当前位置:文档之家› 洪水频率计算(规范方法)

洪水频率计算(规范方法)

洪水频率计算(规范方法)
洪水频率计算(规范方法)

A1洪水频率曲线统计参数的估计和确定

A1.1 参数估计法

A1.1.1矩法。对于n 年连序系列,可采用下列公式计算各统计参数

n 系列项数。

对于不连序系列,其统计参数的计算与连序系列的计算公式有所不同。 如果 在迄今的N 年中已查明有a 个特大洪水(其中有I 个发生在n 年实测或插补系列 中),假定(n-l )年系列的均值和均方差与除去特大洪水后的(N-a )年系列的 相等,即X N 』= X n4,S n 』=S n 4,可推导出统计参数的计算公式如下:

— 1 a N — a n X 二丄C X j X i )

(A5)

N J j n — I 4

附录A 洪水频率计算

均值

均万差

变差系数

偏态系数

式中 lUi-X)2

n-1 二 X i 2

-n ([X i )2

n7 (X i - X)3

i £

(n —1)( n —2)X 3C ;

n

n

n

n

n 2 v X ; _3 n^ X i X 2

2(^ X J 3

i #

i£

i

i 仝

X i --------- 系列变量(i=1,…,n );

(A1)

(A2)

(A3)

(A4)

式中

X j --------- 特大洪水变量(j=1,…,a ); X i ――实测洪水变量(i=l +1,…,n )o

A1.1.2概率权重矩法。概率权重矩定义为

皮尔逊川型频率曲线的三个统计参数不能用概率权重矩的显式表达。但经 推导有:

Cs =

N_1 一)2

N

JX j —X)3 活二X i -对

(A6)

(A7)

(N -1)( N _2)X Cv

1 .

M . = o xF J (x)dF

j=0,1,2,… (A8)

C v H(

M2-M0/3

M^ M0/2

式中,H和R都和C s有关,并已有近似的经验关系如下: 广 2 3 4

C s =16.41u-13.51U 州0.72u +94.54U

R—1

"(4/3-R)012

2 3 4

H =3.545+29.857 —29.15V +363.8V +6093V

(1 < R :

4)

3

(A9) (A10) (A11)

(A12) (A13)

为保证C v和C s有二位小数准确,要求在用式(A11)计算R时,M。、M1 和M2的计算值至少达到5位有效数字。

1根据连序系列计算概率权重矩。将洪水系列按从大到小顺序排列,样本

概率权重矩按下式计算:

M o彳n

七X i

n住

彳n

X i

n -i

n住n —1

彳n

Y(n —i)( n -i-1)

Ivl 2—厶X i

n住(n—1)( n

—2)

(A14)

1 (R -1)2

(4/3 -R)0.14

2根据含历史洪水特大值的不连序样本计算概率权重矩。

-32, 64, 8, 32, 16, 32, 16,…,32, 17, 32,

8, 64, -32, 64,总权数=24 (n+1)。

(A15)

(n —I —1) (n —I —2)

式中,C 1,C 2都是对不连序系列中实测洪水概率权重的修正系数。

N _a +1 C 1

N 1

「N _a +1 Y N 1

(A16)

C 2

A1.1.3双权函数法。均值仍用矩法,如式(A1)计算。而C v 和C s 的计算公式

丄 _-E 1_ C

2 _ hX k 2H 1

v = △.旦

-D 1 H 1

(A17)

C s

—(X CV △-丄)

C v

D 1 h

(A18)

式中,k 、h 是待优选的系数,可采用未加权的、数值积分计算的 C v ,按下式选

疋:h=C v , K=1/C v 。

Q Q

_

E 1 二'(X - X)住 1(x) f (x)dx

(A19) 第一权函数

第二权函数

积分式 二

"(X -乂)2「1(x) f (x)dx

A 1 =

. 1

(x) f (x)dx

D ! =「(X —X)'- !(x) f (x)dx

G(x)

'■ 1

(x)

(A19) (A20) (A21) (A22)

-k

exD —k 2

(X -X)2

_

X 2 二 e x P

= exp-吨垃

X

(A23)

——2

2X (A24)

~式(A22 )可用数值积分公式计算。例如,当 n 为奇数时, 采用权积分系数:8,-4, 8,1, 4,

2, 4, 2,…,2, 4, 1, 8,

-4,8,总权数

=3 (n+1);当n=偶数时,采用64, 27, 27, 17, 32, 16, 32, (16)

才C 1

(N _ j)(n _ j -1) N -a n _ I

X j C 2

N _a n —I

X i

(N _1)(N _2)

1 -N

-

n I

A1.1.4 线性矩矩法。

1线性矩的定义

设随机变量为X ,其取值为x ,分布函数为F(x),密度函数f(x)。概率权重 矩可定义为

线性矩与矩都可作为概率分布的位置、 离散和形状特征的度量。它们各自表 示方法见表

A1.1.4

表A1.1.4总体与样本线性矩与矩的表示符号

特征 总体矩 样本矩 总体线性矩 样本线性矩

位置 EX x

l 1

离散 a

S

九2 〔2

C V

C V

T t

偏态

C

S

C s

可3

t

3

峰形

C E C E

J

t 4

2线性矩与PearsonJII 分布统计分布参数关系

设P-III 分布密度函数如下:

由于:■, ■,a 0与线性矩关系复杂,故给出近似算法:

(A31)

1 r

:r = 0

x(1 —F(x)) dF(x),

1 :r

=°xF(x)r

dF(x)

在此基础上,定义线性矩■ r (L-Moment)为

■ r 二.

xP r

j(F (x))dF (x)

其中:

r

P r*(u)八

k=9

("□(r k)! 2

(k!) (r -k)!

般地,这种定义的线性矩与概率权重矩的关系如下:

(-1)~仃 k)! (k!)2

(r -k)!

y (k!) (r -k)!

(A25) (A26)

(A27)

(A28)

(A29)

0G

R )

f(f (

n 0 ">。,心

(A30)

人2 = +1)/F(a)/B (A32)

12 3

」A o A「A2: A3::-■■2 1 厂

1 B「B2:C -

1);

(A33)

12 3

C°- &二1- C?二-C3二立□Z2

1 亠D 2川C -

1);(A34)

1 E T=E2> 2■ E3> 3

- 3

1 F^ " F^ F3:

(A35)

■3

2 3

_ 1 G1 二「G2 二1G3:

— 2 3""

1 Fp F2:2F3:3

(A36)

系数A0 , A1,A2 , A3, B1 ,B2 ,C0 ,C1 ,C2 , C3 ,D1,D2,E1,E2,E3,F1,F2,F3,G1,G2,G3,H1,H2,H3

取值分别是:0.32573501, 0.16869150, 0.078327243, -0.0029120539, 0.46697102, 0.24255406, 0。122602172, 0.053730130, 0.043384378,0.011101277 0.18324466,

