当前位置:文档之家› 传送带问题的解题技巧-学案

传送带问题的解题技巧-学案

传送带问题的解题技巧-学案
传送带问题的解题技巧-学案

课题:传送带问题的解题技巧

【考纲解读】

新课程标准:理解牛顿运动定律,能用牛顿运动定律解释生产生活中的有关现象、解决有关问题。

考试大纲:牛顿运动定律及其应用(属Ⅱ级要求,是高中物理主干知识)

一、学习目标:通过本专题的学习,能综合运用动力学观点(牛顿运动定律、运动学规律)处理水平及倾斜传送带问题。

二、方法指导:

1.模型特征:一个物体以速度v0(v0≥0)在另一个匀速运动的物体上开始运动的力学系统可看做“传送带”模型,如图(a)、(b)、(c)所示.

2.难点透视:主要表现在两方面:其一,传送带问题往往存在多种可能结论的判定,即需要分析确定到底哪一种可能情况会发生;其二,决定因素多,包括滑块与传送带动摩擦因数大小、斜面倾角、滑块初速度、传送带速度、传送方向、滑块初速度方向等.这就需要考生对传送带问题能做出准确的动力学过程分析。

3.建模指导

(1)受力分析:传送带模型中要注意摩擦力f的突变(发生在v物与v带相同的时刻),对于倾斜传送带模型要分析mgsinθ与f的大小与方向。突变有下面三种:

1.滑动摩擦力消失;

2.滑动摩擦力突变为静摩擦力;

3.滑动摩擦力改变方向;

(2)运动分析:

a.注意参考系的选择,传送带模型中选择地面为参考系;

b.判断共速以后是与传送带保持相对静止作匀速运动呢?还是继续加速运动?

c.判断传送带长度—临界之前是否滑出?

4.解题流程

三、情景归纳

(一)水平传送带

动力学过程分析:

情景1:f方向与物体运动方向,物体先速,a = ,假设物、带能共速时物的位移x0= ,(1)如x0L,则物体一直加速;(2)如x0L,则物体先速后速,即物、带最终共速,共速时,f= 。

情景2:(1)v0

(2)v0>v时,f方向与物体运动方向,物体先速,a = ,假设物、带能共速时物的位移x0= ,a.如x0L,则物体一直减速;b.如x0L,则物体先速后速,即物、带最终共速。

情景3:f方向与物体运动方向,物体先速,假设物体速度减为零时,物的位移x0= ,(1)如x0L,滑块一直减速达到左端,离开传送带;(2)如x0L,当物体速度减为零时,动摩擦力f方向,物体反向速,被传送带传回右端。当v0v时,返回时会与带共速,即传回右端时速度为。

(二)倾斜传送带

当μ≥tanθ时,物块在加速至与传送带速度相同后,物块将与传送带相对静止,并同传送带一起匀速运动;当μ<tanθ时,物块在获得与传送带相同的速度后仍继续加速.

动力学过程分析:(假设最大静摩擦力等于滑动摩擦力)

情景4:动摩擦力f沿斜面,当μ>tanθ时,物体先向上加速,a = ,假设物、带能共速时物的位移x0= ,(1)如x0L,则物体一直加速;(2)如x0L,则物体先速后速,即物、带最终共速,共速时,动摩擦力f发生突变,变为静摩擦力,且f= ;(3)当μ=tanθ时,滑块静止在起点;当μ<tanθ时,滑块直接掉落。

情景5:动摩擦力f沿斜面,物体先向下加速,a1 = ,假设物、带能共速时物的位移x0= ,(1)如x0L,则物体一直加速;(2)如x0L,则物体先速,物块在加速至与传送带速度相同,a.如μ≥tanθ时,动摩擦力f发生突变,变为静摩擦力,且为,随后物块将与传送带相对静止,并同传送带一起匀速运动至底端;b.如μ<tanθ时,物块在获得与传送带相同的速度时,动摩擦力方向发生突变,变为沿斜面,大小不变,物块加速度大小变为a2=,且a2a1,物块继续沿斜面向下加速,直至底端。

课前预学要求:仔细研读以上三个学习环节,并初步完成“三、情景归纳”中的“水平传送带、倾斜传送带- 动力学过程分析”中情景1-5的填空部分。情景6、7请选择性的自主分析。

四、实战演练

1.水平传送带被广泛地应用于车站、码头,工厂、车间。如图所示为水平传送带装置示意图,绷紧的传送带AB始终保持v0=2 m/s的恒定速率运行,一质量为m的工件无初速度地放在A处,传送带对工件的滑动摩擦力使工件开始做匀加速直线运动,设工件与传送带间的动摩擦因数为μ=0.2 ,AB的之间距离为L=10m ,g取10m/s2.求工件从A处运动到B处所用的时间?如果传送带长为0.81m,则工件传送时间为多少?

