当前位置:文档之家› 数学准备矢量分析与场论

数学准备矢量分析与场论

数学准备矢量分析与场论
数学准备矢量分析与场论

a ,

b 的点乘也称标量积)

1122b a b ++cos a b =a ,b 的叉乘1

1

a a

b a =?

sin a b 方向:既垂直于a

,又垂直于与b a ,满足右手螺旋关系。

=()()(2133113223321b a c b a b a c b a b a c -+-+-若只把两个矢量对调,混合积反号。

若矢量位置不变只交换点乘号叉乘号,混合积不变—但必须先做1

232

3113

1221

e c c a b a b a b a b a b =

---(c a b =-223)()c b b c a ?-?

()()c b a c a b =?-? ()()()a b c c a b c b a ??=?-?

()

F x

=()T T x

((),(x l y l dl φ=x φ??=

+方向上的方向余弦。其余三个数

?可视为某一矢量的坐标从该式可以看出梯度是方向导数的一种,方向为标量函数

叫做矢量场F 向积分所沿一侧穿过曲面s

?正方向,穿出曲面为正,穿入曲面为负,相切为零。根据通量的正负可以得知S 内有产生通量。但仅此还不能了解源在s

s

F dS V ??

散度表示在场中一点处通量对体积的变化率,又称为通量体密度。

也就是在该点处对一个单位体积来说所穿过的通量,称之为该点处divf 就相应的表

l

F dl ??

称为此矢量场按积分所取方向沿曲线我们已知磁场中有l

H dl I ?=?

由上式可以知道,磁场面积S 的总的电流强度。显然,仅此还不能了解磁场中任一点构成右手螺旋关系。则矢之正向的环量?Γ与面积点时,若?Γ的极限存在,则称其为

n μ,即,l

S

???

H 所构成的磁场中的一点lim

l

S S

??→=??

又如在流速场v 中的一点M lim l

S M v dl

S

??→?=??

M 处与n 成右手螺旋方向的环流对面积的变化率,

R ,则称矢量rotF ,即 rotF R =

lim

l

rotF S

?=??

1:在磁场H 中,旋度rotH 是在给定处,它的方向乃是最大电流其模即为最大电流密度的数值,

影,就给出该方向上的环流密度。 x z

x y

e e x y z y

f f ?

=

????一个线速度场。由运动学知道,矢径为12()j y x k ωω+-,求线速度解:由速度场的雅可比(

这说明,在刚体转动的线速度场中,任一点z z f x

?? ?

(由方向导数的公式0l dl

φ=??,

得d (S

V

??S 为V 的表面,s d 等于ds 乘以外法线方向单位矢量。(在矢量场中任取体积V 坐标轴的三组平行面把体积s

s

F dS V ??可知,

f fdV ??=??∑?,在S 所围中,小六面体的表面可以分成两种:一种是内部的面,它们s

?

(S

V

??3.斯托克斯(stokes )公式

(L

S

??S 的边界。S 方向与L 成右手螺旋关系。A 中,任取一个非闭合面l

S

???

()n i

n e l F dl e dS rotF rotF dS ?=?=?()()n n i

e e l s

F dl rotF dS rotF dS ?==∑??,沿小面积元

的边界取线积分时,内部沿每两个面积元的边线都计算了两次,积分的方向相反,在求和时这两部分互相抵消,合部分的积分值,因而得到i

l l

F dl F dl

?=

???(L

S

dS ??)

4.标量场本质上可以由该场的梯度确定,矢量场本质上由该场的散度、旋度确定。

)f??

??=

()f

????≡

如果某一矢量A的散度为零(

称为矢量场A的矢量势

??

++

4)2

f f f

????=???-?

()()

?=?-?=

()()()(

a b c b a c a b a c

)()()()

f f f f f

??=???-???=???-?

?

(I.20)

(I.21)

(I.22)

(I.23)

(I.21)()

f g ???根据?的微分性质,应分别作用到()f f g ???=?质,可通过矢量混合积的性质改写,使其分别直接作用到()()(f f f g f g ?=???=??)

f g ?不能写成()g f g ???, 因g ?要作用在)(

()g g g g =-????=)()()g g f f g ?=???-???

()()

()f g f g f g f g ???=???+??? ()()

a c

b a b

c =?-? 因而由矢量性得

()()()(f f f f g g f g f ??=??-??=())g f g f =??, 因f ?只作用在f 上 ]

()()g g f g f g ???=??-)()()()()g f f g f g g f =??+??-??-??

()()()

f g f g f g f g ?=??+?? ( 由微分性) )()()a b c c a b c b a ??=?-? ()()()

b c a c b a b c ?=?-??

()()()f f f f g g f f g ?=??-???=

,然后根据三个矢量叉乘进行运算分析即可。

?=???+??+???+??

)()()()(

g f g f g g f g

δ

点,()x

选择性(f?附近的连

选择性(

f?

V

通常电荷密度是与空间位置有关的有限连续函数。如果不是有限

i

()x 函数的导数是奇函数,以电偶极子)2y z y e z e ''?+?,于是当

()()()

x x x x ρδδ?'其中'?=-?.)