0.20166036,2.3807576, 1.5931792 , 0.11618371 , 5.1533299 , 7.1425260 ,

1.9745056,

2.1235833,4.1670213,

3.1925299,9.0551443,26.649995,26.193668

3连序系列时样本线性矩公式

设样本为Xu乞X2:n _…_X n:n ,则线性矩‘1 ‘2, ‘3, ‘4,对应的样本矩I 1 , b , b,|4

计算公式由如下:

l1 =b0(A37

l2 =2b1-b0(A38

l3 =6b2-6b1+b0(A39

I4=20b3-30b2+12b1-b0(A40)-3 = 13 /12(A41)

4 = 14 /l2

1 v

b°X j:

n

n j =1(A42) (A43)

A1.2适线法

适线法的特点是在一定的适线准则下,求解与经验点据拟合最优的频率曲线 的统计参数。

一般地,可根据洪水系列的误差规律,选定适线准则。当系列中各项洪水的 误差方差比较均匀时,可考虑采用离(残)差平方和准则;当绝对误差比较均匀 时,可考虑采用离(残)差绝对值和准则;当各项洪水(尤其是历史洪水)误差 差别比较大时,以采用相对离差平方和准则为宜;或采用经验适线法。

A1.2.1离差平方和准则。也称最小二乘估计法。频率曲线统计参数的最小二乘 估计使经验点

据和同频率的频率曲线纵坐标之差(即离差或残差)平方和达到极 小。

___

n

『 _ 彳

s (x,C v ,C s )— X i-f (P i ;x,C v ,C s )l

( A48

i ±

式中,f ( p i ;X,C v ,C s )或简记作f i 为频率p=p i ,i=1,…n 时频率曲线的纵坐

b 「W )(_2)X j :n

n j 仝(n - 1)(n - 2) (A44)

(A45)

b _1

:(j 「)(j -2)仃-3)

x 3

n j,(n -1)(n - 2)(n - 3)川

(A46)

4根据含历史洪水特大值的不连序样本计算的线性矩公式 设水文样本最大重现期 N ,历史洪水个数a ,实测期历史洪水个数为I ,实 测期样本长度n ,且由小至大排列的样本为 汉皿‘口二1,2…,“-1 ?齐,则计算公式 b o

N |L n -

n _L n 丄骷

v

X m - ’二 X m m z 1

m -n _L 1

b 1 =丄—;丄 —X m T 3 ^^X m

N n — I m 二 n —丨一1 N — 1 m _m

N — 1

.

1 N -a 二丄 (m-1)(m-2) (N -a —1)(N -a —2) ” b2

一 N |L n —I mm n —I —1 (n 一 I 一2) (N —1)(N —2) Xm

n

」.a

z

m =n .I 1

(N -n I -a m-1)(N -n I -a m-2)

(N -1)(N -2)

X m

(A47)

面积比法计算设计断面洪水中面积指数的确定

面积比法计算设计断面洪水中面积指数的确定 刘连梅,信增标,王保东,田燕琴(水利部河北水利水电勘测设计研究院,天津300250)【摘要】:南水北调中线工程河北段460多km,共与大小河沟200多条相交,有不少河沟交叉断面设计洪水需要采用面积比法计算。为此,对海河流域部分河流实测降雨洪水资料作了分析,得出了不同时段洪量的面积指数范围,为南水北调中线工程设计提供了依据。 【关键词】: 南水北调中线工程;设计洪水;面积比法;面积指数 1 问题的提出 在设计洪水计算时,当设计断面无实测资料,但其上游或下游建有水文站实测资料,且与设计断面控制流域面积相差不超过3%,区间无人为或天然的 分洪、滞洪设施时,可将水文站实测资料或设计洪水成果直接移用于设计断面;若区间面积超过3%,但小于20%,且全流域暴雨分布较均匀时,常用面积 比法将水文站设计成果进行推算。该方法的关键是面积指数的选取。在海滦河流域以往一般根据经验取值,在只对计算洪峰流量时,面积指数一般选用0.5 ~ 0.7;计算时段洪量时面积指数没有选定范围。南水北调中线工程河北省段460多km,共与大小河沟200多条相交,有不少河沟交叉断面设计洪水需要采用面积比法计算,为此对海河流域部分河流实测降雨洪水资料作了分析,得出了不同时段洪量的面积指数范围,为中线工程设计提供了依据。 2 河流、水文站及洪水资料的选取2.1 河流及水文站的选取原则 一般讲,一条河的上下游两站流域面积小于20%时,可作为分析对象。但海滦河流域实际上水文站网稀少,因此选取时将区间面积放宽到30%,个别站放宽到35%。基本满足此条件的河流及水文站见表1所列。 2.2洪水资料的选取 洪水资料的选取应符合以下3条原则:(1)尽量选取较大的洪水资料;(2)选取流域内降雨分布比较均匀的场次洪水;(3)对上游修建大中型水库的河流,应选取建库前的资料。 由于滦河和桑干河流域面积过大,包含了迎风山区、背风山区和高原区,难以出现全流域均匀降雨,未选用洪水资料。其他4条河8个代表站流域面积

设计洪水分析计算

设计洪水分析计算 1、洪水标准 依据《水利水电工程等级划分及洪水标准》(SL44-2006),确定该工程等级为五等,按20年一遇洪水标准设计,200年一遇洪水校核。 本水库上游流域面积为1.6平方千米,属于小于30平方千米范围,按《山东省小型水库洪水核算办法》(试行)进行洪水计算。 2、设计洪水推求成果 1、基本资料 流域面积F=1.6平方公里,干流长度L=2.1千米,干流平均比降j=0.02。 根据山东省小型水库洪水核算办法,查《山东省多年平均二十四小时暴雨等值线图》,该流域中心多年平均二十四小时暴雨H24=85毫米。 该水库水位、库容关系表如下:

设计溢洪道底高程177.84米,相应库容23.29万立米。 2、最大入库流量Q m计算 (1)、流域综合特征系数K 按下式计算K=L/j1/3F2/5 (2)、设计暴雨量计算 查《山东省最大二十四小时暴雨变差系数C v等值线图》,该流域中心C v=0.6,采用C s=3.5C v应用皮尔逊3型曲线K p值表得,20年一遇K p=2.20,200年一遇K p=3.62,则20年一遇最大24小时降雨量H24=2.2*85=187毫米,200年一遇最大24小时降雨量H24=3.62*85=307.7毫米。 (3)单位面积最大洪峰流量计算 经实地勘测,该工程地点以上流域属丘陵区,查泰沂山北丘陵区q m- H24-K关系曲线,得20年一遇单位面积最大洪峰流量及200年一遇单位面积最大洪峰流量q m。 (4)洪水总量及洪水过程线推求 已算得20年一遇最大24小时降雨量H24=187毫米及200年一遇最大24小时降雨量H24=307.7毫米,取其75%为P 。设计前期影响雨量P a取40毫米,计算P+P a,查P+P a与设计净雨h R关系曲线,得20年一遇及 00年一遇h R。 洪水总量按下式计算W=0.1*F*h R,由此可计算得20年一遇及200年一遇洪水总量W。

