量沉降,最大沉降量达2.5m。 地震对地下结构造成大规模破坏的同时,地震对地下结构的安全性构成的威胁也开始引起了人们的重视,地下结构工程抗震从业者在震后获取了大量的地震动作用在地下结构上产生的动力特性及影响结构动 力响应的影响因素等宝贵资料,对地下结构工程抗震减震领域的发展具有极大的推动作用。 近年来,关于地下结构的工程抗震分析方法的文献大量涌现。学者从不同角度对地下结构抗震进行阐述,并且有不少理论转化为工程技术,在工程实践中得到了论证。笔者试图综合前人的研究成果,在本文中简要介绍地下结构在地震作用下的破坏形式以及地下结构抗震分析方法,以便加深对地下结构工程抗震的了解,也可增加人们对地下结构工程抗震的重视程度。 1 地下结构震害 由于所处环境、约束情况等的差异,地下结构的破坏形式与结构破坏的影响因素与地上结构有很多不同之处。 1.1 地下结构震害形式 以下以日本阪神地震为主要对象,结合其他地震造成的震害,总结了地铁车站、地下管道、地下隧道的主要震害形式。

地震反应谱分析实例

结构地震反应谱分析实例 在多位朋友的大力帮助下,经过半个多月的努力,鄙人终于对结构地震反应谱分析有了一定的了解,现将其求解步骤整理出来,以便各位参阅,同时,尚有一些问题,欢迎各位讨论! 为叙述方便,举一简单实例: 在侧水压与顶部集中力作用下的柱子的地震反应谱分析,谱值为加速度反应谱,考虑X与Y向地震效应作用。已知地震影响系数a与周期T的关系: a(T)= 0.4853*(0.4444+2.2222*T) 0

!进行模态求解 ANTYPE,MODAL MODOPT,LANB,30 SOLVE FINISH !进行谱分析 /SOLU ANTYPE,SPECTR SPOPT,SPRS,30,YES SVTYP,2 !加速度反应谱 SED,1,1 !X与Y向 FREQ,0.2500,0.2632,0.2778,0.2941,0.3125,0.3333,0.3571,0.3846,0.4167 FREQ,0.4545,0.5000,0.5556,0.6250,0.7143,0.8333,1.1111,2.0000,10.0000 FREQ,25.0000,1000.0000 SV,0.05,0.0797,0.0861,0.0934,0.1018,0.1114,0.1228,0.1362,0.1522,0.1716 SV,0.05,0.1955,0.2255,0.2642,0.3152,0.3851,0.4853,0.4853,0.4853,0.4853 SV,0.05,0.2588,0.2167 SOLVE FINISH !进行模态求解(模态扩展) /SOLU ANTYPE,MODAL EXPASS,ON MXPAND,30,,,YES,0.005 SOLVE FINISH !进行谱分析(合并模态) /SOLU ANTYPE,SPECTR SRSS,0.15,disp SOLVE FINISH /POST1 SET,LIST !结果1 /INP,,mcom

【结构设计】地震作用与结构周期联系分析

地震作用与结构周期联系分析 从地震影响系数与结构周期的关系及底部剪力法来看,结构周期越长,在结构产生的地震作用就越小;但从振型分解法可只取前面数个振型来计算地震作用及振型是按结构周期从大到小排列来看,似乎给人的感觉又是结构周期越长,在结构产生的地震作用就越大.你如何看待? 重申一下反应谱意义,反应谱是具有不同动力特性的结构对一个地震动过程的动力最大反应的结果,反应谱曲线不反映具体的结构特性,只反映地震动特性(地震动过程不同成分频率含量的相对关系),是地震动特性与结构动力反应的“桥梁”. 由地震加速度反应谱可计算单自由度体系水平地震作用:F=mSa(T),然而实际地震动无法预知,可谓千奇百怪,为了便于设计规范给出了加速度设计反应谱,该谱为地震系数(地震烈度与地面地震动加速度关系)与动力放大系数(结构最大加速度与地面最大加速度之比,正规化的反应谱)的乘积值,在特定的结构阻尼比下,依据场地、震中距将地震动分类,计算动力放大系数取平均后平滑处理即得设计反应谱. 底部剪力法是简化算法,针对地震反应可用第一振型(呈线性倒三角形)表征的结构,即地震影响系数与振型参与系数(其中的水平相对位移可用质点高度代替)假定只有一个,可对应于振型分解反应谱法中的第一振型.当两结构的基本周期不一致时,在“总质量一致”的条件下,周期大者地震影响系

