当前位置:文档之家› 矩阵论 第五章 Hermite矩阵和正定矩阵

矩阵论 第五章 Hermite矩阵和正定矩阵

南航双语矩阵论 matrix theory第三章部分题解

Solution Key to Some Exercises in Chapter 3 #5. Determine the kernel and range of each of the following linear transformations on 2P (a) (())'()p x xp x σ= (b) (())()'()p x p x p x σ=- (c) (())(0)(1)p x p x p σ=+ Solution (a) Let ()p x ax b =+. (())p x ax σ=. (())0p x σ= if and only if 0ax = if and only if 0a =. Thus, ker(){|}b b R σ=∈ The range of σis 2()P σ={|}ax a R ∈ (b) Let ()p x ax b =+. (())p x ax b a σ=+-. (())0p x σ= if and only if 0ax b a +-= if and only if 0a =and 0b =. Thus, ker(){0}σ= The range of σis 2()P σ=2{|,}P ax b a a b R +-∈= (c) Let ()p x ax b =+. (())p x bx a b σ=++. (())0p x σ= if and only if 0bx a b ++= if and only if 0a =and 0b =. Thus, ker(){0}σ= The range of σis 2()P σ=2{|,}P bx a b a b R ++∈= 备注: 映射的核以及映射的像都是集合,应该以集合的记号来表达或者用文字来叙述. #7. Let be the linear mapping that maps 2P into 2R defined by 10()(())(0)p x dx p x p σ?? ?= ??? ? Find a matrix A such that ()x A ασαββ??+= ??? . Solution 1(1)1σ??= ??? 1/2()0x σ?? = ??? 11/211/2()101 0x ασαβαββ????????+=+= ? ? ??????????? Hence, 11/210A ??= ??? #10. Let σ be the transformation on 3P defined by (())'()"()p x xp x p x σ=+ a) Find the matrix A representing σ with respect to 2[1,,]x x b) Find the matrix B representing σ with respect to 2[1,,1]x x + c) Find the matrix S such that 1B S AS -= d) If 2012()(1)p x a a x a x =+++, calculate (())n p x σ. Solution (a) (1)0σ=

第三章矩阵的Jordan标准型与矩阵函数

上页下页返回结束 1 Made by QQIR 第三章矩阵的Jordan 标准型与矩阵函数 全国工程硕士专业学位教育指导委员会推荐教材: 矩阵论与数值分析----理论及其工程应用 上页下页返回结束 2 Made by QQIR 第三章矩阵的Jordan 标准型与矩阵函数 邱启荣 华北电力大学数理系QQIR@https://www.doczj.com/doc/4412993243.html, 第三章矩阵的Jordan 标准型 与矩阵函数 上页下页返回结束 3 Made by QQIR 第三章矩阵的Jordan 标准型与矩阵函数 上页下页返回结束 4 Made by QQIR 第三章矩阵的Jordan 标准型与矩阵函数 上页下页返回结束 5 Made by QQIR 第三章矩阵的Jordan 标准型与矩阵函数 上页下页返回结束 6 Made by QQIR 第三章矩阵的Jordan 标准型与矩阵函数

上页下页返回结束7 Made by QQIR 第三章矩阵的Jordan标准型与矩阵函数 上页下页返回结束8 Made by QQIR 第三章矩阵的Jordan标准型与矩阵函数 上页下页返回结束9 Made by QQIR 第三章矩阵的Jordan标准型与矩阵函数 上页下页返回结束 10 Made by QQIR 第三章矩阵的Jordan标准型与矩阵函数 上页下页返回结束 11 Made by QQIR 第三章矩阵的Jordan标准型与矩阵函数 上页下页返回结束 12 Made by QQIR 第三章矩阵的Jordan标准型与矩阵函数

上页下页返回结束13 Made by QQIR 第三章矩阵的Jordan标准型与矩阵函数 上页下页返回结束14 Made by QQIR 第三章矩阵的Jordan标准型与矩阵函数 上页下页返回结束15 Made by QQIR 第三章矩阵的Jordan标准型与矩阵函数 上页下页返回结束 16 Made by QQIR 第三章矩阵的Jordan标准型与矩阵函数 上页下页返回结束 17 Made by QQIR 第三章矩阵的Jordan标准型与矩阵函数 上页下页返回结束 18 Made by QQIR 第三章矩阵的Jordan标准型与矩阵函数