设计洪水计算

项目二:设计洪水计算 由流量资料推求设计洪水 一、填空题 1.洪水的三要素是指、、。 2.防洪设计标准分为两类,一类是、另一类是。 3.目前计算设计洪水的基本途径有三种,它们分别是、 、。 4.在设计洪水计算中,洪峰及各时段洪量采用不同倍比,使放大后的典型洪水过程线的洪峰及各历时的洪量分别等于设计洪峰和设计洪量值,此种放大方法称为。 5.在洪水峰、量频率计算中,洪峰流量的选样采用、时段洪量的选样采用。 6.连序样本是指。不连序样本是指 。 7.对于同一流域,一般情况下洪峰及洪量系列的C V值都比暴雨系列的C V值,这主要是洪水受_和影响的结果。 二、问答题 1.什么是特大洪水?特大洪水在频率计算中的意义是什么? 2.对特大洪水进行处理时,洪水经验频率计算的方法有哪两种?分别是如何进行计算的? 3.洪水频率计算的合理性分析应从几个方面进行考虑? 4.采用典型洪水过程线放大的方法推求设计洪水过程线,典型洪水过程线的选择原则是什么? 5.采用典型洪水过程线放大的方法推求设计洪水过程线的两种放大方法是什么?分别是如何计算的? 6.在洪水峰、量频率计算工作中,为了提高资料系列的可靠性、一致性和代表性,一般要进行下列各项工作,试在下表的相应栏中用“+”表明该项措施起作用,用“-”表明该项措施不起作用。

三、计算题 1.某水库坝址断面处有1958年至1995年的年最大洪峰流量资料,其中最大的三年洪峰流量分别为 7500 m3/s、 4900 m3/s和 3800 m3/s。由洪水调查知道,自1835年到1957年间,发生过一次特大洪水,洪峰流量为 9700 m3/s ,并且可以肯定,调查期内没有漏掉 6000 m3/s 以上的洪水,试计算各次洪水的经验频率,并说明理由。 2.某水文站根据实测洪水和历史调查洪水资料,已经绘制出洪峰流量经验频率曲线,现从经验频率曲线上读取三点(2080,5%)、(760,50%)、(296,95%),试按三点法计算这一洪水系列的统计参数。 3.已知设计标准P=1%洪水过程的洪峰、1天、3天洪量和典型洪水的相应特征值及其过程线(见表1和表2),试用同频率放大法推求P=1%的设计洪水过程线(保留三位有效数字,不需修匀)。 表1 设计洪水和典型洪水峰、量特征值 表2 典型洪水过程

暴雨洪水计算分析

《灌溉与排水工程设计规范》 表3.1.2灌溉设计保证率 表3.3.3灌排建筑物、灌溉渠道设计防洪标准 3.3.3灌区内必须修建的排洪沟(撇洪沟),其防洪标准可根据排洪流量的大小,按5~10a 确定。 附录C 排涝模数计算 C.0.1经验公式法。平原区设计排涝模数经验公式: Q=KR m A n (C.0.1) 式中:q ——设计排涝模数(m 3/s ·km 2) R ——设计暴雨产生的径流深(mm ) K ——综合系数(反应降雨历时、流域形状、排水沟网密度、沟底比降等因素) m ——峰量指数(反应洪峰与洪量关系) N ——递减指数(反应排涝模数与面积关系) K 、m 、n 应根据具体情况,经实地测验确定。(规范条文说明中有参考取值范围) C.0.2平均排除法 1平原区旱地设计排涝模数计算公式: )12.0.(4.86-= C T R q d 式中 q d ——旱地设计排涝模数(m 3/s ·km 2) R ——设计暴雨产生的径流深(mm ) T ——排涝历时(d )。

说明:一般集水面积多大于50km 2。 参考湖北取值,K=0.017,m=1,n=-0.238,d=3 2.平原区水田设计排涝模数计算公式: ) 22.0.(4.86'1----= C T F ET h P q w 式中q w ——水田设计排涝模数(m 3/s ·km 2) P ——历时为T 的设计暴雨量(mm ) h 1——水田滞蓄水深(mm ) ET`——历时为T 的水田蒸发量(mm ),一般可取3~5mm/d 。 F ——历时为T 的水田渗漏量(mm ),一般可取2~8mm/d 。 说明:一般集水面积多小于10km 2。 h 1=h m -h 0计算。h m 、h 0分别表示水稻耐淹水深和适宜水深。 《土地整理工程设计》培训教材 第四章农田水利工程设计 第二节:(五)渠道设计流量简化算法 1.续灌渠道流量推算 (1)水稻区可按下式计算 η αt Ae 3600667.0Q = 式中:α——主要作物种植比例(占控制灌溉面积的比例)。 A ——该渠道控制的灌溉面积。 e ——典型年主要作物用水高峰期的日耗水量(mm ),根据调查确定,一般粘壤土地区水稻最大日耗水量8~11mm ,最大13mm 。 t ——每天灌水时间(小说),一般自流灌区24小时,提水灌区20~22小时。 η——渠系水利用系数。 (2)旱作区可按下式计算 η αTt mA 3600Q =

根据流量资料计算设计洪水

FCD11020 FCD 水利水电工程初步设计阶段 根据流量资料计算设计洪水 大纲范本 水利水电勘测设计标准化信息网 1997年8月 1

水电站技术设计阶段 根据流量资料计算设计洪水大纲 主编单位: 主编单位总工程师: 参编单位: 主要编写人员: 软件开发单位: 软件编写人员: 勘测设计研究院 年月 2

目次 1. 引言 (4) 2. 设计依据文件和规范 (4) 3. 基本资料 (4) 4. 设计原则 (8) 5. 设计内容与方法 (8) 6.专题研究 (12) 7.设计成果 (12) 3

1 引言 流域及工程概况: 本工程位于江(河)上。距上(下)游市(县) km。 工程所在河流发源于省山麓,自向,流经等省(市),于进入,最后注入海,全长km,流域面积km2。 坝址以上流域位于东经~;北纬~,集水面积km2,河道长度km,河道比降,河谷形态,河网分布呈。流域平均高程m,山为最高峰,海拔m,年平均雨量mm,年平均蒸发量mm。植被率。流域内已建大中型水电站(水库)有等;引水、蓄水工程有和工程;分洪、滞洪工程有和工程以及水土保持措施。 本工程为坝(闸),以为主,兼顾等任务。大坝设计洪水标准为;校核洪水标准为。 2 设计依据文件和规范 2.1 有关本工程(或专业)的文件 (1) 可行性研究报告; (2) 可行性研究报告专题报告; (3) 可行性研究报告审批文件; (4) 初步设计任务书和项目卷册任务书及其他专业对本专业的要求。 2.2 主要设计规范 (1) DL5020-93 水利水电工程可行性研究报告编制规程; (2) DL5021-93 水利水电工程初步设计报告编制规程; (3) SL44-93 水利水电工程设计洪水计算规范。 3 基本资料 3.1 资料搜集与复核 3.1.1 资料搜集 4