数有减小的趋势(不一定减小,取决于基本周期大小),总水平地震剪力有减少的趋势,而各层处的水平地震作用不一定减小,除非结构满足“层高一致、质量分布一致”的条件.综上,底部剪力法是一种近似计算方法,两结构在总质量一致的条件下,周期大者总地震作用近似有减小的趋势(不一定减小,取决于基本周期范围),严格来讲未必,实际上规范的0.85与层质量、层高有关系. 相对于底部剪力法,振型分解反应谱法计算地震反应精度较高,将多自由度体系解耦为广义单自由度体系,实质上是按结构的振型将地震作用进行分解,求解分解地震作用下单位质量的反应,然后再依据振型规则将反应叠加为结构总反应.每一振型对应于一个振型周期,由于低振型>高振型,前振型周期所对应的地震影响系数(反应谱值)有减小的趋势,但每一振型下的各层的地震作用还与振型参与系数(反映了本振型在单位质量地震作用中所占的分量)、各层对应的振型向量值(取决于结构质量与刚度的分布)并不是所有层均是第一振型下值大)及本层质量有关.结构的总地震反应(注意是所有质点地震反应的代数和)以低阶振型反应为主,高阶振型反应对结构总地震反应的贡献较小,这一点毋庸置疑,振型各层地震作用具有方向性,总地震反应代数相加,低阶振型与0线交点要少于高阶振型,即同一结构下低阶总地震反应要大于高阶,即使反应谱值小,而各层地震作用则不一定,取决于质量与刚度的分布.

大型地下结构三维地震响应特点研究

第43卷第3期2003年5月 大连理工大学学报 Jour nal of Dalian University of Technology Vol .43,No .3May 2003 文章编号:1000-8608(2003)03-0344-05 收稿日期:2002-04-01; 修回日期:2003-03-25. 基金项目:国家自然科学基金资助项目(50209002);辽宁省自然科学基金资助项目(20022130). 作者简介:陈健云*(1968-),男,副教授;林 皋(1929-),男,教授,博士生导师,中国科学院院士. 大型地下结构三维地震响应特点研究 陈健云*, 胡志强, 林 皋 (大连理工大学土木水利学院,辽宁大连 116024) 摘要:采用阻尼影响抽取法分析了地下结构无限围岩介质的动刚度特性,建立了岩石地下 结构抗震分析的实用相互作用分析时域模型,比较研究了地下结构-围岩动力相互作用分析中地震动输入机制、无限围岩动刚度及结构特性等各种主要因素对地下结构地震响应的影响程度.指出几种常用地下结构地震响应近似分析方法只在一定条件下适用,无限介质的阻尼特性对结构响应起着重要的作用. 关键词:地下洞室;地震反应分析;动刚度;优化;阻尼影响抽取法中图分类号:T U 35;TU 9;TV3 文献标识码:A 0 引 言 随着国民经济的发展,地下空间得到了越来越广泛的使用.然而近几年世界范围内发生了一 系列大地震,造成了巨大的灾难,不少地下结构遭受破坏.由于与围岩的相互作用,地下结构的动力特性十分复杂,其响应特点与地面结构有明显的差别.研究表明[1] ,对地下结构采用施加惯性力的地震响应分析,即使采用几倍于结构尺寸的地基离散模型,施加不同的边界条件对地震位移响应的影响可达10倍,应力差别达5~6倍. 目前各种实际地下结构的动力响应分析仍以各种近似方法为主.包括各种拟静力方法,如位 移响应法[2、3] ,地基影响参数通常根据简化假定采 用经验参数.动力近似分析通常将结构简化为二维问题处理[4],对于地下管线等结构形式具有一定的适用性.对于处于比较复杂地质、地形条件下的地下结构,或者形式较复杂的大型地下空间结构,要合理地反映地下结构的地震响应,则必须进行三维动力响应分析. 当前常用的地下结构三维地震分析方法,主要有在模型外边界施加各种人工透射边界解决能量向无限远处辐射[5]的波动分析方法;以地下结构为主体,围岩的作用通过相互作用力来求解的相互作用分析方法[6] ,通常采用有限元、边界元、 解析法或半解析法等耦合求解;以及在外边界施 加粘性阻尼器的惯性力方法.前两种方法属于较精确的数值方法,后一种方法则为近似方法. 由于围岩介质对结构的动力影响在时间与空 间都是耦合的,较精确的地下结构地震响应分析具有一定难度,时域求解复杂且求解代价很大. 本文采用相互作用分析方法,结合溪洛渡超 大型地下洞室群的地震响应分析,研究动力相互 作用运动方程中各主要因素对地下结构地震响应的影响程度,为地下结构的简化分析提供依据. 1 地下结构地震响应的相互作用分 析方法 地下结构的相互作用分析主要采用各种耦合 方法,如有限元与边界元的耦合分析.本文则采 用阻尼影响抽取法得到地基刚度与有限元进行耦合分析. 1.1 阻尼影响抽取法的基本概念 [7] 将无限地基截取有限区域,其刚度阵为S t (X )=K -X 2 M (1) 式中:K 和M 分别为有限域的刚度阵与质量阵. 引入量纲一的频率a 0=X ?r 0/c s 及刚度阵K 与质量阵M ,则式(1)可表达为  S t (X )=Gr s -2 0(K -a 20M )=Gr s -2 0S (a 0) (2)