矩阵理论第3章习题解答

第三章 习题解答 1.求矩阵 1141?? =???? A 的谱分解. 解:(1) 求特征值 ()()12310E A λλλ-=-+=,所以特征值为123,1λλ==-. (2) 求特征向量:13λ=对应的特征向量为()11,2;T p = 21λ=-对应的特征向量为()21,2T p =-. (3)谱分解:令1211(,)22P p p ??==?? -??,则1 121124.1 124T T P ωω-?? ????==????????-???? 令1111 124,112T A p ω????==? ?????? ?2221 124,112T A p ω??-??==???? -???? 故谱分解式为123A A A =- 2 求单纯矩阵 296182051240825A -?? ?=- ? ?-?? 的谱分解式. 3.设()1,2,i i n λ= 是正规矩阵n A ∈C 的特征值,证明:()2 1,2,i i n λ= 是H A A 与H AA 的特征值. 证:根据题设矩阵A ,则A 酉相似与对角矩阵,即 ()12diag ,,,H n A U U λλλ= 其中U 为酉矩阵,则 ()() ()() 121 2 diag ,,diag ,,H H H H n n A A U U U U λλλλλλ= ( )222 12diag ,,,H n U U λλλ= 即H A A 的特征值为()2 1,2,i i n λ= ,同理可证()2 1,2,i i n λ= 也是H AA 的特征值。

4 设A 是n n ?阶的实对称矩阵,并且20,A =你能用几种方法证明0.A = 证:(1)设λ是矩阵A 的一个特征值,x 是对应于λ的一个非零特征向量,即 ,Ax x λ=220,A x x λ==所以20,λ=即0,λ=所以矩阵A 的特征值全为零,又A 酉相似与 对角矩阵()12diag ,,,n λλλ 所以0.A = (2)设0,A ≠则20,H A A A =≠与题设矛盾,所以结论成立。 5 试证:对于每一个实对称矩阵A ,都存在一个n 阶方阵S ,使3 A S =。 证:矩阵A 是一个对称矩阵,则A 酉相似于一个对角矩阵,即 ()H 12diag ,,,,n λλλ= A U U 令12111 333diag ,,n λλλ??= ??? D ,则()3 12diag ,,.n λλλ= D 又由()()()3H H H H .==A UD U UDU UDU UDU 令H ,=S UDU 则3=A S 。 7 证明:一个正规矩阵若是三角矩阵,则它一定是对角矩阵. 证明参考课本101页引理3必要性的证明. 8 证明:正规矩阵是幂零阵() 2 0=A 的充要条件是0.=A 证:充分性:0.=A 则结论显然。 必要性:若() 2 0=A ,由题设矩阵A 是正规矩阵,则A 酉相似于一个对角矩阵,即 ()12diag ,,,H n λλλ= A U U () 222221diag ,,0,n H λλλ== A U U 即 () 22221diag ,,0n λλλ= 所以,可得 120,n λλλ==== 即0.=A 结论成立。 9 求矩阵324262423--????=--????--?? A 的谱分解式,并给出n A 的表达式。 解:矩阵A 的特征值:()()()2 det 27,λλλ-=+-E A 所以矩阵A 的特征值为 12,32,7λλ=-=。

南航矩阵论2013研究生试卷及答案

南京航空航天大学2012级硕士研究生

二、(20分)设三阶矩阵,,. ????? ??--=201034011A ????? ??=300130013B ???? ? ??=3003003a a C (1) 求的行列式因子、不变因子、初等因子及Jordan 标准形; A (2) 利用矩阵的知识,判断矩阵和是否相似,并说明理由. λB C 解答: (1)的行列式因子为;…(3分)A 2121)1)(2()(,1)()(--===λλλλλD D D 不变因子为; …………………(3分)2121)1)(2()(,1)()(--===λλλλλd d d 初等因子为;……………………(2分) 2)1(,2--λλJordan 标准形为. ……………………(2分) 200011001J ?? ?= ? ??? (2) 不相似,理由是2阶行列式因子不同; …………………(5分) 0,a = 相似,理由是各阶行列式因子相同. …………………(5分) 0,a ≠共 6 页 第 4 页

三、(20分)已知线性方程组不相容. ?? ???=+=+++=++1,12,1434321421x x x x x x x x x (1) 求系数矩阵的满秩分解; A (2) 求广义逆矩阵; +A (3) 求该线性方程组的极小最小二乘解. 解答:(1) 矩阵,的满秩分解为 ???? ? ??=110021111011A A . …………………(5分)10110111001101A ??????=?????????? (2) . ……………………(10分)51-451-41-52715033A +?? ? ?= ? ??? (3) 方程组的极小最小二乘解为. …………(5分)2214156x ?? ? ?= ? ??? 共 6 页 第 5 页

