当前位置:文档之家› 动点与抛物线专题复习

动点与抛物线专题复习

动点与抛物线专题复习
动点与抛物线专题复习

动点与抛物线专题复习

一、平行四边形与抛物线

1、如图甲,在平面直角坐标系中,A、B的坐标分别为(4,0)、(0,3),抛物线y=x2+bx+c 经过点B,且对称轴是直线x=﹣.

(1)求抛物线对应的函数解析式;

(2)将图甲中△ABO沿x轴向左平移到△DCE(如图乙),当四边形ABCD是菱形时,请说明点C和点D都在该抛物线上;

(3)在(2)中,若点M是抛物线上的一个动点(点M不与点C、D重合),经过点M作MN∥y轴交直线CD于N,设点M的横坐标为t,MN的长度为l,求l与t之间的函数解析式,并求当t为何值时,以M、N、C、E为顶点的四边形是平行四边形.(参考公式:抛物

线y=ax2+bx+c(a≠0)的顶点坐标为(﹣,),对称轴是直线x=﹣.)

2、如图,在平面直角坐标系中,已知Rt△AOB的两条直角边OA、OB分别在y轴和x轴上,并且OA、OB的长分别是方程x2﹣7x+12=0的两根(OA<OB),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点0运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒.

(1)求A、B两点的坐标.

(2)求当t为何值时,△APQ与△AOB相似,并直接写出此时点Q的坐标.

(3)当t=2时,在坐标平面内,是否存在点M,使以A、P、Q、M为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.

3.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.

(1)抛物线及直线AC的函数关系式;

(2)设点M(3,m),求使MN+MD的值最小时m的值;

(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意

一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的

四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理

由;

(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.

二、梯形与抛物线

1、已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.

(1)求点C的坐标;

(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;

(3)若上述抛物线的对称轴与OB交于点D,点P为线段DB上一动点,过P作y轴的平行线,交抛物线于点M,问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.

2、如图,O为坐标原点,直线l绕着点A(0,2)旋转,与经过点C(0,1)的二次函数y=x2+h的图象交于不同的两点P、Q.

(1)求h的值;

(2)通过操作、观察,算出△POQ的面积的最小值(不必说理);

(3)过点P、C作直线,与x轴交于点B,试问:在直线l的旋转过程中,四边形AOBQ是否为梯形?若是,请说明理由;若不是,请指出四边形的形状.

3.如图,在平面直角坐标系xOy中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P,Q,点P从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度匀速向点C运动,点Q从点C出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动.点P,Q同时出发,同时停止,设运动时间为t(秒),当t=2(秒)时,PQ=2.(1)求点D的坐标,并直接写出t的取值范围.

(2)连接AQ并延长交x轴于点E,把AE沿AD翻折交CD延长线于点F,连接EF,则△AEF 的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S的值.

(3)在(2)的条件下,t为何值时,四边形APQF是梯形?

三、等腰三角形、菱形与抛物线

1、在平面直角坐标系xOy中,一块含60°角的三角板作如图摆

放,斜边AB在x轴上,直角顶点C在y

轴正半轴上,已知点

A(﹣1,0).

(1)请直接写出点B、C的坐标:

B、C;并求经过A、B、

C三点的抛物线解析式;

(2)现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°,∠DEF=60°),把顶点E 放在线段AB上(点E是不与A、B两点重合的动点),并使ED所在直线经过点C.此时,EF所在直线与(1)中的抛物线交于点M.

①设AE=x,当x为何值时,△OCE∽△OBC;

②在①的条件下探究:抛物线的对称轴上是否存在点P使△PEM是等腰三角形?若存在,请写出点P的坐标;若不存在,请说明理由.

3、如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为

原点,点A的坐标为(6,0),点B的坐标为(0,8).动点M从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t>0).

(1)当t=3秒时.直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式;(2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由;

(3)当t为何值时,△MNA是一个等腰三角形?

4、如图,直线l

经过点A(﹣1,0),直线l2经过点B(3,0),l1、l2均

为与y轴交于点C(0,),抛物线y=ax2+bx+c(a≠0)经过A、B、

C三点.

(1)求抛物线的函数表达式;

(2)抛物线的对称轴依次与x轴交于点D、与l2交于点E、与抛物线交

于点F、与l1交于点G.求证:DE=EF=FG;

(3)若l1⊥l2于y轴上的C点处,点P为抛物线上一动点,要使△PCG

为等腰三角形,请写出符合条件的点P的坐标,并简述理由.

5、如图,在平面直角坐标系中,直角梯形OABC的边OC、OA分

别与x轴、y轴重合,AB∥OC,∠AOC=90°,∠BCO=45°,BC=12,

点C的坐标为(﹣18,0).

(1)求点B的坐标;

(2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE=4,

OD=2BD,求直线DE的解析式;

(3)若点P是(2)中直线DE上的一个动点,在坐标平面内是否存在点Q,使以O、E、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.6、如图,已知抛物线经过原点O和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D.直线y=﹣2x﹣1经过抛物线上一点B(﹣2,m)且与y

轴交于点C,与抛物线的对称轴交于点F.

(1)求m的值及该抛物线对应的解析式;

(2)P(x,y)是抛物线上的一点,若S△ADP=S△ADC,求出所有符合

条件的点P的坐标;

(3)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每

秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能

使以Q、A、E、M四点为顶点的四边形是菱形?若能,请直接写出点M的运动时间t的值;若不能,请说明理由.

四、直角三角形与抛物线

1、如图,抛物线y=与x轴交于A、B两点(点A在点B

的左侧),与y轴交于点C.

(1)求点A、B的坐标;

(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于

△ACB的面积时,求点D的坐标;

(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.

2、如图,在等腰三角形ABC中,AB=AC,以底边BC的垂直平分线和BC

所在的直线建立平面直角坐标系,抛物线y=﹣x2+x+4经过A、B两点.

(1)写出点A、点B的坐标;

(2)若一条与y轴重合的直线l以每秒2个单位长度的速度向右平移,分

别交线段OA、CA和抛物线于点E、M和点P,连接P A、PB.设直线l移

动的时间为t(0<t<4)秒,求四边形PBCA的面积S(面积单位)与t(秒)

的函数关系式,并求出四边形PBCA的最大面积;

(3)在(2)的条件下,抛物线上是否存在一点P,使得△P AM是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

3.如图,顶点为P(4,﹣4)的二次函数图象经过原点(0,0),点A

在该图象上,OA交其对称轴l于点M,点M、N关于点P对称,连接

AN、ON,

(1)求该二次函数的关系式;

(2)若点A在对称轴l右侧的二次函数图象上运动时,请解答下面问

题:

①证明:∠ANM=∠ONM;

②△ANO能否为直角三角形?如果能,请求出所有符合条件的点A的坐标;如果不能,请说明理由.

4、如图,在平面直角坐标系中,直线y=x+2交x轴

于点P,交y轴于点A.抛物线y=x2+bx+c的图象过

点E(﹣1,0),并与直线相交于A、B两点.

(1)求抛物线的解析式(关系式);

(2)过点A作AC⊥AB交x轴于点C,求点C的坐标;

(3)除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.

五、相似三角形与抛物线

1、如图1,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点.

(1)求抛物线的解析式;

(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m 的值及点D的坐标;

(3)如图2,若点N在抛物线上,且

∠NBO=∠ABO,则在(2)的条件下,求出所有

满足△POD∽△NOB的点P坐标(点P、O、D

分别与点N、O、B对应).