④在曲线坐标系中用δ2()()(x x y y z ''-+-+

r (如果积分面所包含的体积包含原点);或等于零,(如果积分面所包这个式子的意义仅是原来的这个式子是有实际用途的。处,30r

r

??=,但在0r =点为中心,34S dS r ?=-?由关于δ函数的定义,有

4dV π=(当x

《矢量分析与场论》

1、若一个矢量的大小和方向不变,则该矢量为常矢量。 ( ) 2、若穿过一个封闭曲面的通量为零,则该曲面内无源。 ( ) 3、平行平面矢量场中的所有矢量的大小和方向都相同。 ( ) 二、单项选择题 1、下列关于导矢()t 'r 的说法正确的是( ) A 、()t 'r 的几何意义为矢端曲线上的一个单位切向矢量。 B 、()t 'r 的物理意义为一个质点的加速度矢量。 C 、若()t =r 常数,则()t r 与()t 'r 互相平行。 D 、()t 'r 恒指向t 值增大的一方 2、下列关于环量面密度和旋度的各种说法,正确的是( ) A 、环量面密度和旋度都是矢量。 B 、矢量场中某一个点的环量面密度有无数个 ,其中最大的那个环量面密度就 是旋度。 C 、旋度是用矢量场来描述数量场。 D 、某个方向的环量面密度等于旋度在该方向上的投影。 3、下列关于拉普拉斯运算符、调和场和调和函数,说法错误的是( ) A 、若0u ?=,则u 为调和函数 B 、()u divgrad u ?= C 、调和场的散度和旋度都为0 D 、调和场是一个矢量场

1、已知曲线的矢量方程为sin sin cos t t t =++r i j k ,该曲线的参数方程是______。 2、矢性函数()t A 的导矢()t 'A 可分解为两个矢量,分解后的矢量一个与()t A 垂直, 另一个矢量与()t A ______。 3、数量场x y u z -=22 通过M (2,1,1)的等值面方程为______。 4、矢量场()22xz yz x y =+-+A i j k 的矢量线方程为______。 5、矢量场333x y z =++A i j k 穿出球面2221x y z ++=的通量为______。 6、在线单连域内,场有势,场无旋,______,P Q R ?=++A dl dx dy dz 为某个函数 的全微分是互相等价的。 7、平面调和场的力线又是矢量场的_____。 8、正交曲线坐标系中一般曲线弧微分ds 和坐标曲线弧微分1ds ,2ds ,3ds 的关系是______。 四、计算题(每题8分,共40分) 1、已知矢量()()232(2)424t t t t t t =-++-A i j k ,计算(1)()1 lim t t =A (2分), (2)()d dt t A (2分),(3)()dt t ?A (2分),(4)()11dt t -?A (2分)。 2、计算积分()()0a e b d a ???≠?e ,式中()b ?e 为圆函数。 3、求函数u xyz =在曲面20z xy -=上的点M (2,3,3)处沿曲面上侧法线方向的 ()23222)()3yz y yz xyz xz -+++-i j k 所产生的散度场通过点

电磁场与电磁波_ 矢量分析和场论_

1.2 梯 度
自强●弘毅●求是●拓新

1.2.1 场的概念
任何物理过程总是在一定空间上发生,对应的物理量在 空间区域按特定的规律分布。如
电荷在其周围空间激发电场的分布 电流在周围空间激发磁场的分布 地球上太阳及其他原因激发温度的分布
在空间区域上每一点有确定物理量与之对应,称在该区 域上定义了该物理量的场

1.2.1 场的概念
只有数值的大小而没有方向的场称为标量场 既有数值的大小又有方向的场称为矢量场 如果场与时间无关,称为静态场,反之为时变场
静态标量场用 u x, y,z
静态矢量场 F x, y,z
时变场标量场用 u x, y,z,t 时变矢量场 F x, y,z,t

1.2.1 场的概念
14 16
18
20
?35.50
22
12 50 MLAT 10 60
70 80
2 0 MLT
40
8 30
20
10 6
0
?10
?20
4
?30
?40
33.42
Potential (kV)
Z [R]
15 10
5 0 -5 -10 -15
10
t = 21:15 UT
0
-10
X [R]
p [nPa]
2
1.7725
1.545
1.3175
1.09
0.8625
-20
0.635
0.4075
0.18

场论

§2 场论初步 一、场论的基本概念及梯度、散度与旋度 [标量场] 空间区域D的每点M(x,y,z)对应一个数量值(x,y,z),它在此空间区域 D上就构成一个标量场,用点M(x,y,z)的标函数(x,y,z)表示.若M的位置用矢 径r确定,则标量可以看作变矢r的函数=(r). 例如温度场u(x,y,z),密度场,电位场e(x,y,z)都是标量场. [矢量场] 空间区域D的每点M(x,y,z)对应一个矢量值R(x,y,z),它在此空间区域D上就构成一个矢量场,用点M(x,y,z)的矢量函数R(x,y,z)表示.若M的位置用矢径r确定,则矢量R可以看作变矢r的矢函数R(r): R(r)=X(x,y,z)i+Y(x,y,z)j+Z(x,y,z)k 例如流速场(x,y,z),电场E(x,y,z),磁场H(x,y,z)都是矢量场. 与标量场的情况一样,矢量场概念与矢函数概念,实质上是一样的.沿用这些术语(标量场、矢量场)是为了保留它们的自身起源与物理意义. [梯度] grad=(,,)==i+j+k 式中=i+j+k称为哈密顿算子,也称为耐普拉算子.grad有的书刊中 记作del. grad的方向与过点(x,y,z)的等量面=C的法线方向N重合,并指向 增加的一方,是函数变化率最大的方向,它的长度等于.

梯度具有性质: grad(+)=grad+grad(、为常数) grad()=grad+grad grad F()= [方向导数] =l·grad=cos+cos+cos 式中l=(cos,cos,cos)为方向l的单位矢量,,,为其方向角. 方向导数为在方向l上的变化律,它等于梯度在方向l上的投影. [散度] div R=++=·R=div(X , Y , Z) 式中为哈密顿算子. 散度具有性质: div(a+b)=div a+div b(、为常数) div(a)=div a+a grad div(a×b)=b·rot a-a·rot b [旋度]

矢量分析与场论课后答案..