地震作用与结构周期之间联系思考

地震作用与结构周期之间联系思考 从地震影响系数与结构周期的关系及底部剪力法来看,结构周期越长,在结构产生的地震作用就越小;但从振型分解法可只取前面数个振型来计算地震作用及振型是按结构周期从大到小排列来看,似乎给人的感觉又是结构周期越长,在结构产生的地震作用就越大.你如何看待? 重申一下反应谱意义,反应谱是具有不同动力特性的结构对一个地震动过程的动力最大反应的结果,反应谱曲线不反映具体的结构特性,只反映地震动特性(地震动过程不同成分频率含量的相对关系),是地震动特性与结构动力反应的“桥梁”. 由地震加速度反应谱可计算单自由度体系水平地震作用:F=mSa(T),然而实际地震动无法预知,可谓千奇百怪,为了便于设计规范给出了加速度设计反应谱,该谱为地震系数(地震烈度与地面地震动加速度关系)与动力放大系数(结构最大加速度与地面最大加速度之比,正规化的反应谱)的乘积值,在特定的结构阻尼比下,依据场地、震中距将地震动分类,计算动力放大系数取平均后平滑处理即得设计反应谱. 底部剪力法是简化算法,针对地震反应可用第一振型(呈线性倒三角形)表征的结构,即地震影响系数与振型参与系数(其中的水平相对位移可用质点高度代替)假定只有一个,可对应于振型分解反应谱法中的第一振型.当两结构的基本周期不一致时,在“总质量一致”的条件下,周期大者地震影响系

数有减小的趋势(不一定减小,取决于基本周期大小),总水平地震剪力有减少的趋势,而各层处的水平地震作用不一定减小,除非结构满足“层高一致、质量分布一致”的条件.综上,底部剪力法是一种近似计算方法,两结构在总质量一致的条件下,周期大者总地震作用近似有减小的趋势(不一定减小,取决于基本周期范围),严格来讲未必,实际上规范的0.85与层质量、层高有关系. 相对于底部剪力法,振型分解反应谱法计算地震反应精度较高,将多自由度体系解耦为广义单自由度体系,实质上是按结构的振型将地震作用进行分解,求解分解地震作用下单位质量的反应,然后再依据振型规则将反应叠加为结构总反应.每一振型对应于一个振型周期,由于低振型>高振型,前振型周期所对应的地震影响系数(反应谱值)有减小的趋势,但每一振型下的各层的地震作用还与振型参与系数(反映了本振型在单位质量地震作用中所占的分量)、各层对应的振型向量值(取决于结构质量与刚度的分布)并不是所有层均是第一振型下值大)及本层质量有关.结构的总地震反应(注意是所有质点地震反应的代数和)以低阶振型反应为主,高阶振型反应对结构总地震反应的贡献较小,这一点毋庸置疑,振型各层地震作用具有方向性,总地震反应代数相加,低阶振型与0线交点要少于高阶振型,即同一结构下低阶总地震反应要大于高阶,即使反应谱值小,而各层地震作用则不一定,取决于质量与刚度的分布.

地震工程学心得体会

精心整理《地震工程学》课程总结? 1.对所学内容的综述? 1.1结构地震反应分析的方法? 结构地震反应分析的方法很多,下面主要介绍反应谱理论和时程反应分析法? 绍。 也并不是一次地震动作用下的反应谱,而是不同地震反应的包线。 1.1.2?? 时程分析法? 时程分析法又称作动态分析法。它是将地震波段按时段进行数值化后,输入结构体系的振动微分方程,采用逐步积分法进行结构弹塑性动力反应分析,计算出结构在整个强震时域中的振动状态过程,给出各个时刻各杆件的内力和变形以及各杆

件出现塑性铰的顺序。? 时程分析法计算地震反应需要输入地震动参数,该参数具有概率含义的加速度时程曲线、结构和构件的动力模型考虑了结构的非线性恢复力特性,更接近实际情况,因而时程分析方法具有很多优点。它全面地考虑了强震三要素;比较确切地、具体地和细致地给出了结构弹塑性地震反应。? 1.1.3地震信号频域分析? ???? X(f), 1.2? 1.2.1 (1) ??(2 (3 ?(4 性和有效性;? ?? (5)验证抗震理论、结构地震反应分析方法、结构振动控制算法等的可靠性和适用性。? 1.2.2? 结构抗震试验的实施程序? ??