3、如图,已知抛物线y=ax2+bx+c(a≠0)的图象经过原点O,交x轴于点A,其顶点B的坐标为(3,﹣).

(1)求抛物线的函数解析式及点A的坐标;

(2)在抛物线上求点P,使S△POA=2S△AOB;

(3)在抛物线上是否存在点Q,使△AQO与△AOB相似?如果存在,请

求出Q点的坐标;如果不存在,请说明理由.

4.如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于

点B、C,与y轴相交于点E,且点B在点C的左侧.

(1)若抛物线C1过点M(2,2),求实数m的值;

(2)在(1)的条件下,求△BCE的面积;

(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求

出点H的坐标;

(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE 相似?若存在,求m的值;若不存在,请说明理由.

5、如图,已知二次函数的图象过点A(﹣4,3),B(4,4).(1)求二次函数的解析式:

(2)求证:△ACB是直角三角形;

(3)若点P在第二象限,且是抛物线上的一动点,过点P作PH垂直x轴于点H,是否存在以P、H、D为顶点的三角形与△ABC相似?若存在,求出点P

的坐标;若不存在,请说明理由.

6如图,直线AB交x轴于点B(4,0),交y轴于点A(0,4),直线DM⊥x轴正半轴于点M,交线段AB于点C,DM=6,连接DA,∠DAC=90°.

(1)直接写出直线AB的解析式;

(2)求点D的坐标;

(3)若点P是线段MB上的动点,过点P作x

轴的垂线,交AB于点F,交过O、D、B三点的

抛物线于点E,连接CE.是否存在点P,使△BPF

与△FCE相似?若存在,请求出点P的坐标;若

不存在,请说明理由.

7.在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.

(1)求这个二次函数的关系解析式;

(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;

考生注意:下面的(3)、(4)、(5)题为三选一的选做题,即只能选做其中一个题目,多答时只按作答的首题评分,切记啊!

(3)在平面直角坐标系中,是否存在点Q,使△BCQ是以BC为腰的等腰直角三角形?若存在,直接写出点Q的坐标;若不存在,说明理由;

(4)点Q是直线AC上方的抛物线上一动点,过点Q作QE垂直于x轴,垂足为E.是否存在点Q,使以点B、Q、E为顶点的三角形与△AOC相似?若存在,直接写出点Q的坐标;若不存在,说明理由;

(5)点M为抛物线上一动点,在x轴上是否存在点Q,使以A、C、M、Q为顶点的四边形是平行四边形?若存在,直接写出点Q的坐标;若不存在,说明理由.

六、抛物线中的翻折问题

1、如图,抛物线y=ax2+bx+2交x轴于A(﹣1,0),B(4,0)两点,交y轴于点C,与过点C且平行于x轴的直线交于另一点

D,点P是抛物线上一动点.

(1)求抛物线解析式及点D坐标;

(2)点E在x轴上,若以A,E,D,

P为顶点的四边形是平行四边形,求

此时点P的坐标;

(3)过点P作直线CD的垂线,垂足为Q,若将△CPQ沿CP翻折,点Q的对应点为Q′.是否存在点P,使Q′恰好落在x轴上?若存在,求出此时点P的坐标;若不存在,说明理由.2、如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.

(1)求这个二次函数的表达式.

(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.

(3)当点P运动到什么位置时,四边形ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积.

动点与抛物线专题复习答案解析

一、平行四边形与抛物线

1、解:(1)由于抛物线y=x2+bx+c与y轴交于点B(0,4),则c=4;

∵抛物线的对称轴x=﹣=﹣,

∴b=5a=;

即抛物线的解析式:y=x2+x+4.

(2)∵A(4,0)、B(3,0)

∴OA=4,OB=3,AB==5;

若四边形ABCD是菱形,则BC=AD=AB=5,

∴C(﹣5,3)、D(﹣1,0).

将C(﹣5,3)代入y=x2+x+4中,得:×(﹣5)2+×(﹣5)+4=3,所以点C在抛物线上;

同理可证:点D也在抛物线上.

(3)设直线CD的解析式为:y=kx+b,依题意,有:

,解得

∴直线CD:y=﹣x﹣.

由于MN∥y轴,设M(t,t2+t+4),则N(t,﹣t﹣);

①t<﹣5或t>﹣1时,l=MN=(t2+t+4)﹣(﹣t﹣)=t2+t+;

②﹣5<t<﹣1时,l=MN=(﹣t﹣)﹣(t2+t+4)=﹣t2﹣t﹣;

若以M、N、C、E为顶点的四边形是平行四边形,由于MN∥CE,则MN=CE=3,则有:

t2+t+=3,解得:t=﹣3±2;

﹣t2﹣t﹣=3,解得:t=﹣3;

综上,l=

且当t=﹣3±2或﹣3时,以M、N、C、E为顶点的四边形是平行四边形.

2、解:(1)解方程x2﹣7x+12=0,得x1=3,x2=4,

∵OA<OB,∴OA=3,OB=4.

∴A(0,3),B(4,0).

(2)在Rt△AOB中,OA=3,OB=4,∴AB=5,∴AP=t,QB=2t,AQ=5﹣2t.

△APQ与△AOB相似,可能有两种情况:

(I)△APQ∽△AOB,如图(2)a所示.

则有,即,解得t=.

此时OP=OA﹣AP=,PQ=AP?tanA=,∴Q(,);

(II)△APQ∽△ABO,如图(2)b所示.

则有,即,解得t=.

此时AQ=,AH=AQ?cosA=,HQ=AQ?sinA=,OH=OA﹣AH=,∴Q(,).综上所述,当t=秒或t=秒时,△APQ与△AOB相似,所对应的Q点坐标分别为(,

)或(,).

(3)结论:存在.如图(3)所示.

∵t=2,∴AP=2,AQ=1,OP=1.

过Q点作QE⊥y轴于点E,则QE=AQ?sin∠QAP=,AE=AQ?cos∠QAP=,

∴OE=OA﹣AE=,∴Q(,).

∵?APQM1,∴QM1⊥x轴,且QM1=AP=2,∴M1(,);

∵?APQM2,∴QM2⊥x轴,且QM2=AP=2,∴M2(,);

如图(3),过M3点作M3F⊥y轴于点F,

∵?AQPM3,∴M3P=AQ,∠QAE=∠M3PF,∴∠PM3F=∠AQE;

在△M3PF与△QAE中,∵∠QAE=∠M3PF,M3P=AQ,∠PM3F=∠AQE,

∴△M3PF≌△QAE,

∴M3F=QE=,PF=AE=,∴OF=OP+PF=,∴M3(﹣,).

∴当t=2时,在坐标平面内,存在点M,使以A、P、Q、M为顶点的四边形是平行四边形.点M的坐标为:M1(,),M2(,),M3(﹣,).