矢量分析与场论 习题1 1.写出下列曲线的矢量方程,并说明它们是何种曲线。 ()1x a t y b t cos ,sin == () 2x t y t z t 3sin ,4sin ,3cos === 解: ()1r a ti b tj cos sin =+,其图形是xOy 平面上之椭圆。 ()2r ti tj tk 3sin 4sin 3cos =++,其图形是平面430x y -=与圆柱面 2223x z +=之交线,为一椭圆。 4.求曲线3 2 3 2,,t z t y t x = ==的一个切向单位矢量τ。 解:曲线的矢量方程为k t j t ti r 32 3 2+ += 则其切向矢量为k t tj i dt dr 222++= 模为24221441||t t t dt dr +=++= 于是切向单位矢量为2 22122||/t k t tj i dt dr dt dr +++= 6.求曲线x a t y a t z a t 2 sin ,sin 2,cos ,===在t π 4 = 处的一个切向矢量。 解:曲线矢量方程为 r a ti a tj a tk 2sin sin2cos =++ 切向矢量为r a ti a tj a tk t τd sin22cos2sin d ==+- 在t π 4 = 处,t r ai a k t π τ4 d 2d 2 = = =- 7.求曲线t t z t y t x 62,34,12 2 -=-=+= 在对应于2=t 的点M 处的切线方程和法平面方程。 解:由题意得),4,5,5(-M 曲线矢量方程为,)62()34()1(22k t t j t i t r -+-++=

矢量分析与场论推导

矢量分析与场论 矢量分析是矢量代数和微机分运算的结合和推广,主要研究矢性函数的极限、连续、导数、微分、积分等。而场论则是借助于矢量分析这个工具,研究数量场和矢量场的有关概念和性质。通过这一部分的学习,可使读者掌握矢量分析和场论这两个数学工具,并初步接触到算子的概念及其简单用法,为以后学习有关专业课程和解决实际问题,打下了必要的数学基础。 第1章 矢量分析 在矢量代数中,曾经讨论过模和方向都保持不变的矢量,这种矢量称为常矢。然而,在科学和技术的许多问题中,也常遇到模和方向改变或其中之一会改变的矢量,这种矢量称为变矢。如非等速及非直线运动物体的速度就是变矢量的典型例子。变矢量是矢量分析研究的重要对象。本章主要讨论变矢与数性变量之间的对应关系——矢函数及微分、积分和它们的一些主要性质。 §1.1 矢函数 与普通数量函数的定义类似,我们引进矢性函数(简称矢函数)的概念,进而结出矢函数的极限与连续性等概念。 1、矢函数的概念 定义1.1.1 设有数性变量t 和变矢A ,如果对于t 在某个范围D 内的每一个数值,A 都以一个确定的矢量和它对应,则称A 为数性变量t 的矢量函数,记作 A =A )(t (1.1.1) 并称D 为矢函数A 的定义域。 在Oxyz 直角坐标系中,用矢量的坐标表示法,矢函数可写成 A {})(),(),()(t A t A t A t z y x = (1.1.2) 其中)(),(),(t A t A t A z y x 都是变量t 的数性函数,可见一个矢函数和三个 有序的数性函数构成一一对应关系。即在空间直角坐标系下,一个矢 函数相当于三个数性函数。 本章所讲的矢量均指自由矢量,所以,以后总可以把A )(t 的起点取在坐标原点。这样当t 变化时,A )(t 的终点M 就描绘出一条曲线l (图1.1),这样的曲线称为矢函数A )(t 的矢端曲线,也称为矢函数A )(t 的图形。同时称(1.1.1)式或(1.1.2)式为此曲线的矢量方程。愿点O 也称为矢端曲线的极。 由于终点为),,(z y x M 的矢量对于原点O 的矢径为 zk yj xi r ++== 当把A )(t 的起点取在坐标原点时,A )(t 实际上就成为其终点),,(z y x M 的矢径,因此)(t A 的三个坐标)(),(),(t A t A t A z y x 就对应地等于其终点M 的三个坐标z y x ,,,即 )(),(),(t A z t A y t A x z y x === (1.1.3) 此式就是曲线l 的参数方程。 只是模变化而方向不变的矢量,它的矢端曲线是通过记得射线。只改变方向而模不变的矢量,它的矢锻曲线是位于以极为中心模为半径的球面上的某一曲线。 2、矢函数的极限和连续性 定义1.1.2 设矢函数A )(t 在点o t 的某个领域内有定义(但在o t 处可以无定义),A 0为一常矢。若对于任意给定的正数ε,都存在一个正数δ,

(完整版)矢量分析与场论第四版谢树艺习题答案

4 习题 1 解答 1.写出下列曲线的矢量方程,并说明它们是何种曲线。 1 x acost, y bsint 2 x 3sin t, y 4sin t,z 3cost 解: 1 r a costi bsin tj ,其图形是 xOy 平面上之椭圆。 2 r 3sin ti 4sin tj 3cos tk , 其 图 形 是 平 面 4x 3y 0 与 圆 柱 面 222 x 2 z 2 32 之交线,为一椭圆。 2.设有定圆 O 与动圆 c ,半径均为 a ,动圆在定圆外相切而滚 动, 所描曲线的矢量方程。 uuuur 解:设 M 点的矢径为 OM r xi yj , AOC 与 x 轴的夹角为 uuuur uuur ;因 OM OC uuuur CM 有 r xi yj 2acos i 2asin j acos 2 asin 2 则 x 2acos acos2 ,y 2asin asin2 . 故 r (2acos acos2 )i (2asin asin2 )j 4.求曲线 x t,y 2 ,z 2 t 3 的一个切向单位矢 量 解:曲线的矢量方程为 ti t dr 则其切向矢量为 dt 2t j 模为| d d r t | 1 4t 2 4t 4 dr 于是切向单位矢量为 dt / | d d r t 6.求曲线 x asin 2 t,y 23 t 3 k 2t 2 k 2t 2tj 2t 2 k 2 1 2t 2 asin 2t,z acost,在 t 处的一个切向矢量。 解:曲线矢量方程为 r asin 2 ti asin2tj acostk 求动圆上一定点 M

