当前位置:文档之家› 第二章 烷烃和环烷

第二章 烷烃和环烷

第二章 烷烃和环烷
第二章 烷烃和环烷

第二章烷烃和环烷(lkane and Cycloalkane)

教学要求:

掌握:烷烃、环烷烃的结构;烷烃构造异构、环烷烃几何异构的概念及命名;烷烃、环烷烃、螺环烃、桥环烃的命名;烷烃、环烷烃的构象异构及其写法;取代环己烷的优势构象;烷烃的自由基取代反应及小环烷烃的特殊性。

熟悉:烃的分类;烷烃、环烷烃的物理性质;自由基的构型及其稳定性。

了解:烃的来源及其在日常生活、医学上的用途。

第一节烷烃(Alkane )

仅由碳和氢两种元素组成的化合物称为碳氢化合物,简称为烃(hydrocarbon)。

烃的分类:

一.烷烃的结构

烷烃属于饱和烃,其分子中所有碳原子均为SP3杂化,分子内的键均为 键,成键轨道沿键轴“头对头”重叠,重叠程度较大,键较稳定,可沿键轴自由旋转而不影响成键。)

甲烷是烷烃中最简单的分子,其成键方式如下:

碳原子sp3杂化, 4个sp3杂化轨道分别与4个氢原子的S轨道重叠,形成4个C—Hσ键,4个C—Hσ键间的键角109°28′,空间呈正四面体排布,相互间距离最远,排斥力最小,能量最低,体系最稳定,C-H键长110pm。乙烷是含有两个碳的烷烃,其结构如下:

图2-2乙烷的结构

两个碳原子各以sp3杂化轨道重叠形成C—Cσ键,余下的杂化轨道分别和6个氢原子的s 轨道重叠形成六个C—Hσ键。C-C键长154pm,C-H键长110pm 。

★其他烷烃的成键方式同乙烷相似。

★烷烃的通式、同系列

烷烃的分子组成可用通式C n H2n+2表示。

具有相同分子通式和结构特征的一系列化合物称为同系列(homologous series)。如:CH4CH3CH3 CH3CH2CH3 ;同系列中的各化合物互称为同系物(homolog);相邻两个同系物在组成上的不

变差数CH2称为同系列差。如:乙烷较甲烷多CH2,丙烷较乙烷多CH2 …;同系物的结构相似,化学性质也相似,物理性质则随着碳原子数的增加而呈现规律性的变化,同系列中的第一个化合物常具有特殊的性质。

★烷烃中碳原子的类型

烷烃中的各个碳原子均为饱和碳原子,按照与它直接相连的其他碳原子的个数,可分为伯、仲、叔、季碳原子。

伯碳原子又称一级碳原子(primary carbon),以1°表示,是只与1 个其他碳原子直接相连的碳原子。

仲碳原子又称二级碳原子(secondary carbon),以2°表示,是与2个其他碳原子直接相连的碳原子。

叔碳原子又称三级碳原子(tertiary carbon),以3°表示,是与3个其他碳原子直接相连的碳原子。

季碳原子又称四级碳原子(quaternary carbon),以4°表示,是与4个其他碳原子直接相连的碳原子。

例如:

该化合物有五个1°碳、一个2°碳、一个3°碳、一个4°碳。

★伯、仲、叔碳原子上的氢原子(季碳原子上无氢原子),分别称为伯氢原子(1°氢原子)、仲氢原子(2°氢原子)、叔氢原子(3°氢原子)。不同类型氢原子的相对反应活性不相同。小结:烷烃分子中的碳原子均为sp3杂化,各原子之间都以单键相连。烷烃分子中的键角接近109°28′,C—H键和C—C键的键长分别为110pm和154pm或与此相近。由于σ键电子云沿键轴呈圆柱形对称分布,两个成键原子可绕键轴“自由”旋转。

问题2-1写出只有伯氢原子,分子式为C8H18烷烃的结构式

问题2-2写出分子式为C9H20,含有8个2°氢原子和12个1°氢原子的烷烃结构式二.烷烃的构造异构和命名

(一)烷烃的碳链异构

分子式相同,碳原子连接方式不同而产生的同分异构现象,称为碳链异构,其异构体称为碳链异构体,它是构造异构的一种。

甲烷、乙烷和丙烷分子中的碳原子,只有一种连接方式,所以无碳链异构体。

丁烷(C4H10)有两种不同的异构体;戊烷(C5H12)有三种异构体。

随着烷烃分子中碳原子数的增多,同分异构体的数目也随之增加。如:己烷C6H14有5个异构体,庚烷C7H16有9个异构体,十二烷C12H26有355个异构体…。

(二)烷烃的命名

烷烃的命名原则是各类有机化合物命名的基础。烷烃的命名采用两种命名法:普通命名法、系统命名法。

1、普通命名法

1~10个碳原子的直链烷烃,分别用词头甲、乙、丙、丁、戊、己、庚、辛、壬、癸表示碳原子的个数,词尾加上“烷”。如CH4(甲烷)、C2H6(乙烷)、C3H8(丙烷)、C10H22(癸烷)。10个碳原子以上的烷烃用中文数字命名。如C11H24(十一烷)、C12H26(十二烷)、C20H42(二十烷)。

烷烃的英文名称是在meth-,eth-,prop-,but- 等表示碳原子数的词头后,加上词尾-ane。

烷烃异构体可用词头“正(normal或n-)、异(iso或i-)、新(neo)”来区分。

“正”表示直链烷烃,常常可以省略。

“异”表示末端为,此外别无支链的烷烃。

“新”表示末端为,此外别无支链的烷烃。

★普通命名法只适用于一些直链或含碳原子数较少的烷烃异构体的命名。对于结构比较复杂的烷烃,就必须采用系统命名法。

2、系统命名法(IUPAC命名法)

1892年,日内瓦国际化学会议首次拟定了有机化合物系统命名原则,此后经IUPAC

(I nternational U nion of P ure and A pllied C hemisty)多次修订,所以也称为IUPAC 命名法。我国根据这个命名原则,结合汉字特点,制定出我国的有机化合物系统命名法,即有机化合物命名规则。

烷烃系统命名法是将带有侧链的烷烃看作是直链烷烃的烷基取代衍生物,所以在学习系统命名法之前先学习取代基的命名。

★烃分子中去掉一个氢原子,所剩下的基团,称为烃基;脂肪烃基用R—表示;烷基的通式为C n H2n+1。烷基的中文命名是把相应的烷烃命名中的“烷”字改为“基”字。其英文命名是将烷烃词尾的-ane改为-y1,常见的烷基结构和名称如下:

此外,两价的烷基称为亚基,三价的烷基称为次基。

★烷烃系统命名法规则

⑴.选主链:选择含有取代基最多的、连续的最长碳链为主链,根据主链所含碳原子数命名为“某烷”。

⑵.编号:主链上若有取代基,则从靠近取代基的一端开始,给主链上的碳原子编号。当两个相同取代基位于相同位次时,应使第三个取代基的位次最小,依次类推;当两个不同取代基位于相同位次时,应使小的取代基编号较小。

⑶.命名:主链连有相同的取代基时,合并取代基,并在取代基名称前,用二(di)、三(tri)、四(tetra)……数字表明取代基的个数。并在最前面标明取代基的编号,各编号间用“,”隔开。

主链上若连有不同的取代基,应按“次序规则”将取代基先后列出,较优基团应后列出。主要烷基的优先顺序是:异丙基>丙基>乙基>甲基;在英文命名中,取代基是按字首的字母排列顺序先后列出。

3、烷烃系统命名法与普通命名法的区别

问题2-3按IUPAC命名法,写出化合物的中、英文名称。并以此总结出系统命名法的命名规则。

问题2-4写出5-甲基-3,3-二乙基-6-异丙基壬烷的结构式,并指出各碳原子的类型。

小结:烷烃的命名是其他有机化合物命名的基础,有机化合物即可以用普通命名法命名、也可以用系统命名法命名,只是适用的范围不同,普通命名法只适用于部分较简单的化合物,系统命名法适用于绝大部分的有机化合物,另外有些化合物还具有俗名。

三.烷烃的构象异构

烷烃分子中C—Cσ键旋转或扭曲时,两个碳原子上的氢原子在空间上的相对位置发生改变,其中每一种排列方式称为一种构象,不同构象之间互称为构象异构体。由于C—Cσ键可以旋转任意角度,所以烷烃有无数构象异构体。构象异构体(conformational isomer)的分子构造相同,但其空间排列不同,它是立体异构体的一种。

(一)乙烷的构象(conformation)

乙烷没有碳链异构,但乙烷分子中的两个碳原子可以围绕C—Cσ键旋转,乙烷有无数构象异构体,其中有两种典型的构象:重叠式(eclipsed)和交叉式(staggered)。

重叠式交叉式

图2-3 乙烷的两种典型的构象

有机化合物的构象常用两种三维式表示,即锯架式(sawhorse formula)和Newman投影式(Newman projection formula )。锯架式是从分子的侧面观察分子,较直观地反映了碳原子和氢原子在空间的排列情况。Newman投影式是沿着C—C键轴观察分子,从圆心伸出的三条线,表示离观察者近的碳原子上的价键,而从圆周向外伸出的三条线,表示离观察者远的碳原子上的价键。

图2-4乙烷球棍模型C-C键的旋转(动画)

重叠式两个碳原子上的氢原子相距最近,相互间的排斥力最大,分子的能量最高,是最不稳定的构象;交叉式两个碳原子上的氢原子相距最远,相互间斥力最小,分子的能量最低,是最稳定的构象。见下图:

图2-5 乙烷构象能量图

交叉式构象的能量比重叠式构象低12.6kJ ·mol -1,交叉式是乙烷稳定的优势构象。室温下,分子间的碰撞可产生83.8kJ ·mol -1的能量,足以使C —C 键“自由”旋转,各构象间迅速转换,无法分离出其中某一构象异构体,但大多数乙烷分子是以最稳定的交叉式构象存在。

(二)正丁烷的构象

正丁烷分子在围绕C 2-C 3σ键旋转时,有4种典型的构象异构体,即对位交叉式、邻位交叉式、部分重叠式和全重叠式。见下图:

图2-6 正丁烷绕C 2-C 3σ键旋转的构象

对位交叉式:两个体积较大的甲基处于对位,相距最远,此种构象的能量最低。

邻位交叉式:两个甲基处于邻位,靠得比对位交叉式近,两个甲基之间的Van der Waals 斥力(或空间斥力)使这种构象的能量较对位交叉式高,因而较不稳定。

全重叠式:两个甲基及氢原子都各处于重叠位置,相互间斥力最大,分子的能量最高,是最不稳定的构象。

部分重叠式:甲基和氢原子的重叠使其能量较高,但比全重叠式的能量低。

正丁烷C 2—C 3 键旋转能量图如下:

图2-7 正丁烷C 2—C 3 键旋转时的能量曲线图

从正丁烷C 2—C 3 键旋转时的能量曲线图可见,4种构象的稳定性次序是:

正丁烷各种构象之间的能量差别不太大。在室温下分子碰撞的能量足可引起各构象间的迅速转化,因此正丁烷实际上是各构象异构体的混合物,主要是以对位交叉式和邻位交叉式的构象存在,前者约占63%,后者约占37%,其他两种构象所占的比例很小。

随着正烷烃碳原子数的增加,它们的构象也随之而复杂,但其优势构象都类似正丁烷,是能量最低的对位交叉式。因此,直链烷烃碳链在空间的排列,绝大多数是锯齿形,而不是直链,只是为了书写方便,才将其结构式写成直链。

图2-8正己烷分子的球棍模型

分子的构象,不仅影响化合物的物理和化学性质,而且影响蛋白质、酶、核酸等生物大分子的结构与功能以及药物的构效关系。许多药物分子的构象异构与其生物活性的发挥密切相关。药物受体一般只与药物多种构象中的一种结合,这种构象称为药效构象。不具有药效构象的药物很难与药物的受体结合,此种药物生物活性很低或根本无活性。例如,抗震颤麻痹药物多巴胺作用于受体的药效构象是对位交叉式。

问题2-5多巴胺的结构式为,画出其对位交叉式的药效构象(考虑

围绕C1—C2键的旋转)。

问题2-6 画出己烷围绕C3—C4化学键旋转时的最稳定构象和最不稳定的构象。

小结:烷烃的C-C 键可以绕键轴旋转,烷烃具有无数个构象异构体;室温下,各构象异构体不能分离;烷烃是各构象异构体的混合物,其中较稳定构象异构体的比例较高。四.烷烃的物理性质

有机化合物的物理性质,一般是指物态、沸点、熔点、密度、溶解度、折光率、旋光度和光谱性质等。烷烃同系物的物理性质常随碳原子数的增加,而呈现规律性的变化。

在室温和常压下,C1~C4的正烷烃(甲烷至丁烷)是气体,C5~C17的正烷烃(戊烷至十七烷)是液体,C18和更高级的正烷烃是固体。烷烃分子间的作用力只有范德华力,是非极性或弱极性的化合物。根据“极性相似者相溶”的经验规律,烷烃易溶于非极性或极性较小的苯、氯仿、四氯化碳、乙醚等有机溶剂,而难溶于水和其他强极性溶剂。液态烷烃作为溶剂时,可溶解弱极性化合物。烷烃的沸点、熔点、密度的变化规律见下图

沸点

密度

熔点

图2-9烷烃沸点、熔点、密度随碳数变化规律(鼠标移至图上有答案出现)

沸点:正烷烃的沸点随着碳原子的增多而有规律的升高。一般每增加1个碳原子,沸点升高20~30℃。同分异构体,取代基越多,沸点越低。这是由于烷烃的碳原子数越多,分子间作用力越大;取代基越多,分子间有效接触的程度越低,使分子间的作用力变弱。

熔点:正烷烃的熔点随着碳原子数的增多而升高,含偶数碳原子正烷烃的熔点高于相邻的两个含奇数碳原子正烷烃的熔点。在烷烃异构体中,对称性较好的烷烃比直链烷烃的熔点高,这是由于对称性较好的烷烃分子,晶格排列较紧密,致使链间的作用力增大而熔点升高。密度:正烷烃的密度随着碳原子数的增多而增大,但在0.8g·cm-3左右时趋于稳定。所有烷烃的密度都小于1g·cm-3,烷烃是所有有机化合物中密度最小的一类化合物。

五.烷烃的化学性质

烷烃是饱和烃,分子中只有牢固的C—C σ键和C—H σ键,所以烷烃具有高度的化学稳定性。在室温下,烷烃与强酸(如硫酸、盐酸)、强碱(如氢氧化钠)、强氧化剂(如重铬酸钾、高锰酸钾)、强还原剂(如锌加盐酸、金属钠加乙醇)都不发生反应。但在适宜的反应条件下,如光照、高温或在催化剂的作用下,烷烃也能发生共价键均裂的自由基( free radical )反应。例如:烷烃的卤代反应

1.甲烷的卤代

在紫外光照射或高温250~400℃的条件下,甲烷和氯气混合可剧烈地发生氯代反应,得到一氯甲烷、二氯甲烷、三氯甲烷(氯仿)、四氯甲烷(四氯化碳)和氯化氢的混合物。

甲烷与氯气作用,产生一氯甲烷;随着反应的进行,过量的氯气继续与一氯甲烷作用,生成二氯甲烷;二氯甲烷进一步与氯气作用,生成三氯甲烷;三氯甲烷继续反应生成四氯甲烷,所以反应的产物是4种氯代甲烷的混合物。若用超过量的甲烷与氯气反应,反应就几乎限止在一氯代反应阶段,生成一氯甲烷。可用此方法制备一卤代烃。

★卤素与甲烷的反应活性顺序为:F2>Cl2>Br2>I2。氟代反应十分剧烈,难以控制,强烈的放热反应所产生的热量可破坏大多数的化学键,以致发生爆炸。碘最不活泼,碘代反应难以进行。因此,卤代反应一般是指氯代反应和溴代反应。

2.卤代反应的反应机制(reaction mechanism)

(1)自由基的链反应

自由基的链反应可分为链引发、链增长和链终止3个阶段。

☆链引发(chain-initiating step):形成自由基

氯分子从光或热中获得能量,Cl—Cl键均裂,生成高能量的氯自由基Cl·。自由基的反应活性很高,一旦形成就有获取一个电子的倾向,以形成稳定的八偶体结构。

☆链增长(chain-propagating step):延续自由基、形成产物

氯自由基使甲烷分子中的C—H键均裂,并与氢原子生成氯化氢分子和新的甲基自由基

CH3·。

活泼的甲基自由基使氯分子的Cl—Cl键均裂,生成一氯甲烷。此反应是放热反应,所放出的能量足以补偿反应②所需吸收的能量,因而可以不断地进行反应,将甲烷转变为一氯甲烷。当一氯甲烷达到一定浓度时,氯原子除了与甲烷作用外,也可与一氯甲烷作用生成·CH2Cl 自由基,它再与氯分子作用生成二氯甲烷CH2Cl2和新的Cl·。反应就这样继续下去,直至生成三氯甲烷和四氯甲烷。

★甲烷的氯代反应,每一步都消耗一个活泼的自由基,同时又为下一步反应产生另一个活泼的自由基,这是自由基的链增长反应。

☆链终止(chain-terminating step):清除自由基

两个活泼的自由基相互结合,生成稳定的分子或加入少量能抑制自由基生成或降低自由基活性的抑制剂,使反应速率减慢或终止反应。

★甲烷氯代反应的机制不仅适用于甲烷的溴代反应,而且也适用于其他烷烃的卤代反应,甚至还适用于分子中含有类似烷烃结构的许多非烷烃化合物。

问题2-7用图示的方式说明活化能、过渡态的概念,并说明甲烷氯代反应是吸热反应还是放热反应?答案:

活化能:反应发生所必须的最低限度的能量,用Ea 表示,它是从反应物转化为产物过程中,必须达到的一个能量高峰。过渡态:反应物生成产物过程中中间状态的结构。此反应为放热反应。

(2)烷烃卤代反应的取向

碳链较长的烷烃氯代时,可生成各种异构体的混合物。例如:

丙烷分子中有6个1°氢原子和2个2°氢原子,理论上两种氢原子被卤代的几率之比为3:1,但在室温条件下,这两种产物得率之比为43:57 ,说明2°氢原子比1°氢原子的反应活性高。2°氢原子与1°氢原子的相对反应活性为:

大量氯代反应的实验结果表明:室温下3°、2°、1°氢原子的相对活性之比为5:4:1,并与烷烃的结构基本无关。根据各级氢的相对活性,可预测烷烃各氯代产物异构体的收率。问题2-8预测2,3-二甲基丁烷在室温下进行氯代反应时,所得各种一氯代产物的得率之比。

★烷烃的溴代反应生成相应的溴代物。例如:

实验结果表明,卤代反应所用的卤素不同或反应条件不同,各种异构体产物的相对数量有着显著的差异。氯代反应产物中,各种异构体间的比例相差不大;而溴代反应中,各异构体比例相差较大,溴代反应3°、2°、1°氢原子的相对反应活性比为 1600:82:1。这是因为溴原子比氯原子的反应活性低,烷烃的溴代比氯代活化能高,溴代反应过渡态[R……H…Br]的结构较接近产物自由基。能稳定自由基的因素在过渡态中影响较大,因此3°、 2°、1°氢的活性差别较大,反应的选择性强。相反,氯代过渡态[R…H……Cl] 的结构较接近反应物,能稳定自由基的因素在过渡态中影响较小,所以3°、2°、1°氢的活性差别较小。

图2-10丙烷1o、2o氢氯代能量图

氯与1°氢和2°氢反应的活化能只相差4.2kJ·mol-1,而溴与1°氢和2°氢反应的活化能相差12.6kJ·mol-1。溴代反应时,两种氢原子的反应活性差别比氯代时大得多,因而溴代反应的选择性高于氯代反应。

(3)烷基自由基的构型与稳定性

★烷基自由基的构型

烷基自由基是烷烃去掉一个氢,剩下的带有一个单电子的基团。甲基自由基是最简单的有机烷基自由基。

波谱研究证实其结构如下:

★碳原子为sp2杂化,3个sp2杂化轨道与3个氢原子的S轨道所形成的3条C-H 键处于同一平面内,未成对的单电子位于未参与杂化的、垂直于杂化平面的p轨道中。

★自由基的稳定性

通过比较不同类型的氢原子与各基团之间的键离解能数据可知:

形成自由基所需要的能量顺序为CH3·>1°>2°>3°,形成自由基所需的能量越低,自由基就越容易形成,也越稳定。所以自由基相对稳定性的次序为:

★烷烃卤代取向的解释

在丙烷的氯代反应中,当氯原子进攻丙烷分子中的1°H时,生成1°自由基CH3CH2CH3·,而进攻2°H时,则生成2°自由基。由于(CH3)2CH·比CH3CH2CH3·稳定,内能较低,生成的速度较快。因此在反应中2°H 比1°H的活性高,同理3o H比2o H的活性高。用此也可以解释烷烃溴代的反应取向。