二次型和正定矩阵

二次型 2007-029-8 设mn A 是实矩阵,E 为n 级单位矩阵。已知矩阵.B E A A λ'=+ 证明:当0λ>时,矩阵B 为正定矩阵。 2007-029-9 已知二次曲面方程为222 123121323255448 1.x x x x x x x x x +++--=(1) 求正交变换把该二次曲面的方程化为标准形;(2)上述二次曲面的方程表示何种曲面? 2007-008-8 已知矩阵???? ? ? ??? ???----=8111181111811118A (1)求二次型???? ?? ? ??=432143214321),,,(),,,(x x x x A x x x x x x x x f ; (2)用正交线性替换化二次型),,,(4321x x x x f 为标准型; (3)证明βαβαA T =),(定义了4R 上的内积,其中βα,是4R 的列向量,T α是α的转置,并求在该内积下4R 的一组标准正交基. (4)求实对称矩阵B 使得A B k =,其中k 为正整数(只要写出B 的表达式,不必计算其中的矩阵乘积) 2007-021-7 121234212(,,...,)...n n n f x x x x x x x x x -=+++求二项式的秩和正负惯性指数之差. 2007-012-2 求实二次型 3241312143212422),,,(x x x x x x x x x x x x f +++=的规范形及符号差。 2007-001(A )-1 化二次型()123122313,,222f x x x x x x x x x =-+为标准型,并给出所用的非退化线性替换.

矩阵论复习大纲

第一章 1 线性空间概念(封闭性) 2线性空间的基与维数 (教材P3例6) 3坐标概念、及求解(教材P3例8) 4 坐标在不同基下的过渡矩阵及坐标变换 5 子空间、列空间、和空间概念,维数定理以及求法(例1);直和, 直和补空间 6 内积空间概念,标准正交基及标准正交化过程 7 线性变换概念、线性变换的矩阵(概念:教材P22定义1.13,性 质:教材P22定理1.13),计算、过渡矩阵以及不同基下的矩阵(例2, 3) 8 不变子空间,正交变换,酉交变化 例1 设112{,}W L αα=,212{,}W L ββ=,其中T )0121(1=α, T )1111(1-=α,T )1012(1-=β,T )7311(1-=β,求12W W +与 12W W ?的维数,并求出12W W ? 解 [][][]2121212121,,,,ββααββααL L L W W =++=+ ()????? ????????→??? ????????---==71 1022-203-5-30 121 -17110 30111112 121 1,,,2121行变换 ββααA B =???? ?????????????????000 310040101-0 0100 00 31007110121 -1

得r(A)=r(B)=3,dim(W 1+W 2)=3. 又因为dim W 1=2, dim W 2=2,由维数定理 dim (W 1 W 2)= dim W 1+ dim W 2-dim (W 1+W 2)=4-3=1 设,,4433221121ββααααx x x x W W +=+=∈ 化为齐次线性方程组0),,,(142121=--?X ββαα.即0711******* 121211=???? ? ?????------X 解得 ()(){}. 4,3,2,5,4,3,2,54,,3,4,21214321T T k W W k k k k x k x k x k x -==-=+-==-==-=αααα 即 例2 设3R 上线性变换T 为 ,)2())((3132321213T T x x x x x x x x x x T +-++= 求T 在基 T T T ) 111(,)110(,)101(321-===ααα 下的矩阵B. 解 在自然基321,,e e e 下,线性变换T 的坐标关系式为: , 10111012123213132321???? ??????????? ?-=????????+-++=x x x x x x x x x x Y 根据由变换的坐标式 Y=AX 得T 在自然基下矩阵 , 101110121??? ? ????-

矩阵论知识点

矩阵论知识点 第一章:矩阵的相似变换 1. 特征值,特征向量 特殊的:Hermite矩阵的特征值,特征向量 2. 相似对角化 充要条件:(1)(2)(3)(4) 3. Jordan标准形 计算:求相似矩阵P及Jordan标准形 求Jordan标准形的方法: 特征向量法,初等变换法,初等因子法 4. Hamilton-Cayley定理 应用:待定系数法求解矩阵函数值 计算:最小多项式 5. 向量的内积 6. 酉相似下的标准形 特殊的:A酉相似于对角阵当且仅当A为正规阵。

第二章:范数理论 1. 向量的范数 计算:1,2,∞范数 2. 矩阵的范数 计算:1,2,∞,∞m , F 范数,谱半径 3. 谱半径、条件数 第三章:矩阵分析 1. 矩阵序列 2. 矩阵级数 特别的:矩阵幂级数 计算:判别矩阵幂级数敛散性,计算收敛的幂级数的和 3. 矩阵函数 计算:矩阵函数值,At e ,Jordan 矩阵的函数值 4. 矩阵的微分和积分 计算:函数矩阵,数量函数对向量的导数 如,dt dA(t),dt dA(t),?? ???==)()(X R AX X X X X f T T T αα等 5. 应用 计算:求解一阶常系数线性微分方程组

1. 矩阵的三角分解 计算:Crout 分解,Doolittle 分解,Choleskey 分解 2. 矩阵的QR 分解 计算:Householder 矩阵,Givens 矩阵, 矩阵的QR 分解或者把向量化为与1e 同方向 3. 矩阵的满秩分解 计算:满秩分解,奇异值分解 4. 矩阵的奇异值分解 第五章:特征值的估计与表示 1. 特征值界的估计 计算:模的上界,实部、虚部的上界 2. 特征值的包含区域 计算:Gerschgorin 定理隔离矩阵的特征值 3. Hermite 矩阵特征值的表示 计算:矩阵的Rayleigh 商的极值 4. 广义特征值问题 计算:BX AX λ=转化为一般特征值问题