2.(多选)如图所示,绷紧的长为6 m的水平传送带,沿顺时针方向以恒定速率v1=2 m/s运行.一小物块从与传送带等高的光滑水平台面滑上传送带,其速度大小为v2=5 m/s.若小物块与传送带间的动摩擦因数μ=0.2,重力加速度g=10 m/s2,下列说法中正确的是() (优化方案P53:7)A.小物块在传送带上先向左做匀减速直线运动,然后向右做匀加速直线运动

B.若传送带的速度为5 m/s,小物块将从传送带左端滑出

C.若小物块的速度为4 m/s,小物块将以2 m/s的速度从传送带右端滑出

D.若小物块的速度为1 m/s,小物块将以2 m/s的速度从传送带右端滑出

3.变式 (多选)如图所示,水平传送带A、B两端相距s=3.5m,物体与传送带间的动摩擦因数μ=0.1,物体滑上传送带A端的瞬时速度v A=4m/s,到达B端的瞬时速度设为v B,g=10m/s2。下列说法中正确的是()

A.若传送带不动,v B=3m/s

B.若传送带逆时针匀速转动,v B一定等于3m/s

C.若传送带顺时针匀速转动,v B一定等于3m/s

D.若传送带顺时针匀速转动,v B有可能等于3m/s

4.如图所示为粮袋的传送装置,已知A、B两端间的距离为L,传送带与水平方向的夹角为θ,工作时运行速度为v,粮袋与传送带间的动摩擦因数为μ,正常工作时工人在A端将粮袋放到运行中的传送带上.设最大静摩擦力与滑动摩擦力大小相等,重力加速度大小为g.关于粮袋从A到B的运动,以下说法正确的是()

A.粮袋到达B端的速度与v比较,可能大,可能小或也可能相等

B.粮袋开始运动的加速度为g(sin θ-μcos θ),若L足够大,则以后将以速度v做匀速运动

C.若μ≥tan θ,则粮袋从A端到B端一定是一直做加速运动

D.不论μ大小如何,粮袋从A端到B端一直做匀加速运动,且加速度a≥g sin θ

五、课堂检测题

1. (2011福建卷)如图所示,绷紧的水平传送带始终以恒定速率 v1运行。初速度大小为v2的小物块从与传送带等高的光滑水平地面上的A处滑上传送带。若从小物块滑上传送带开始计时,小物块在传送

带上运动的v - t 图像(以地面为参考系)如图乙所示。已知 v 2 > v 1 ,则 ( )

A. t 2时刻,小物块离A 处的距离达到最大

B. t 2时刻,小物块相对传送带滑动的距离达到最大

C. 0~ t 2时间内,小物块受到的摩擦力方向先向右后向左

D. 0~ t 3时间内,小物块始终受到大小不变的摩擦力作用

2.如图甲所示的传送带,其水平部分ab 的长度为2 m ,倾斜部分bc 的长度为4 m ,bc 与水平面的夹角θ=37°,现将一小物块A (可视为质点)轻轻放在传送带的a 端,物块A 与传送带之间的动摩擦因数μ=0.25.传送带沿图甲所示方向以v =2 m/s 的速度匀速运动,若物块A 始终未脱离传送带,试求小物块A 从a 端被传送到c 端所用的时间?(取g =10m/s 2

,sin37°=0.6 ,cos37°=0.8 )

(选做题)3.如图所示,与水平面成θ=30°的传送带正以v =3 m/s 的速度匀速运行,A 、B 两端相距l =13.5 m .现每隔1 s 把质量m =1 kg 的工件(视为质点)轻放在传送带上,工件在传送带的带动下向上运动,工件与传送带间的动摩擦因数μ=23

5,取g =10 m/s 2,结果保留两位有效数字.求:相邻工件间

的最小距离和最大距离?(2)满载与空载相比,传送带需要增加多大的牵引力?(优化方案 P51迁移2) 答案:(1)0.50 m 3.0 m (2)33 N

六、课外作业:教辅“优化方案”P57页:例3、迁移1;P59页:跟踪训练4;P61页:2、3

牛顿运动定律习题课导学案

牛顿运动定律习题课 【学习目标】 能够用牛顿三大定律解释相关现象和处理相关问题 【学习重点】:理解、熟练掌握牛顿第二定律及应用。 【学习难点】:(1)准确理解力和运动的关系。 (2)通过运动情况判断物体受力。 (3)熟练应用牛顿定律 【方法指导】自主探究、交流讨论、自主归纳 学习过程:自主学习:(看书回答) 一、基础知识1、牛顿第一定律: ,牛顿第一定律定义了力:物体的运动不需要力来维持,力是改变运动状态的原因。 2、牛顿第二定律: ,牛顿第二定律确定了运动和力的关系,使我们能够把物体的运动情况与物体的受力情况联系起来。 3、牛顿第三定律: ,牛顿第三定律说明了作用力与反作用力之间的关系,把相互作用的几个物体联系起来了。 二、基本题型: 类型一:从物体的受力情况确定物体的运动情况 已知物体的受力情况,能够由牛顿第二定律求出物体的________,再通过_______规律确定物体的运动情况。 类型二:从运动情况确定受力情况 已知物体的运动情况,根据________公式求出物体的加速度,于是就能够由牛顿第二定律确定物体所受的___________。 类型三:平衡类问题 可先对物体实行受力分析,根据__力的合成___法则,可转化成二力模型、三力模型、四力模型来处理。 合作探究一 三、解题要点:(1)分析流程图 强调:抓住 力 和 运动 之间的桥梁——加速度,受力分析和运动分析是基础, (2)基本步骤: 四、基本方法:正交分解、整体法、隔离法、三角形法等 五、典型例题 合作探究二 力的合成分解 受力情况 F 1、F 2…… F 合 a 受力情况 v 0、v t 、s 、t F 合=ma 运动学公式