3.解:(1)由抛物线y=﹣x2+bx+c过点A(﹣1,0)及C(2,3)得,

解得,

故抛物线为y=﹣x2+2x+3

又设直线为y=kx+n过点A(﹣1,0)及C(2,3)得

解得

故直线AC为y=x+1;

(2)作N点关于直线x=3的对称点N′,则N′(6,3),由(1)得D(1,4),

故直线DN′的函数关系式为y=﹣x+,

当M(3,m)在直线DN′上时,MN+MD的值最小,

则m=﹣×=;

(3)由(1)、(2)得D(1,4),B(1,2)

∵点E在直线AC上,

设E(x,x+1),

①当点E在线段AC上时,点F在点E上方,

则F(x,x+3),

∵F在抛物线上,

∴x+3=﹣x2+2x+3,

解得,x=0或x=1(舍去)

∴E(0,1);

②当点E在线段AC(或CA)延长线上时,点F在点E下方,

则F(x,x﹣1)

由F在抛物线上

∴x﹣1=﹣x2+2x+3

解得x=或x=

∴E(,)或(,)

综上,满足条件的点E为E(0,1)、(,)或(,);

(4)过点P作PQ⊥x轴交AC于点Q,交x轴于点H;过点C作CG⊥x轴于点G,如图2,设Q(x,x+1),则P(x,﹣x2+2x+3)

又∵S△APC=S△APH+S直角梯形PHGC﹣S△AGC=(x+1)(﹣x2+2x+3)+(﹣

x2+2x+3+3)(2﹣x)﹣×3×3

=﹣x2+x+3

=﹣(x﹣)2+

∴△APC的面积的最大值为.

二、梯形与抛物线

1、解:(1)过点C作CH⊥x轴,垂足为H;

∵在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2,

∴OB=4,OA=2;

由折叠的性质知:∠COB=30°,OC=AO=2,

∴∠COH=60°,OH=,CH=3;

∴C点坐标为(,3).

(2)∵抛物线y=ax2+bx(a≠0)经过C(,3)、A(2,0)两点,∴,

解得;

∴此抛物线的函数关系式为:y=﹣x2+2x.

(3)存在.

因为y=﹣x2+2x的顶点坐标为(,3),

即为点C,MP⊥x轴,垂足为N,设PN=t;

因为∠BOA=30°,

所以ON=t,

∴P(t,t);

作PQ⊥CD,垂足为Q,ME⊥CD,垂足为E;

把x=t代入y=﹣x2+2x,

得y=﹣3t2+6t,

∴M(t,﹣3t2+6t),E(,﹣3t2+6t),

同理:Q(,t),D(,1);

要使四边形CDPM为等腰梯形,只需CE=QD,

即3﹣(﹣3t2+6t)=t﹣1,

解得t=,t=1(舍),

∴P点坐标为(,),

∴存在满足条件的P点,使得四边形CDPM为等腰梯形,此时P点坐标为(,).

2、解:(1)∵抛物线y=x2+h经过点C(0,1),

∴+h=1,

解得h=1.

(2)依题意,设抛物线y=x2+1上的点,P(a,a2+1)、Q(b,b2+1)(a<0<b)过点A的直线l:y=kx+2经过点P、Q,

∴a2+1=ak+2…①

b2+1=bk+2…②

①×b﹣②×a得:(a2b﹣b2a)+b﹣a=2(b﹣a),

化简得:b=﹣;

∴S△POQ=OA?|xQ﹣xP|=?OA?|﹣﹣a|=(﹣)+(﹣a)≥2?=4

由上式知:当﹣=﹣a,即|a|=|b|(P、Q关于y轴对称)时,△POQ的面积最小;

即PQ∥x轴时,△POQ的面积最小,且POQ的面积最小为4.

(3)连接BQ,若l与x轴不平行(如图),即PQ与x轴不平行,

依题意,设抛物线y=x2+1上的点,P(a,a2+1)、Q(b,b2+1)(a<0<b)

直线BC:y=k1x+1过点P,

∴a2+1=ak1+1,得k1=﹣a,

即y=ax+1.

令y=0得:xB=﹣,

同理,由(2)得:b=﹣

∴点B与Q的横坐标相同,

∴BQ∥y轴,即BQ∥OA,

又∵AQ与OB不平行,

∴四边形AOBQ是梯形,

据抛物线的对称性可得(a>0>b)结论相同.

故在直线l旋转的过程中:当l与x轴不平行时,四边形AOBQ是梯形;当l与x轴平行时,四边形AOBQ是正方形.

3.解:(1)由题意可知,当t=2(秒)时,OP=4,CQ=2,

在Rt△PCQ中,由勾股定理得:PC===4,

∴OC=OP+PC=4+4=8,

又∵矩形AOCD,A(0,4),∴D(8,4).

点P到达终点所需时间为=4秒,点Q到达终点所需时间为=4秒,由题意可知,t的取值范围为:0<t<4.

(2)结论:△AEF的面积S不变化.

∵AOCD是矩形,∴AD∥OE,∴△AQD∽△EQC,

∴,即,解得CE=.

由翻折变换的性质可知:DF=DQ=4﹣t,则CF=CD+DF=8﹣t.

S=S梯形AOCF+S△FCE﹣S△AOE

=(OA+CF)?OC+CF?CE﹣OA?OE

=[4+(8﹣t)]×8+(8﹣t)?﹣×4×(8+)

化简得:S=32为定值.

所以△AEF的面积S不变化,S=32.

(3)若四边形APQF是梯形,因为AP与CF不平行,所以只有PQ∥AF.由PQ∥AF可得:△CPQ∽△DAF,

∴,即,化简得t2﹣12t+16=0,

解得:t1=6+2,t2=6﹣2,

由(1)可知,0<t<4,∴t1=6+2不符合题意,舍去.

∴当t=(6﹣2)秒时,四边形APQF是梯形.

三、等腰三角形、菱形与抛物线

1、解:(1)∵点A(﹣1,0),

∴OA=1,

由图可知,∠BAC是三角板的60°角,∠ABC是30°角,

所以,OC=OA?tan60°=1×=,

OB=OC?cot30°=×=3,

所以,点B(3,0),C(0,),

设抛物线解析式为y=ax2+bx+c,

则,

解得,

所以,抛物线的解析式为y=﹣x2+x+;

(2)①∵△OCE∽△OBC,

∴=,

即=,

解得OE=1,

所以,AE=OA+OE=1+1=2,

即x=2时,△OCE∽△OBC;

②存在.理由如下:

抛物线的对称轴为x=﹣=﹣=1,

所以,点E为抛物线的对称轴与x轴的交点,

∵OA=OE,OC⊥x轴,∠BAC=60°,

∴△ACE是等边三角形,

∴∠AEC=60°,

又∠DEF=60°,

∴∠FEB=60°,

∴∠BAC=∠FEB,

∴EF∥AC,

由A(﹣1,0),C(0,)可得直线AC的解析式为y=x+,∵点E(1,0),

∴直线EF的解析式为y=x﹣,

联立,

解得,(舍去),

∴点M的坐标为(2,),

EM==2,

分三种情况讨论△PEM是等腰三角形,

当PE=EM时,PE=2,

所以,点P的坐标为(1,2)或(1,﹣2),

当PE=PM时,∵∠FEB=60°,

∴∠PEF=90°﹣60°=30°,

PE=EM÷cos30°=×2÷=,

所以,点P的坐标为(1,),

当PM=EM时,PE=2EM?cos30°=2×2×=2,

所以,点P的坐标为(1,2),

综上所述,抛物线对称轴上存在点P(1,2)或(1,﹣2)或(1,)或(1,2),使△PEM是等腰三角形.

3、解:(1)由题意,A(6,0)、B(0,8),则OA=6,OB=8,AB=10;

当t=3时,AN=t=5=AB,即N是线段AB的中点;

∴N(3,4).