小结:烷烃分子中只有σ键,化学性质很稳定,常用作溶剂及化妆品、眼药膏的基质,但在特殊条件(光照或高温)下,也可发生自由基的取代反应。含有不同种氢的烷烃的卤代,生成多种卤代烃异构体的混合物,各异构体的比例取决于烷烃分子中各种氢的数目以及反应条件,不同种氢的反应活性顺序为3o氢>2o氢>1o氢。自由基的构型为sp2杂化的平面构型。

第二节环烷烃(Cycloalkane)

一.环烷烃的分类和命名

(一)环烷烃(cycloalkane)的分类

根据环烷烃分子中所含的碳环数目,可分为单环、双环和多环环烷烃。单环烷烃的通式为C n H2n。

根据成环的碳原子数目,单环环烷烃又可分为小环(三元环、四元环烷烃)、常见环(五元环、六元环烷烃)、中环(七元环~十二元环)及大环(十二元环以上的环烷烃)环烷烃。

(二)环烷烃的命名

1、单环环烷烃的命名

单环环烷烃的命名与烷烃相似,只是在同数碳原子的链状烷烃的名称前加“环”字。英文命名则加词头“cyclo”。环碳原子的编号,应使环上取代基的位次最小。例如:

当环上有复杂取代基时,可将环作为取代基命名。例如:

2、螺环烃的命名

螺环烃(spiro hydrocarbon):两个碳环共用一个碳原子的脂环烃,分子中共用的碳原子称为螺原子。

双环螺环烷烃的命名是在成环碳原子总数的烷烃名称前加上“螺”字。螺环的编号是从螺原子的邻位碳开始,由小环经螺原子至大环,并使环上取代基的位次最小。将连接在螺原子上的两个环的碳原子数,按由少到多的次序写在方括号中,数字之间用圆点隔开,标在“螺”字与烷烃名称之间。例如:

3、桥环烃的命名

桥环烃(bridged hydrocarbon):两个碳环共用两个或多个碳原子的化合物。环与环间相互连接的两个碳原子,称为“桥头”碳原子;连接在桥头碳原子之间的碳链则称为“桥路”。

命名双桥环烷烃时,以碳环数“二环”为词头。然后在方括号内按桥路所含碳原子的数目由多到少的次序列出,数字之间用圆点隔开。方括号后写出分子中全部碳原子总数的烷烃名称。编号的顺序是从一个桥头开始,沿最长桥路到第二桥头,再沿次长桥路回到第一桥头,最后给最短桥路编号,并使取代基位次最小。

例如:

问题2—9命名:

(三)环烷烃的顺反异构(由于环烷烃成环的键不能自由转动,导致分子中的原子或原子团在空间的排列方式不同,而产生的两种构型不同的异构体。顺反异构属于构型异构,是立体异构中的一种。顺反异构体物理、化学性质均不同,可以分离。)

环烷烃除具有构造异构外,由于碳环上的C—C 单键不能自由旋转,所以当环上的两个碳原子各连有一个取代基时,还存在顺、反两种异构体。两个取代基位于环平面同侧的,称为顺式异构体(cis-isomer);位于环平面异侧的,则称为反式异构体(trans- isomer)。例如1,2-二甲基环丙烷,具有顺式和反式两种异构体。

问题2-10写出1-甲基-3-乙基环己烷的顺式和反式构型的两种异构体

二.环烷烃的性质

(一)环烷烃的物理性质

环烷烃的物理性质与烷烃相似,在常温下,小环环烷烃是气体,常见环环烷烃是液体,大环环烷烃呈固态。环烷烃和烷烃都不溶于水。由于环烷烃分子中单键旋转受到一定的限止,分子运动幅度较小,具有一定的对称性和刚性。因此,环烷烃的沸点、熔点和比重都比同碳数烷烃高。

(二)环烷烃的化学性质

常见环、中环和大环环烷烃较稳定,化学性质与链状烷烃相似,与强酸(如硫酸)、强碱(如氢氧化钠)、强氧化剂(如高锰酸钾)等试剂都不发生反应,在高温或光照下能发生自由基取代反应;小环环烷烃环丙烷和环丁烷不稳定,除可以发生自由基取代反应,易开环发生加成反应(addition reaction)。

1.自由基取代反应

环烷烃与烷烃相似,在光照或高温条件下,可发生自由基取代反应。例如:

2.加成反应

(1) 加氢

在催化剂Ni的作用下,环烷烃可进行催化加氢反应,加氢时环烷烃开环,碳链两端的碳原子与氢原子结合生成烷烃。

(2)加卤素、氢卤酸

★环丙烷在常温下,能与卤素或氢卤酸发生加成反应。例如:

★环丁烷在加热条件下,也可以与卤素或氢卤酸发生加成反应

★环戊烷、环己烷及高级环烷烃不能发生加成反应。

当环丙烷的烷基衍生物与氢卤酸作用时,碳环开环多发生在连氢原子最多和连氢原子最少的两个碳原子之间。氢卤酸中的氢原子加在连氢原子较多的碳原子上,而卤原子则加在连氢原子较少的碳原子上。例如:

小结:环丙烷的性质很活泼,易开环发生加成反应;环丁烷的活性较环丙烷弱,可以开环发生加成反应,只是条件较环丙烷强烈;环戊烷、环己烷及高级环烷烃的化学性质则与开链烷烃相似,环比较稳定难发生开环加成反应。另外,环烷烃同链状烷烃一样可以发生自由基取代反应。

(三).环烷烃稳定性的解释

环烷烃的实验事实及燃烧热数值均说明环丙烷的内能最高,反应性较强;环丁烷的内能次之,反应性较环丙烷差;环戊烷、环己烷以及大环环烷烃的内能与开链烷烃相差无几,一般条件下不能开环,其中环己烷的内能最低,是最稳定的环烷烃,这也是合成或天然化合物中广泛存在六元环的原因。环烷烃环稳定性的排列顺序是:环己烷>环戊烷>环丁烷>环丙烷

1.拜尔(A.von Baeyer)张力学说

1885年拜尔(A.von Baeyer)首次提出了张力学说,用以解释环烷烃的稳定性。此学说的论点是建立在环烷烃所有的碳原子都处于同一平面内,并根据正四面体的模型,假设成环后键角为109°28′的环状化合物最稳定。

张力学说认为环丙烷的三个碳原子成正三角形,键角为60°,环丁烷是正四边形,键角为90°。形成环丙烷时,每个键必须向内弯曲24°44′[(109°28′- 60°)/2],形成环丁烷时,每个键向内弯曲9°44′。键的弯曲使分子内部产生了张力,这种张力称为角张力。键的偏转角度越大,张力也越大,环就越不稳定而易发生开环反应,生成较稳定的开链化合物。环丙烷的偏转角度比环丁烷大,所以环丙烷更易开环。环戊烷和环己烷的键角均接近109°28′,所以不易开环,化学性质稳定。此学说的局限性在于它认为环烷烃环上所有的碳原子在同一平面内,实际上除环丙烷外,其他的环烷烃的碳原子并不在同一平面内。

2.现代理论的解释

环烷烃分子中的碳原子都是sp3,当键角为109°28′时,碳原子的sp3杂化轨道才能沿键轴“头对头”达到最大重叠。在环丙烷分子中, sp3杂化轨道彼此不能沿键轴方向达到最大程度的重叠,只能部分重叠形成很弱的“弯曲键”,同时成键的电子云位于C-C连线的外侧,易受亲电试剂的进攻,发生开环。根据X—射线衍射解析和量子力学计算,环丙烷的 C —C键的夹角约为104°。见下图

图2-12环丙烷轨道重叠图

问题2-11写出1,1-二甲基环丙烷与氢溴酸的反应

三.环烷烃的构象

(一)环戊烷的构象

环戊烷的四个碳原子处在一个平面上,一个碳原子离开平面,与平面的距离为50pm ,时而在上,时而在下,呈动态平衡。离开平面的碳上的氢原子与相邻碳上的氢原子呈交叉式,明显降低了扭转张力,所以能量较低,是环戊烷较稳定的优势构象。

图2-13环戊烷构象的球棍模型

(二)环己烷的构象

环己烷分子中碳原子并不在同一平面上,它可以扭曲而产生无数个构象异构体。

1.环己烷的椅式构象和船式构象

椅式构象(chairconformation )和船式构象(boat conformation)是环己烷构象的两种典型构象。

在环己烷的椅式构象中,碳原子的键角为109°28′,无角张力,任何原子都倾向于使其键角与成键轨道的角度相匹配,与sp3杂化碳原子相匹配的键角是109°28′,任何与正常键角偏差所产生的张力,称为角张力。环上相邻碳上所有的氢原子均为交叉式,无扭转张力相互连接的两个SP3杂化碳原子,它们的键倾向于成交叉式构象,任何与交叉式排列偏差所引起的张力,称为扭转张力。C1、C3、C5或C2、C4、C6 上的三个竖氢原子间的距离均为230pm,与氢原子的van der Waals 半径van der Waals 半径是指非键原子的原子半径,当非键原子接近时,它们之间产生微弱的引力,当它们之间的距离等于范德华半径之和时,引力达到最大,再接近就相互排斥。之和240pm相近,van der Waals斥力很小非键合的原子或基团间的距离小于它们的van der Waals半径之和时,而产生的排斥力,又称空间张力。椅式构象是环己烷中能量最低、最稳定的构象。

在环己烷的船式构象中, 无角张力,但C2与C3、C5与C6两对碳上的氢原子均为重叠式,具有较大的扭转张力。此外,C1与C4两个船头碳上的氢原子伸向环内侧,彼此间相距很近,只有183pm,远小于两个氢原子的van der Waals半径之和,相互间斥力很大,存在空间张力。船式构象是环己烷能量较高、较不稳

定的构象,见下图。

★在室温下,99.9%的环己烷分子是以椅式构象存在。常温下,由于分子的热运动可使船式和椅式两种构象互相转变,因此不能拆分环己烷的船式、椅式构象异构体。

2.环己烷椅式构象的竖键和横键

在环己烷的椅式构象中,与对称轴平行的6条C—H键,

用a键(axial bond)表示。与对称轴成109°28′夹角的6条C—H键,用e键(equatorial bond)表示。见下图

图2-15环己烷椅式构象a键、e键的互变

★环上的每个碳原子有1条a键和1条e键,a键和e键之间可以相互转化。

环己烷椅式构象间的转化,需要46kJ·mol-1的能量,虽稍高于船式与椅式构象转换的能垒,但仍可在常温

下迅速地转换,形成动态平衡体系。

3.环己烷构象稳定性的分析

(1)一取代环己烷的构象分析

一取代环己烷的取代基可处于椅式构象的a键或e键,故一取代环己烷可以两种不同的椅式构象存在,其中取代基位于e键的构象能量较低,是较稳定的优势构象。在甲基环己烷分子中,e键上的甲基与环中的C3和C5两个碳a键上的氢原子距离较远,相互间的斥力较小而稳定。而a键上的甲基则与C3和C5a键上的氢原子距离较近,相互间斥力较大而不稳定。见下图