(1)确定研究目标和试验方法,含试验目的、试验设备和试件的采用、需要测量的物理量等;? ?? (2)荷载施加,含与试验设备相关的荷载施加方式和加载规则等;? ?(3)测点布置和数据采集,含各类传感器和数采设备的采用、测点数量的选择;? ??(4)数据分析,含测试数据的常规处理和特殊分析。? (1 ? (2 ????旨在 (3 ?? 入下结构或构件的地震反应,研究和验证结构地震破坏机理、破坏特征、抗震能力和抗震薄弱环节。 ?(4)振动台试验? ?????振动台试验是利用振动台装置进行的结构强迫振动试验,是地震工程研究中最重要的实验手段之一。?

(整理)地震作用下框架内力和侧移计算.

6 地震作用下框架内力和侧移计算 6.1刚度比计算 刚度比是指结构竖向不同楼层的侧向刚度的比值。为限制结构竖向布置的不规则性,避免结构刚度沿竖向突变,形成薄弱层。根据《建筑抗震设计规范》(GB50011-2010)第3.4.2条规定:抗侧力构件的平面布置宜规则对称、侧向刚度沿竖向宜均匀变化、竖向抗侧力构件的截面尺寸和材料强度宜自下而上逐渐减小、避免侧向刚度和承载力突变。 根据《高层建筑混凝土结构技术规程》(JGJ3-2010)第3.5.2条规定:对框架结构,楼层与其相邻上层的侧向刚度比计的比值不宜小于0.7,且与相邻上部三层刚度平均值的比值不宜小于0.8。计算刚度比时,要假设楼板在平面内刚度无限大,即刚性楼板假定。 7.0939.0/1136076/10669082 11 >== = ∑∑mm N mm N D D γ,满足规范要求; ()8.0939.0/113607611360761136076/1066908334 321 2>=++?=++=∑∑∑∑mm N mm N D D D D γ,满 足规范要求。 依据上述计算结果可知:刚度比满足要求,所以无竖向突变,无薄弱层,结构竖向规则,故可不考虑竖向地震作用。将上述不同情况下同层框架柱侧移刚度相加,框架各层层间侧移刚度∑i D ,见表6-4。 表5-4框架各层层间侧移刚度 楼层 1层 2层 3层 4层 5层 6层 突出屋面层 ∑i D 1066908 1136076 1136076 1136076 1136076 1136076 258396 6.2水平地震作用下的侧移计算 根据《高层建筑混凝土结构技术规程》(JGJ3-2010)附录C 中第C.0.2条可知:对于质量和刚度沿高度分布比较均匀的框架结构、框架剪力墙结构和剪力墙结构,其基本周期可按公式6-1计算。 T T T μψ7.11= (6-1) 式中:1T ——框架的基本自振周期; T μ——计算结构基本自振周期的结构顶点假想位移,单位为m ; T ψ——基本自振周期考虑非承重砖墙影响的折减系数。

结构地震反应谱分析实例

在多位朋友的大力帮助下,经过半个多月的努力,鄙人终于对结构地震反应谱分析有了一定的了解,现将其求解步骤整理出来,以便各位参阅,同时,尚有一些问题,欢迎各位讨论! 为叙述方便,举一简单实例: 在侧水压与顶部集中力作用下的柱子的地震反应谱分析,谱值为加速度反应谱,考虑X 与Y向地震效应作用。已知地震影响系数a与周期T的关系: a(T)= 0.4853*(0.4444+2.2222*T) 0<T<=0.04 秒 0.4853*(0.10/T)^(-0.686) 0.04<T<=0.1 秒 0.4853 0.1<T<=1.2 秒 0.4853*(1.2/T)^1.5 1.2<T<=4 秒 以下是命令流程序 ---------------------------------------------------------------------------------------------------- /filname,SPEC,1 /PREP7 !定义单元类型及材料特性 ET,1,45 MP,EX,1,2.8E10 MP,DENS,1,2.4E3 MP,NUXY,1,0.18 !建立模型 BLOCK,0,1,0,1,0,5 !网格剖分 ESIZE,0.5 VMESH,all /VIEW,,-0.3,-1,1 EPLOT FINISH /SOLU !施加底部约束 ASEL,,LOC,Z,0 DA,ALL,ALL ALLSEL !施加自重荷载 ACEL,0,0,10 !进行模态求解