设抛物线的解析式为:y=ax(x﹣6),则:

4=3a(3﹣6),a=﹣;

∴抛物线的解析式:y=﹣x(x﹣6)=﹣x2+x.

(2)过点N作NC⊥OA于C;

由题意,AN=t,AM=OA﹣OM=6﹣t,NC=NA?sin∠BAO=t?=t;

则:S△MNA=AM?NC=×(6﹣t)×t=﹣(t﹣3)2+6.

∴△MNA的面积有最大值,且最大值为6.

(3)Rt△NCA中,AN=t,NC=AN?sin∠BAO=t,AC=AN?cos∠BAO=t;

∴OC=OA﹣AC=6﹣t,∴N(6﹣t,t).

∴NM==;

又:AM=6﹣t,AN=t(0<t<6);

①当MN=AN时,=t,即:t2﹣8t+12=0,t1=2,t2=6(舍去);

②当MN=MA时,=6﹣t,即:t2﹣12t=0,t1=0(舍去),t2=;

③当AM=AN时,6﹣t=t,即t=;

综上,当t的值取2或或时,△MAN是等腰三角形.

4、解:(1)抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(3,0),C(0,)三点,∴,解得a=,b=,c=,

∴抛物线的解析式为:y=x2x.

有关抛物线的动点问题 (中考)

1、(2010?遵义)如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C (0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D. (1)求该抛物线的函数关系式; (2)当△ADP是直角三角形时,求点P的坐标; (3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由. 2、(2010?义乌市)如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).(1)直接写出抛物线的对称轴、解析式及顶点M的坐标; (2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、B1的坐标分别为(x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标; (3)在图1中,设点D坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC 运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t 的值;若不存在,请说明理 由.

3、(2010?盐城)已知:函数y=ax2+x+1的图象与x轴只有一个公共点. (1)求这个函数关系式; (2)如图所示,设二次函数y=ax2+x+1图象的顶点为B,与y轴的交点为A,P为图象上的一点,若以线段PB为直径的圆与直线AB 相切于点B,求P点的坐标; (3)在(2)中,若圆与x轴另一交点关于直线PB的对称点为M,试探索点M是否在抛物线y=ax2+x+1上,若在抛物线上,求出M 点的坐标;若不在,请说明理由. 4、(2010?徐州)如图①,梯形ABCD中,∠C=90°.动点E、F同时从点B出发,点E沿折线BA-AD-DC运动到点C时停止运动,点F沿BC运动到点C时停止运动,它们运动时的速度都是1cm/s.设E、F出发ts时,△EBF的面积为ycm2.已知y与t的函数图象如图②所示,其中曲线OM为抛物线的一部分,MN、NP为线段.请根据图中的信息,解答下列问题: (1)梯形上底的长AD= ---------- cm,梯形ABCD的面积------------- cm2; (2)当点E在BA、DC上运动时,分别求出y与t的函数关系式(注明自变量的取值范围); (3)当t为何值时,△EBF与梯形ABCD的面积之比为1:2? 5、(2010?湘潭)如图,直线y=-x+6与x轴交于点A,与y轴交于点B,以线段AB为直径作⊙C,抛物线y=ax2+bx+c过A、C、O三点. (1)求点C的坐标和抛物线的解析式; (2)过点B作直线与x轴交于点D,且OB2=OA?OD,求证:DB是⊙C的切线; (3)抛物线上是否存在一点P,使以P、O、C、A为顶点的四边形为直角梯形,如果存在,求出点P的坐标;如果不存在,请说明理由.

全等三角形动点问题分析教案

学思堂教育个性化辅导授课案 教师: 学生: 时间: 2016 年 月 日 段 授课内容:全等三角形中动点问题的处理 教学目标:培养学生对运动变化、分类讨论思想等的数学综合运用能力 教学重难点:寻找运动规律,分析问题 (1)质点的运动形成全等三角形 通过全等三角形的性质:对应边相等,(对应角相等,面积相等),来确定质点运动的速度或时间,注意分类讨论思想的运用。 (2)几何问题中三角板旋转形成的全等三角形 三角板是学生最常用的学习工具,以三角板为道具,以学生常见、熟悉的几何图形为载体,并辅之以平移、旋转等变换手段的问题,能为学生提供动手实践操作设计的空间,较好地考查了学生观察、实验、比较、联想、类比、归纳的能力以及运动变化、分类讨论思想等的综合运用能力。这类操作性的题目格调清新,立意新颖,充分体现了课标中提出的“培养学生动手动脑、实践探索的能力”的要求,既注重基础知识,同时又具有很强的综合性,因此受到了各地中考命题专家的青睐。 1.如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点. (1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇? A Q C D B P

中考专题复习《动点问题》教学设计

中考专题复习《动点问题》教学设计【学情分析】 动点一般在中考都是压轴题,步骤不重要,重要的是思路。动点类题目一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题难了,可以反过去看看前面问题的结论 【教学目标】 知识与技能: 1、利用特殊三角形的性质和定理解决动点问题; 2、分析题目,了解有几个动点,动点的路程,速度(动点怎么动); 3、结合图形和题目,得出已知或能间接求出的数据。 过程与方法: 1、利用分类讨论的方法分析并解决问题; 2、数形结合、方程思想的运用。

情感态度价值观:通过动手操作、合作交流,探索证明等活动,培养学生的团队合作精神,激发学生学习数学的兴趣。 【教学重点】 根据动点中的移动距离,找出等量列方程。 【教学难点】 1、两点同时运动时的距离变化; 2、运动题型中的分类讨论 【教学方法】教师引导、自主思考 【教学过程】 一、动点问题的近况: 1、动态几何 图形中的点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力. 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析

过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)它通常分为三种类型:动点问题、动线问题、动形问题。在解这类问题时,要充分发挥空间想象的能力,不要被“动”所迷惑,而是要在“动”中求“静”,化“动”为“静”,抓住它运动中的某一瞬间,寻找确定的关系式,就能找到解决问题的途径。本节课重点来探究动态几何中的第一种类型----动点问题。所谓动点问题:是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放新题目。 2、三年中考概况; 近年来运动问题是以三角形或四边形为背景,用运动的观点来探究几何图形变化规律的问题.这类题的特点是:图形中的某些元素(如点、线段、角等)或整个图形按某种规律运动,图形的各个元素在运动变化过程中相互依存,相互制约. 3、解题策略和方法: “动点型问题”题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。解决动点问题的关键是“动中求静”.动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、

二次函数动点问题解答方法技巧(含例解答案)33935

函数解题思路方法总结: ⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数ax 2+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合; ⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式ax 2+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系: 动点问题题型方法归纳总结 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 二、 抛物线上动点 5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;

(2) 设抛物线的对称轴与x轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由. (3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标. 注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为 顶点时,以C为圆心CM为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M 为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平 分线与对称轴交点即为所求点P。 第(3)问方法一,先写出面积函数关系式,再求最大值(涉及二次函数最值);方 法二,先求与BC平行且与抛物线相切点的坐标(涉及简单二元二次方程组),再求面积。