计算机组成原理第五章答案,DOC

第5章习题参考答案 1.请在括号内填入适当答案。在CPU中: (1)保存当前正在执行的指令的寄存器是(IR); (2)保存当前正在执行的指令地址的寄存器是(AR) (3)算术逻辑运算结果通常放在(DR)和(通用寄存器)。 解: 5.如果在一个CPU周期中要产生3个节拍脉冲;T l=200ns,T2=400ns,T3=200ns,试画出时序产生器逻辑图。 解:取节拍脉冲T l、T2、T3的宽度为时钟周期或者是时钟周期的倍数即可。所以取时钟源提供的时钟周期为200ns,即,其频率为5MHz.;由于要输出3个节

拍脉冲信号,而T 3的宽度为2个时钟周期,也就是一个节拍电位的时间是4个时钟周期,所以除了C 4外,还需要3个触发器——C l 、C 2、C 3;并令 211C C T *=;321C C T *=;313C C T =,由此可画出逻辑电路图如下: 6.假设某机器有80条指令,平均每条指令由4条微指令组成,其中有一条取指微指令是所有指令公用的。已知微指令长度为32位,请估算控制存储器容量。 由表可列如下逻辑方程 M=G S 3=H+D+F S 2=A+B+D+H+E+F+G S 1=A+B+F+G C=H+D+Ey+Fy 8.某机有8条微指令I 1—I 8,每条微指令所包含的微命令控制信号如下表所示。

a—j分别对应10种不同性质的微命令信号。假设一条微指令的控制字段仅限为8位,请安排微指令的控制字段格式。 或: fhi bgj 9.微地址转移逻辑表达式如下:

μA8=P1·IR6·T4 μA7=P1·IR5·T4 μA6=P2·C·T4 其中μA8—μA6为微地址寄存器相应位,P1和P2为判别标志,C为进位标志,IR5和IR6为指令寄存器的相应位,T4为时钟周期信号。说明上述逻辑表达式的含义, 存地址寄存器MAR,指令寄存器IR,通用寄存器R0 R3,暂存器C和D。 (1)请将各逻辑部件组成一个数据通路,并标明数据流动方向。 (2)画出“ADDR1,R2”指令的指令周期流程图。 解: (1)设该系统为单总线结构,暂存器C和D用于ALU的输入端数据暂存,移位

研究生矩阵论试题与答案

中国矿业大学 级硕士研究生课程考试试卷 考试科目矩阵论 考试时间年月 研究生姓名 所在院系 学号 任课教师

一(15分)计算 (1) 已知A 可逆,求 10 d At e t ? (用矩阵A 或其逆矩阵表示) ; (2)设1234(,,,)T a a a a =α是给定的常向量,42)(?=ij x X 是矩阵变量,求T d()d X αX ; (3)设3阶方阵A 的特征多项式为2(6)I A λλλ-=-,且A 可对角化,求k k A A ??? ? ??∞→)(lim ρ。

二(15分)设微分方程组 d d (0)x Ax t x x ?=???? ?=?,508316203A ?? ?= ? ?--??,0111x ?? ? = ? ??? (1)求A 的最小多项式)(λA m ; (3)求At e ; (3)求该方程组的解。

三(15分)对下面矛盾方程组b Ax = 312312 111x x x x x x =?? ++=??+=? (1)求A 的满秩分解FG A =; (2)由满秩分解计算+A ; (3)求该方程组的最小2-范数最小二乘解LS x 。

四(10分)设 11 13A ?=?? 求矩阵A 的QR 分解(要求R 的对角元全为正数,方法不限)。 五(10分) 设(0,,2)T n A R n αβαβ=≠∈≥ (1)证明A 的最小多项式是2 ()tr()m A λλλ=-; (2)求A 的Jordan 形(需要讨论)。

六(10分)设m n r A R ?∈, (1)证明rank()n I A A n r + -=-; (2)0Ax =的通解是(),n n x I A A y y R +=-?∈。 七(10分)证明矩阵 21212123 111222222243333 33644421(1)(1)n n n n n n n n n n ---? ? ? ? ? ? ?= ? ? ? ? ? ?+++? ? A (1)能与对角矩阵相似;(2)特征值全为实数。