矢量分析与场论

矢量分析与场论 第一章 矢理分析 1.1 矢性函数 1. 矢性函数的定义:数性变量t 在一范围G 内,对于任意的t 都有唯一确定的矢量A 与其 对应则称A 是t 的矢性函数,并称G 为A 的定义域,记作:()A A t = 2. 矢性函数的极限和连续性 (1) 矢性函数极限的定义:()A t 在0t 某领域内有定义,对于0ε?>,0δ?>,常矢 量0A ,只要为0<0t t δ-<就有0()A t A ε-< ,则称0A 为()A t 当0t t →的极 限,记作:0 0lim ()t t A t A →= ; 极限的性质:(有界性)若0 0lim ()t t A t A →= ,则0δ?>,M>0,0(;)t U t δ?∈ 都有 ()A t M < 。 证明: 0lim ()1,0,..(;) t t A t A s t t U t εδδ→=∴=?>?∈ 都有0()1A t A ε-<= ,00()()1A t A A t A ∴-<-< , 0()1A t A ∴<+ ,取M=01A + 极限的则运算:0 lim ()()lim ()lim ()t t t t t t u t A t u t A t →→→=? 000l i m (()())l i m ()l i m () t t t t t t A t B t A t B t →→→±=± lim(()())lim ()lim ()t t t t t t A t B t A t B t →→→?=? lim(()())lim ()lim ()t t t t t t A t B t A t B t →→→?=? 其中()u t ,()A t ,()B t 当0t t →时极限均存在。 证明:设0 0lim ()t t A t A →= ,0 0lim ()t t u t u →=,0 0lim ()t t B t B →= ; 000000()()()()()()u t A t u A u t A t u A t u A t u A -=-+- ,

矢量分析与场论讲义

矢量分析与场论 第一章矢量分析 一内容概要 1矢量分析是场论的基础,本章主要包括以下几个主要概念:矢性函数及其极限、连续,有关导数、微分、积分等概念。与高等数学研究过的数性函数的相应概念完全类似,可以看成是这些概念在矢量分析中的推广。 2本章所讨论的,仅限于一个自变量的矢性函数 A t ,但在后边场论部分所涉及的矢性函数,则完全是两个或者三个自变量的多元矢性函数A x,y或者A x, y,z,对于这种多元矢性函数及其极限、连续、偏导数、全微分等概念,完全可以仿照本章将高等数学中的多元函数及其有关的相应概念加以推广而得出。 3本章的重点是矢性函数及其微分法,特别要注意导矢A't的几何意义,即 A' t是位于A t的矢端曲线上的一个切向矢量,其起点在曲线上对应t值的点处,且恒指向t值增大的一方。 如果将自变量取为矢端曲线的弧长S,即矢性函数成为A = A s,则 A' s =d A不仅是一个恒指向S增大一方的切向矢量,而且是一个单位ds 切向矢量。这一点在几何和力学上都很重要。 4矢量A t保持定长的充分必要条件是 A t与其导矢A' t互相垂直。因此单位矢量与其导矢互相垂直。比如圆函数 e t = cost i si nt j为单 位矢量,故有e t _e't,此外又由于e' t = ei t,故e t — & t。(圆函数还可以用来简化较冗长的公式,注意灵活运用)。 5在矢性函数的积分法中,注意两个矢性函数的数量积和两个矢性函数的矢量积的分部积分法公式有所不同,分别为: A B'dt 二AB— B A'dt

A B'dt 二 A B B A'dt 前者与高等数学种数性函数的分部积分法公式一致,后者有两两项变为了求和,这是因为矢量积服从于“负交换律”之故。 6在矢量代数中,在引进了矢量坐标之后,一个空间量就和三个数量构成 对应关系,而且有关矢量的一些运算,例如和、差以及数量与矢量的乘积都可以转化为三个数量坐标的相应运算。同样,在矢量分析中,若矢性函数采用坐标表示式,则一个矢性函数就和三个数性函数构成一一对应关系,而且有关矢性函数的一些运算,例如计算极限、求导数、求积分等亦可以转化为对其三个坐标函数的相应运算。 7矢性函数极限的基本运算公式(14)、导数运算公式(p11)、不定积分 的基本运算公式(p16)典型例题: 教材p6 例2、p10 例4、p12 例6、p13 例7。习题一(p19~20) 此外还有上课所讲的例题。补充: 1 2 TT 1)设r 二a0]亠b k,求S 二-i ir r' d^ 2)一质点以常角加速度沿圆周r = ae「运动,试证明其加速度 2 八-£r,其中v为速度v的模。 a 3)已知矢量 A =t i -2t j l nt k , B = e t i si nt j - 3t k ,计算积分.A B' dt。 4)已知矢量 A = t i 2t j , B = cost i sint j ? e,k,计算积分A B'dt。 第二章场论一内容概要1本章按其特点可以划分为三部分:第一部分为第一节,除介绍场的概念外,主要讨论了如何从宏观上利用等值面(线)和矢量线描述场的分布规律;第二部分为第二、三、四节,内容主要是从微观方面揭示场的一些重要特性;第三部分为第五节,主要介绍三种具有某种特性而又常见的矢量场。其中第二部分又为本章之重点。 2空间数量场的等值面和平面数量场的等值线以及矢量场的矢量线等,都是为了能够形象直观地体现所考察的数量uM或矢量A M在场中的宏观分布情况而引入的概念。 比如温度场中的等温面,电位场中的等位面,都是空间数量场中等值