洪水频率计算规范方法

洪水频率计算规范方法 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

附录A 洪水频率计算 A1 洪水频率曲线统计参数的估计和确定 参数估计法 A1.1.1 矩法。对于n 年连序系列,可采用下列公式计算各统计参数: 均值 ∑== n i i X n X 1 1 (A1) 均方差 ∑=--=n i i X X n S 1 2)(11 或 ?? ????--=∑∑==n i n i i i X n X n S 1212)(111 (A2) 变差系数 X S C v = (A3) 偏态系数 33 13 )2)(1()(v n i i s C X n n X X n C ---= ∑= 或 33 1 3 1 1 21 32)2)(1()(23v n i n i i n i i n i i i s C X n n n X X X n X n C --+?-= ∑∑∑∑==== (A4) 式中 X i ——系列变量(i=1,…,n ); n ——系列项数。 对于不连序系列,其统计参数的计算与连序系列的计算公式有所不同。如果在迄今的N 年中已查明有a 个特大洪水(其中有l 个发生在n

年实测或插补系列中),假定(n-l )年系列的均值和均方差与除去特大洪水后的(N-a )年系列的相等,即l n a n l n a N S S X X ----==,,可推导出统计参数的计算公式如下: )(11 1∑ ∑+==--+=n l i i a j j X l n a N X N X (A5) ?? ????---+--= ∑∑++==n l i i a j j v X X l n a N X X N X C 1 2 12)()(111 (A6) 3 31313)2)(1()()(v n l i i a j j s C X N N X X l n a N X X N C --??????---+-=∑∑+== (A7) 式中 X j ——特大洪水变量(j=1,…,a ); X i ——实测洪水变量(i=l +1,…,n )。 A1.1.2 概率权重矩法。概率权重矩定义为 ?=1 0)(dF x xF M j j j=0,1,2,… (A8) 皮尔逊Ⅲ型频率曲线的三个统计参数不能用概率权重矩的显式表达。但经推导有: o M X = (A9) )2 1 ( 01-=M M H C v (A10) 2 /3/0102M M M M R --= (A11)

洪水频率计算(规范方法)

A1洪水频率曲线统计参数的估计和确定 A1.1 参数估计法 A1.1.1矩法。对于n 年连序系列,可采用下列公式计算各统计参数 n 系列项数。 对于不连序系列,其统计参数的计算与连序系列的计算公式有所不同。 如果 在迄今的N 年中已查明有a 个特大洪水(其中有I 个发生在n 年实测或插补系列 中),假定(n-l )年系列的均值和均方差与除去特大洪水后的(N-a )年系列的 相等,即X N 』= X n4,S n 』=S n 4,可推导出统计参数的计算公式如下: — 1 a N — a n X 二丄C X j X i ) (A5) N J j n — I 4 附录A 洪水频率计算 均值 均万差 或 变差系数 偏态系数 或 式中 lUi-X)2 n-1 二 X i 2 -n ([X i )2 n7 (X i - X)3 i £ (n —1)( n —2)X 3C ; n n n n n 2 v X ; _3 n^ X i X 2 2(^ X J 3 i # i£ i 住 i 仝 : X i --------- 系列变量(i=1,…,n ); (A1) (A2) (A3) (A4)

式中 X j --------- 特大洪水变量(j=1,…,a ); X i ――实测洪水变量(i=l +1,…,n )o A1.1.2概率权重矩法。概率权重矩定义为 皮尔逊川型频率曲线的三个统计参数不能用概率权重矩的显式表达。但经 推导有: Cs = N_1 一)2 N JX j —X)3 活二X i -对 (A6) (A7) (N -1)( N _2)X Cv 1 . M . = o xF J (x)dF j=0,1,2,… (A8)

河道治理工程设计洪水计算方法探讨

河道治理工程设计洪水计算方法探讨 摘要:文章采用水文比拟法、推理公式法、淮上法三种不同的方法对内乡县黄水河的设计洪水进行计算,通过合理性比较分析,确定采用水文比拟法的计算成果,为河道治理下一步的设计工作提供了扎实的水文基础。 关键词:黄水河;设计洪水;水文比拟法;推理公式法;淮上法1基本资料 黄水河属长江流域唐白河水系,系湍河右岸支流,发源于西峡县田关西北鸡笼山北侧五斗凹,盘山绕岭而下,自西北向东南流经西峡、内乡县,于内乡县徐坡村汇入湍河。主河道全长43km,流域面积219km2,河道平均比降1/350,河床一般宽50~100m。带状河流,河道弯曲,局部切割严重。黄水河在内乡境内全长19.50km,流经赵店、湍东、大桥三个乡镇。黄水河流域内多年平均降雨量为780mm,降雨年内分配极不均匀,降雨主要集中在6-9月,约占全年降雨量的61.80%。流域洪水变化主要受暴雨特性及地形等因素影响,洪水涨落陡峭,一场洪水历时单峰约2d,连续洪峰一般约为4d。一场局部暴雨形成的洪水,是峰形尖瘦的孤峰,若全流域普降暴雨,将形成峰高、量大、持续时间长的复式洪峰,往往给下游带来严重的洪涝灾害。根据有关历史文献记载,黄水河在建国前发生较大洪水的年份有1632、1919年,建国后生较大洪水十余次,其中1964、1979、1996、2010年的4次洪水灾害较为严重。根据《防洪标准》《堤防工程设计规范》,结合黄水河段防洪保护对象(人口11万人,耕地1.60万hm2,内乡

县城及2个乡镇及重要通讯设施)的重要性及发展趋势,确定防洪标准为20a一遇,临时工程洪水标准为非汛期洪水5a一遇。 2设计洪水计算 根据《水利水电工程设计洪水计算规范》,确定设计洪水推求方法。因黄水河入河口上游2.70km处湍河干流设有内乡县水文站,可利用实测流量成果采用水文比拟法计算设计洪水;根据《河南省中小流域暴雨洪水图集》的规定,流域面积200km2以下时,可采用推理供水法计算设计洪水,流域面积在200~5000km2时可采用淮上法计算设计洪水。因黄水河入湍河口以上流域面积219km2,略>200km2,可采用推理公式法、淮上法来计算验证设计洪水,三种不同方法的计算成果如下。 2.1利用水文站资料计算设计洪水 黄水河流域内无水文站,在黄水河入河口上游2.70km处湍河干流设有内乡县水文站。现收集到内乡站1979-2011年实测洪水资料,资料系列长度33a,满足规范要求的系列长度30a的要求。根据河南省水利厅水文水资源总站1987年7月出版的《河南省洪水调查资料》整编成果,湍河1919年发生特大洪水,分析内乡站洪峰流量为8540m3/s。根据《南水北调中线一期工程陶岔至沙河南渠段总干渠河渠交叉建筑物防洪评价报告》(河南省水利勘测设计院,2005)中分析,其重现期相当于200a一遇。将加入1919年特大洪水的系列进行按不连续系列进行频率分析。根据经验频率计算成果绘制经验频率曲线,然后采用目估适线法选定拟合较好的理论频率曲线(皮尔逊Ⅲ型),