5%95%

甲基在e键的构象比在a键的构象能量低7.5kJ·mol-1,室温下,甲基位于e键的构象在两种构象的平衡混合物中占95%。取代基的体积越大,两种构象的能量差也越大,e键取代构象所占的比例就更高。例如,在室温下,叔丁基几乎100%处于e键。

★总之,一取代环己烷的优势构象是取代基位于e键的椅式构象。

问题2-12写出乙基环己烷最稳定的构象,并说明原因。

(2)二取代环己烷的构象分析

二取代环己烷存在顺反异构体,两个取代基在环的同侧为顺式,在环的异侧为反式。例如1,2-二甲基环己烷就有顺式和反式两种构型。反-1,2-二甲基环己烷的构象:

顺-1,2-二甲基环己烷的构象:

★在反-1,2-二甲基环己烷的优势构象中,两个甲基都处于e键,而在顺-1,2-二甲基环己烷的任一构象中,只有一个甲基处于e键,所以反-1,2-二甲基环己烷比顺-1,2-二甲基环己烷稳定。实验测定,反式异构体比顺式异构体稳定7.8kJ·mol-1

1-甲基-4-叔丁基环己烷的优势构象:

★在多取代环己烷中,较大取代基、较多取代基位于e键的构象为优势构象,在有叔丁基的环己烷衍生物的优势构象中,叔丁基总是位于e键上。

小结:除环丙烷外,其他环烷烃的碳原子并不在同一平面内,环烷烃的环可以扭曲以使张力最小化,环烷烃环的扭曲产生无数个构象异构体。在环己烷的构象中,椅式构象是最稳定的构象;在椅式构象中e键取代基较多的构象为优势构象;有不同取代基时,较大取代基处于e键的构象为优势构象。

问题 2-13 试分析1,3-二甲基环己烷的构象。问题2-14试分析1,4-二甲基环己烷的构象。

总结:烷烃属于饱和烃,分子中所有的碳均为SP3杂化,各键间的键角接近正四面体的键角(109°28′),分子中只有σ键,键较稳定,烷烃是一类很稳定的化合物,常用作化妆品、眼膏的基质;烷烃的命名是有机化合物命名的基础,常用普通命名法和系统命名法两种方法命名,普通命名法只适用于较简单的化合物;烷烃化合物由于碳原子连接方式不同存在构造异构体(碳链异构),同时烷烃化合物分子内的σ键可以自由旋转,致使烷烃化合物具有无数个构象异构体,其中交叉式构象是较稳定的构象,室温下构象异构体间可以迅速转换而不能分离,主要以交叉式构象存在;烷烃化合物属于非极性化合物,熔点、沸点较低,不溶于极性溶剂而易溶于非极性溶剂,密度均小于1g.cm-3;烷烃化合物化学性质很稳定,与强酸、强碱、强氧化剂均不反应,在高温或光照下可与卤素(Cl2、Br2)进行自由基取代反应,不同氢取代的活性顺序为3o>2o>1o。

环烷烃化合物是碳碳首尾相连呈环状的饱和烃,分子中的碳也是SP3杂化,与烷烃不同的是环上的碳—碳σ键不能自由旋转,当环上不同的碳原子连有取代基时,存在顺反异构体,顺反异构体物理、化学性质均不同;环烷烃虽然环上的碳—碳σ键不能自由旋转,但可以扭曲,致使环烷烃也存在构象异构体,椅式构象是环己烷较稳定的构象,取代环己烷的优势构象是较大取代基、较多取代基位于e键的构象;常见环、中环、大环的化学性质与烷烃相似,可以发生自由基的取代反应,小环烷烃(环丙烷、环丁烷)除具有烷烃的性质(自由基取代反应)外,还可以开环发生加成反应。

第三节相关知识

生物自由基生物自由基的来源有外源性和内源性两种。外源性自由基是由物理或化学等因素产生的;内源性自由基是由体内的酶促反应和非酶促反应产生的。

在生理状况下,机体一方面不断产生自由基,另一方面又不断清除自由基。处于产生与清除

平衡状态的生物自由基,不仅不会损伤机体,还参与机体的生理代谢,也参与前列腺素和ATP等生物活性物质的合成。如吞噬细胞在对外源性病原微生物进行吞噬时,就生成大量活性氧以杀灭之。生物体内比氧活泼的氧的代谢产物及其含氧的衍生物。一般是指超氧阴离子自由基(·O2)、羟自由基(·OH)、单线态氧(1O2)和过氧化氢(H2O2)以及由它们衍生的含氧有机自由基(RO·)、有机过氧化物自由基(ROO·)和过氧化物(ROOH)。一旦自由基的产生和清除失去平衡,过多的自由基就会造成对机体的损害,可使蛋白质变性、酶失活、细胞及组织损伤,从而引起多种疾病,并可诱发癌症和导致衰老。

第二章 烷 烃

第二章烷烃 基本内容和重点要求 烷烃的系统命名法(学时) 烷烃的结构(学时) 烷烃的物理性质及其变化规律(学时) 烷烃的化学性质及卤代反应机理(学时) 烷烃的构象异构(学时) 重点掌握烷烃的系统命名法、烷烃的构象异构、卤化的自由基反应机理及各类自由基的相对稳定性。 2.1烷烃的同系列和同分异构 1、烷烃的同系列 烷烃的通式:C n H 2n+2 同系列:凡具有同一通式,化学性质相似,物理性质随着碳原子数的增加而有规律的变化,分子式间相差N个CH 2 的一系列化合物。 同系物:同系列中各化合物的互称。 系差:CH 2 2、烷烃的异构 构造:分子中原子互相连接的方式和次序。 同分异构体:分子式相同而构造不同的化合物的互称。 烷烃同分异构体的构造式的书写原则(以C 6H 14 为例): ①先写出最长的碳链。

C—C—C—C—C—C ②再写出少一个碳原子的直链,把剩下的一个碳原子当作支链加在主链上并依次变动支链的位置。 ③然后写出少两个碳原子的直链,把剩下的两个碳原子当作一个或两个取代基加到主链上,并依次变动支链的位置。 ④以此类推…… 2.2 烷烃的命名 1. 烷基的概念 1)伯、仲、叔、季碳原子和伯、仲、叔氢原子 2)烷基 R- 烷基:烷烃分子中去掉一个氢之后剩余的部分(原子团)称为基。

CH 3 CH 2CH 2 CH 3 CH 3CH 3CH 2CH 3 CH 3CH 3 CH 2CH 2CH 2CH 3 CH 3 两价的烷基叫亚基, 2、烷烃的命名 (1)普通命名法 用甲、乙、丙、丁、戊、己、庚、辛、壬、癸十个字分别表示十个 以下碳原子的数目,十个以上的碳原子就用汉字数字(十一、十二、十 三……)表示,用正、异、新等前缀区别同分异构体。 eg : 正戊烷 异戊烷 新戊烷 (2)衍生物命名法

人卫有机化学5-2第二章--烷烃和环烷烃

第二章 烷烃和环烷烃 有机化合物(简称有机物)中有一类数量众多,组成上只含碳、氢两种元素的化合物,称为碳氢化合物,简称烃(hydrocarbon )。烃分子中的氢原子被其他种类原子或原子团替代后,衍生出许多其他类别的有机物。因此,烃可看成是有机物的母体,是最简单的一类有机物。根据结构的不同,烃可分为如下若干种类。 烃在自然界中主要存在于天然气、石油和煤炭中,是古老生物埋藏于地下经历特殊地质作用形成的,是不可再生的宝贵资源,是社会经济发展的主要能源物质,也是合成各类生活用品和临床药物的基础原料。本章讨论两类饱和烃——烷烃和环烷烃。 第一节 烷烃 分子中碳原子彼此连接成开放的链状结构的烃称为开链烃,因其结构与人不饱和开链烃 烃 饱和开链烃—烷烃 脂环烃(环烷烃、环烯烃等) 闭链烃 (环烃) 开链烃 (脂肪烃) 芳香烃 烯烃 炔烃

体脂肪酸链状结构相似又称脂肪烃,具有这种结构特点的有机物统称脂肪族化合物。分子中原子间均以单键连接的开链烃称为饱和开链烃,简称烷烃(alkane)。 一、烷烃的结构、分类和命名 (一)烷烃的结构 1.甲烷分子结构甲烷是家用天然气的主要成分,也是农村沼气和煤矿瓦斯的主要成分,广泛存在于自然界中,是最简单的烷烃。 甲烷分子式是CH ,由一个碳原子与四个氢原子分别共用一对电子,以四个 4 共价单键结合而成。如下图2-1(a)所示。 图2-1 甲烷分子结构示意图 结构式并不能反映甲烷分子中的五个原子在空间的位置关系。原子的空间位置关系属于分子结构的一部分,因而也是决定该物质性质的重要因素。化学学科常借助球棍模型来形象地表示有机物分子的空间结构(不同颜色和大小的球表示不同原子,小棍表示共价键)。根据现代物理方法研究结果表明,甲烷分子空间结构如图2-1(b)所示。但是球棍模型这种表示书写起来极不方便,要将甲烷的立体结构在纸平面上表示出来,常通过实线和虚线来实现。如图2-1(c)所示,虚线表示在纸平面后方,远离观察者,粗实线(楔形)表示在纸平面前方,靠近观察者,实线表示在纸平面上,这种表示方式称透视式。 将甲烷透视式中的每两个原子用线连接起来,甲烷在空间形成四面体。根据现代物理方法测定,甲烷分子为正四面体结构,碳原子处于四面体中心,四个氢原子位于四面体四个顶点。四个碳氢键的键长都为0.109 nm,键能为414.9kJ?mol-1,所有H-C-H的键角都是109.5o。 碳原子核外价电子层结构为2s22p2,按照经典价键理论,共价键的形成是电子配对的过程。碳原子价电子层上只有两个单电子,因而碳原子应该只能形