南京工业大学矩阵论第三章讲义 ch3

第三章 欧氏空间与酉空间 在线性空间中,向量之间只有加法与数量乘法这二种基本运算,而没有象几何空间2R 、 3R 那样引入向量的长度,两个向量的夹角等度量概念,而这些概念在实际应用中是非常重 要的。本章将对一般的实线性空间和复线性空间定义内积计算,从而引入向量的长度、夹角等度量概念。 §3.1 欧氏空间 定义1 设V 是实线性空间,如果对于任意V ∈βα,,按照某一法则有一个确定的实数记为(βα,)与它们对应,且满足下列条件: (1)),(),(αββα=; (2)),(),(βαβαk k =; (3)),(),(),(γβγαγβα+=+; (4)0),(≥αα,当且仅当0=α时,0),(=αα。 其中γβα,,为V 中任意向量,k 为任意实数,(βα,)称为α与β的内积,定义了内积的实线性空间V 称为欧几里得(Euclid )空间,简称欧氏空间。 例1 在线性空间n R 中,对于任意两个向量: ),,,(),,,,(2121n n b b b a a a ΛΛ==βα 定义: n n b a b a b a +++=Λ2211),(βα (1) 容易验证以上定义满足内积定义中的四个条件,因而n R 对于(1)构成一欧氏空间,以后仍用n R 来表示这个欧氏空间。当2=n 或3时,(1)式就是几何空间中所称为向量的数量积或点积。 如果定义: n n b na b a b a +++=Λ22112),(βα

同样可以验证n R 也构成一个欧氏空间,因此对于同一线性空间,可以定义不同的内积,使它成为欧氏空间,以后用到欧氏空间n R ,内积总是指定义(1)。 例2 在实连续函数组成的线性空间],[b a C 中,对任意],[)(),(b a C x g x f ∈,定义: ((),())()()b a f x g x f x g x dx =? (2) 根据定积分基本性质,容易验证()(),(x g x f )满足定义1的四个条件,因此],[b a C 构成一个欧氏空间。同样地,线性空间n x R x R ][],[对于内积(2)也构成欧氏空间。 由内积的定义,容易得到内积的简单性质: (1)(,)(,)(,)αβγαβαγ+=+; (2)),(),(βαβαk k =; (3)0),0()0,(==βα; (4)∑∑∑∑=====m i n j j i j i n j j j m i i i l k l k 11 1 1 ),(),( βαβα。 在几何空间2R 、3 R 中,向量α的长度等于),(αα,在一般的欧氏空间中,对任意向量V ∈α,0),(≥αα,从而),(αα是有意义的,所以我们定义它为α的长度。 定义2 在欧氏空间V 中,非负实数),(αα称为向量α的长度,记为α。 在例1和例2中,向量长度分别是: 22221n a a a +++=Λα, ? = b a dx x f x f )()(2。 特别地,若 1=α,则α称为单位向量,对任意非零向量α,由内积定义可知 α α 是单位向量,此单位向量称为将α单位化。 欧氏空间的长度具有以下性质: 定理1 设α、β是欧氏空间V 中的任意向量,k 是任意实数,则: (1) 0≥α,而α=0充要条件是0=α;

南航双语矩阵论matrixtheory第三章部分题解

Solution Key to Some Exercises in Chapter 3 #5. Determine the kernel and range of each of the following linear transformations on 2P (a) (())'()p x xp x σ= (b) (())()'()p x p x p x σ=- (c) (())(0)(1)p x p x p σ=+ Solution (a) Let ()p x ax b =+. (())p x ax σ=. (())0p x σ= if and only if 0ax = if and only if 0a =. Thus, ker(){|}b b R σ=∈ The range of σis 2()P σ={|}ax a R ∈ (b) Let ()p x ax b =+. (())p x ax b a σ=+-. (())0p x σ= if and only if 0ax b a +-= if and only if 0a =and 0b =. Thus, ker(){0}σ= The range of σis 2()P σ=2{|,}P ax b a a b R +-∈= (c) Let ()p x ax b =+. (())p x bx a b σ=++. (())0p x σ= if and only if 0bx a b ++= if and only if 0a =and 0b =. Thus, ker(){0}σ= The range of σis 2()P σ=2{|,}P bx a b a b R ++∈= 备注: 映射的核以及映射的像都是集合,应该以集合的记号来表达或者用文字来叙述. #7. Let be the linear mapping that maps 2P into 2R defined by 10 ()(())(0)p x dx p x p σ?? ?= ??? ? Find a matrix A such that ()x A ασαββ?? += ??? . Solution 1(1)1σ?? = ??? 1/2()0x σ?? = ??? 11/211/2()1010x ασαβαββ???? ???? +=+= ? ? ??????????? Hence, 11/21 0A ?? = ??? #10. Let σ be the transformation on 3P defined by (())'()"()p x xp x p x σ=+ a) Find the matrix A representing σ with respect to 2[1,,]x x b) Find the matrix B representing σ with respect to 2[1,,1]x x + c) Find the matrix S such that 1B S AS -= d) If 2012()(1)p x a a x a x =+++, calculate (())n p x σ. Solution (a) (1)0σ= ()x x σ=