运动与力的关系专题之传送带问题(典型例题分析+专项训练)附详细解析

牛顿第二定律的运用之传送带问题 一、传送带水平放,传送带以一定的速度匀速转动,物体轻放在传送带一端,此时物体可能经历两个过程——匀加速运动和匀速运动。 【例题1】在民航和火车站可以看到用于对行李进行安全检查的水平传送带,当旅客把行李放到传送带上时,传送带对行李的摩擦力使行李开始运动,最后行李随传送带一起前进,设传送带匀速前进的速度为0.6m/s,质量为4.0kg的皮箱在传送带上相对滑动时,所受摩擦力为24N,那么,这个皮箱无初速地放在传送带上后,求: (1)经过多长时间才与皮带保持相对静止? (2)传送带上留下一条多长的摩擦痕迹? 【答案】分析:(1)行李在传送带上先做匀加速直线运动,当速度达到传送带的速度,和传送带一起做匀速直线运动 (2)传送带上对应于行李最初放置的一点通过的位移与行李做匀加速运动直至与传送带共同运动时间内通过的位移之差即是擦痕的长度 解答:解:(1)设皮箱在传送带上相对运动时间为t,皮箱放上传送带后做初速度为零的匀加速直线运动,由牛顿运动定律: 皮箱加速度:a==m/s2=6m/s2 由v=at 得t==s=0.1s (2)到相对静止时,传送带带的位移为s1=vt=0.06m 皮箱的位移s2==0.03m 摩擦痕迹长L=s1--s2=0.03m(10分) 所以,(1)经0.1s行李与传送带相对静止 (2)摩擦痕迹长0.0.03m 二、传送带斜放,与水平方向的夹角为θ,将物体轻放在传送带的最低端,只

要物体与传送带之间的滑动摩擦系数μ≥tanθ,那么物体就能被向上传送。此时物体可能经历两个过程——匀加速运动和匀速运动。 【例题2】如图2—4所示,传送带与地面成夹角θ=37°,以 10m/s的速度顺时针转动,在传送带下端轻轻地放一个质量 m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.9,已知传送 带从A→B的长度L=50m,则物体从A到B需要的时间为多少? 解:物体放上传送带后,开始一段时间t1内做初速度为0的匀加速直线运动,对小物体受力分析如下图所示: 可知,物体所受合力F合=f-Gsinθ 又因为f=μN=μmgcosθ 所以根据牛顿第二定律可得: 此时物体的加速度 a===m/s2=1.2m/s2 当物体速度增加到10m/s时产生的位移 x===41.67m 因为x<50m 所以=8.33s 所以物体速度增加到10m/s后,由于mgsinθ<μmgcosθ,所以物体将以速度v做匀速直线运动 故匀速运动的位移为50m-x,所用时间

(完整版)传送带问题(教案)

第三章牛顿运动定律 传送带问题 【教学目标】 1.知识与技能 (1)理解传送带问题; (2)学会运用牛顿运动定律解决传送带问题和其它实际问题。2.过程与方法 (1)运用“五段式”教学法,以问题链的形式由浅到深,引导学生自主思考,加深对牛顿运动定律的理解。 (2)通过合作交流、自主探究,培养学生运用物理规律解决实际问题的能力。 3.情感态度价值观 (1)通过对传送带问题的学习,感受物理源于生活服务于生活的理念。 (2)通过对传送带问题的学习,感受生活中的物理,激发学生运用物理规律解决生活问题的激情和信念,激发其创造性。 【教学重点】 运用牛顿第二定律判定物块在传送带上的运动状态 【教学难点】 相对位移(划痕)的计算 【课时安排】 1课时

【教学过程】 1.创设情境,提出问题。 情境引入:飞机场、火车站、汽车站都有安全检查仪,其装置可以简化成如右图所示的一个传送带。 提出问题:人在传送带A点把行李放在以恒定速度V运行的传送带上。人同时也以速度V匀速前进,行李和人谁先到达B点? 2.问题引导,自主探究。 (1)传送带做什么运动?人做什么运动?行李向哪边运动?为什么? 学生:传送到做匀速直线运动,人做匀速直线运动。通过受力分析知道,行李受到水平向右的摩擦力。行李向右运动。 (2)行李开始做什么性质的运动?行李会一直这样运动下去吗?行李可能的最大速度是多少? 学生:行李F合=μmg,且为恒力。根据牛顿第二定律,得a=μg。行李向右做匀加速直线运动。因为当行李速度等于传送带速度时,行李和传送带达到相对静止,摩擦力消失,行李和传送带以匀速运动的速度共同做匀速直线运动。 (3)行李达到最大速度之前的运动情况:V 0、V、a、t、X。 AB V