ANTYPE,MODAL MODOPT,LANB,30 SOLVE FINISH !进行谱分析 /SOLU ANTYPE,SPECTR SPOPT,SPRS,30,YES SVTYP,2 !加速度反应谱 SED,1,1 !X与Y向 FREQ,0.2500,0.2632,0.2778,0.2941,0.3125,0.3333,0.3571,0.3846,0.4167 FREQ,0.4545,0.5000,0.5556,0.6250,0.7143,0.8333,1.1111,2.0000,10.0000 FREQ,25.0000,1000.0000 SV,0.05,0.0797,0.0861,0.0934,0.1018,0.1114,0.1228,0.1362,0.1522,0.1716 SV,0.05,0.1955,0.2255,0.2642,0.3152,0.3851,0.4853,0.4853,0.4853,0.4853 SV,0.05,0.2588,0.2167 SOLVE FINISH !进行模态求解(模态扩展) /SOLU ANTYPE,MODAL EXPASS,ON MXPAND,30,,,YES,0.005 SOLVE FINISH !进行谱分析(合并模态) /SOLU ANTYPE,SPECTR SRSS,0.15,disp SOLVE FINISH /POST1 SET,LIST !结果1 /INP,,mcom lcwrite,11

5.6荷载效应和地震作用组合的效应

〈〈高层建筑混凝土结构技术规程》 5. 6荷载效应和地震作用组合的效应 5. 6荷载效应和地震作用组合的效应 5.6.1 持久设计状况和短暂设计状况下,当荷载与荷载效应按线形关系考虑时,荷载基本组合的效应设计值应按下式确定: S =Y G&k +Y L Q Y Q&k w Y w S wk ( 5.6.1 ) 式中:S――荷载组合的效应设计值;Y G永久荷载分项系数;Y Q――楼面活荷载分项系数; Y w――风荷载的分项系数;Y L――考虑结构设计使用年限的荷载调整系数,设计使用年限为50年时取1.0,设计使 用年限为100年时取1.1 ;S3k 永久荷载效应标准值;S Qk 楼面活荷载效应标准值; S-――风荷载效应标准值;》Q、》w――分别为楼面活荷载组合值系数和风荷载组合值系数,当永久荷载效应起控制作用时应分别取0.7和0.0 ;当可变荷载效应起控制作用时应分别取 1.0和0.6或0.7和1.0。 注:对书库、档案室、储藏室、通风机房和电梯机房,本条楼面活荷载组合值系数取0.7的场合应取为0.9。 5.6.2 持久设计状况和短暂设计状况下,荷载基本组合的分项系数应按下列规定采用: 1永久荷载的分项系数Y G当其效应对结构承载力不利时,对由可变荷载效应控制的组合应取 1.2,对由永久荷载控 制的组合应取1.35 ;当其效应对结构有利时,应取 1.0 ; 2楼面活荷载的分项系数Y Q:—般情况下应取1.4 ; 3风荷载的分项系数Y w应取1.4。 2位移计算时,本规程公式(5.6.1 )中个分项系数均应取1.0。 5.6.3 地震设计状况下,当作用与作用效应按线形关系考虑时,荷载和短暂作用基本组合的的效应设计值应按下式确定: S d S=Y °&E + Y Eh Shk + Y Ev Svk +书w Y Sk (5.6.3 ) 式中:S――荷载和地震作用组合的效应设计值;S GE――重力荷载代表值的效应; S Ehk――水平地震作用标准值的效应,尚应乘以相应的增大系数、调整系数; S Evk ――竖向地震作用标准值的效应,尚应乘以相应的增大系数、调整系数; Y G――重力荷载分项系数;Y w――风荷载分项系数;Y Eh――水平地震作用分项系数;Y E ------------- 竖向地震作用分项系数; 屮w――风荷载组合值系数,应取0.2。 5.6.4 地震设计状况下,荷载和地震作用基本组合的分项系数应按表 5.6.4 采用。当重力荷载效应对结构的承载力有利时, 表5.6.4 中Y G不应大于1.0。 2 "―"表示组合中不考虑该项荷载或作用效应。 5.6.5 非抗震设计时,应按本规程第5.6.1 条的规定进行荷载组合的效应计算。抗震设计时,应同时按本规程第 5.6.1条 和5.6.3 条的规定进行荷载和地震作用的效应计算;按本规程第 5.6.3 条计算的组合内力设计值,尚应按本规程的有关规定 进行调整。