矩阵论考试试题(含答案)

矩阵论试题 、(10 分)设函数矩阵 sin t cost At cost sin t 求: A t dt 和( 0 t 0 A t dt )'。 解: A t dt = 0 tt sin t dt 00 t costdt cost dt t sin tdt = 1 cost sint sint 1 cost t2 ( A t dt )' 2 = A t 2 2t sint2 2t cost 2 cost cost2 sint2 、(15分)在R3中线性变换将基 1 0 1 1 1 , 2 2 ,30 1 1 1 1 0 0 变为基 1 1 , 2 1 ,33 0 1 2 (1 )求在基 1, 2, 3 下的矩阵表示A; (2 ) 求向量1,2,3 T及在基1, 2, 3下的坐标; (3 ) 求向量1,2,3 T及在基1, 2, 3下的坐标。解:(1)不难求得: 1 1 1 2

因此 在 1, 2, 3 下矩阵表示为 1 1 1 A 1 1 2 011 k 1 (2) 设 1 , 2 , 3 k 2 ,即 k 3 0 1 k 1 解之得: k 1 10, k 2 4, k 3 9 解:容易算得 在 1, 2 , 3下坐标可得 y 1 1 1 1 10 23 y 2 1 1 2 4 32 y 3 0 1 1 9 13 (3) 在基 1, 2 , 3下坐标为 10 10 1 10 1 A 1 4 11 14 15 9 11 09 6 在基 1, 2 , 3 下坐标为 23 10 1 23 10 A 1 32 11 1 32 4 13 11 0 13 9 0 02 三、(20 分)设 A 0 1 0 ,求 e At 。 1 03 2 , 3下坐标为 10, 4, 9 T 。 所以 在 1,

《矩阵论》教学大纲

《矩阵论》教学大纲 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

《矩阵论》课程教学大纲 一、课程性质与目标 (一)课程性质 《矩阵论》是数学专业的选修课,是学习经典数学的基础,又是一门最具有实用价值的数学理论。它不仅是数学的一个重要的分支,而且业已成为现代各科技领域处理大量有限维空间形式与数量关系的强有力的工具。 (二)课程目标 通过本课程的学习,使学生掌握矩阵论的基本概念,基本理论和基本运算,全面了解若干特殊矩阵的标准形及其基本性质,了解近代矩阵论中十分活跃的若干分支,为今后在应用数学,计算数学专业的进一步学习和研究打下扎实的基础。 二、课程内容与教学 (一)课程内容 1、课程内容选编的基本原则 把握理论、技能相结合的基本原则。 2、课程基本内容 本课程主要介绍了线性空间、线性映射、酉空间、欧氏空间、若当标准型、矩阵的分解、矩阵的分析、矩阵函数和广义逆矩阵等基本内容。 (二)课程教学 通过本课程中基本概念和基本定理的阐述和论证,培养高年级本科生的抽象思维与逻辑推理能力,提高高年级本科生的数学素养。 三、课程实施与评价 (一)学时、学分 本课程总学时为54学时。学生修完本课程全部内容,成绩合格,可获3学分。(二)教学基本条件 1、教师 教师应具有良好的师德和较高的专业素质与教学水平,一般应具备讲师以上职称或本专业硕士以上学位。 2、教学设备 配置与教学内容相关的图书、期刊、音像资料等。 (三)课程评价 1、对学生能力的评价 逻辑推理能力,包括逻辑思维的合理性和严密性。 2、采取教师评价为主的评价方法。 3、课程学习成绩由期末考试成绩(70%)和平时成绩(30%)构成。课程结束时评出成绩,成绩评定可分为优、良、中、及格和不及格五个等级,也可采用百分制。 四、课程基本要求 第一章线性空间和线性变换 基本内容:线性空间线性变换 基本要求: (1)理解线性空间有关内容。

10-11(1)-10级-矩阵论试题与答案

参考答案 ‘1 0 0、 一(15 分〉、设 A= 0 3 1 , - b (1)求可逆矩阵P使得P'AP=J ,其中丿为A的Jordan标准形; (2)计算0; (3)求微分方程组斗卩=Ax(t), x(0) = 的解。 解:(1) |27-4| = (2-1)(2-2)2 ‘1 0(P 21 — A= 0 —1 -1 , rank(2/ — A) = 2, dim N(2/ — A) = 3 — 2 = 1 w 1 1 > 故A的Jordan标准形为 <1 、 J= 2 1 <1 、 记P = [a^a2,a3],由P~l AP = J = 2 1 得 1 2 丿 Aa x = a x T r 0、了 Aa2 = 2a2=> ?)=0 ,0 = J 1 ,巾= 0 Aa, =G2+ 2a30 、一 1丿 1 ‘1 0 0、 p =0 1 0 (不唯一)9P-}AP = J = 2 1 1 ° -1 b < J (2)根据