传送带模型 与摩擦生热相关的功能关系问题

传送带模型 1.水平传送带模型 项目图示滑块可能的运动情况 情景1(1)可能一直加速 (2)可能先加速后匀速 情景2(1)v0>v时,可能一直减速,也可能先减速再匀速 (2)v0v,返回时速度为v;当v0

传送带长度 滑块在传送带上的运动情景 滑块运动情况 滑块运动的v-t 图像 滑块运动的时间 传送带不够长 滑块一直做匀加速 22 1 at s = g s a s t μ22==得: 传送带刚够长 滑块一直做匀加速 22 1at s = g s a s t μ22== 得: 传送带足够长 滑块先做匀加速后匀速 g v a v t μ01== a v s 221=v s s t 1 2-= 21t t t += 2.有初速度的滑块在水平传送带上的运动情况分析 传送带长度 滑块在传送带上的运动情景 滑块运动情况 滑块运动的v-t 图像(v 1v 0) 反向 滑块运动情况 滑块运动的v-t 图像 传送带不够 长 滑块一直做匀加速 滑块一直做匀减速 传送带刚够 长 滑块一直做匀加速 滑块一直做匀减速 传送带足够 长 滑块先做匀加速后匀速 先做匀减速 后反向匀加速至v1(v1v0) 3.无初速度的滑块在倾斜传送带上的运动情况分析 4.有初速度的滑块在倾斜传送带上的运动情况分析 传送带长度 滑块在传送带上的运动情景 滑块运动情况 滑块运动的v-t 图像 传送带不够长 滑块一直做匀加速 传送带刚够长 滑块一直做匀加速 传送带足够长 滑块先做匀加速后匀速 传送带长度 滑块在传送带上的运动情景 同向速度的滑块在倾斜传送带上(v1v0) 反向 滑块运动的v-t 图像 传送带不够长 滑块一直做匀加速 传送带刚够长 滑块一直做匀加速 传送带足够长 滑块先做匀加速后匀速 v t v v t v t v t v t v v t v t v t v t v v v t v t

高考板块模型及传送带问题 压轴题【含详解】

如图所示,长L=1.5 m,高h=0.45 m,质量M=10 kg的长方体木箱,在水平面上向右做直线 运动.当木箱的速度v0=3.6 m/s时,对木箱施加一个方向水平向左的恒力F=50 N,并同时将一个质量m=l kg的小球轻放在距木箱右端的P点(小球可视为质点,放在P点时相对于地 面的速度为零),经过一段时间,小球脱离木箱落到地面.木箱与地面的动摩擦因数为0.2,其他摩擦均不计.取g=10 m/s2.求: ⑴小球从离开木箱开始至落到地面所用的时间; ⑵小球放到P点后,木箱向右运动的最大位移; ⑶小球离开木箱时木箱的速度. 【解答】:⑴设小球从离开木箱开始至落到地面所用的时间为t,由于 ,① 则s.② ⑵小球放到木箱后相对地面静止,木箱的加速度为m/s2.③) 木箱向右运动的最大位移为m ④ ⑶x1<1 m,故小球不会从木箱的左端掉下. 木箱向左运动的加速度为m/s2⑤ 设木箱向左运动的距离为x2时,小球脱离木箱m ⑥ 设木箱向左运动的时间为t2,由,得 s ⑦ 小球刚离开木箱瞬间,木箱的速度方向向 左, 大小为m/s ⑧ 如图所示,一质量为m B = 2 kg的木板B静止在光滑的水平面上,其右端上表面紧靠一固定斜面轨道的底端(斜面底端与木板B右端的上表面之间有一段小圆弧平滑连接),轨道与水平面的夹角θ= 37°.一质量也为m A = 2 kg的物块A由斜面轨道上距轨道底端x0 = 8 m处静止释放,物块A刚好没有从木板B的左端滑出.已知物块A与斜面轨道间的动摩擦因数为μ1 = 0.25,与木板B上表面间的动摩擦因数为μ2 = 0.2,sinθ = 0.6,cosθ = 0.8,g 取10 m/s2,物块A可看做质点.求: ⑴ 物块A刚滑上木板B时的速度为多大? ⑵ 物块A从刚滑上木板B到相对木板B静止共经历了多长时 间? (3)木板B有多长?