第二章 烷烃和环烷

第二章烷烃和环烷(lkane and Cycloalkane) 教学要求: 掌握:烷烃、环烷烃的结构;烷烃构造异构、环烷烃几何异构的概念及命名;烷烃、环烷烃、螺环烃、桥环烃的命名;烷烃、环烷烃的构象异构及其写法;取代环己烷的优势构象;烷烃的自由基取代反应及小环烷烃的特殊性。 熟悉:烃的分类;烷烃、环烷烃的物理性质;自由基的构型及其稳定性。 了解:烃的来源及其在日常生活、医学上的用途。 第一节烷烃(Alkane ) 仅由碳和氢两种元素组成的化合物称为碳氢化合物,简称为烃(hydrocarbon)。 烃的分类: 一.烷烃的结构 烷烃属于饱和烃,其分子中所有碳原子均为SP3杂化,分子内的键均为 键,成键轨道沿键轴“头对头”重叠,重叠程度较大,键较稳定,可沿键轴自由旋转而不影响成键。) 甲烷是烷烃中最简单的分子,其成键方式如下: 碳原子sp3杂化, 4个sp3杂化轨道分别与4个氢原子的S轨道重叠,形成4个C—Hσ键,4个C—Hσ键间的键角109°28′,空间呈正四面体排布,相互间距离最远,排斥力最小,能量最低,体系最稳定,C-H键长110pm。乙烷是含有两个碳的烷烃,其结构如下: 图2-2乙烷的结构 两个碳原子各以sp3杂化轨道重叠形成C—Cσ键,余下的杂化轨道分别和6个氢原子的s 轨道重叠形成六个C—Hσ键。C-C键长154pm,C-H键长110pm 。 ★其他烷烃的成键方式同乙烷相似。 ★烷烃的通式、同系列 烷烃的分子组成可用通式C n H2n+2表示。 具有相同分子通式和结构特征的一系列化合物称为同系列(homologous series)。如:CH4CH3CH3 CH3CH2CH3 ;同系列中的各化合物互称为同系物(homolog);相邻两个同系物在组成上的不

第二章 烷烃习题

第二章烷烃习题1.用系统命名下列化合物: (1) (3) (4) (6) (5) (2) CH3CHCHCH2CHCH3 CH3CH3 CH2CH3 (C2H5)2CHCH(C2H5)CH2CHCH2CH3 3 )2 CH3CH(CH2CH3)CH2C(CH3)2CH(CH2CH3)CH 3 2.写出下列化合物的构造式和键线式,并用系统命名法命名之。(1)C5H12仅含有伯氢,没有仲氢和叔氢的; (2)C5H12仅含有一个叔氢的; (3)C5H12仅含有伯氢和仲氢。 3. 写出下列化合物的构造简式。 (1)2,2,3,3—四甲基戊烷; (2)由一个丁基和一个异丁基组成的烷烃; (3)含一个侧链甲基和相对分子质量86的烷烃; (4)相对分子质量为100,同时含有伯、叔、季碳原子的烷烃。 4.试指出下列各组化合物是否相同?为什么? C Cl H H Cl C H H Cl Cl (1) (2) C C C C C C C C C C C C 8. 试估计下列烷烃按其沸点的高低排列成序(把沸点高的排在前面) (1)2-甲基戊烷(2)正己烷(3)正庚烷(4)十二烷

9.写出在室温时将下列化合物进行一氯代反应,预计得到的全部产物的构造式: (1)正己烷 (2)异己烷 (3)2,2—二甲基丁烷 10.根据以下溴代反应事实,推测相对分子质量为72的烷烃异构体的构造简式。 (1)只生成一种溴代产物; (2)生成三种溴代产物; (3)生成四种溴代产物。 11.写出乙烷氯代(日光下)反应生成氯乙烷的历程 12.试写出下列各反应生成的一卤代烷,预测所得异构体的比例: CH 3CH 2CH 2+Cl 2 光照(1) (CH 3)3CCH(CH 3)2 光照 (2)Br 24 光照(3) Br 24 C CH 3 H CH 3 H 3C 第二章 烷烃练习题 一、用系统命名法命名或写出结构式 1、CH 3CH 3 CH 3CH--CH-CH-CH 2CH 2CH 3 CH 3-CHCH 2CH 3 2、CH 3CH--CH-CH 2CH 3 CH-CH 33 CH 3 3 、 4、CH 3CH 2CHCH 2CHCH 2CH 3 3 3)2 5、(CH 3)2CHCH 2CH(CH 2CH 3)2 二、根据题意回答下列各题 2、写出符合分子式为C 5H 12的烷烃中熔点最高的结构式: 3、分子式为C 5H 12的烷烃,其一氯代产物有四种,请写出其结构式:

第二章烷烃

第二章 烷烃 [问题2—1]:请写出庚烷C 7H 16的同分异构体构造式和简化式 解:构造式 简化式 ① H H H H H H H H H H H H H H C C C C C C C H CH 3CH 2CH 2CH 2CH 2CH 2CH 3 ② H C C C C C H H H H H H H H H H H H C H H H CH 3CHCH 2CH 2CH 2CH 3 CH 3 ③ H C C C C C H H H H H H H H H H H H C H H H CH 3CHCH 2 CH 2CH 2CH 3CH 3 ④ H C C C C C H H H H H H H H H H H H C H H H CH 3CHCH CH 2CH 2 CH 3CH 3 ⑤ H C C C C C H H H H H H H H H C C H H H H H H CH CHCH CHCH 323 CH CH 3 3 ⑥

H C C C C C H H H H H H H H H C C H H H H H H CH CCH CH CH 3 23CH CH 3 3 2 ⑦ H C C C C C H H H H H H H H H C C H H H H H H CH CH C CH CH 32 32 C C H H H 23 ⑧ H C C C C C H H H H H H H H H C C H H H H H CH CH C CH CH 32 32 C C H H 3 3 ⑨ H H H H H H C C H H H H H H CH C CH CH 3 3 C C H H 3 3C C C C C H H H CH 3 [问题2-2] 用系统命名法写出问题2-1中庚烷的各同芬异构体的名称。 解:对应于上题的名称顺序为: ① 庚烷 ② 2-甲基己烷 ③ 3-甲基己烷 ④ 2,3-二甲基戊烷 ⑤ 2,4-二甲基戊烷 ⑥ 2,2-二甲基戊烷 ⑦ 3-乙基戊烷 ⑧ 3,3-二甲基戊烷 ⑨ 2,2,3-三甲基丁烷 [问题2-3] 按照σ键的含义,SP 3-S,SP 3-SP 3是σ键,而1S 和2P,2P 和2P 能否形成σ键?

第二章 烷烃和环烷烃

第二章烷烃和环烷烃 1.写出只有伯氢原子,分子式为C8H18烷烃的结构式。 2.为什么没有季氢原子? 3.命名下列化合物。 4.写出下列烷烃或环烷烃的结构式 ⑴不含有仲碳原子的4碳烷烃。 ⑵具有12个等性氢原子、分子式为C5H12的烷烃。 ⑶分子中各类氢原子数之比为:1°H:2°H:3°H = 6:1:1,分子式为C7H16的烷烃。 ⑷只有1个伯碳原子、分子式为C7H14的环烷烃。写出所有可能的环烷烃的结构式并加以命名。 5.化合物2,2,4-三甲基己烷分子中的碳原子,各属于哪一类型(伯、仲、叔、季)碳原子? 6.元素分析得知含碳84.2%、含氢15.8%,相对分子质量为114的烷烃分子中,所有的氢原子都是等性的。写出该烷烃的分子式和结构式,并用系统命名法命名。 7.将下列化合物按沸点降低的顺序排列 ⑴丁烷⑵己烷 3 ⑶-甲基戊烷 ⑸-二甲基丁烷⑹环己烷 ⑷-甲基丁烷 2,3 2 8.按稳定性从大到小的次序,用Newman投影式表示丁烷以C2—C3键为轴旋转的4种典型构象式。 9.化合物A的分子式为C6H12,室温下能使溴的四氯化碳溶液褪色,但不能使高锰酸钾溶液褪色。A氢化得2,3-二甲基丁烷,与HBr反应得化合物B(C6H13Br)。写出化合物A 和B的结构式。 10.写出下列化合物的构象异构体,并指出较稳定的构象。 (1)异丙基环己烷(2)1-氯环己烷 11.将下列自由基按稳定性从大到小的次序排列。 12.为什么凡士林在医药上可用作软膏的基质?

13.完成下列反应式 14.写出下列药物的构象。 (1)镇痛药哌替啶(杜冷丁,Dolantin)的主要代谢产物哌替啶酸的结构为: 写出哌替啶酸的构象(—COOH在e键的构象)。 (2)促动力新药西沙必利(Cisapride)的结构为: 写出西沙必利的优势构象。 15.体内的抗坏血酸可使α-生育酚自由基还原再生为α-生育酚,同时抗坏血酸转变为抗坏血酸自由基。完成上述体内的自由基反应。 16.环己烷与氯在光或热的条件下,可生成一氯环己烷的反应是自由基的链反应。写出链引发、链增长、链终止的各步反应式。 17.在C6H14的构造异构体中,哪几种异构体不能用普通命名法命名。 18.试写出下列烷基的名称。 (1)CH3CH2 CH2 CH2― (2)(CH3)2CH―CH2―CH2― 19.试比较(1)丁烷、丙醇和丙胺的沸点;(2)丁烷、甲基乙基醚CH3―O―CH2CH3和丙醇在水中的溶解度。 20.试推测(1)辛烷(2)2,2―二甲基己烷(3)新辛烷和(4)2,2,3,3―四甲基丁烷燃烧热的大小。 21.(1)写出的反应机理。 (2)对于上式反应1940年前人们曾设想过下列机理,但没有被人们普遍认可,试说明可能的原因。 (3)为什么在引发阶段不一定先由乙烷产生CH3·,而是由Cl2产生Cl·? 22.等摩尔的新戊烷和乙烷的混合物进行氯代反应,一氯代反应产生氯代新戊烷[(CH3)3CCH2Cl]和氯乙烷的比例为2.3:1,比较新戊烷和乙烷中1°H的活性。