抛物线中动点问题讲义

第一讲抛物线中的动点问题 一、利用动点(图形)位置进行分类,把运动问题分割成几个静态问题,然后运用转化的思想和方法将几何问题转化为函数和方程问题 二、利用函数与方程的思想和方法将所解决图形的性质(或所求图形面积) 直接转化为函数或方程。 一、平行四边形与抛物线 【例】如图甲,在平面直角坐标系中,A、B的坐标分别为(4,0)、(0,3),抛物线y=x2+bx+c经过点B,且对称轴是直线x=﹣. (1)求抛物线对应的函数解析式; (2)将图甲中△ABO沿x轴向左平移到△DCE(如图乙),当四边形ABCD是菱形时,请说明点C和点D都在该抛物线上; (3)在(2)中,若点M是抛物线上的一个动点(点M不与点C、D重合),经过点M作MN∥y轴交直线CD于N,设点M的横坐标为t,MN的长度为l,求l 与t之间的函数解析式,并求当t为何值时,以M、N、C、E为顶点的四边形是平行四边形. 变式演练 【变式】如图,在平面直角坐标系中,已知Rt△AOB的两条直角边OA、OB分别在y轴和x轴上,并且OA、OB的长分别是方程x2﹣7x+12=0的两根(OA<OB),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点0运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒. (1)求A、B两点的坐标. (2)求当t为何值时,△APQ与△AOB相似,并直接写出此时点Q的坐标. (3)当t=2时,在坐标平面内,是否存在点M,使以A、P、Q、M为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由. 【变式】如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y 轴交于点N.其顶点为D.

2019届中考数学《第六讲第4课时抛物线中的两个动点问题》同步练习

第4课时 抛物线中的两个动点问题 (60分) 1.(20分)[2017·凉山州]如图6-4-1,在平面直角坐标系中,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A ,B 两点,与y 轴交于点C ,且OA =2,OB =8,OC =6. (1)求抛物线的表达式; (2)点M 从A 点出发,在线段上AB 以每秒3个单位长 度的速度向点B 运动,同时,点N 从B 出发,在线段 BC 上以每秒1个单位长度的速度向点C 运动,当其 中一个点到达终点时,另一个点也停止运动,当△MBN 存在时,求运动多少秒使△MBN 的面积最大,最大面积是多少? (3)在(2)的条件下,△MBN 面积最大时,在BC 上方的抛物线上是否存在点P ,使△BPC 的面积是△MBN 面积的9倍,若存在,求点P 的坐标,若不存在,请说明理由. 【解析】 (1)由线段的长度得出点A ,B ,C 的坐标,然后把A ,B ,C 三点的坐标分别代入y =ax 2+bx +c ,解方程组即可得抛物线的表达式; (2)设运动时间为t s ,则MB =10-3t ,然后根据△BHN ∽△BOC ,求得NH =35t ,再利用三角形的面积公式列出S △MBN 与t 的函数关系式S △MBN =-910? ?? ??t -532+52,利用二次函数的图象性质进行解答; (3)利用待定系数法求得直线BC 的表达式为y =-34x +6.由二次函数图象上点 的坐标特征可设点P 的坐标为? ?? ??m ,-38m 2+94m +6.过点P 作PE ∥y 轴,交BC 于点E .结合已知条件和(2)中的结果求得S △PBC =452.则根据图形得到S △PBC =S △ CEP +S △BEP =12EP ·m +12·EP ·(8-m ),把相关线段的长度代入推知:-32m 2+12 m 图6-4-1

人教版七年级下册数学动点问题教学内容

动点问题 1、如图6-7,已知A 、B 两村庄的坐标分别为(2,2)、(7,4),一辆汽车在x 轴上行驶,从原点O 出发. (1)汽车行驶到什么位置时离A 村最近?写出此点的坐标. (2)汽车行驶到什么位置时离B 村最近?写出此点的坐标. (3)请在图中画出汽车行驶到什么位置时,距离两村的和最短? 2.如图,以直角三角形AOC 的直角顶点O 为原点,以OC 、OA 所在直线为x 轴 和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0) 20b -=. (1) 则A 点的坐标为___________,C 点的坐标为__________; (2) 已知坐标轴上有两动点P 、Q 同时出发,P 点从C 点出发沿x 轴负方向以1个单位长度每秒的速度匀速移动,Q 点从O 点出发以2个单位长度每秒的速度沿y 轴正方向移动,点Q 到达A 点整个运动随之结束.AC 的中点D 的坐标是(1,2),设运动时间为t (t >0)秒.问:是否存在这样的t ,使S △ODP = S △ODQ ,若存在,请求出t 的值;若不存在,请说明理由; (3) 点F 是线段AC 上一点,满足∠FOC =∠FCO ,点G 是第二象限中一点,连OG ,使得∠AOG =∠AOF .点E 是线段OA 上一动点,连CE 交OF 于点H ,当点E 在线段OA 上运动的过程中,OHC ACE OEC ∠+∠∠的值是否会发生变化,若不变,请求出它的值;若变化,请说明理由. 3.如图1,在平面直角坐标系中,第一象限内长方形ABCD , AB ∥y 轴,点A (1,1),点C (a , b ),

满足035=-+-b a . (1)求长方形ABCD 的面积. (2)如图2,长方形ABCD 以每秒1个单位长度的速度向右平移,同时点E 从原点O 出发沿x 轴以每秒2 个单位长度的速度向右运动,设运动时间为t 秒. ①当t=4时,直接写出三角形OAC 的面积为 ; ② 若AC ∥ED ,求t 的值; (3)在平面直角坐标系中,对于点()P x y ,,我们把点(11)P y x '-++,叫做点P 的伴随点, 已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得到点1A ,2A ,3A ,…,n A . ①若点1A 的坐标为(3,1),则点3A 的坐标为 ,点2014A 的坐标为 ; ②若点1A 的坐标为(a ,b ),对于任意的正整数n ,点n A 均在x 轴上方,则a ,b 应满足的条件为 . 4、如图,在平面直角坐标中,A (0,1),B (2,0),C (2,1.5). (1)求△ABC 的面积; (2)如果在第二象限内有一点P (a ,0.5),试用a 的式子表示四边形ABOP 的面积; (3)在(2)的条件下,是否存在这样的点P ,使四边形ABOP 的面积与△ABC 的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由. y x P O C B A 5、如图,△ABC 的三个顶点位置分别是A (1,0),B (-2,3),C (-3,0). (1)求△ABC 的面积; (2)若把△ABC 向下平移2个单位长度,再向右平移3个单位长度,得到△A B C ''',请你在图中画出△A B C '''; (3)若点A 、C 的位置不变,当点P 在y 轴上什么位置时,使 2ACP ABC S S =V V ; (4)若点B 、C 的位置不变,当点Q 在x 轴上什么位置时,使 D C B A E O y x 24题图2 24题图1 D C B A O y x

最新数学中考专题复习——《动点问题》教案

中考专题复习——动点问题 【学情分析】 动点一般在中考都是压轴题,步骤不重要,重要的是思路。动点类题目一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题难了,可以反过去看看前面问题的结论 【教学目标】 知识与技能: 1、利用特殊三角形的性质和定理解决动点问题; 2、分析题目,了解有几个动点,动点的路程,速度(动点怎么动); 3、结合图形和题目,得出已知或能间接求出的数据。 过程与方法: 1、利用分类讨论的方法分析并解决问题; 2、数形结合、方程思想的运用。 情感态度价值观:通过动手操作、合作交流,探索证明等活动,培养学生的团队合作精神,激发学生学习数学的兴趣。 【教学重点】 根据动点中的移动距离,找出等量列方程。 【教学难点】 1、两点同时运动时的距离变化; 2、运动题型中的分类讨论 【教学方法】教师引导、自主思考 【教学过程】 一、动点问题的近况: 1、动态几何 图形中的点动、线动、形动构成的问题称之为动态几何问题. 它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题. 这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力. 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)它通常分为三种类型:动点问题、动线问题、动形问题。在解这类问题时,要充分发挥空间想象的能力,不要被“动”所迷惑,而是要在“动”中求“静”,化“动”为“静”,抓住它运动中的某一瞬间,寻找确定的关系式,就能找到解决问题的途径。本节课重点来探究动态几何中的第一种类型----动点问题。所谓动点问题:是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放新题目。