(完整)高中物理必修一涉及到传送带问题解析(含练习解析)

涉及到传送带问题解析 【学习目标】 能用动力学观点分析解决多传送带问题 【要点梳理】 要点一、传送带问题的一般解法 1.确立研究对象; 2.受力分析和运动分析,逐一摩擦力f大小与方向的突变对运动的影响; ⑴受力分析: F的突变发生在物体与传送带共速的时刻,可能出现f消失、变向或变为静摩擦力,要注意这个时刻。 ⑵运动分析: 注意参考系的选择,传送带模型中选地面为参考系;注意判断共速时刻并判断此后物体与带之间的f变化从而判定物体的受力情况,确定物体是匀速运动、匀加速运动还是匀减速运动;注意判断带的长度,临界之前是否滑出传送带。 ⑶注意画图分析: 准确画出受力分析图、运动草图、v-t图像。 3.由准确受力分析、清楚的运动形式判断,再结合牛顿运动定律和运动学规律求解。 要点二、分析物体在传送带上如何运动的方法 1、分析物体在传送带上如何运动和其它情况下分析物体如何运动方法完全一样,但是传送带上的物体受力情况和运动情况也有它自己的特点。 具体方法是: (1)分析物体的受力情况 在传送带上的物体主要是分析它是否受到摩擦力、它受到的摩擦力的大小和方向如何、是静摩擦力还是滑动摩擦力。在受力分析时,正确的理解物体相对于传送带的运动方向,也就是弄清楚站在传送带上看物体向哪个方向运动是至关重要的!因为是否存在物体与传送带的相对运动、相对运动的方向决定着物体是否受到摩擦力和摩擦力的方向。 (2)明确物体运动的初速度 分析传送带上物体的初速度时,不但要分析物体对地的初速度的大小和方向,同时要重视分析物体相对于传送带的初速度的大小和方向,这样才能明确物体受到摩擦力的方向和它对地的运动情况。 (3)弄清速度方向和物体所受合力方向之间的关系 物体对地的初速度和合外力的方向相同时,做加速运动,相反时做减速运动;同理,物体相对于传送带的初速度与合外力方向相同时,相对做加速运动,方向相反时做减速运动。 2、常见的几种初始情况和运动情况分析 (1)物体对地初速度为零,传送带匀速运动,(也就是将物体由静止放在运动的传送带上) 物体的受力情况和运动情况如图1所示:其中V是传送带的速度,V10是物体相对于传送带的初速度,f是物体受到的滑动摩擦力,V20是物体对地运动初速度。(以下的说明中个字母的意义与此相同) 物体必定在滑动摩擦力的作用下相对于地做初速度为零的匀加速直线运动。其加速度由牛顿第二定律 ,求得;

《旋转》导学案(全章)

课题:23.1图形的旋转(1) 【学习目标】 1、掌握旋转的定义以及相关概念; 2、理解旋转的基本性质; 3、利用性质解 决相关问题。 把一个平面图形_平面内某一点O ______________ 个角度,就叫做图形的旋转, 点 0 叫做 __________ ,转动的角叫做 __________ 。因此,旋转的决定因素是 ______________ 和 _________ _ 、剖析展示 1. 钟表的分针匀速旋转一周需要 60分.(1)指出它的旋转中心; ⑵经过20 分,分针旋转了 ___________ . 2 .如图,如果把钟表的指针看做三角形 OAB ,它绕0点按顺时针 方向旋转得到△ OEF ,在这个旋转过程中:(1)旋转中心是 _____________ 转角 2)如图,已知△ABC 和直线L ,请你画出△ABC 关于L 的对称图形A A 'B'C 是 ___________ 2 )经过旋转,点 A 、B 分别移动 ______________________ 3.如图:厶ABC 是等边三角形,D 是BC 上一点,厶ABD 经过旋转后到达 虫ACE 的位置。(1)旋转中心是 ___________________________ (2) 旋转了 _______ 度.(3)如果M 是AB 的中点,那么经过上述 旋转后,点M 转到了 ________________________ . (三)自学教材P60探究,总结归纳旋转的性质。 3) 圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗? 4) 总结:(1)平移的有关概念及性质. (2 )如何画一个图形关于一条直线(对称轴) 加勺对称图形并口述它既有的一 些性质. ① ______________________________________________________ ② _________________________________________________________________ ③ _________________________________________________________________ (四)旋转性质的应用 课本p61练习2. 3. (3)什么叫轴对称图形? 【学习重点】旋转相关概念以及性质。 【学习难点】利用性质解决相关问题。 【学习过程】 一、自学指导 、归纳点拨 2、预习探究 B 1、引入导学 1)将如图所示 点B 的对应点为点 的四边形ABCD 平移, D ,作出平移后的图形. ED c E