有机化学课后习题答案2第二章烷烃

5第二章烷烃 习题A 一. 1. 2-甲基-3,6-二乙基辛烷 2.3-甲基-4-丙基庚烷 3.2-甲基庚烷4. 2,3-二甲基-4-乙基己烷 5.2,2,5-三甲基-3-丙基庚烷 6.2-二甲基-3-乙基己烷二. 1.CH 3CHCH 2CCH 2CH 2CH 3 CH 3CH 3CH 2CH 3 2.CH 3CH 2CCH 2CH 3CH 3CH 2CH 3 3. CH 3CHCH 2CH 3CH 34.(CH 3)3CCH(CH 3)2 5.CH 3(CH 2)2CHCH(CH 2)4CH 3 CH(CH 3)2(CH 2)3CH 3 6.(CH 3)3CCH 2CH(CH 3)2 三. 1.A 2.A 3.AB 4.A 5.B 6.B 7.c d 、e d,c e,a b 8.D A 9.B 10.C 四. 1. CH 3CH 2CH 2CH 2CH 2CH 2CH 3 正庚烷 CH 3CH(CH 3)CH 2CH 2CH 2CH 3 2-甲基己烷 CH 3CH 2CH(CH 3)CH 2CH 2CH 3 3-甲基己烷 CH 3CH(CH 3)CH 2CH(CH 3)CH 3 2,4-二甲基戊烷 CH 3CH(CH 3)CH(CH 3)CH 2CH 3 2,3-二甲基戊烷 CH 3C(CH 3)2CH 2CH 2CH 3 2,2-二甲基戊烷 CH 3CH 2C(CH 3)2CH 2CH 3 3,3-二甲基戊烷 CH(CH 2CH 3)3 3-乙基戊烷 CH 3CH(CH 3)C(CH 3)3 2,2,3-三甲基丁烷 2. CH 3CHCH 2CH 2CH 2C 1°3°1°1°1°1°CH 3CH 3 CH 3CH 32°2°2° 4°3.①A ②C ③C ④D 4.c>b>e>a>d 5.(1)、(4)属于构象异构;(2)、(5)属于构造异构;(3)、(6)是完全相同的化合物。五. 1.(1)烷烃与卤素反应是自由基反应。甲烷与氯气反应,活性中间体是甲基自由基,乙烷与氯气反应,活性中间体是乙基自由基。乙基自由基上活性碳原子与旁边碳原子上的C -H σ键有σ-p 超共轭效应。甲基自由基活性碳原子旁边相连的都是H 原子,没有C -H σ键,故没有σ-p 超共轭效应。所以乙基自由基较甲基自由基稳定,氯乙烷就比氯甲烷更容易生

第二章烷烃

第二章烷烃 一、教学目的及要求 1.使学生理解“构象”概念,能够认识和书写简单烃类的构象的透视式和纽曼式、能够比较简单构象式的能量差别。 2.使学生了解饱和碳原子上的游离基取代反应、反应历程的概念和游离基稳定规律。 二、教学重点与难点 重点:1.烷烃和环烷烃构象 2.卤代反应及历程; 难点:1.构象式的书写及稳定性判断 三、教学方法 启发式 烃:分子中只有C、H两种元素的有机化合物叫做烃 烷烃:分子中的碳除以碳碳单键相连外,碳的其他价键都为氢原子所饱和的烃叫做烷烃,也叫饱和烃。烃的分类:

第一节烷烃的同系列及同分异构现象 一、烷烃的同系列 最简单的烷烃是甲烷,依次为乙烷、丙烷、丁烷、戊烷等,它们的分子式、构造式为: 分子式 构造式 构造简式甲烷 CH 4 CH 4 乙烷C 2H 6CH 3CH 3 丙烷C 3H 8 CH 3CH 2CH 3 丁烷C 4H 10 CH 3CH 2CH 2CH 3 从上述结构式可以看出,链烷烃的组成都是相差一个或几个CH 2(亚甲基)而连成碳链,碳链的两端各连一个氢原字。烷烃的通式为C n H 2n+2。 同系列(homologous series):具有一个通式,结构、化学性质相似、物理性质随碳原子的增加而有规律的变化。 系列差:相邻的同系物在组成上的差(例如烷烃的系列差为CH2)同系列中的化合物互称为同系物。 由于同系列中同系物的结构和性质相似,其物理性质也随着分子中碳原子数目的增加而呈规律性变化。 二、烷烃的同分异构现象1.异构现象 甲、乙、丙烷只有一种结合方式,无异构现象,从丁烷开始有同分异构现象,可由下面方式导出, 正丁烷(沸点-0.5℃) 异丁烷(沸点-10.2) H C H H C H H H H C H H C H H C H H H H C H H C H H C H H C H H H H C H H C C H H H H H -C-H H 加到中间碳 C-H 间 加到链端C-H 间 H C C C C H H H H H H H H H H C C C H H H C H H H H H H H C H H H

第二章 烷烃和环烷烃

第二章烷烃和环烷烃 教学目的 1. 使学生熟悉简单烷烃的普通命名法和较复杂烷烃的系统命名法。理解原子序数优先规则,能够准确的写出较复杂烷烃的构造式或名称。 2. 使学生理解“构象”概念,能够认识和书写简单烃类的构象的透视式和纽曼式、能够比较简单构象式的能量差别,掌握环己烷优势构象的画法。 3. 使学生了解饱和碳原子上的游离基取代反应、反应历程的概念和游离基稳定规律。 教学重点 1. 烷烃的系统命名规则、环己烷优势构象。 2. 原子序数优先规则 教学难点 1. 烷烃的构象(透视式与纽曼式)、环己烷优势构象。 2. 饱和碳原子上的游离基取代历程。 第一节烷烃的同系列和同分异构现象 一、烷烃的同系列 二、烷烃的同系列和同分异构现象 第二节烷烃和环烷烃的命名 一、普通命名法 其基本原则是: (1)含有10个或10个以下碳原子的直链烷烃,用天干顺序甲、乙、丙、丁、戊、已、庚、辛、壬、癸10个字分别表示碳原子的数目,后面加烷字。 例如:CH3CH2CH2CH3命名为正丁烷。 (2)含有10个以上碳原子的直链烷烃,用小写中文数字表示碳原子的数目。 如CH3(CH2)10CH3命名为正十二烷。(3)对于含有支链的烷烃,则必须在某烷前面加上一个汉字来区别。在链端第2位碳原子上连有1个甲基时,称为异某烷,在链端第二位碳原子上连有2个甲基时,称为新某烷。 如:CH3CH2CH2CH2CH3正戊烷 异戊烷(CH3)2CHCH2CH3 CH3 新戊烷 CH3 C CH3 CH3

二、系统命名法 1.烷烃的命名 系统命名法是我国根据1892年曰内瓦国际化学会议首次拟定的系统命名原则。国际纯粹与应用化学联合会(简称IUPAC 法)几次修改补充后的命名原则,结合我国文字特点而制定的命名方法,又称曰内瓦命名法或国际命名法。 烷基:烷烃分子去掉一个氢原子后余下的部分。其通式为C n H 2n+1-,常用R-表示。 常见的烷基有: 甲基 CH 3— (Me ) 乙基 CH 3CH 2— (Et ) 正丙基 CH 3CH 2CH 2— (n-Pr ) 异丙基 (CH 3)2CH — (iso-Pr ) 正丁基 CH 3CH 2CH 2CH 2— (n-Bu ) 异丁基 (CH 3)2CHCH 2— (iso-Bu ) 仲丁基 (sec-Bu ) 叔丁基 (CH 3)3C — (ter-Bu ) 在系统命名法中,对于无支链的烷烃,省去正字。对于结构复杂的烷烃,则按以下步骤命名: (1) 选择分子中最长的碳链作为主链,若有几条等长碳链时,选择支链较多的一条为主链。根据主链所含碳原子的数目定为某烷,再将支链作为取代基。此处的取代基都是烷基。 (2) 从距支链较近的一端开始,给主链上的碳原子编号。若主链上有2个或者个以上 的取代基时,则主链的编号顺序应使支链位次尽可能低。 (3) 将支链的位次及名称加在主链名称之前。若主链上连有多个相同的支链时,用小写中文数字表示支链的个数,再在前面用阿拉伯数字表示各个支链的位次,每个位次之间用逗号隔开,最后一个阿拉伯数字与汉字之间用半字线隔开。若主链上连有不同的几个支链时,则按由小到大的顺序将每个支链的位次和名称加在主链名称之前。 如果支链上还有取代基时,则必须从与主链相连接的碳原子开始 ,给支链上的碳原子编号。然后补充支链上烷基的位次.名称及数目。 2.环烷烃和多环脂环烃的命名 按照分子中所含环的多少分为单环和多环脂环烃。 根据脂环烃的不饱和程度又分为环烷烃和环烯烃(环炔烃)。 在多环烃中,根据环的连接方式不同,又可分为螺环烃和桥环烃。 (1)单环脂环烃的命名:环烷烃的命名与烷烃相似,根据成环碳原子数称为“某”烷,并在某烷前面冠以“环”字,叫环某烷。例如: 环丙烷 环丁烷 环已烷 环上带有支链时,一般以环为母体,支链为取代基进行命名,如: 二甲基环丙烷 CH 3CH 2CH CH 3 CH 3 CH 3

第二章 烷烃答案

第二章 烷烃 【重点难点】 1.必须熟练掌握烷烃系统命名法。要求能根据结构式写出名称或根据名称写出结构式。 2.理解烷烃的结构及碳原子轨道的sp 3杂化。 3.掌握乙烷、丁烷的构象分析。 4.理解影响自由基稳定性的因素,必须会排列不同自由基的稳定性次序。 CH 3CH 3CH 2>>· (CH 3)2CH···>(CH 3)3C 3o R·1o ·R 2o ·R >>>· CH 3例: 5.理解烷烃的取代反应历程,必须明确烷烃的取代反应类型——自由基取代。 【同步例题】 例2.1命名下列化合物: (1) (2) (3) (4) CH 3CH 22CH 22CH 3 CHCH 3 H 3C CH 2CH 3 CH 3 CH 3CHCHCHCH 2CHCH 3 CH 3 CH 2CH 3 CH 3 CH 3 CH 3CH 3CH 3C CH 3CHCH 3 CH 23 2CH 3 CH 3 解:(1) 按最低系列规则,应从结构式的左边编号才符合要求 CH 3CHCHCHCH 2CHCH 3 CH 3CH 2CH 3 CH 3 CH 3 1234567 因此称为:2,4,6-三甲基-3-乙基庚烷 (2) 选取含碳最多的碳链为主链

CH 3CH 3CH 3C CH 3CHCH 3 CH 23 CH 2CH 3 CH 32 3 4 5 6 7 1 因此称为:2,4,5-三甲基-4-(1,1-二甲基乙基)庚烷或2,4,5-三甲基-4-叔丁基庚烷 (3) 最长碳链有选择时,选择取代基多者为主链。 CH 3CH 2CHCH 2CH 2CCH 2CH 3 CHCH 3 H 3C CH 2CH 3 CH 3 2 34 5 6 7 1 8 因此称为:2,6-二甲基-3,6-二乙基辛烷 (4) 2 3 4 56 1 因此称为:2-甲基-3-乙基己烷 例2.2按自由基稳定性大小排序: · · · ·CH 3CH 3CHCH 2CH 3 CH 2CH 2CH 2CH 3 CH 3C CH 3 3 (1)(2)(3)(4)解:>>>(4)(3)(2)(1)