地震作用下结构相应自学报告

地震作用下结构相应自学报告运动方程 反应量 反应时程 反应谱 位移,伪速度与伪加速度反应谱 联合反应谱 反应谱应用-确定结构峰值反应 反应谱与设计反应谱

1.运动方程 图1 地面运动时结构响应示意 如图单自由度结构,在地面运动时质点处于动平衡状态,根据达朗贝尔原理,质点动平衡方程可以表示为: f I+f D+f S=0(1-1) 其中,f I为惯性力,f D为阻尼力,f S为结构给质点的弹性回复力。 在平衡关系的三项中,惯性力取决于质点的绝对加速度,而弹性回复力和阻尼力则分别取决于结构变形和变形速度,即相对变形和相对速度。因此,式(1-1)可表达为: mu t+cu+ku=0(1-2) 其中,上标t的量为绝对坐标系下的量,无上标的量为地面参考系下的量。对于加速度而言,由于地面参考系与绝对加速度没有相对转动,因此有 u t=u+u g(1-3) 其中u g为地面运动的加速度。将式(1-3)代入(1-2)并进行整理,得到一般单自由度线弹性结构在地震激励下的运动方程: u+2ζωn u+ωn2u=?u g(1-4) 2.反应量 对于工程结构在地震中的响应,我们一般关心结构在地震中的内力和变形,而对于一些振动敏感的仪器设备,还会关注该处的绝对加速度。对于给定结构,结构内力和变形取决于相对位移,同时相对速度对结构的阻尼力也起到了绝对作用。因此地震中我们应关注结构的相对量u,u和u以及绝对量u t,u t和u t。

3.反应时程 反应时程是指在一次地震中某个结构的特定物理量随时间变化的情况。在单自由度体系中,由结构的质量、刚度性质和地震动的具体输入,可以通过动力学方法计算出位移随时间的变化规律。另一方面,为了简化计算过程并且不失真实的表达结构的振动情况,使用等效静力法来计算结构的内力,这里引入了伪加速度A的概念,其量纲与加速度u相同,数值上为ωn2u,作用在质点上以为静外力对结构内力进行计算。 A=ωn2u(3-1) 4.反应谱 对于一给定地震动,我们在考察结构在该地震动下的响应时,最关心结构的最大响应,包括最大位移、最大速度和最大加速度,此时结构的最大响应只与结构的固有周期和结构的阻尼比有关。将同一阻尼比的不同周期的结构在该地震动作用下的最大位移、速度和加速度分别画在图表中,即得到该地震动的位移、速度和加速度的反应谱。反应谱的横轴为结构的固有周期,纵轴为地震动引起的结构的最大响应,即最大位移、最大速度或最大加速度,对于一特定阻尼比,一个地震动对应一组反应谱,因此,反应谱反映的是地震动的固有特性。图2直观的表现出了反应谱的含义。 图2 反应谱的直观含义 5.位移,伪速度和伪加速度反应谱

结构抗震课后习题答案解析

《建筑结构抗震设计》课后习题解答建筑结构抗震设计》第 1 章绪论 1、震级和烈度有什么区别和联系?震级是表示地震大小的一种度量,只跟地震释放能量的多少有关,而烈度则表示某一区域的地表和建筑物受一次地震影响的平均强烈的程度。烈度不仅跟震级有关,同时还跟震源深度、距离震中的远近以及地震波通过的介质条件等多种因素有关。一次地震只有一个震级,但不同的地点有不同的烈度。 2.如何考虑不同类型建筑的抗震设防?规范将建筑物按其用途分为四类:甲类(特殊设防类)、乙类(重点设防类)、丙类(标准设防类)、丁类(适度设防类)。 1 )标准设防类,应按本地区抗震设防烈度确定其抗震措施和地震作用,达到在遭遇高于当地抗震设防烈度的预估罕遇地震影响时不致倒塌或发生危及生命安全的严重破坏的抗震设防目标。 2 )重点设防类,应按高于本地区抗震设防烈度一度的要求加强其抗震措施;但抗震设防烈度为 9 度时应按比 9 度更高的要求采取抗震措施;地基基础的抗震措施,应符合有关规定。同时,应按本地区抗震设防烈度确定其地震作用。 3 )特殊设防类,应按高于本地区抗震设防烈度提高一度的要求加强其抗震措施;但抗震设防烈度为 9 度时应按比 9 度更高的要求采取抗震措施。同时,应按批准的地震安全性评价的结果且高于本地区抗震设防烈度的要求确定其地震作用。 4 )适度设防类,允许比本地区抗震设防烈度的要求适当降低其抗震措施,但抗震设防烈度为 6 度时不应降低。一般情况下,仍应按本地区抗震设防烈度确定其地震作用。 3.怎样理解小震、中震与大震? 小震就是发生机会较多的地震,50 年年限,被超越概率为63.2%;中震,10%;大震是罕遇的地震,2%。 4、概念设计、抗震计算、构造措施三者之间的关系? 建筑抗震设计包括三个层次:概念设计、抗震计算、构造措施。概念设计在总体上把握抗震设计的基本原则;抗震计算为建筑抗震设计提供定量手段;构造措施则可以在保证结构整体性、加强局部薄弱环节等意义上保证抗震计算结果的有效性。他们是一个不可割裂的整体。