传送带问题典型题解

传送带问题典型题解 摩擦力做功 A 、滑动摩擦力做功的特点: ①滑动摩擦力可以对物体做正功,也可以对物体做负功,还可以不做功。 ②相互摩擦的系统内,一对滑动摩擦力所做的功总为负值,其绝对值等于滑动摩擦力与相对位移的乘积。 B 、静摩擦力做功的特点: 1.静摩擦力可以做正功,也可以做负功,还可以不做功. 2.相互摩擦的系统内,一对静摩擦力所做功的和总是等于零. 三、传送带问题: 传送带类分水平、倾斜两种:按转向分顺时针、逆时针转两种。 ^ (1)受力和运动分析: 受力分析中的摩擦力突变(大小、方向)——发生在V 物与V 传相同的时刻; 运动分析中的速度变化——相对运动方向和对地速度变化。 分析关键是: V 物、V 带的大小与方向; mgsin θ与f 的大小与方向。 (2)传送带问题中的功能分析 ①功能关系:WF=△E K +△E P +Q ②对W F 、Q 的正确理解 (a )传送带做的功:W F =F ·S 带 功率P=F ×V 带 (F 由传送带受力平衡求得) - (b )产生的内能:Q=f ·S 相对 (c )如物体无初速,放在水平传送带上,则在整个加速过程中 物体获得的动能E K =2mv 2 1传E K , 因为摩擦而产生的热量Q 两者间有如下关系:E K =Q= 2mv 21传 难点: 1、属于易错点,突破方法是先让学生正确理解摩擦力产生的条件、方向的判断方法、大小的决定因素等等。通过对不同类型题目的分析练习,让学生做到准确灵活地分析摩擦力的有无、大小和方向。 2、对于物体相对地面、相对传送带分别做什么样的运动,判断错误。该难点应属于思维上有难度的知识点,突破方法是灵活运用“力是改变物体运动状态的原因”这个理论依据,对物体的运动性质做出正确分析,判断好物体和传送带的加速度、速度关系,画好草图分析,找准物体和传送带的位移及两者之间的关系。 3、对于匀速运动的传送带传送初速为零的物体,传送带应提供两方面的能量,一是物体动能的增加,二是物体与传送带间的摩擦所生成的热(即内能),有不少同学容易漏掉内能的转化,因为该知识点具有隐蔽性,往往是漏掉了,也不能在计算过程中很容易地显示出来,尤其是在综合性题目中更容易疏忽。突破方法是引导学生分析有滑动摩擦力做功转化为

高考物理--传送带问题专题归类(含答案及解析)

传送带问题归类分析 传送带是运送货物的一种省力工具,在装卸运输行业中有着广泛的应用,本文收集、整理了传送带相关问题,并从两个视角进行分类剖析:一是从传送带问题的考查目标(即:力与运动情况的分析、能量转化情况的分析)来剖析;二是从传送带的形式来剖析.(一)传送带分类:(常见的几种传送带模型) 1.按放置方向分水平、倾斜和组合三种; 2.按转向分顺时针、逆时针转两种; 3.按运动状态分匀速、变速两种。 (二)| (三)传送带特点:传送带的运动不受滑块的影响,因为滑块的加入,带动传送带的电机要多输出的能量等于滑块机械能的增加量与摩擦生热的和。 (三)受力分析:传送带模型中要注意摩擦力的突变(发生在v物与v带相同的时刻),对于倾斜传送带模型要分析mgsinθ与f的大小与方向。突变有下面三种: 1.滑动摩擦力消失; 2.滑动摩擦力突变为静摩擦力; 3.滑动摩擦力改变方向; (四)运动分析: 1.注意参考系的选择,传送带模型中选择地面为参考系; 2.判断共速以后是与传送带保持相对静止作匀速运动呢还是继续加速运动 , 3.判断传送带长度——临界之前是否滑出 (五)传送带问题中的功能分析

1.功能关系:W F =△E K +△E P +Q 。传送带的能量流向系统产生的内能、被传送的物体的动能变化,被传送物体势能的增加。因此,电动机由于传送工件多消耗的电能就包括了工件增加的动能和势能以及摩擦产生的热量。 2.对W F 、Q 的正确理解 (a )传送带做的功:W F =F·S 带 功率P=F× v 带 (F 由传送带受力平衡求得) (b )产生的内能:Q=f·S 相对 (c )如物体无初速,放在水平传送带上,则在整个加速过程中物体获得的动能E K ,因为摩擦而产生的热量Q 有如下关系:E K =Q= 2 mv 2 1传 。一对滑动摩擦力做的总功等于机械能转化成热能的值。而且这个总功在求法上比一般的相互作用力的总功更有特点,一般的一对相互作用力的功为W =f 相s 相对,而在传送带中一对滑动摩擦力的功W =f 相s ,其中s 为被传送物体的实际路程,因为一对滑动摩擦力做功的情形是力的大小相等,位移不等(恰好相差一倍),并且一个是正功一个是负功,其代数和是负值,这表明机械能向内能转化,转化的量即是两功差值的绝对值。 (六)水平传送带问题的变化类型 ) 设传送带的速度为v 带,物体与传送带之间的动摩擦因数为μ,两定滑轮之间的距离为L ,物体置于传送带一端的初速度为v 0。 1、v 0=0, v 0物体刚置于传送带上时由于受摩擦力作用,将做a =μg 的加速运动。 假定物体从开始置于传送带上一直加速到离开传送带,则其离开传送带时的速度为v = gL μ2,显然有: v 带< gL μ2 时,物体在传送带上将先加速,后匀速。 v 带 ≥ gL μ2时,物体在传送带上将一直加速。 2、 V 0≠ 0,且V 0与V 带同向 (1)V 0< v 带时,同上理可知,物体刚运动到带上时,将做a =μg 的加速运动,假定物体一直加速到离开传送带,则其离开传送带时的速度为V = gL V μ220 +,显然有: V 0< v 带< gL V μ220 + 时,物体在传送带上将先加速后匀速。 v 带 ≥ gL V μ220 + 时,物体在传送带上将一直加速。 (2)V 0> v 带时,因V 0> v 带,物体刚运动到传送带时,将做加速度大小为a = μg 的减速运动,假定物体一直减速到离开传送带,则其离开传送带时的速度为V = gL V μ220 - ,显然