矢量分析与场论讲义

矢量分析与场论 矢量分析是矢量代数和微机分运算的结合和推广,主要研究矢性函数的极限、连续、导数、微分、积分等。而场论则是借助于矢量分析这个工具,研究数量场和矢量场的有关概念和性质。通过这一部分的学习,可使读者掌握矢量分析和场论这两个数学工具,并初步接触到算子的概念及其简单用法,为以后学习有关专业课程和解决实际问题,打下了必要的数学基础。 第一章 矢量分析 一 内容概要 1 矢量分析是场论的基础,本章主要包括以下几个主要概念:矢性函数及其极限、连续,有关导数、微分、积分等概念。与高等数学研究过的数性函数的相应概念完全类似,可以看成是这些概念在矢量分析中的推广。 2 本章所讨论的,仅限于一个自变量的矢性函数()t A ,但在后边场论部分所涉及的矢性函数,则完全是两个或者三个自变量的多元矢性函数()y x ,A 或者()z y x ,,A ,对于这种多元矢性函数及其极限、连续、偏导数、全微分等概念,完全可以仿照本章将高等数学中的多元函数及其有关的相应概念加以推广而得出。 3 本章的重点是矢性函数及其微分法,特别要注意导矢()t 'A 的几何意义,即()t 'A 是位于()t A 的矢端曲线上的一个切向矢量,其起点在曲线上对应t 值的点处,且恒指向t 值增大的一方。 如果将自变量取为矢端曲线的弧长s ,即矢性函数成为()s A A =,则()ds d s A A ='不仅是一个恒指向s 增大一方的切向矢量,而且是一个单位切向矢量。这一点在几何和力学上都很重要。 4 矢量()t A 保持定长的充分必要条件是()t A 与其导矢()t 'A 互相垂直。因此单位矢量与其导矢互相垂直。比如圆函数()j i e t t t sin cos +=为单位矢量,故有()()t t 'e e ⊥,此外又由于()()t t 1'e e =,故()()t t 1e e ⊥。(圆函

矢量分析与场论第四版_谢树艺习题答案

矢量分析与场论习题解答 习题1解答 1.写出下列曲线的矢量方程,并说明它们是何种曲线。 ()1x a t y b t cos ,sin == () 2x t y t z t 3sin ,4sin ,3cos === 解: ()1r a ti b tj cos sin =+,其图形是xOy 平面上之椭圆。 ()2r ti tj tk 3sin 4sin 3cos =++,其图形是平面430x y -=与圆柱面2 2 2 3x z +=之交线,为一椭圆。 2.设有定圆O 与动圆c ,半径均为a ,动圆在定圆外相切而滚动,求动圆上一定点M 所描曲线的矢量方程。 解:设M 点的矢径为OM r xi yj ==+,AOC θ∠=,CM 与x 轴的夹角为2θπ-;因OM OC CM =+有 ()()r xi yj a i a j a i a j θθθπθπ2cos 2sin cos 2sin 2=+=++-+- 则 .2sin sin 2,2cos cos 2θθθθa a y a a x -=-= 故j a a i a a r )2sin sin 2()2cos cos 2(θθθθ-+-= 4.求曲线3 2 3 2,,t z t y t x = ==的一个切向单位矢量τ。 解:曲线的矢量方程为k t j t ti r 3 2 3 2+ += 则其切向矢量为k t tj i dt dr 2 22++= 模为24221441|| t t t dt dr +=++= 于是切向单位矢量为2 22122||/t k t tj i dt dr dt dr +++= 6.求曲线x a t y a t z a t 2 sin ,sin 2,cos ,===在t π 4 = 处的一个切向矢量。 解:曲线矢量方程为 r a ti a tj a tk 2sin sin2cos =++ 切向矢量为r a ti a tj a tk t τd sin22cos2sin d ==+- 在π r d 2

矢量分析与场论(2)

第02讲 本节内容 1,方向导数 2,梯度 3,散度 4,旋度 1 / 38

2 / 38 5, 正交坐标系 第一章 矢量分析与场论(2) 1,数量场的方向导数 1.1方向导数 由上节可知,数量场)(M u u 的分布情况,可以借助于等值面或等值线来了解,但这只能大致地了解数量场中物理量u 的整体分布情况。而要详细地研究数量场,还必须对它作局部性的了解,即要考察物理量u 在场中各点处的邻域内沿每一方向的变化情况。为此,引入方向导数的概念。

3 / 38 设0M 是数量场 )(M u u =中的一点,从 0M 出发沿某一方向引一 条射线l ,在l 上0M 的邻 近取一动点M ,ρ=M M 0, 若当 M M →时(即 0→ρ): 的极限存在,则称此极限为函数)(M u 在点0M 处沿l 方向的方向导数。记为 M l u ??,即: 可见,方向导数0 M l u ??是函数)(M u 在点0M 处沿l 方向对距离的变化率。 M 0 l

4 / 38 当0>??l u 时,表示在0M 处 u 沿l 方向是增加的,反之就是减小的。 在直角坐标系中,方向导数有以下定理所述的计算公式: [定理] 若函数),,(z y x u u =在点),,(0000z y x M 处可微,αcos ,βcos ,γ cos 为l 方向的方向余弦。则u 在0M 处沿l 方向的方向导数必存在,且: 证:M 坐标为),,(000z z y y x x ?+?+?+ ∵u 在点0M 可微,故: ω是比ρ高阶的无穷小。两边除以ρ得 两边取0→ρ时的极限得 例 求数量场z y x u 2 2+=在点)2,1,1(M 处沿z y x l ?2?2?++= 方向的方向导数。

山东科技大学《矢量分析与场论》试卷

一、判断题 1、若一个矢量的大小和方向不变,则该矢量为常矢量。 ( ) 2、若穿过一个封闭曲面的通量为零,则该曲面内无源。 ( ) 3、平行平面矢量场中的所有矢量的大小和方向都相同。 ( ) 二、单项选择题 1、下列关于导矢()t 'r 的说法正确的是( ) A 、()t 'r 的几何意义为矢端曲线上的一个单位切向矢量。 B 、()t 'r 的物理意义为一个质点的加速度矢量。 C 、若()t =r 常数,则()t r 与()t 'r 互相平行。 D 、()t 'r 恒指向t 值增大的一方 2、下列关于环量面密度和旋度的各种说法,正确的是( ) A 、环量面密度和旋度都是矢量。 B 、矢量场中某一个点的环量面密度有无数个 ,其中最大的那个环量面密度就 是旋度。 C 、旋度是用矢量场来描述数量场。 D 、某个方向的环量面密度等于旋度在该方向上的投影。 3、下列关于拉普拉斯运算符、调和场和调和函数,说法错误的是( ) A 、若0u ?=,则u 为调和函数 B 、()u divgrad u ?= C 、调和场的散度和旋度都为0 D 、调和场是一个矢量场 三、填空题 1、已知曲线的矢量方程为sin sin cos t t t =++r i j k ,该曲线的参数方程是______。 2、矢性函数()t A 的导矢()t 'A 可分解为两个矢量,分解后的矢量一个与()t A 垂直,