第二章烷烃教案

第二章烷烃 一.学习目的和要求: 1.掌握烷烃的同系列、同分异构和构造异构。 2.掌握烷烃的命名法、常见基团的名称。 3.掌握烷烃的结构,包括碳正四面体的概念、sp3杂化和σ键。 4.掌握烷烃的构象及构象的表示方法。 5.掌握烷烃的物理性质。 6.掌握烷烃的化学性质(稳定性、裂解、氧化及取代反应、各种氢的相对活泼性)。 7.掌握烷烃光卤代反应历程。 8.掌握甲烷氯代反应过程中的能量变化,包括过渡态理论、反应热、活化能。 9.掌握一般烷烃的卤代反应历程。 10.了解烷烃的来源。 二.本章节重点、难点 烷烃的同系列、同分异构和构造异构、烷烃的命名法、烷烃的结构、烷烃的构象及构象的表示方法、烷烃的物理性质、烷烃的化学性质、烃光卤代反应历程、甲浣氯代反应过程中的能量变化。 三.教学内容 分子中只有C、H两种元素的有机化合物叫做烃,烃可以分为以下几类: 烷烃 开链烃(脂肪烃)烯烃、二烯烃 烃炔烃 环状烃(脂环烃)脂环烃 芳香烃 烷烃是分之中的碳除以碳碳单键相连外,碳的其他价键都为氢原子所饱和的烃叫做烷烃,也叫做饱和烃。

2.1 烷烃的同系列及同分异构现象 2.1.1 烷烃的同系列 最简单的烷烃是甲烷,依次为乙烷、丙烷 、丁烷、戊烷等,它们的分子式、构造式分别为: 分子式 构造式 构造简式 甲烷 CH 4 CH 4 乙烷 C 2H 6 CH 3CH 3 丙烷 C 3H 8 CH 3CH 2CH 3 丁烷 C 4H 10 CH 3CH 2CH 2CH 3 从上述结构式可以看出,链状烷烃的组成都是相差一个或几个CH 2(亚甲基)而连成碳链,碳链的两端各连一个氢原子。所以烷烃的通式为CnH2n+2 。 这种结构和化学性质相似,组成上相差一个或多个CH 2的一系列化合物称为同系列。 同系列中的化合物互称为同系物。 由于同系列中同系物的结构和性质相似,其物理性质也随着分之中碳原子数目的增加而呈规律性变化,所以掌握了同系列中几个典型的有代表性的成员的化学性质,就可推知同系列中其他成员的一般化学性质。在应用同系列概念时,除了注意同系物的共性外,还要注意它们的个性,要根据分子结构上的差异来理解性质上的异同。 2.2.2 烷烃的同分异构现象 1.同分异构现象 甲、乙、丙烷只有一种结构,无同分异构现象,从丁烷开始有同分异构现象,同分异构 H C H H C H H H H C H H C H H C H H H H C H H C H H C H H C H H H H C H H

第二章 烷烃和环烷烃最终版

第一章 烷烃和环烷烃 一、烷烃 1.烷烃的命名:普通命名法(异构词头用词头“正”、“异”和“新”等区分) 系统命名法:(1)选主链:碳链最长 (2)编号:“最低系列”原则是:逐个比较两种编号法中表示取代基位置的数字,最先遇到取代基位置最小者,定为最低系列. (3)书写表达:次序规则(p19) 小练习:1、用系统命名法命名下列有机物: 2、根据名称写出下列有机物的结构简式,并判断下列有机物命名是否正确,如不 正确,指出错误原因,然后再写出正确命名 (1)2,2,3,3-四甲基戊烷 (2)3,4-二甲基-4-乙基庚烷 (3)2,5-二甲基庚烷 (4)2,3-二甲基-6-乙基辛烷 (5)3,3-二甲基丁烷 (6)3-甲基-2-乙基戊烷 2.烷烃的分子结构 ① 烷烃的构象和构象异构体 ② 交叉式和重叠式构象(最不稳定) ③ 透视式或纽曼投影式 小练习: 以C2与C3的σ键为旋转轴,试分别画出2,3-二甲基丁烷和2,2,3,3-四甲基丁烷的典型构象式,并指出哪一个为其最稳定的构象式。 1)烷烃的物理性质: a. C1~ C4为气态,C5~ C17为液态,C17以上为固态 b. 沸点随相对分子质量增大而增大 CH 3— CH 2 —CH 2 —CH CH 2 —CH 3 —CH 3 CH 3— CH 3 CH 3 —CH 3 C CH 3— C H 2 —CH —CH 3 CH 3

c.相对分子质量相同、支链多、沸点低。 d.基本上随分子量的增加而增加 参阅物理常数表,试推测下列化合物沸点高低的一般顺序。 (1) (A) 正庚烷 (B) 正己烷 (C) 2-甲基戊烷 (D) 2,2-二甲基丁烷 (E) 正癸烷 (2) (A) 丙烷 (B) 环丙烷 (C) 正丁烷 (D) 环丁烷 (E) 环戊烷 (F) 环己烷 (G) 正己烷 (H) 正戊烷 (3) (A) 甲基环戊烷 (B) 甲基环己烷 (C) 环己烷 (D) 环庚烷 2)烷烃的化学性质:(从物质的结构来判断) a.甲烷的卤代反应:(氯代和溴代反应,反应速率:氯代 >溴代)自由基取代 b.其它烷烃的卤代反应(一卤代):反应活性:3o H > 2o H > 1o H > CH4 c.自由基的相对稳定性:3o > 2o > 1o,越是稳定的自由基,越容易形成。 小练习:1.已知烷烃的分子式为C5H12,根据氯化反应产物的不同,试推测各烷烃的构造,并写出其构造式。 (1)一元氯代产物只能有一种 (2)一元氯代产物可以有三种 (3)一元氯代产物可以有四种 (4)二元氯代产物只可能有两种 2.将下列的自由基按稳定性大小排列成序。 ⑴⑵⑶⑷ 二、环烷烃 1、环烷烃的命名和类型 (一)单环烷烃(注意支链、顺反异构) (二)多环烷烃(桥环和螺环的命名) ①桥环:环的数目[桥头间的碳原子数]某烷,例:二环[4. 4. 0]癸烷 ②螺环:螺[除螺C外的碳原子数]某烷,例:螺[4. 5]癸烷 小练习:1、给下列环烃命名 CH3CH3CHCH2CH2 CH3 CH3CCH2CH3 CH3 CH3CHCHCH3 CH3 CH 3 CH 3 H 3 C

2第二章 烷烃作业题

第 二 章 烷烃 1 第二章 烷烃 【重点难点】 1.必须熟练掌握烷烃系统命名法。要求能根据结构式写出名称或根据名称写出结构式。 2.理解烷烃的结构及碳原子轨道的sp 3杂化。 3.掌握乙烷、丁烷的构象分析。 4.理解影响自由基稳定性的因素,必须会排列不同自由基的稳定性次序。 CH 3CH 3CH 2>>· (CH 3)2CH···>(CH 3)3C 3o R·1o ·R 2o ·R >>>· CH 3例: 5.理解烷烃的取代反应历程,必须明确烷烃的取代反应类型——自由基取代。 【作业题】 1. 用系统命名法命名下列化合物: (1) CH 3CH 2CH CHCH 2CH 2CH 3 CH 3 (4) CH(CH 3)2 (2) (3) 2. 写出下列化合物的构造式 (1) 2,2,4-三甲基戊烷 (2) 2-甲基-3-乙基己烷 3. 检查下列各化合物的命名,并将错误的命名加以改正 (1) 2,4-2 甲基己烷 (2) 4- 二甲基辛烷

班级 学号 姓名 2 4. 用纽曼投影式写出1,2-二溴乙烷的最稳定和最不稳定的构象,并写出该构象的名称。 5. 下列化合物哪一个是等同的,不等同的异构体属于何种异构体? H 3C CH 3 H C 2H 5 H 3C H (1) (2) 3 (3) H CH 3 H C 2H 5 C 2H 5H H 32 5 2H 5 3 3 H 3H 3和 和 和 6.试将下列烷烃自由基稳定性大小排列成序。 (1) . . . . (2) (3)(4) CH 3 (CH 3)2CHCHCH 3(CH 3)2CHCH 2CH 2 (CH 3)2CCH 2CH 3

第二章 烷烃

2.1、烷烃的通式、同系列和同分异构现象 通式:C n H 2n+2 同系列:具有同一通式、结构和性质相似、相互间相差一个或几个CH 2 的一系列化合物。同系列中的各个化合物互为同系物。相邻同系物之间的差CH 2叫做同系差。同系列是有机化学中的普遍现象,同系列中各个同系物(特别是高级同系物)具有相似的结构和性质 很明显,这两种丁烷结构上的差异是由于分子中碳原子连接方式不同而产生的,我们把分子式相同而构造式不同所产生的同分异构现象叫做构造异构;这种由于碳链的构造不同而产生的同分异构现象又称做碳链异构。同理,由丁烷的两种同分异构体可以衍生出三种戊烷: 随着分子中碳原子数的增加,碳原子间就有更多的连接方式,异构体的数目明显增加,己烷有五个同分异构体,庚烷有9个,辛烷有18个,而癸烷有75个,二十烷有366319个。 分析下面烷烃分子中碳原子和氢原子的连接情况: ( b.p. -0.5℃) 异丁烷 (b.p. –10.2℃) CH 3CH 3CH 3 CH 3 CH 3CH 3CH 3 CH 3 CH 3 CH 2CH 2CH 2CH 2 CH C 正戊烷(b.p. 36.1℃) 异戊烷(b.p. 28℃) 新戊烷(b.p. 9.5℃) CH 3 CH 3 CH 2 CH 3 3CH 2CH 2CH 3 3CH 3 CH 1° 1° CH 3 CH 3CH 3 CH 3 CH 3 C CH CH 2 1° 2° 3° 4°