地震作用下钢筋混凝土框架结构防倒塌的判别

浙江科技学院学报,第20卷第4期,2008年12月 Jo ur na l of Zhejiang U niv ersity of Science and T echnolog y Vo l.20No.4,Dec.2008 地震作用下钢筋混凝土框架结构防倒塌的判别 马晓董1,吴建华1,何锦江2 (1.浙江科技学院建筑工程学院,杭州310023;2.国电机械设计研究院,杭州310030) 摘要:在地震作用下保证钢筋混凝土框架结构耗能最大化,同时保证在弹塑性变形条件下大震不倒,对框架结构意义重大。基于功能原理,对框架结构在水平地震作用下达到最大弹塑性位移时的2种变形破坏模式柱铰机制和梁铰机制进行分析,给出结构倒塌指标K S的下限值和防倒塌的评估判别式,通过算例和实例对规范中框架结构防倒塌的相关要求进行了计算验证。结果显示,现行抗震规范对罕遇地震作用下钢筋混凝土框架结构变形控制值是略偏保守的。 关键词:钢筋混凝土框架结构;地震作用;功能原理;抗倒塌判别 中图分类号:T U311.2;T U313.3文献标识码:A文章编号:1671-8798(2008)04-0274-05 Evaluation of R C frame structure to avoid collapse subjected to earthquakes M A Xiao-do ng1,WU Jian-hua1,H E Jin-jiang2 (1.School of A r chit ecture and Civil Eng ineering,Zhejiang U niver sity o f Science and T echnolo gy, H ang zhou310023,China; 2.State P ow er M achinery R esear ch and D esign Inst itute,H ang zho u310030,China) Abstract:It is the great significance to ensure max imum energ y consumption of the R C frame structure subjected to earthquakes and to prevent structure from collapse under the elastic-plastic defo rmation.Based on Work-ener gy principle,tw o kinds of co llapse deform ation mode column plastic hing e mechanism and beam plastic hinge mechanism for R C frame structur e are analyzed, w hich hav e achieved lim it deform ation prescr ibed by code.A minimum co llapse index K S and an assessment formular o f av oiding collapse are g iven.T hro ug h calculating exam ples the relevant re-quirements in cur rent co de for seismic design of buildings are checked.The results show ed that the structure deformation limit v alue o f R C fr am ew or k subject to severe seismic action is still a little bit conservative. Key words:R C fr am e structure;seismic action;Wor k-energy principle;ev aluatio n of resis-ting collapse 收稿日期:2008-09-17 作者简介:马晓董(1963)),男,浙江杭州人,副教授,硕士,主要从事结构工程研究与教学工作。

地层地震反应对地下结构的影响

地层地震反应对地下结构的影响 隧道二班谭坤(07011227) 地震对地下工程影响的一般规律 地震对地下工程的影响规律总体上有以下的特点: 1) 地下结构的振动变形受周围地基土壤的约束作用显著,结构的动力反应 一般不明显表现出自振特性的影响。 2) 地下结构的振动形态受地震波入射方向的影响很大,地震波的入射方向 发生不大的变化,地下结构各点的变形和应力可以发生较大的变化,相位差别也 十分明显。但主要应变一般与地震加速度大小的联系不很明显,随埋深发生的变化也不很明显。 3) 地下结构地基的相互作用都对它的动力反应产生重要影响,对结构动力 反应起主要作用的因素是地基的运动特性,一般来说,结构形状的改变对动力反 应的影响相对较小,只引起量的变化。而地下结构的存在对周围地基震动的影响一般很小(指地下结构的尺寸相对于地震波长的比例较小的情况) 。 岩体隧道震害的形式主要有裂纹、剥落、底部隆起或倾斜,破坏程度主要取决于地震作用力方向及现场地质条件,一般发生于存在破碎带的地层中。 对于土体隧道,土体对地震的响应要明显强于岩体,所以隧道破坏的可能性 也更大。又由于土体隧道多用于城市地铁,车站较多,整体结构形式不均一,容易产生应力集中,使破坏多集中在车站上。 1) 并行隧道距离越小, 其地震内力反应越大, 当距离小于隧道断面外径D , 尤其是小于0. 5D 时, 抗震设计应给予足够的重视; 2) 地震引起的地基变形是影响盾构隧道地震反应的决定性因素, 因而在抗震设计时需要合理考虑盾构隧道应承受的地基变形, 因此相对于地震系数法, 反应位移法的设计思想更为合理; 3) 相对于目前广泛采用的设计基本地震加速度, 对地铁区间隧道等地下结构进行抗震分析及设计时采用地面峰值相对位移作为设计地震动参数更为合理。 上述结论是基于三类建筑场地条件得出的, 可供地铁盾构区间隧道等地下 结构抗震设计参考。对于其他场地条件, 还有待进一步研究。