洪水频率计算(要求规范方法)

附录A 洪水频率计算 A1 洪水频率曲线统计参数的估计和确定 A1.1 参数估计法 A1.1.1 矩法。对于n 年连序系列,可采用下列公式计算各统计参数: 均值 ∑== n i i X n X 1 1 (A1) 均方差 ∑=--=n i i X X n S 1 2)(11 或 ?? ????--=∑∑==n i n i i i X n X n S 1212)(111 (A2) 变差系数 X S C v = (A3) 偏态系数 3 3 13 )2)(1()(v n i i s C X n n X X n C ---= ∑= 或 33 1 3 1 1 21 32)2)(1()(23v n i n i i n i i n i i i s C X n n n X X X n X n C --+?-= ∑∑∑∑==== (A4) 式中 X i ——系列变量(i=1,…,n ); n ——系列项数。 对于不连序系列,其统计参数的计算与连序系列的计算公式有所不同。如果在迄今的N 年中已查明有a 个特大洪水(其中有l 个发生在n 年实测或插补系列中),假定(n-l )年系列的均值和均方差与除去特大洪水后的(N-a )年系列的相等,即l n a n l n a N S S X X ----==,,可推导出统计参数的计算公式如下: )(11 1∑ ∑+==--+=n l i i a j j X l n a N X N X (A5)

?? ????---+--= ∑∑++==n l i i a j j v X X l n a N X X N X C 1 2 12)()(111 (A6) 3 31313)2)(1()()(v n l i i a j j s C X N N X X l n a N X X N C --??????---+-=∑∑+== (A7) 式中 X j ——特大洪水变量(j=1,…,a ); X i ——实测洪水变量(i=l +1,…,n )。 A1.1.2 概率权重矩法。概率权重矩定义为 ?=1 0)(dF x xF M j j j=0,1,2,… (A8) 皮尔逊Ⅲ型频率曲线的三个统计参数不能用概率权重矩的显式表达。但经推导有: o M X = (A9) )2 1 ( 01-=M M H C v (A10) 2 /3/0102M M M M R --= (A11) 式中,H 和R 都和C s 有关,并已有近似的经验关系如下: ?? ?? ?≤≤--=++-=)431()3/4(154.9472.1051.1341.1612 .0432R R R u u u u u C s (A12) ?? ???<≤--=++-+=)3 41()3/4()1(60938.36315.2985.29545.314 .02 432 R R R V V V V V H (A13) 为保证C v 和C s 有二位小数准确,要求在用式(A11)计算R 时,M 0、M 1和M 2的计算值至少达到5位有效数字。 1 根据连序系列计算概率权重矩。将洪水系列按从大到小顺序排列,样本概率权重矩按下式计算: ??? ? ?? ???-----=--==∑∑∑===n i i n i i n i i o n n i n i n X n M n i n X n M X n M 12111 )2)(1()1)((1111 (A14)

关于印发山东省中小河流治理工程初步设计设计洪水计算指导意见的通知附件1

山东省中小河流治理工程初步设计设计洪水计算 指导意见 设计洪水成果是影响治理工程规模和投资的重要因素,客观、科学、合理地确定设计洪水成果尤为重要。由于我省众多的中小河流缺乏实测洪水流量系列资料,其设计洪水多采用由暴雨资料间接推求的办法,因该办法中的降雨产流关系是上世纪七十年代初期根据当时的情况拟定的,经过近40年的 水利及农业生产等人类活动的影响,下垫面发生了很大变化,使产流汇流条件发生了较大变化,采用原产流关系计算的设计洪水成果明显偏大。为了较为客观、科学、合理地确定设计洪水成果,特提出以下指导意见。 一、依据 1.《水利水电工程设计洪水计算规范》SL 44-2006; 2.《堤防工程设计规范》GB 50286-98 3.《山东省大、中型水库防洪安全复核设计洪水计算办法》。 4.河道治理工程设计标准: 1)《防洪标准》GB 50201-94 2)《水利水电工程等级划分及洪水标准》SL 44-2000 3)山东省中小河流治理工程一般防洪设计标准为20年 一遇;排涝设计标准为5年一遇;涵洞的排水标准10年一

年一遇;鲁北地区设计50遇;比较重要的河段防洪标准为 标准为典型年法,采用“61年雨型”防洪,“64年雨型”排涝。 二、适用范围 适用于流域面积200~3000km的中小河流。2三、基本资 料的搜集和整理 1. 应详细说明治理河流所处地理位置、所属水系,流域面积、河道长度、流域形状、支流分布、河网密度;流域内地形、地貌、植被及水土保持等自然地理概况;该河流所处市(县、区)境内流域面积、河道长度;治理河段以上流域面积(其中山丘区、平原区面积各占比重)、河道长度,并注明桩号。 2. 应说明流域内水文气象概况,包括××年~××年多年平均降水量,汛期降水量,降雨量的年内、年际分布特点;多年平均年径流量,径流量的年内、年际分布特点;多年平均水面蒸发量;多年平均风速、最大风速及风向等有关水文、气象概述。 3. 应说明流域内暴雨洪水特性及水旱灾害情况,特别是最近几年出现的大暴雨洪水情况,包括雨情、水情、灾情,及造成的经济损失及堤防溃决、分洪、滞洪等基本情况。 4. 应说明流域内水利工程情况,包括流域内水库工程的规模,建设年代、水库总库容、兴利库容、灌溉面积、城市供水等基本情况;现有河道拦河闸(坝)等蓄水工程概况,可列