te 严=p e J,p-1 0 (T 2 、0 0、'e!0 0 0 1 0 e" te210 1 0 = 0 e"(l+f) te21 -1 1 / X e21 z 1 b 0 -te2'戶(1-?(3) x(t) = e At x(0) = e2t 二(15分人设 5 1 0、0 A = 1 2 1 ,b = 1 <0 1 1> kb (1)求A的满秩分解A = FG, (2)求A的广义逆矩阵?r: (3)求Ax=b的最小2—范数最小二乘解X”。 (2) fl 2 (3) x Ls. = A'b = — 2 9b r (1 o -n 1 2 '0 1 0 , <0 1> \ / FG(不唯一) 解:(1) A = 5

矩阵论考试试题(含答案)

矩阵论试题 一、(10分)设函数矩阵 ()??? ? ??-=t t t t t A sin cos cos sin 求:()?t dt t A 0和(()?2 0t dt t A )'。 解:()?t dt t A 0=()???? ? ??-????t t t t tdt tdt dt t dt t 0 sin cos cos sin =??? ? ??---t t t t cos 1sin sin cos 1 (()?2 t dt t A )'=()??? ? ? ?-=?22 22 2sin cos cos sin 22t t t t t t t A 二、(15分)在3R 中线性变换σ将基 ????? ??-=1111α,????? ??-=1202α,??? ?? ??-=1013α 变为基 ????? ??-=0111β,????? ??-=1102β,??? ? ? ??-=2303β (1)求σ在基321,,ααα下的矩阵表示A ; (2)求向量()T 3,2,1=ξ及()ξσ在基321,,ααα下的坐标; (3)求向量()()ξσξ及T 3,2,1=在基321,,βββ下的坐标。 解:(1)不难求得: ()2111ααβασ-== ()32122αααβασ++-== ()321332αααβασ++-==

因此σ在321,,ααα下矩阵表示为 ??? ? ? ??---=110211111A (2)设()??? ?? ??=321321,,k k k αααξ,即 ??? ? ? ??????? ??---=????? ??321111021101 321k k k 解之得:9,4,10321-=-==k k k 所以ξ在321,,ααα下坐标为()T 9,4,10--。 ()ξσ在321,,ααα下坐标可得 ???? ? ??--=????? ??--????? ??---=????? ??1332239410110211111321y y y (3)ξ在基321,,βββ下坐标为 ??? ? ? ??-=????? ??--????? ??--=????? ??---61519410011111101 94101A ()ξσ在基321,,βββ下坐标为 ????? ??--=????? ??--????? ??--=????? ??---94101332230111111011332231A 三、(20分)设??? ? ? ??-=301010200A ,求At e 。 解:容易算得 ()()()()212--=-=λλλλ?A I

矩阵论复习总结

第一章:矩阵的相似变换 1.特征值,特征向量 特殊的:Hermite矩阵的特征值,特征向量 2.相似对角化 充要条件:(1)(2)(3)(4) 3.Jordan标准形 计算:求相似矩阵P及Jordan标准形 求Jordan标准形方法:特征向量法、初等变换法、初等因子法4.Hamilton-Cayley定理 应用:特定系数法求解矩阵函数值 计算:最小多项式 5.向量的内积 6.酉相似下的标准型 特殊的:A酉相似于对角阵当且仅当A为正规阵 第二章:范数理论 1.向量的范数 计算:1,2,∞范数 2.矩阵的范数 计算:1,2,∞,m∞,F范数,谱半径 3.谱半径、条件数

第三章:矩阵分析 1.矩阵序列 2.矩阵级数 特别的:矩阵幂级数 计算:判别矩阵幂级数敛散性,计算收敛的幂级数的和3.矩阵函数 计算:矩阵函数值,eAt,Jordan矩阵的函数值 4.矩阵的微分和积分 计算:函数矩阵的导数,数量函数对向量的导数 αT X=X Tα 如, dt )t( d A,f(X)= X T AX 等 R(X) 5.应用 计算:求一阶常数线性微分方程组 第四章:矩阵分解 1.矩阵的三角分解 计算:Crout分解,Doolittle分解,Choleskey分解2.矩阵的QR分解 计算:Householder矩阵,Givens矩阵 矩阵的QR分解或者向量化为与e1同方向 3.矩阵的满秩分解 计算:满秩分解

4.矩阵的奇异值分解 计算奇异值分解 第五章:特征值的估计与表示1.特征值界的估计 计算:模的上界,实部、虚部的上界 2.特征值的包含区域 计算:Gerschgorin定理隔离矩阵的特征值 3.Hermite矩阵特征值的表示 计算:矩阵的Rayleigh商在某个空间上的极值 4.广义特征值问题 计算:AX=λBX 转化为一般特征值问题 第六章:广义逆矩阵 1.广义逆矩阵的概念 2.{1}逆及其应用 计算:A(1) 判别矩阵方程AXB=D,Ax=b解的情况 3.Moore-Penrose逆A+ 计算:利用A+判别方程组Ax=b解的情况, 并求极小范数解或极小范数最小二乘解 第七章:矩阵的直积 1.矩阵的直积 计算:A B的特征值,行列式,迹,秩