另一个矢量与()t A ______。 3、数量场x y u z -=22 通过M (2,1,1)的等值面方程为______。 4、矢量场()22xz yz x y =+-+A i j k 的矢量线方程为______。 5、矢量场333x y z =++A i j k 穿出球面2221x y z ++=的通量为______。 6、在线单连域内,场有势,场无旋,______,P Q R ?=++A dl dx dy dz 为某个函数 的全微分是互相等价的。 7、平面调和场的力线又是矢量场的_____。 8、正交曲线坐标系中一般曲线弧微分ds 和坐标曲线弧微分1ds ,2ds ,3ds 的关系是 ______。 四、计算题(每题8分,共40分) 1、已知矢量()()232(2)424t t t t t t =-++-A i j k ,计算(1)()1 lim t t =A (2分), (2)()d dt t A (2分),(3)()dt t ?A (2分),(4)()11dt t -?A (2分)。 2、计算积分()()0a e b d a ???≠?e ,式中()b ?e 为圆函数。 3、求函数u xyz =在曲面20z xy -=上的点M (2,3,3)处沿曲面上侧法线方向的方向导数M u n ??。 4、求矢量场()2322(32)()3x yz y yz xyz xz =-+++-A i j k 所产生的散度场通过点 (2,1,1)M -的等值面方程及其在点M 处沿x 轴正向的变化率。 五、证明题 1、设n 为闭合曲面S 的向外单位法矢,证明 (1)dV u u dS u S )(A A n A ??+??=??????Ω 2、在球面坐标系中,证明2 1r r = A e 为有势场,并求其势函数v 。

矢量分析与场论_谢树艺习题答案清晰版

习题1 解答 1.写出下列曲线的矢量方程,并说明它们是何种曲线。 ()1x a t y b t cos ,sin == () 2x t y t z t 3sin ,4sin ,3cos === 解: ()1r a ti b tj cos sin =+,其图形是xOy 平面上之椭圆。 ()2r ti tj tk 3sin 4sin 3cos =++,其图形是平面430x y -=与圆柱面 2223x z +=之交线,为一椭圆。 2.设有定圆O 与动圆c ,半径均为a ,动圆在定圆外相切而滚动,求动圆上一定点M 所描曲线的矢量方程。 解:设M 点的矢径为OM r xi yj ==+,AOC θ∠=,CM 与x 轴的夹角为 2θπ-;因OM OC CM =+有 ()()r xi yj a i a j a i a j θθθπθπ2cos 2sin cos 2sin 2=+=++-+- 则 .2sin sin 2,2cos cos 2θθθθa a y a a x -=-= 故j a a i a a r )2sin sin 2()2cos cos 2(θθθθ-+-= 4.求曲线3 2 3 2,,t z t y t x = ==的一个切向单位矢量τ。 解:曲线的矢量方程为k t j t ti r 3 2 3 2++= 则其切向矢量为k t tj i dt dr 2 22++= 模为24221441|| t t t dt dr +=++= 于是切向单位矢量为2 22122||/t k t tj i dt dr dt dr +++= 6.求曲线x a t y a t z a t 2 sin ,sin 2,cos ,===在t π 4 = 处的一个切向矢量。

矢量分析与场论课后答案.

矢量分析与场论 习题1 1.写出下列曲线的矢量方程,并说明它们是何种曲线。 ()1x a t y b t cos ,sin == () 2x t y t z t 3sin ,4sin ,3cos === 解: ()1r a ti b tj cos sin =+,其图形是xOy 平面上之椭圆。 ()2r ti tj tk 3sin 4sin 3cos =++,其图形是平面430x y -=与圆柱面 2223x z +=之交线,为一椭圆。 4.求曲线3 2 3 2,,t z t y t x = ==的一个切向单位矢量τ。 解:曲线的矢量方程为k t j t ti r 3 2 3 2+ += 则其切向矢量为k t tj i dt dr 222++= 模为24221441|| t t t dt dr +=++= 于是切向单位矢量为 2 22122||/t k t tj i dt dr dt dr +++= 6.求曲线x a t y a t z a t 2 sin ,sin2,cos ,===在t π 4 = 处的一个切向矢量。 解:曲线矢量方程为 r a ti a tj a tk 2sin sin2cos =++ 切向矢量为r a ti a tj a tk t τd sin22cos2sin d ==+- 在t π 4 = 处,t r ai a k t π τ4 d d = = =- 7.求曲线t t z t y t x 62,34,12 2-=-=+= 在对应于2=t 的点M 处的切线方程和 法平面方程。 解:由题意得),4,5,5(-M 曲线矢量方程为,)62()34()1(22k t t j t i t r -+-++=