防洪标准计算方法

防洪标准 各种防洪保护对象或工程本身要求达到的防御洪水的标准。通常以频率法计算的某—重现期的设计洪水为防洪标准,或以某一实际洪水(或将其适当放大)作为防洪标准。在—般情况下,当实际发生的洪水不大于防洪标准的洪水时,通过防洪工程的正确运用,能保证工程本身或保护对象的防洪安全。中国对已建防洪工程的防洪标准按国家标准GB 50201—94《防洪标准》执行;对保护对象的防洪安全,具体体现为防洪控制点的最高水位不高于保证水位,或流量不大于河道安全泄量。 防洪标准与工程本身或防洪保护对象的重要性、洪水灾害的严重性及其影响直接有关,并与国民经济的发展水平相联系。国家根据需要与可能,对防拱标准用规范予以规定。在防洪工程的规划设计中,一般按照规范选定防洪标准,并进行必要的论证。对特殊情况,例如洪水泛滥可能造成大量人口死亡等严重后果时,在经过充分论证后可采用比规范规定更高的标准。如因投资、工程量、移民等因素的限制一时难以达到规定的防洪标准时,也可以分期达到。 世界各国所采用的防洪标准各不相同,例如,日本对特别重要的城市要求防200年—遇洪水,重要城市防100年一遇洪水,一般城市防50年一遇洪水;印度要求重要城镇的堤防按50年一遇洪水设计;其他国家的防洪标准大体在此范围内。农田的防洪标准—般为防御10~20年一遇洪水。澳大利亚一般农牧业只要求防3—7年一遇洪水。美国密西西比河防洪规划采用的标准是按水文气象法作出的“计划洪水”,约相当于频率法的100年一遇洪水。 中国的防洪标准过去没有统一规定,1995年颁布了中华人民共和国国家标准GB50201—94《防洪标准》。该标准对城市,乡村,工矿企业,交通运输设施(含铁路、公路、航运、民用机场、管道工程、木材水运工程),水利水电工程(含水库、水电站、灌排工程、供水工程、堤防),动力设施,通信设施,文物古迹和旅游设施等,分别不同规模、不同情况规定了应采用的防洪标准及处理有关问题的原则。

分期设计洪水

第三章分期设计洪水 3.1 分期设计洪水的定义与目的 分期设计洪水是指指年内不同季节或时期,如丰水期、平水期、枯水期、或其他指定时期的设计洪水。在水库调度运用、施工期防洪设计或其他需要时,要求计算分期的设计洪水。河流洪水(流量)随季节、时间变化的过程是自然界中的一种复杂现象,在这种复杂现象的背后隐藏特定规律性。它在一定原则下则显而易见,把满足这种原则的特定规律性洪水的年内时间段作为一个洪水分期。众所周知,在一年的不同时期,洪水成因不同,产生的洪水量级也不同,因此,对汛期进行合理分期,进而制定水库汛限水位,使水库在不增加防洪风险的前提下增加水库的防洪与兴利效益,有利于水库的洪水资源化调度和水库兴利效益的发挥。 3.2 洪水分期的原则 洪水分期的划分原则,既要考虑工程设计中不同季节对防洪安全和分期蓄水的要求。又要使分期基本符合暴雨和洪水的季节性变化及成因特点。 (1)同一个分期内,洪水量级一般相近,洪峰外包值无太大差异。 (2)前后两个分期洪水量级应有明显差异。 (3)分期起终日期界定,应使所选的洪水样本不跨期,避免分割天然洪水过程。 (4)一般分期不宜短于一个月。 3.3统计方法--洪水分期研究 我国水利部门进行汛期分期工作时,多采用定性概念并部分结合统计分析(如统计发生频次散布图等)的途径来进行,分期结果往往是一个比较粗略的区间。传统洪水分期采用统计学方法,为了便于分析,从历年洪水资料中,将历年各次洪水以洪峰发生日期或某一历时最大洪量的中间日期为横坐标,以相应洪水的峰量数值为纵坐标,点绘洪水年内分布图,并描绘平顺的外包线。从统计意义上来说,一年中一定时期内,洪水的发生有比较相似的机制,即一定量的样本点矩较集中分布在某一时间段。然后,根据这种特性和洪水分期的原则进行洪水分期定量划分洪水分期的时间段。

设计洪水地区组成分析

设计洪水地区组成分析 摘要:文章介绍了河道设计洪水的特点及计算方法,并进行了洪水地区组成分析,最终计算出口断面的设计洪水。 关键词:设计洪水地区组成相应 近期随着国家对水利投资加大,和对民生工程的关注,中小河流治理已经被推上水利建设的舞台,中小河流治理的规模及治理工程措施直接受河道设计洪水影响,因此正确计算分析河道设计洪水是至关重要的。 随着江河治理与水资源的开发,水库群的调蓄对下游设计断面洪水的影响愈来愈突出。根据《水利水电工程设计洪水计算规范》(sl44—2006),推求设计断面受上游水库调蓄影响的设计洪水时,应拟定设计断面以上的洪水地区组成。设计水库对下游有防洪任务时,也应计算水库、区间及防洪控制断面设计洪水,拟定防洪控制断面以上的洪水地区组成。 本文以滁州市濠河流域设计洪水计算为例,采用洪水地区组成分析,计算河道控制断面设计洪水。 濠河流域面积621km2,东、西两支流上分别建有官沟、凤阳山两座中型水库,分别控制来水面积84km2和146km2,水库下游区间面积为391km2。 濠河出口控制断面上游可以简化为两座中型水库(凤阳山水库、官沟水库)和濠河区间(两座中型水库~濠河口)两个分区。濠河

出口设计洪水析计算,需要考虑以上两个分区的洪水组成。 濠河口设计洪水计算按照上述设计洪水进行叠加,并采用地区洪水组成分析,选择合理设计洪水成果,濠河全流域设计洪水地区组成根据防洪要求,按照同频率法拟定方案一采用“濠河流域与‘濠河~水库’区间同频率,两座中型水库相应”,方案二采用“濠河流域与两座中型水库同频率,‘濠河~水库’区间相应”。 。 方案一、濠河流域与‘濠河~水库’区间同频率,两座中型水库相应 根据洪水组成,濠河流域设计洪水由两座中型水库设计洪水和’濠河~水库’区间设计洪水两部分组成,根据计算采用洪水总量控制方法,计算两座中型水库相应各频率的设计洪水总量详见成果表1,根据两座水库地形等参数,对洪水总量进行时段分配,得两座水库相应各频率设计洪水过程线,并根据水库蓄泄关系对其进行调节计算,推求水库下泄洪水,濠河出口断面设计洪水由水库下泄洪水与区间设计洪水叠加而得详见表2。 表1两座水库相应各频率洪水总量计算成果表单位:万m3 表2濠河口控制断面设计洪水方案一计算表单位m3/s 方案二、濠河流域与两座中型水库同频率,‘濠河~水库’区间相

应用推理公式求解小流域设计暴雨洪水

应用推理公式求解小流域 设计暴雨洪水 (图解法) 仅供内部参考使用 编者:陆雪华 2011.10.20

为了统一和方便大家在应用推理公式求解小流域设计暴雨洪水,编者根据SL44-2006《水利水电工程设计洪水计算规范》有关要求及2005版《浙江省短历时暴雨集》推举设计暴雨点,面雨量。暴雨衰减系数等计算方法,编写了本市水 利水电工程应用0.2780.278p m n S h Q F F ψ ττ ==推理公式图解设计洪峰流量及其相 应汇流时间τ计算一文,供同志们设计时参考使用,在应用过程中若发现有错误及不解之处请及时与本人联系以便修正和解释。本文尽供本院内使用,切勿外传。 编者:陆雪华 2011.10.20