动点问题题型方法归纳

动点问题 知识点: 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、三角形边上动点 1、(2009年齐齐哈尔市)直线与坐标轴分别交于两点,动点同时从点出发,同时到达点,运动停止.点沿线段运动,速度为每秒1个单位长度,点沿路线→→运动. (1)直接写出两点的坐标; (2)设点的运动时间为秒,的面积为,求出与之间的函数关系式; (3)当时,求出点的坐标,并直接写出以点为顶点的平行四边形的第四个顶点的坐标. 提示:第(2)问按点P到拐点B所有时间分段分类; 第(3)问是分类讨论:已知三定点O、P、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP为边、OQ为边,②OP为边、OQ为对角线,③OP为对角线、OQ为边。然后画出各类的图形,根据图形性质求顶点坐标。 2、(2009年衡阳市)如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60o. (1)求⊙O的直径; (2)若D是AB延长线上一点,连结CD,当BD长为多少时,CD与⊙O相切; (3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动点F以1cm/s的速度从B点出发沿BC方向运动,设运动时间为,连结EF,当为何值时,△BEF为直角三角形. 注意:第(3)问按直角位置分类讨论 简单题。 3、(2009重庆綦江)如图,已知抛物线经过点,抛物线的顶点为,过作射线.过顶点平行于轴的直线交射线于点,在轴正半轴上,连结. (1)求该抛物线的解析式; (2)若动点从点出发,以每秒1个长度单位的速度沿射线运动,设点运动的时间为.问当为何值时,四边形分别为平行四边形直角梯形等腰梯形 (3)若,动点和动点分别从点和点同时出发,分别以每秒1个长度单位和2个长度单位的

中考数学压轴题_二次函数动点问题(一)

二次函数压轴题 1.如图:抛物线经过A(-3,0)、B(0,4)、C(4,0)三点. (1)求抛物线的解析式. (2)已知AD = AB(D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度移动;同时另一个动点Q以某一速度从点B沿线段BC移动,经过t 秒的移动,线段PQ被BD垂直平分,求t的值; (3)在(2)的情况下,抛物线的对称轴上是否存在一点M,使MQ+MC的值最小?若存在, 请求出点M的坐标;若不存在,请说明理由。

2.如图9,在平面直角坐标系中,二次函数)0(2>++=a c bx ax y 的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0), OB =OC ,tan∠ACO=3 1 . (1)求这个二次函数的表达式. (2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由. (3)如图10,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,△APG 的面积最大?求出此时P 点的坐标和△APG 的最大面积.

3.如图,已知抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴 交于点C(0,3)。 ⑴求抛物线的解析式; ⑵设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P, 使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存 在,请说明理由; ⑶若点M是抛物线上一点,以B、C、D、M为顶点的四边形是直角梯形,试求出点M的坐标。

四边形中的动点问题(带答案)

四边形中的动点问题 1、如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是_____________ 2、如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH 的面积为________ 3、如图,正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为____________ 4、如图,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA方向以4 cm/s 的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t s(0 < t ≤15).过点D作DF⊥BC于点F,连接DE,EF. (1)求证:AE=DF; (2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由

5、如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t. (1)连接EF,当EF经过AC边的中点D时, (1)求证:△ADE≌△CDF;: (2)当t为______s时,四边形ACFE是菱形; 6、在菱形ABCD中,∠B=60°,点E在射线BC上运动,∠EAF=60°,点F在射线CD上(1)当点E在线段BC上时(如图1),(1)求证:EC+CF=AB;(2)当点E在BC的延长线上时(如图2),线段EC、CF、AB有怎样的相等关系?写出你的猜想,不需证明

二次函数动点问题教案

龙文教育辅导讲义学员编号:年级:课时数:学员姓名:辅导科目:教师:课题 授课时间:月日备课时间:月日教学目标 重点、难点 考点及考试要求 教学内容 教学内容: 1.已知二次函数1 2- x y的图象经过点(3,2)。 =bx + (1)求这个二次函数的关系式;(2)指出图象的顶点坐标; (3)当x>0时,求使y≥2的x的取值范围。

2.已知抛物线t ax ax y ++=42 与x 轴的一个交点为A (-1,0)。 (1)求抛物线与x 轴的另一个交点B 的坐标; (2)D 是抛物线与y 轴的交点,C 是抛物线上的一点,且以AB 为一底的梯形ABCD 的面积为9,求此抛物线的函数关系式。 3.如图二次函数y=ax 2+bx+c 的图象经过A 、B 、C 三点, C (1)观察图象,写出A 、B 、C 三点的坐标,并求出抛物线解析式, (2)求此抛物线的顶点坐标和对称轴 (3)观察图象,当x 取何值时,y<0?y=0?y>0? 4.南博汽车城销售某种型号的汽车,每辆进货价为25万元,市场调研表明:当销售价为29万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出4辆.如果设每辆汽车降价x 万元,每辆汽车的销售利润为y 万元.(销售利润=销售价-进货价) (1)求y 与x 的函数关系式;在保证商家不亏本的前提下,写出x 的取值范围; (2)假设这种汽车平均每周的销售利润为z 万元,试写出z 与x 之间的函数关系式; (3)当每辆汽车的定价为多少万元时,平均每周的销售利润最大?最大利润是多少? -1 4 y x A B 5 O

C (-1,0)A (0,2)B x y O 5在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,且点A (0,2),点C (-1,0),如图所示,抛物线2 2y ax ax =+-经过点B . (1)求点B 的坐标; (2)求抛物线的解析式; (3)在抛物线上是否还存在点P (点B 除外),使△ACP 仍然是以AC 为直角边的等腰直角三角形?若存在,求所有点P 的坐标;若不存在,请说明理由. 6 已知:如图,直角三角形AOB 的两直角边OA 、OB 分别在x 轴的正半轴和y 轴的负半轴上,C 为线段OA 上 一点,OB OC =,抛物线m x m x y ++-=)1(2(m 是常数,且1>m )经过A 、C 两点. (1)求出A 、B 两点的坐标(可用含m 的代数式表示); (2)若AOB ?的面积为2,求m 的值. 第21题 A B C x y O 本次课后作业: 学生对于本次课的评价: ○ 特别满意 ○ 满意 ○ 一般 ○ 差 学生签字:

抛物线动点问题(学生)