矩阵论第五章题目

1.??? ? ??-=2.05.05.02.0A ,判断级数 +++++k A A A A 32收敛? 若收敛求其和. 2.已知111111012A -?? ?= ? ?-??,判断矩阵级数03k k k k A ∞=∑是否收敛. 3.矩阵幂级数0111____________014k k k ∞=??= ???∑ 4.设函数矩阵??? ? ??-=t t t t A cos sin sin cos , 求)(t A dt d , ))((det t A dt d 和))(det(t A dt d . 5.证明: 1))()()())((111t A t A dt d t A t A dt d ---??-= 2)A e Ae e dt d At At At == 6.已知??????? ? ?=3000130001300001A , 求A sin 和)sin(At . 7.已知???? ??-=00a a A , ??? ? ??-=a a a a B cos sin sin cos 其中R a ∈且0≠a , 证明:B e A =. 8.已知??? ? ??-=33i i A , 1)证明A 是Hermite 矩阵; 2)求方阵函数A cos . 9. 设???? ? ??=41-1-301-62-1-A , 求方阵函数A e . 10. 已知???? ? ??---=133131113A ,求A e 及()A e det . 11. 求微分方程组 32113x x x dt dx +-= 32125x x x dt dx -+-= 32133x x x dt dx +-=

正定二次型的性质及应用

摘要............................................. 错误!未定义书签。关键词............................................. 错误!未定义书签。Abstract.......................................... 错误!未定义书签。Keywords.......................................... 错误!未定义书签。前言............................................... 错误!未定义书签。1预备知识........................................ 错误!未定义书签。二次型定义........................................ 错误!未定义书签。正定二次型定义.................................... 错误!未定义书签。 2 正定二次型的性质............................... 错误!未定义书签。 3 正定二次型的应用 (7) 正定二次型在解决极值问题中的应用 (7) 正定二次型在分块矩阵中的应用...................... 错误!未定义书签。正定二次型在解决多项式根的有关问题中的应用 (9) 正定二次型在解决二次曲线和二次曲面方程中的应用 (10) 正定二次型在线形最小二乘法问题的解中的应用........ 错误!未定义书签。正定二次型在欧氏空间中的应用(欧氏空间的内积与正定矩阵)错误!未定义书签。 正定二次型在解线性方程组中的应用.................. 错误!未定义书签。正定二次型在物理力学问题中的应用.................. 错误!未定义书签。结束语.. (13) 参考文献.......................................... 错误!未定义书签。

5-3 正定二次型与正定矩阵

5-3 正定二次型与正定矩阵 复习:5.2.4: n元二次型 f=XTAX======yT(CTAC)y=d1y12+d2y22+…+dryr2 (AT =A) 其中:di≠0,i=1,2,…,r;r=秩(A),0≤r≤n。 n元二次型经满秩线性变换X=CY化为如下标准形: f=XTAX=yT(CTAC)y=d1y12+…+dpyp2-dp+1yp+12-…-dryr2 (AT =A) 其中:di>0,i=1,2,…,r;r=秩(A),0≤p≤r≤n。 再作满秩线性变换: ????? ????? ???====++n n r r r r r z y z y z d y z d y 1111 1 11, 化f为规范形:f=z12 +…+zp2 -zp+12 -…-zr2 ,0≤p≤r≤n,r=秩(A)。 一、正定二次型与正定矩阵的概念 定义5.3[P205:-3行至P206:1行]换个方式讲 设f(X)=XTAX(AT =A)是一个n元实二次型,如果对每一个非零n维 实列向量X0=(c1,c2,…,Cn)T,都有X0T AX0>0,则称f为正定二次型,称A为正定矩阵。 思考题(1)[P209]: 作业:P216:12(讲):如果A、B为同阶正定矩阵,则A+B也是正定矩阵。 P263:证明题:2 二、二次型为正定二次型的充要条件(五个): 1、定理5.3 n元实二次型f为正定二次型 ?f的正惯性指数p=n [即:f的正惯性指数p=f的秩r=f的变元个数n] ?f的规范形为:z12+z22+…+zn2 。 作用:化实二次型为标准形,据系数为正的平方项的个数判断f的正定性。 例:P202例5.4中,3元实二次型f的标准形为:2y12 +3y22 + 3 5y32 ,f的正惯性指数为3,所以f正定。 例:P203例5.5中, 3元实二次型f的标准形为:z12-z22 ,f的正惯性指数为

相关主题
文本预览
相关文档 最新文档