应用0.278p m n S Q F ψ τ =推理公式图解Q m ,τ值 式0.278p m n S Q F ψ τ =,它与其它推理公式如0.278m Q F a a τ- = ,0.278m h Q F τ =计算原理是一样的,只不过是表现形式有所不同,今求证如下: 在全面汇流(t B >t)情况下,式0.278m h Q F τ =中h 是代表相应于τ时段的最大 净雨,它也可用R τ来表示,因此0.278 =0.278 m R h Q F F ττ τ =。而式 _ 0.2780.278 m R Q F F a a τττ == ,参见《长江流域规划办公式水文处编写:(水利工程实用水文水利计算一书)P 70页式(2-85)》。 式_ 0.278m Q F a a τ= 中: a 为洪峰径流系数,它与式0.278p m n S Q F ψτ =中ψ意义相同,只是使用符号 不同而已,因此a ψ=。 _ a τ为τ时段内最大(毛)雨量的平均强度,其值为_ p n a S ττ = ,所以: 0.2780.278p m n S Q F a a F τψ τ - == (1) 现就利用公式(1)图解计算设计洪峰流量Q m 及相应汇流时间τ举例如下,供大家设计时参考。 例:某工程流域面积21.13km F =,主流长 1.682km L =,平均坡度j 0.165=,求其20年一遇及200年一遇设计洪峰流量Q p 及相应汇流时间τ。 解: 1. 确定P 5%=,P 0.5%=设计暴雨雨力S p 值 本工程流域面积较小t

溃坝洪水计算大纲范本

FCD13030 FCD 水利水电工程初步设计阶段溃坝洪水计算大纲范本 水利水电勘测设计标准化信息网 1997年8月 1

水电站技术设计阶段溃坝洪水计算大纲范本 主编单位: 主编单位总工程师: 参编单位: 主要编写人员: 软件开发单位: 软件编写人员: 勘测设计研究院 年月 2

目次 1.流域及工程概况 (4) 2.设计依据 (4) 3.基本资料 (5) 4.计算原则 (7) 5.溃坝计算方法及内容 (8) 6.溃坝洪水计算成果及分析 (10) 7.应提供的设计成果 (11) 3

1 流域及工程概况 2 设计依据 2.1 有关本工程的文件 (1) 设计任务书; (2) 可行性研究报告; (3) 可行性研究报告审查文件。 2.2 主要规范 (1) SL 44-93 水利水电工程设计洪水计算规范; (2) DL/T5015-1996 水利水电工程水利动能设计规范; (3) SD 138-85 水文情报预报规范; (4) DL/T5064-1996 水电工程水库淹没处理规划设计; (5) DL 5021-93 水利水电工程初步设计报告编制规程。 2.3 主要参考资料 (1) 谢任之,溃坝水利学,山东科学技术出版社; (2) 唐友一,溃坝水流状态计算方法的探讨,水利水电技术,1962年第4期; (3) 美国天气局,溃坝洪水预报程序DAMBRK及用户指南,水电部南京水文水资源研究所,1987年11月; (4) 山西省水利勘测设计院,水利动能设计手册,水库溃坝计算,1983年; (5) 水电部十一局研究院,土坝溃坝流量计算方法的研究,1977年6月; (6) 天津勘测设计院,孙国洁等,溃坝洪水计算国内外概况; (7) 水电部四川勘测设计院,大中型水电站水能设计第十五章,溃坝流态计算,1977年1月; 4

(完整word版)贵州省暴雨洪水计算实用手册

贵州省暴雨洪水计算实用手册 (修订本) 小汇水流域部分 二零零四年九月

一、基本思路 推理公式法,是最早用作根据暴雨资料间接推求设计洪水最大流量的方法之一。我国于建国后,在铁路、公路、城市和工业区防洪排洪、城市排水以及中小型水电建设等方面,都广泛使用推理公式法计算设计洪水。 本次修订小汇水面积雨洪计算公式,主要考虑了影响雨洪计算公式结构的关键性的经验关系即汇流参数地区综合经验关系以及有关 的边界条件,参照外省的类似经验关系并结合我省的实际情况进行修订,主要有以下几个方面: 1、汇流参数m和流域几何特征值θ之间的地区综合关系m~θ,由于面积较小的小流域及特小流域中坡面汇流随着面积逐渐起主导 作用,不同θ值的流域汇流条件相对的差异较小,因而m~θ线坡度较缓;随着面积的增大,河槽汇流比重加大,汇流速度增加较快,汇流参数m增长较多,汇流m~θ线坡度较陡。所以,m~θ线是转折的。参照《小流域暴雨洪水计算》一书综合国内几个地区m~θ关系及邻近省区m~θ关系的趋势,结合我省某些自然地理分类(如Ⅰ2类)点据分布情况,我省m~θ线大约在θ=30处转折,当θ>30,m~θ线坡度较陡,即原《手册》确定的m=γθ0.73;当θ<30,m~θ线坡度较缓,如附图中所定m=γ1θ0.22。 2、确定小面积m~θ的趋势时,由于我省实测小面积资料特少,因此,除考虑点据分布外,还对我省可能出现的最小θ和m值进行估计,假定流域汇水面积为1平方公里时,对于主河道坡降很大(如

100%)的特小流域,设若干种流域形状系数,其最小的θ不小于3.0,取θ=3为应用范围的最小值。 由我省实测水文资料分析的汇流参数m值,最小值为m=0.4,原《手册》在与邻省区典型流域汇流参数比较的综合材料中,我省最小汇流参数为m=0.31~0.39,结合我省分类m~θ关系点据分布,Ⅰ2类(丘山间谷坝,强岩溶,植被差)的m值最低,其小面积的点据较多,依照其点据分布趋势,确定m~θ线在θ=30处转折后通过θ=3.0,m=0.3处,m~θ线与Ⅰ2类点据配合得还比较好,亦即在应用范围内取我省的最小汇流参数m=0.3。 如此,小汇水面积流域的m~θ关系拟定为m=γ1θ0.22。 3、鉴于其他各自然地理分类(Ⅰ1、Ⅱ1、Ⅱ2、Ⅱ3)小汇水面积流域的点据更少,同时考虑推导小汇水面积雨洪计算公式的方便,其他各自然地理分类的m~θ定为与Ⅰ2类m~θ平行的一组线,即均在θ=30处转折,m=γ1θ0.22。地区综合汇流参数的非几何特征系数γ1值综合如下表。 汇流参数γ1系数统计表

辽宁省无资料地区设计暴雨洪水计算方法的研究

辽宁省无资料地区设计暴雨洪水计算方法 的研究 辽宁省无资料地区设~1- 暴雨洪水~1-算75-法的研究 唐继业吴俊秀单丽 (辽宁省水文水资源勘测局) 江秋兰 (辽宁省水文水资源勘测局抚顺分局116000) 【摘要】本文针对辽宁省水工程设计中的实际情况,在认真总结经验的基础上,对流域特大暴雨重现期进行了探 讨;根据不同地区的产流特点,提出了分层扣损的饱卸产漉及非饱和流模型;建立了辽宁中部平厚区的三水”转 亿摸型;提出了综台经验单位线转换为瞬时单位线的流计算方法;在小 流域设计洪永计算上,建立了推理公式辽 宁击和概化过程发法.形成一垂适合辽宁特点的无资料地区设计暴雨 洪水计算方法?