场论的相关数学理论

场论的相关数学理论 场论是研究某些物理量在空间中的分布状态及其运动形式的数学理论,它的内容 是进一步深入研究电磁场及流体等的运动规律的基础,也是学习某些后继课程的 基础,本章主要介绍场论中几个基本概念(梯度、散度、旋度)以及它们的应用。 §2.1 场1、 场的概念 设有一个区域(有限或无限)V ,如果V 内每一点M ,都对应着某个物理量的一个确定的值,则称在区域 V 中确定了该物理量的一个场。若该物理量是数 量,则称此场为数量场;若是矢量,则称此场为矢量场。例如温度场、密度场、电位场等为数量场,而力场、速度场等为矢量场。此外,若物理量在场中各点处的对应值不随时间而变化,则称该场为稳定场;否 则,称为不稳定场。后面我们只讨论稳定场(当然,所得的结果也适合于不稳定 场的每一瞬间情况)。 在数学上给定一个数量场就相当于给定了一个数性函数)(M u u ;同样,给定 了一个矢量场就相当于给定了一个矢性函数A=A )(M ,其中M 表示区域V 中 的点。当取顶了直角坐标系 Oxyz 以后,空间中的点M 由它的三个坐标 x 、、y 、 所确定,因此,一个数量场可以用一个数性函数 ) (x 、、y 、zu u (2.1.1) 来表示。同样,一个矢量场可用一个矢性函数 A=A ) (x 、、y 、(2.1.2) 来表示。 从数学观点看,数量场的概念与点函数概念相比没有新的内容,向量场的概念与 向量函数相比没有新的内容, 但是为了强调场这个概念的起源与物理意义, 我们 仍用“场”的有关术语重述前面有关章节的内容,并赋予它新的含义。2、 数量场的等值面 在数量场中,为了直观地研究数量u 在场中的分布状况,我们引入等值面的概念。所谓等值面,是指由场中使函数 u 取相同数值的点所组成的曲面。 例如电位场中 的等值面,就是由电位相同的点所组成的等值面。显然,数量场 u 的等值面方程为C x 、、y 、u )((C 为常数)。由隐函数存在 定理知道,在函数u 为单值,且连续偏导数 z y x u 、u 、u 不全为零时,这种等值 面一定存在。 给常数C 以不同的数值,就得到不同的等值面。这些等值面充满了数量场所在的空间V ,而且互不相交。这是原因数量场中的每一点),,(0000z y x M 都有一等 值面 ) ,,() ,,(000z y x u z y x u (2.1.3) 通过;而且由于函数u 为单值,一个点就只能在一个等值面上。 例 2.1.1 求数量场2 2 2 2 z y x R u 经过点2 , 0,0R M 的等值面方程。 解数量场2 2 2 2 z y x R u 的等值面族是 C z y x R 2 2 2 2 或 2 2 2 2 2 C R z y x

(完整版)矢量分析与场论第四版谢树艺习题答案.docx

习题 1解答 1.写出下列曲线的矢量方程,并说明它们是何种曲线。 1x a cos t, y b sin t 2x3sin t , y4sin t , z3cos t 解:1r a costi b sin tj ,其图形是 xOy 平面上之椭圆。 2r3sin ti4sin tj3cos tk,其图形是平面 4 x 3 y 0 与圆柱面x2z232之交线,为一椭圆。 2.设有定圆O与动圆c,半径均为a,动圆在定圆外相切而滚动,求动圆上一定点 M 所描曲线的矢量方程。 uuuur xi yj ,AOC uuur 解:设 M 点的矢径为OM r, CM 与x轴的夹角为 2 uuuur uuur uuuur ;因 OM OC CM 有 r xi yj2a cos i 2asin j acos2i a sin 2j 则 x2acos acos2, y2a sin asin 2 . 故 r( 2acos a cos2 )i(2a sin asin 2) j 4.求曲线x t , y t 2 , z2t 3的一个切向单位矢量。 3 解:曲线的矢量方程为r ti t 2 j2t 3 k 3 dr i2tj2t 2k 则其切向矢量为 dt 模为 | dr |14t 24t 412t 2 dt 于是切向单位矢量为dr/ |dr|i 2 tj 2 t 2 k dt dt1 2 t 2 6.求曲线x a sin 2 t , y a sin 2t , z a cost , 在 t处的一个切向矢量。 4 解:曲线矢量方程为r asin 2 ti asin2tj acostk

切向矢量为 dr asin2ti 2acos2tj asintk dt 在 t 处, d r ai a 2 k 4 d t 2 t 4 7. 求曲线 x t 2 1, y 4t 3, z 2t 2 6t 在对应于 t 2 的点 M 处的切线方程和 法平面方程。 解:由题意得 M (5,5, 4), 曲线矢量方程为 r ( t 2 1) (4 3) j (2 2 6 ) k , i t t t 在 t 2 的点 M 处,切向矢量 dr ti j t k i j k dt t 2 [ 2 4 (4 6) ] t 2 4 4 2 于是切线方程为 x 5 y 5 z 4 , 即 x 5 y 5 z 4 4 4 2 2 2 1 于是法平面方程为 2( x 5) 2( y 5) ( z 4) 0 ,即 2 x 2 y z 16 8.求曲线 r ti t 2 j t 3 k 上的这样的点,使该点的切线平行于平面 x 2y z 4 。 解:曲线切向矢量为 dr i 2tj 3t 2 k , ⑴ dt 平面的法矢量为 n i 2 j k ,由题知 n i 2 tj 3t 2k i 2j k 1 t 3t 2 4 得 t1, 1 。将此依次代入⑴式,得 3 |t 1 i j k , | 1 t 3 故所求点为 1,1 1 , 1 , 1 , 1 3 9 27 1 i 1 j 1 k 3 9 27 习题 2 解答 1.说出下列数量场所在的空间区域,并求出其等值面。 1 u 1 ; Ax By Cz D