§1.1因动点产生的相似三角形问题 1如图1,已知梯形OABC ,抛物线分别过点O (0,0)、A (2,0)、B (6,3). (1)直接写出抛物线的对称轴、解析式及顶点M 的坐标; (2)将图1中梯形OABC 的上下底边所在的直线OA 、CB 以相同的速度同时向上平移, 分别交抛物线于点O 1、A 1、C 1、B 1,得到如图2的梯形O 1A 1B 1C 1.设梯形O 1A 1B 1C 1的面积为S ,A 1、 B 1的坐标分别为 (x 1,y 1)、(x 2,y 2).用含S 的代数式表示x 2-x 1,并求出当S =36时点A 1的坐标; (3)在图1中,设点D 的坐标为(1,3),动点P 从点B 出发,以每秒1个单位长度的 速度沿着线段BC 运动,动点Q 从点D 出发,以与点P 相同的速度沿着线段DM 运动.P 、Q 两点同时出发,当点Q 到达点M 时,P 、Q 两点同时停止运动.设P 、Q 两点的运动时间为t ,是否存在某一时刻t ,使得直线PQ 、直线AB 、x 轴围成的三角形与直线PQ 、直线AB 、抛物线的对称轴围成的三角形相似?若存在,请求出t 的值;若不存在,请说明理由. 图1 图2 C2 直线113 y x =-+分别交x 轴、y 轴于A 、B 两点,△AOB 绕点O 按逆时针方向旋转90°后得到△COD ,抛物线y =ax 2+bx +c 经过A 、C 、D 三点. (1) 写出点A 、B 、C 、D 的坐标; (2) 求经过A 、C 、D 三点的抛物线表达式,并求抛物线顶点G 的坐标; (3) 在直线BG 上是否存在点Q ,使得以点A 、B 、Q 为顶点的三角形与△COD 相似?若存 在,请求出点Q 的坐标;若不存在,请说明理由.

初三数学 坐标系中动点问题教案

教学过程 一、课堂导入 动点所产生的函数及方程问题在初中数学中占有相当的比重,在全国各地的中考数学试卷中占到10%到20%的比重。主要研究在几何图形运动中,伴随着一定的数量关系、图形位置关系的“变”和“不变性”,就运动对象而言,有点动、线动和面动,常常集代数与几何于一体,有较强的综合性,题目灵活多变,动中有静,静中有动,动静结合.

二、复习预习 1. 平移,是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。 平移不改变图形的形状和大小。图形经过平移,对应线段相等,对应角相等,对应点所连的线段相等。 2. 轴对称图形,是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,这条直线就叫做对称轴。 3. 在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转。这个定点叫做旋转中心,转动的角度叫做旋转角。 图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。

三、知识讲解 考点1 单点运动及双点运动问题 关于点运动的问题,一般根据图形变化,探索动点运动的特点和规律,作出符合条件的草图。 解这类题的关键是抓住动点运动过程中不变的量,用含未知数的代数式去表示所需的线段,根据题意中隐含的条件借助相似等方式构造方程或函数表达式。

考点2 图形运动问题 图形的运动包括图形的平移、旋转、翻折等,图形在运动过程中,对应线段、对应角不变,以三角形、四边形的运动是常见的一种题型。 这里需注意:平移、旋转、翻折都改变了图形的位置,不改变图形的形状和大小。 对于此类题目,关键在于抓住运动图形的特殊位置、临界位置及特殊性质,其基本方法是把握图形运动与变化的全过程,以不变应万变,解答过程中常需借用函数或方程来解答。

江苏省苏州市2018届中考数学二轮复习第20课时《抛物线中的两个动点问题》

第20课时 抛物线中的两个动点问题 (60分) 1.(20分)[2019·凉山州]如图6-4-1,在平面直角坐标系中,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A ,B 两点,与y 轴交于点C ,且OA =2,OB =8,OC =6. (1)求抛物线的表达式; (2)点M 从A 点出发,在线段上AB 以每秒3个单位长度 的速度向点B 运动,同时,点N 从B 出发,在线段BC 上以每秒1个单位长度的速度向点C 运动,当其中一个点到达终点时,另一个点也停止运动,当△MBN 存在时,求运动多少秒使△MBN 的面积最大,最大面积是多少? (3)在(2)的条件下,△MBN 面积最大时,在BC 上方的抛物线上是否存在点P ,使△BPC 的面积是△MBN 面积的9倍,若存在,求点P 的坐标,若不存在,请说明理由. 【解析】 (1)由线段的长度得出点A ,B ,C 的坐标,然后把A ,B ,C 三点的坐标分别代入y =ax 2+bx +c ,解方程组即可得抛物线的表达式; (2)设运动时间为t s ,则MB =10-3t ,然后根据△BHN ∽△BOC ,求得NH =35t ,再利用三角形的面积公式列出S △MBN 与t 的函数关系式S △MBN =-910? ?? ??t -532+52,利用二次函数的图象性质进行解答; (3)利用待定系数法求得直线BC 的表达式为y =-34x +6.由二次函数图象上点 的坐标特征可设点P 的坐标为? ?? ??m ,-38m 2+94m +6.过点P 作PE ∥y 轴,交BC 于点E .结合已知条件和(2)中的结果求得S △PBC =452.则根据图形得到S △PBC =S △ CEP +S △BEP =12EP ·m +12·EP ·(8-m ),把相关线段的长度代入推知:-32 m 2+12m =452.易求得P ? ????3,758或? ?? ??5,638. 图6-4-1

初一数学“数轴上的动点问题”教学设计

初一数学“数轴上的动点问题”教学设计 一、教学依据 (一)教学内容分析 “数轴”是北京版七年级数学第13册第一章“有理数”的重点内容之一。《2011版数学课程标准》对这一内容的要求是:“能用数轴上的点表示有理数,借助数轴理解相反数和绝对值的意义”。事实上,数轴不仅是学习相反数和绝对值等有理数知识的重要工具,也是后续学习不等式组的解集、函数图象及其性质等内容的必要基础知识。数轴的价值则体现在它使数与直线上的点建立了一一对应关系,揭示了数与形的内在联系,并由此成为数形结合的基础。而数形结合的数学思想方法贯穿于整个数学学习始终,动点问题虽然没有纳入教材,却也是中考和期末考题中常见的压轴题型。本节课是以数轴上的动点为背景的考查学生综合运用所学知识解决数学问题的专题教学课,学生在确定两点间距离的基础上,正确运用线段的和差关系表示动点运动的路程解决问题,它集几何代数知识于一体,融数形结合、分类讨论、方程思想于一身,综合难度较大。(二)学情分析 1.数轴在生活当中常以方向、位置和距离等形式为背景,学生具有一定的生活经验,对于学习本课内容具有一定的辅助作用。而且,七年级学生具有好强好胜、思维活跃的特点,在学习上有强烈的求知欲望,他们乐于探索及表现自我。 2.学习本课之前,学生已经学习了数轴、有理数和一元一次方程解行程问题,对数形结合、分类讨论思想有初步了解。我对该班41名学生进行了教学前测: 因此本节课教学,学生对于数轴上动点运动的路程,以及行程问题当中两种相遇情况(相向而行、追及)的讨论,将是本课学生学习的难点。

第一轮:小芳掷2点,小明掷 第二轮:小芳掷4点继续跳步,小明掷2点继续跳步后却被要求“退5步”;此时小刚临时参与进来,他补掷两次骰子跳步后,到小芳的距离为3;