【关键词】重现期模型单位巍 无资料地区暴雨洪水计算问题,一直是国内外水学科专 家学者在不断探索和研究的课题.《辽宁省中小河流(无资料地区)设计暴雨洪水计算方法》一书经过3年的工作编制完成?该书通过对大量水文气象资料分析?全面阐述了辽宁省暴雨,洪水时空变化规律,探人分析了暴雨洪水相关参数,提供出设计洪水计算的新理论,新方法和一系列新图件基础资料详实可靠,计算方法先进,综合成果符合部颁档计洪水计算规范》要求. l基本资料与系列代表性分析 1.1基本资料 车成果分析暴雨资料的选用时段为最大10rai n,lh,6h, 24h,3d等5个时段.资料系列取自有资料以来截止到1995 年选用站数达306站,年限在25?9O年之间,共有12857 站年?系列最长的站是沈阳,大连,营口,均为91年,起讫时间为1905—1995 年. 1.2亲列代表性分析 首先从定性上开始,绘制各次实测大暴雨等值线图,了解气象成因与天

洪水频率计算(规范方法)

附录A 洪水频率计算 A1 洪水频率曲线统计参数的估计和确定 A1.1 参数估计法 A1.1.1 矩法。对于n 年连序系列,可采用下列公式计算各统计参数: 均值 ∑== n i i X n X 1 1 (A1) 均方差 ∑=--=n i i X X n S 1 2)(11 或 ?? ????--=∑∑==n i n i i i X n X n S 1212)(111 (A2) 变差系数 X S C v = (A3) 偏态系数 3 3 13 )2)(1()(v n i i s C X n n X X n C ---= ∑= 或 33 1 3 1 1 21 32)2)(1()(23v n i n i i n i i n i i i s C X n n n X X X n X n C --+?-= ∑∑∑∑==== (A4) 式中 X i ——系列变量(i=1,…,n ); n ——系列项数。 对于不连序系列,其统计参数的计算与连序系列的计算公式有所不同。如果在迄今的N 年中已查明有a 个特大洪水(其中有l 个发生在n 年实测或插补系列中),假定(n-l )年系列的均值和均方差与除去特大洪水后的(N-a )年系列的相等,即l n a n l n a N S S X X ----==,,可推导出统计参数的计算公式如下: )(11 1∑ ∑+==--+=n l i i a j j X l n a N X N X (A5)

?? ????---+--= ∑∑++==n l i i a j j v X X l n a N X X N X C 1 2 12)()(111 (A6) 3 31313)2)(1()()(v n l i i a j j s C X N N X X l n a N X X N C --??????---+-=∑∑+== (A7) 式中 X j ——特大洪水变量(j=1,…,a ); X i ——实测洪水变量(i=l +1,…,n )。 A1.1.2 概率权重矩法。概率权重矩定义为 ?=1 0)(dF x xF M j j j=0,1,2,… (A8) 皮尔逊Ⅲ型频率曲线的三个统计参数不能用概率权重矩的显式表达。但经推导有: o M X = (A9) )2 1 ( 01-=M M H C v (A10) 2 /3/0102M M M M R --= (A11) 式中,H 和R 都和C s 有关,并已有近似的经验关系如下: ?? ?? ?≤≤--=++-=)431()3/4(154.9472.1051.1341.1612 .0432R R R u u u u u C s (A12) ?? ???<≤--=++-+=)3 41()3/4()1(60938.36315.2985.29545.314 .02 432 R R R V V V V V H (A13) 为保证C v 和C s 有二位小数准确,要求在用式(A11)计算R 时,M 0、M 1和M 2的计算值至少达到5位有效数字。 1 根据连序系列计算概率权重矩。将洪水系列按从大到小顺序排列,样本概率权重矩按下式计算: ??? ? ?? ???-----=--==∑∑∑===n i i n i i n i i o n n i n i n X n M n i n X n M X n M 12111 )2)(1()1)((1111 (A14)

洪水调节设计(试算法和半图解法)模板 - 带试算C语言程序

《洪水调节课程设计》任务书 一、设计目的 1.洪水调节目的:定量地找出入库洪水、下泄洪水、拦蓄洪水的库容、水库 水位的变化、泄洪建筑物型式和尺寸间的关系,为确定水库的有关参数和泄洪建筑型式选择、尺寸确定提供依据; 2.掌握列表试算法和半图解法的基本原理、方法、步骤及各自的特点; 3.了解工程设计所需洪水调节计算要解决的课题;培养学生分析问题、解决 问题的能力。 二、设计基本资料 1.某水利枢纽工程以发电为主,兼有防洪、供水、养殖等综合效益,电站 装机为5000KW,年发电量1372×104 kw·h,水库库容0.55亿m3。挡水 建筑物为混凝土面板坝,最大坝高84.80m。溢洪道堰顶高程519.00m, 采用2孔8m×6m(宽×高)的弧形门控制。水库正常蓄水位525.00m。电 站发电引用流量为10 m3/s。 2.本工程采用2孔溢洪道泄洪。在洪水期间洪水来临时,先用闸门控制下 泄流量q并使其等于洪水来水量Q,使水库水位保持在防洪限制水位不 变;当洪水来水量Q继续增大时,闸门逐渐打开;当闸门达到全开后, 就不再用闸门控制,下泄流量q随水库水位z的升高而增大,流态为自由 流态,情况与无闸门控制一样。 3.上游防洪限制水位52 4.8m(注:X=524.5+学号最后1位/10,即 524.5m-525.4m),下游无防汛要求。 三、设计任务及步骤 分别对设计洪水标准、校核洪水标准,按照上述拟定的泄洪建筑物的类型、尺寸和水库运用方式,分别采用列表试算法和半图解法推求水库下泄流量过程,以及相应的库容、水位变化过程。具体步骤: 1.根据工程规模和建筑物的等级,确定相应的洪水标准; 2.用列表试算法进行调洪演算: ①根据已知水库水位容积关系曲线V~Z和泄洪建筑物方案,用水力学 公式求出下泄流量与库容关系曲线q~Z,并将V~Z,q~Z绘制在 图上; ②决定开始计算时刻和此时的q1、V1,然后列表试算,试算过程中,对 每一时段的q2、V2进行试算;

相关主题
文本预览
相关文档 最新文档