高中物理传送带问题知识难点讲解汇总(带答案)

图2—1 弄死我咯,搞了一个多钟 传送带问题 一、难点形成的原因: 1、对于物体与传送带之间是否存在摩擦力、是滑动摩擦力还是静摩擦力、摩擦力的方向如何,等等,这些关于摩擦力的产生条件、方向的判断等基础知识模糊不清; 2、对于物体相对地面、相对传送带分别做什么样的运动,判断错误; 3、对于物体在传送带上运动过程中的能量转化情况考虑不全面,出现能量转化不守恒的错误过程。 二、难点突破策略: (1)突破难点1 在以上三个难点中,第1个难点应属于易错点,突破方法是先让学生正确理解摩擦力产生的条件、方向的判断方法、大小的决定因素等等。通过对不同类型题目的分析练习,让学生做到准确灵活地分析摩擦力的有无、大小和方向。 摩擦力的产生条件是:第一,物体间相互接触、挤压; 第二,接触面不光滑; 第三,物体间有相对运动趋势或相对运动。 前两个产生条件对于学生来说没有困难,第三个条件就比较容易出问题了。若物体是轻轻地放在了匀速运动的传送带上,那么物体一定要和传送带之间产生相对滑动,物体和传送带一定同时受到方向相反的滑动摩擦力。关于物体所受滑动摩擦力的方向判断有两种方法:一是根据滑动摩擦力一定要阻碍物体间的相对运动或相对运动趋势,先判断物体相对传送带的运动方向,可用假设法,若无摩擦,物体将停在原处,则显然物体相对传送带有向后运动的趋势,因此物体要受到沿传送带前进方向的摩擦力,由牛顿第三定律,传送带要受到向后的阻碍它运动的滑动摩擦力;二是根据摩擦力产生的作用效果来分析它的方向,物体只所以能由静止开始向前运动,则一定受到向前的动力作用,这个水平方向上的力只能由传送带提供,因此物体一定受沿传送带前进方向的摩擦力,传送带必须要由电动机带动才能持续而稳定地工作,电动机给传送带提供动力作用,那么物体给传送带的就是阻力作用,与传送带的运动方向相反。 若物体是静置在传送带上,与传送带一起由静止开始加速,若物体与传送带之间的动摩擦因数较大,加速度相对较小,物体和传送带保持相对静止,它们之间存在着静摩擦力,物体的加速就是静摩擦力作用的结果,因此物体一定受沿传送带前进方向的摩擦力;若物体与传送带之间的动摩擦因数较小,加速度相对较大,物体和传送带不能保持相对静止,物体将跟不上传送带的运动,但它相对地面仍然是向前加速运动的,它们之间存在着滑动摩擦力,同样物体的加速就是该摩擦力的结果,因此物体一定受沿传送带前进方向的摩擦力。 若物体与传送带保持相对静止一起匀速运动,则它们之间无摩擦力,否则物体不可能匀速运动。 若物体以大于传送带的速度沿传送带运动方向滑上传送带,则物体将受到传送带提供的使它减速的摩擦力作用,直到减速到和传送带有相同的速度、相对传送带静止为止。因此该摩擦力方向一定与物体运动方向相反。 若物体与传送带保持相对静止一起匀速运动一段时间后,开始减速,因物体速度越来越小,故受到传送带提供的使它减速的摩擦力作用,方向与物体的运动方向相反,传送带则受到与传送带运动方向相同的摩擦力作用。 若传送带是倾斜方向的,情况就更为复杂了,因为在运动方向上,物体要受重力沿斜面的下滑分力作用,该力和物体运动的初速度共同决定相对运动或相对运动趋势方向。 例1:如图2—1所示,传送带与地面成夹角θ=37°,以10m/s 的速度逆时针转动,在传送带上端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.5,已知传送带从A →B 的长度L=16m ,则物体从A 到B 需要的时间为多少? 【审题】传送带沿逆时针转动,与物体接触处的速度方向斜向下,物体初速度为零,所以物体相对传送带向上滑动(相对地面是斜向下运动的),因此受到沿斜面向下的滑动摩擦力作用,这样物体在沿斜面方向上所受的合力为重力的下滑