2018届中考数学二轮复习第20课时《抛物线中的两个动点问题》

第20课时 抛物线中的两个动点问题 (60分) 1.(20分)[2017·凉山州]如图6-4-1,在平面直角坐标系中,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A ,B 两点,与y 轴交于点C ,且OA =2,OB =8,OC =6. (1)求抛物线的表达式; (2)点M 从A 点出发,在线段上AB 以每秒3个单位长度 的速度向点B 运动,同时,点N 从B 出发,在线段BC 上以每秒1个单位长度的速度向点C 运动,当其中一 个点到达终点时,另一个点也停止运动,当△MBN 存 在时,求运动多少秒使△MBN 的面积最大,最大面积是多少? (3)在(2)的条件下,△MBN 面积最大时,在BC 上方的抛物线上是否存在点P ,使△BPC 的面积是△MBN 面积的9倍,若存在,求点P 的坐标,若不存在,请说明理由. 【解析】 (1)由线段的长度得出点A ,B ,C 的坐标,然后把A ,B ,C 三点的坐标分别代入y =ax 2+bx +c ,解方程组即可得抛物线的表达式; (2)设运动时间为t s ,则MB =10-3t ,然后根据△BHN ∽△BOC ,求得NH =35t ,再利用三角形的面积公式列出S △MBN 与t 的函数关系式S △MBN =-910? ?? ??t -532+52,利用二次函数的图象性质进行解答; (3)利用待定系数法求得直线BC 的表达式为y =-34x +6.由二次函数图象上点 的坐标特征可设点P 的坐标为? ?? ??m ,-38m 2+94m +6.过点P 作PE ∥y 轴,交BC 于点E .结合已知条件和(2)中的结果求得S △PBC =452.则根据图形得到S △PBC =S △ CEP +S △BEP =12EP ·m +12·EP ·(8-m ),把相关线段的长度代入推知:-32m 2+ 12m =452.易求得P ? ????3,758或? ?? ??5,638. 图6-4-1

抛物线动点问题(学生)

§1.1因动点产生的相似三角形问题 1如图1,已知梯形OABC ,抛物线分别过点O (0,0)、A(2,0)、B (6,3). (1)直接写出抛物线的对称轴、解析式及顶点M 的坐标; (2)将图1中梯形O ABC 的上下底边所在的直线OA 、C B以相同的速度同时向上平移,分别交抛物线于点O 1、A 1、C 1、B 1,得到如图2的梯形O 1A1B 1C1.设梯形O 1A 1B1C1的面积为S ,A 1、 B 1的坐标分别为 (x 1,y 1)、(x 2,y 2).用含S 的代数式表示x 2-x1,并求出当S =36时点A 1的坐标; (3)在图1中,设点D 的坐标为(1,3),动点P 从点B 出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q 从点D出发,以与点P 相同的速度沿着线段DM 运动.P 、Q 两点同时出发,当点Q 到达点M 时,P、Q 两点同时停止运动.设P 、Q 两点的运动时间为t ,是否存在某一时刻t ,使得直线P Q、直线AB 、x 轴围成的三角形与直线PQ 、直线AB 、抛物线的对称轴围成的三角形相似?若存在,请求出t 的值;若不存在,请说明理由. 图1 图2 C2 直线113 y x =-+分别交x 轴、y 轴于A、B 两点,△AOB 绕点O按逆时针方向旋转90°后得到△COD ,抛物线y=ax 2+bx +c 经过A 、C 、D 三点. (1) 写出点A 、B 、C 、D的坐标; (2) 求经过A、C 、D三点的抛物线表达式,并求抛物线顶点G 的坐标; (3) 在直线BG 上是否存在点Q ,使得以点A 、B 、Q为顶点的三角形与△COD 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.

抛物线的面积与动点专题

抛物线的面积专题 1、如图:抛物线y=x 2-2x-4与直线y=x 交于A 、B 两点,点M 为抛物线的顶点, 求厶OBM 的面积 变式:若M 在抛物线对称轴的右侧(且在 AB 时,求点M 的坐标 1 3 2、已知抛物线y x 2 x 2与x 轴交于A 、B 两点,与y 轴交于点C,点D 2 2 为第四象限的抛物线上一点,CD 交x 轴于点E,若S A ACE =S A DBE ,求直线CD 的解析式 3、变式1、若抛物线y=x 2-2x-3交x 轴于A 、B 两点,交y 轴于点C ,M 为顶点, 点N 在x 轴上。若S A BCN =S A BCM 求点N 的坐标。 4变式2、如图,抛物线y -x 2 c 与x 轴交于A 、B ,且经过点D ( 2 2 若点C 为抛物线上一点,且直线 AC 把四边形ABCD 分成面积相等的两部分,其对称轴与两段抛物线弧所围成的阴影部分的面积为 求直线AC 的解析式 5、如图,在平面直角坐标系中,抛物线y 1 2 经过平移得到抛物线y 2x 2x

6如图,在平面直角坐标系xoy 中,△ ABC 是等腰直角三角形,/ BAC=90 ° , 1 A ( 1,0), B (0,2),抛物线y —x 2 bx 2的图象过 C 点。 2 (1) 求抛物线的解析式 (2) 平移抛物线的对称轴所在的直线I,当I 移动到何处时,恰好将△ ABC 的面 积分为相等的两部分? 点P 是抛物线上一动点,是否存在点P,使四边形PACB 是平行四边形? 若存 在,求出 上一点,点P 是直线AG 下方的抛物线上一动点,当△ APG 的面积最大时,求 与y 轴交于点C ( 1)求点A 、B 的坐标 (2) 设D 为已知抛物线的对称轴上的任意一点,当△ ABD 的面积等于△ ACB 的面积时,求点D 的坐标。 (3) 设E 为已知抛物线的对称轴上的任意一点,当△ ACE 的面积等于△ ACB (3) P 点的坐标,若不存在说明理由。 7、如图,抛物线y 点P 的坐标 8、如图,抛物线y 3 2 3 —x x 8 4 3与x 轴交于A 、B 两点,(点A 在点B 的左侧) x 2x 3与x 轴交于A 、

全等三角形动点问题分析教案

学思堂教育个性化辅导授课案 教师:学生:时间:2016 年月日段 授课内容:全等三角形中动点问题的处理 教学目标:培养学生对运动变化、分类讨论思想等的数学综合运用能力 教学重难点:寻找运动规律,分析问题 (1)质点的运动形成全等三角形 通过全等三角形的性质:对应边相等,(对应角相等,面积相等),来确定质点运动的速度或时间,注意分类讨论思想的运用。 (2)几何问题中三角板旋转形成的全等三角形 三角板是学生最常用的学习工具,以三角板为道具,以学生常见、熟悉的几何图形为载体,并辅之以平移、旋转等变换手段的问题,能为学生提供动手实践操作设计的空间,较好地考查了学生观察、实验、比较、联想、类比、归纳的能力以及运动变化、分类讨论思想等的综合运用能力。这类操作性的题目格调清新,立意新颖,充分体现了课标中提出的“培养学生动手动脑、实践探索的能力”的要求,既注重基础知识,同时又具有很强的综合性,因此受到了各地中考命题专家的青睐。 1.如图,已知ABC △中,10 AB AC ==厘米,8 BC=厘米,点D为AB的中点. (1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动. ①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P与点Q第一次在ABC △的哪条边上相遇? 2.如图,已知长方形ABCD中,AD=6cm,AB=4cm,点E为AD的中点.若点P在线段AB上以1cm/s的速度由点A 向点B运动,同时,点Q在线段BC上由点B向点C运动. A Q C D B P

相关主题
文本预览
相关文档 最新文档