其中有的碳只与一个碳原子相连,我们把它叫做一级碳原子,或叫第一(伯)碳原子,可用1°表示;直接与两个碳原子相连的,叫做二级碳原子,或叫第二(仲)碳原子,可用 2°表示;直接与三个碳原子相连的,叫做三级碳原子,或叫第三碳(叔)原子,可用3°表示;直接与四个碳原子相连的,叫做第四(季)碳原子,用4°表示。 氢原子则按其与一级、二级或三级碳原子相连而分别称为第一、第二、第三氢原子或称为伯、仲、叔氢原子。不同类型的氢原子的活泼性不同。 2.2、烷烃的命名 烷烃常用的命名法有普通命名法和系统命名法两种。 2.2.1 普通命名法(习惯命名法) 一般只适用于简单、含碳较少的烷烃,基本原则是: (1)根据分子中碳原子的数目称“某烷”。碳原子数在十以内时,用天干字甲、乙、丙、丁、戊、已、庚、辛、壬、癸表示;碳原子数在十个以上时,则以十一、十二、十三、……表示。例如: (2)为了区别异构体,直链烷烃称“正”某烷;在链端第二个碳原子上连有一个甲基且无其它支链的烷烃,称“异”某烷;在链端第二个碳原子上连有两个甲基且无其它支链的烷烃,称“新”某烷。例如:戊烷的三种异构体,分别称为正戊烷、异戊烷、新戊烷。 2.2.2烷基的命名 烷烃分子中去掉一个氢原子形成的一价基团叫烷基。烷基的名称由相应的烷烃命名。常见烷基如下: CH 3— CH 3CH 2— CH 3CH 2CH 2— (CH 3)2CH — CH 3CH 2CH 2CH 2 甲基 乙基 丙基 异丙基 丁基 CH 3(CH 2)10CH 3 CH 3CH 2CH 2CH 2CH 3 戊烷 十二烷 戊烷 CH 3 CH 3 CH 3 C CH 3 CH 3 CH 3CHCH 2CH 3 CH 3CH 2CH 2CH 2CH 3 正异戊烷 新戊烷

第二章 烷烃和环烷烃

第二章 烷烃和环烷烃 一、 教学目的与要求: 1、掌握烷烃和环烷烃的结构特征和命名;烷烃和环烷烃的构象异构。 2、掌握烷烃和环烷烃的化学性质的异同点;烷烃和环烷烃的自由基取代及 机理;掌握小环的开环加成。 二、教学重点 1、烷烃的命名(包括六碳以下的英文命名)。伯、仲、叔碳原子和氢原子, 乙烷与正丁烷的构象; 2、烷烃的结构特征:σ键。卤代自由基反应机理,伯、仲、叔氢的反应活 性,伯、仲、叔碳自由基的相对稳定性; 3、脂环烃的命名(单环、螺环与桥环),三元、四元环的开环加成。 4、环己烷的椅式构象以及取代环己烷的优势构象规律。 三、教学难点: 1、烷烃的英文命名; 2、自由基卤代反应机理; 3、环己烷的椅式构象,以及取代环己烷的优势构象规律; 4、环丙烷的结构; 六、教学步骤及时间分配 导言:烃(Hydrocarbon ):碳氢化合物。 简述烃的分类,介绍本章学习的重点要求,强调本章内容是学习后续各章的 基础。 1.1 烷烃 一、烷烃的结构 烷烃的结构特征:碳为sp 3杂化;C-H 、C-C 均为σ键。 σ键特点:键牢固,电子云沿键轴呈圆柱形对称,可自由旋转。 [示CH 4、CH 3CH 3的球棒模型] 简述同系列和同系物的概念和重要性: 二、烷烃的异构现象 (一) 碳链异构(carbon chain isomer ):具有相同分子式,仅由于碳链结 构不同而产生的同分异构现象。 如:丁烷(C 4H 10 ): 正丁烷 异丁烷 戊烷(C 5H 12): 正戊烷 异戊烷 新戊烷 从以上异构体引出:四种类型的碳,三种类型的氢。 分析:各级碳和氢的结构特征和代表的符号。 思考:①指出下列烷烃的各级碳和氢: CH 3-C-CH 2-CH-CH 2-CH 3CH 3CH 33CH 32CH 3 CH 3

第二章烷烃教案

第二章烷烃 一.学习目的和要求: 1.掌握烷烃的同系列、同分异构和构造异构。 2.掌握烷烃的命名法、常见基团的名称。 3.掌握烷烃的结构,包括碳正四面体的概念、sp3杂化和σ键。 4.掌握烷烃的构象及构象的表示方法。 5.掌握烷烃的物理性质。?6.掌握烷烃的化学性质(稳定性、裂解、氧化及取代反应、 各种氢的相对活泼性)。 7.掌握烷烃光卤代反应历程。 8.掌握甲烷氯代反应过程中的能量变化,包括过渡态理论、反应热、活化能。 9.掌握一般烷烃的卤代反应历程。 10.了解烷烃的来源。 二. 本章节重点、难点 烷烃的同系列、同分异构和构造异构、烷烃的命名法、烷烃的结构、烷烃的构象及构象的表示方法、烷烃的物理性质、烷烃的化学性质、烃光卤代反应历程、甲浣氯代反应过程中的能量变化。 三. 教学内容 分子中只有C、H两种元素的有机化合物叫做烃,烃可以分为以下几类: 烷烃 开链烃(脂肪烃) 烯烃、二烯烃 烃炔烃 环状烃(脂环烃) 脂环烃 芳香烃 烷烃是分之中的碳除以碳碳单键相连外,碳的其他价键都为氢原子所饱和的烃叫做烷烃,也叫做饱和烃。

2.1 烷烃的同系列及同分异构现象 2.1.1 烷烃的同系列 最简单的烷烃是甲烷,依次为乙烷、丙烷 、丁烷、戊烷等,它们的分子式、构造式分别为: 分子式 构造式 构造简式 甲烷 CH 4 CH 4 乙烷 C 2H 6 CH 3CH3 丙烷 C 3H 8 CH 3CH 2CH 3 丁烷 C 4H 10 CH 3CH 2C H2CH3 从上述结构式可以看出,链状烷烃的组成都是相差一个或几个CH 2(亚甲基)而连成碳链,碳链的两端各连一个氢原子。所以烷烃的通式为CnH2n+2 。 这种结构和化学性质相似,组成上相差一个或多个CH 2的一系列化合物称为同系列。 同系列中的化合物互称为同系物。 由于同系列中同系物的结构和性质相似,其物理性质也随着分之中碳原子数目的增加而呈规律性变化,所以掌握了同系列中几个典型的有代表性的成员的化学性质,就可推知同系列中其他成员的一般化学性质。在应用同系列概念时,除了注意同系物的共性外,还要注意它们的个性,要根据分子结构上的差异来理解性质上的异同。 2.2.2 烷烃的同分异构现象 1.同分异构现象 甲、乙、丙烷只有一种结构,无同分异构现象,从丁烷开始有同分异构现象,同分异构体 H C H H C H H H H C H H C H H C H H H H C H H C H H C H H C H H H H C H H

第二章烷烃习题参考答案

第二章烷烃 一、用系统命名法命名下列化合物: 二、写出下列各化合物的结构式: 三、用不同符号表示下列化合物中伯、仲、叔、季碳原子 四、下列各化合物的命名对吗?如有错误的话,指出错在那里?试正确命名之。

五、不要查表试将下列烃类化合物按沸点降低的次序排列: ①2,3-二甲基戊烷 ②正庚烷 ③ 2-甲基庚烷 ④ 正戊烷 ⑤ 2-甲基己烷 解:2-甲基庚烷>正庚烷> 2-甲基己烷>2,3-二甲基戊烷> 正戊烷 六、作出下列各化合物位能对旋转角度的曲线,只考虑所列出的键的旋转,并且用纽曼投影式表示能峰、能谷的构象。 七、用Newmann 投影式写出1,2-二溴乙烷最稳定及最不稳定的构象,并写出该构象的名称。 Br H H H H Br Br H H H H 对位交叉式构象 全重叠式构象 最稳定 最不稳定 八、下面各对化合物那一对是等同的?不等同的异构体属于何种异构?

九、某烷烃相对分子质量为72,氯化时①只得一种一氯化产物,②得三种一氯化产物,③得四种一氯化产物,④只得两种二氯衍生物,分别这些烷烃的构造式。 解:设有n个碳原子:12n+2n+2=72, n=5 十、那一种或那几种相对分子量为86的烷烃有: ①两个一溴代产物②三个一溴代产物 ③四个一溴代产物④五个一溴代产物 解:分子量为86的烷烃分子式为C6H14 十一、略 十二、反应CH3CH3 + Cl2光或热CH 3CH2Cl的历程与甲烷氯化相似, ①写出链引发、链增长、链终止各步的反应式:

②计算链增长一步△H值。 十三、一个设想的甲烷氯代反应历程包括下列各步骤: ①计算各步△H值: △H1=+243 Jk/mole △H2=435-349=+86 Jk/mole △H3=243-431=-188Jk/mol ②为什么这个反应历程比2.7节所述历程可能性小? 解:因为这个反应历程△H2=435-349=+86 Jk/mole而2.7节 易于进行。 十四、试将下列烷基自由基按稳定性大小排列成序: 解:④>②>③>①

第二章 烷烃

第二章 烷烃 1.写出庚烷的同分异构体的构造式,用系统命名法命名(汉英对照)。 (共9种,略) 2.写出下列化合物的汉英对照名称 (1) 2-甲基戊烷(2-methylpentane) 或异己烷(isohexane) (2)3,3-二甲基-4-乙基己烷(4-ethyl-3,3-dimethylhexane) (3)2,3,6-三甲基-6-乙基辛烷(6-ethyl-2,3,6-trimethyloctane) (4)3,5,5,6-四甲基壬烷(3,5,5,6--tetramethylnonane) 3. 下列烃类化合物按沸点降低的顺序排列: 2-甲基庚烷 > 正庚烷 > 2-甲基己烷 > 3,3-二甲基戊烷 > 正戊烷 4. 写出下列化合物一氯代时的全部产物的构造式 (1)正己烷 hv ++CH 3(CH 2)4CH 3 Cl(CH 2)5CH 3CH 3CHCH 2CH 2CH 2CH 3Cl CH 3CH 2CHCH 2CH 2CH 3 Cl 2 15.8% 42.1% 42.1% (2)异己烷 hv +++ ClCH 2CHCH 2CH 2CH 3CH 3 CH 3CCH 2CH 2CH 3Cl CH 3 CH 3CHCHCH 2CH 3 Cl CH 32 20% 16.7% 26.65% CH 3CHCH 2CH 2CH 3 CH 3 CH 3CHCH 2CHCH 3 CH 3 Cl CH 3CHCH 2CH 2CH 2Cl CH 326.6510% % (3)2,2-二甲基丁烷 hv ++2 40% 45% CH 3CCH 2CH 3 CH 3CH 3 15% ClCH 2CCH 2CH 3CH 3CH 3CH 3CCH 2CH 2Cl CH 3 CH 3CH 3C CH 3 CH 3CHCH 3Cl 5. 写出下列各取代基的构造式:

相关主题
文本预览
相关文档 最新文档