浅析土木工程结构地震反应分析方法

2012Vol.44No.1林业科技情报 浅析土木工程结构地震反应分析方法 王亚芝 (黑龙江省林业设计研究院) [摘要]近年来世界范围内频繁发生特大地震,其中包括我国2008年的汶川大地震,日本2011年的大地震,其震害及其次生灾害造成了巨大的人员伤亡和国民经济损失。笔者针对土木工程结构抗震一直是当今研究的热门课题这一重点主线,详细介绍了土木工程抗震领域的主要研究方法。 [关键词]土木工程结构;地震反应;反应谱法;非线性时程分析;Pushover;IDA Earthquake Reaction Analysis Method Of Civil Engineering Structure Wang Yazhi (Forest Design And Research Institute Of Heilongjiang Province) Abstract:There are especially big earthquakes in the world frequently in recent years,including the earthquake of 2008in China and2011in Japan.They caused large casualties and national economy loss.Civil engineering struc-ture anti-seismic is a hot task.This paper introduces the main research method in the anti-seismic field of civil engineering structure. Key words:civil engineering structure;earthquake reaction;response spectrum method;non-linear time-histo-ries;Pushover;IDA 地震作用理论是研究地震时地面运动对结构物产生的动态效应,结构的地震反应取决于地震动力和结构动力特性两个方面,因此,地震反应分析方法的发展是随着人们对这两方面的认识逐渐深入而提高的。目前世界各国的土木工程结构抗震设计规范中普遍采用的是确定性地震反应分析方法,本文就目前普遍采用的以下四种地震反应分析方法进行详细的阐述。 1动力反应谱分析方法 动力反应谱理论是目前土木工程结构抗震设计中比较常用的一种分析方法。采用动力反应谱方法计算土木工程结构动力响应包括以下几个方面:第一,是确定抗震设计的反应谱,第二,将结构震动方程进行振型分解,根据场地土的平均剪切模量或场地土的剪切波速、质量密度和分层厚度实测反应谱求得每个自由的振子在各个阶段求得振型反应最大值。第三,动力反应谱分析在土木工程结构反应中的最大值可以通过SRSS或者CQC方法将各个不同的振型反应的最大值进行组合,在实际分析中所要考虑的自由度数和振型模态数要确保在纵向和横向获得90%的振型参与系数。 2非线性时程分析方法 时程分析法是20世纪60年代逐步发展起来的一种抗震分析方法。用于进行超高层建筑结构的抗震分析和工程抗震研究等。到80年代,已经成为很多国家抗震设计规范和抗震研究工作的分析方法之一。动态时程分析法是结构在地震动作用下的响应时程,可详细了解结构在整个地震持续时间内的结构响应过程,同时反应出地震动的振幅、频谱及持续时间内对结构的影响。时程分析通过结构构件内力的变化及构件逐步开裂可求出弹性和非弹性阶段的结构的内力与变形。这时结构的薄弱部位的位移即将达到最大值,从而造成结构的最终破坏,直至倒塌的全过程。 动态时程分析方法是随着强震记录的增多和计算机技术的广泛应用而迅速发展起来的以研究结构抗震的一种分析方法。动态时程分析理论考虑了反应谱不能计算结构和结构构件在每个时刻的地震反应包括内力和变形等。对于复杂结构体系,振型密集以及结构受到强烈地震时发生非线性反应的情况下,能够更真实地反映出结构的地震反应,从而能更精确细致地反映出结构的薄弱部位。因此采用动态时程分析理论进行地震反应分析和抗震设计成为在抗震领域比较常用的一种分析方法。但是,动态时程分析方法计算量比较大、耗时多、建立模型复杂,而且需要对计算结果进行整理做统计分析等。3静力弹塑性分析方法(Pushover) Pushover方法是目前常用的一种静力非线性分析方法,国内外学者都对其进行了广泛的研究。Pushover分析的基本思路是用一个单自由度体系来等效实际结构,代替多自由度体系,通过研究等效单自由度体系的地震弹塑性反应来预测实际结构的 · 36 ·

相关主题
文本预览
相关文档 最新文档