最新高等数学场论基本概念

数学物理基础 梯度、散度和旋度 梯度、散度和旋度是矢量分析里的重要概念。之所以是“分析”,因为三者是三种偏导数计算形式。这里假设读者已经了解了三者的定义。它们的符号分别记作如下: 从符号中可以获得这样的信息: ①求梯度是针对一个标量函数,求梯度的结果是得到一个矢量函数。这里φ称为势函数; ②求散度则是针对一个矢量函数,得到的结果是一个标量函数,跟求梯度是反一下 的; ③求旋度是针对一个矢量函数,得到的还是一个矢量函数。 这三种关系可以从定义式很直观地看出,因此可以求“梯度的散度”、“散度的梯度”、“梯度的旋度”、“旋度的散度”和“旋度的旋度”,只有旋度可以连续作用两次,而一维波动方程具有如下的形式 (1) 其中a为一实数,于是可以设想,对于一个矢量函数来说,要求得它的波动方程,只有求它的“旋度的旋度”才能得到。下面先给出梯度、散度和旋度的计算式: (2) ( 3)

(4)旋度公式略显复杂。这里结合麦克斯韦电磁场理论,来讨论前面几个“X度的X度”。 I.梯度的散度: 根据麦克斯韦方程有: 而 (5)则电势的梯度的散度为 这是一个三维空间上的标量函数,常记作 (6)称为泊松方程,而算符▽2称为拉普拉斯算符。事实上因为定义 所以有 当然,这只是一种记忆方式。 当空间内无电荷分布时,即ρ=0,则称为拉普拉斯方程

当我们仅需要考虑一维情况时,比如电荷均匀分布的无限大平行板电容器之间(不包含极板)的电场,我们知道该电场只有一个指向,场强处处相等,于是该电场满足一维拉普拉斯方程,即 这就是说如果那边平行板电容器的负极板接地,则板间一点处的电压与该点距负极板的距离呈线性关系。 II.散度的梯度: 散度的梯度,从上面的公式中可以看到结果会比较复杂,但是它的物理意义却是很明确的,因为从麦克斯韦方程可以看出空间某点处电场的散度是该点处的电荷密度,那么再求梯度就是空间中电荷密度的梯度。这就好比说清水中滴入一滴红墨水,起初水面红色浓度最高,杯底浓度最低,这样水面与杯底形成一个浓度梯度,红墨水由水面向杯底扩散,最后均匀。在半导体中,载流子分布的不均匀会导致扩散电流。 散度的梯度这个概念其实不常用,因为计算复杂,但在后面讲用它来推导一个矢量恒等式。 III.梯度的旋度: 对于梯度的旋度,直接把(2)式代入(4)式中,有 由于势函数在空间一点的领域内往往是有二阶连续混合偏导数的,因此上式的结果为0.所以说梯度的旋度为零,它的物理意义也是很明确的。 比如一个人从海平面爬到一座山上,无论它是从山的陡坡爬上去还是从缓坡爬上去,亦或者坐直升机上去,重力对他所做的功总是相等的,即力场的做工只与位移有关,而与路径无关,这样的场称为保守场,而保守场是无旋场。再比如绘有等高线的地图,如果某点只有一个一根等高线穿过,那么该点有一个确定的相对高度。如果该点有两条或以上的等高线穿过,则这个点处在悬崖边上,这个点处是不可微,也就没有求梯度的意义。 IV.旋度的散度: 求旋度的散度也是将(4)式代入(3)式即可。若令 (7) 则

矢量分析与场论

数学准备:矢量分析与场论第1章 ?The language of transport phenomena is mathematics Ordinary(partial) differential equations Elementary vector analysis.

本章的目的 ?作为传递过程原理的数学准备,通过本章的学习,需要熟悉以下内容: 矢量运算(标量积、矢量积) 三种正交曲线坐标系 直角坐标系下梯度、散度、旋度的定义 标量和矢量的拉普拉斯运算 偏导数、全导数和随体导数的定义

例:用矢量运算形式表示的传递方程 请将下面三个方向上的Navier-Stokes 方程写成统一的矢量运算和随体导数的形式: 2 2 2 22213y x x x x x z u Du u u u u u p X Dt x x y z x x y z ρρμμ????????????=-++++++ ? ?????????????222 222 13y y y y y x z Du u u u u u u p Y Dt y x y z y x y z ρρμμ???????? ????=-++++++ ? ? ???????????? ? 222 22213y x z z z z z u u Du u u u u p Z Dt z x y z z x y z ρρμμ????????????=-++++++ ? ?????????????21()g Du F p u u ρρμμ=-?+?+???

第1章教学目录 1.1 标量、矢量和张量基本概念1.2 正交曲线坐标系 1.2 矢量微分运算

矢量分析与场论 第四版 谢树艺 习题答案 高等教育出版社

矢量分析与场论 第四版 谢树艺 习题答案 高等教育出版社 习题1 解答 1.写出下列曲线的矢量方程,并说明它们是何种曲线。 解: ()1r a ti b tj cos sin =+,其图形是xOy 平面上之椭圆。 ()2r ti tj tk 3sin 4sin 3cos =++,其图形是平面430x y -=与圆柱面2223x z +=之交线,为一椭圆。 2.设有定圆O 与动圆c ,半径均为a ,动圆在定圆外相切而滚动,求动圆上一定点M 所描曲线的矢量方程。 解:设M 点的矢径为OM r xi yj ==+,AOC θ∠=,CM 与x 轴的夹角为2θπ-;因OM OC CM =+有 则.2sin sin 2,2cos cos 2θθθθa a y a a x -=-= 故j a a i a a r )2sin sin 2()2cos cos 2(θθθθ-+-= 4.求曲线3232,,t z t y t x ===的一个切向单位矢量τ。 解:曲线的矢量方程为k t j t ti r 323 2++= 则其切向矢量为k t tj i dt dr 222++= 模为24221441||t t t dt dr +=++= 于是切向单位矢量为2 22122||/t k t tj i dt dr dt dr +++= 6.求曲线x a t y a t z a t 2sin ,sin 2,cos ,===在t π 4=处的一个切向矢量。 解:曲线矢量方程为 r a ti a tj a tk 2sin sin2cos =++ 切向矢量为r a ti a tj a tk t τd sin22cos2sin d ==+-

相关主题
文本预览
相关文档 最新文档