初二物理 摩擦力导学案

合作探究: 知识点一:摩擦力 1、定义:两个相互接触的物体,当它们做相对运动(或有相对运动趋势)时,在接触面上会产生一种阻碍相对运动的力,这种力叫做摩擦力。 2、摩擦力的产生条件:(1)两物体互相接触且有压力(2)接触面粗糙,不光滑 (3)两物体间发生相对运动或存在相对运动的趋势 3、摩擦力的方向:与物体的相对运动或相对运动趋势的方向相反 4、作用效果:阻碍物体相对运动 5、作用点:接触面上,一般画在受力物体的重心 例:小明观察如下漫画总结了四个观点,错误的是() A.甲图此刻人对箱子的推力等于箱子受到的摩擦力 B.乙图此刻箱子受到的摩擦力大于甲图此刻箱子受到的摩擦力 C.丙图此刻人对箱子的推力大于箱子受到的摩擦力 D.丙图箱子在同一水平面上滑动时受到的摩擦力大小不变 解析:先判断物体的运动状态,再根据二力平衡的条件判断力的大小,物体如果在水平推力的作用下静止,那么摩擦力和拉力二力平衡,大小相等。A甲图中人用水平推力推木箱,但没有推动,即此时木箱处于平衡状态,此时推力和摩擦力是一对平衡力。B乙图中表示人用更大的推力,但木箱仍未推动,即仍处于平衡状态,所受推力和摩擦力仍是一对平衡力。D丙图中木箱在水平地面运动,由于木箱和水平地面没有改变,压力也不变,所以受到的摩擦力大小不变。C丙图中表示木箱在水平地面上已经运动起来,但人摔倒后就不再对木箱施加推力,故C错误。

1.物体所受的摩擦力的大小与压力和接触面的粗糙程度有关,一个重90N 的铁块放在水平桌面上,小红用30N的水平拉力使它向右做匀速直线运动,铁块受到的摩擦力等于30N,方向向左,如果拉力变大,摩擦力不变(填“变大”、“不变”或“变小”)。 2.小明为了测定一个木块和桌面之间摩擦力的大小,他应该用弹簧测力计拉着木块在桌面上沿水平方向做匀速直线运动,若此时弹簧测力计的示数是 3.5N,则实验得出的摩擦力为3.5N。实验所用的原理是物体在平衡力作用下,物体做匀速直线运动。 3.下列现象中各属于哪种摩擦? (1)小孩从滑梯滑下,小孩和滑梯间的摩擦是滑动摩擦 (2)自行车刹车时,刹皮和车轮钢圈间的摩擦是滑动摩擦 (3)用卷笔刀削铅笔时,铅笔和刨刀间的摩擦是滑动摩擦 (4)自行车前进时,前轮和地面间的摩擦是滚动摩擦 知识点二:探究影响滑动摩擦力大小的因素 1.摩擦力的大小跟压力大小有关,又跟接触面的粗糙程度有关,摩擦力的方向总是相对运动的方向相反. 2.滑动摩擦力的大小跟接触面积大小、运动的快慢无关 例:小强为“探究滑动摩擦力大小与哪些因素有关”,将家里的可调速跑步机传送带调成水平,将滑块放置于水平传送带上,轻质弹簧测力计一端固定于墙面,一端通过细绳与滑块相连接,保持弹簧测力计水平,如图所示. (1)接通电源,让跑步机以一定速度逆时针运转,当滑块相对于地面静止时,此时物体受到的摩擦力为__________(选填“滑动摩擦力”或“静摩擦力”),弹簧测力计示数________(选填“大于”“小于”或“等于”)滑块受到的摩擦力.解析:滑块虽然相对于地面静止,但滑块与传送带有位置的变化,物体受到滑动摩擦力的作用;因为滑块相对于传送带匀速运动,受到平衡力的作用,两个力大小相等,所以弹簧测力计示数等于滑块受到的摩擦力 (2)通过调挡加快跑步机转动的速度,当滑块仍然相对于地面静止时,弹簧测力计示数大小________(选填“变大”“变小”或“不变”),说明滑动摩擦力的大小与相对运动速度大小________(选填“有关”或“无关”). 解析:通过调挡加快跑步机转动的速度,当滑块仍然相对于地面静止时,但滑块对传送带的压力和接触面的粗糙程度不变,摩擦力不变,弹簧测力计示数大小也不变,说明滑动摩擦力的大小与相对运动速度大小无关;

高中物理传送带问题(有答案)

传送带问题 例1:一水平传送带长度为20m ,以2m /s 的速度做匀速运动,已知某物体与传送带间动摩擦因数为0.1,则从把该物体由静止放到传送带的一端开始,到达另一端所需时间为多少? 解:物体加速度a=μg=1m/s2,经t1=v/a =2s 与传送带相对静止,所发生的位移 S1=1/2 at 12=2m,然后和传送带一起匀速运动经t2=l-s1/v =9s ,所以共需时间t=t1+t2=11s 练习:在物体和传送带达到共同速度时物体的位移,传送带的位移,物体和传送带的相对位移分别是多少?(S1=1/2 vt1=2m ,S2=vt1=4m ,Δs=s2-s1=2m ) 例2:如图2—1所示,传送带与地面成夹角θ=37°,以10m/s 的速度逆时针转动,在传送带上端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.5,已知传送带从A →B 的长度L=16m ,则物体从A 到B 需要的时间为多少? 【解析】物体放上传送带以后,开始一段时间,其运动加速度 2m/s 10cos sin =+=m mg mg a θ μθ。 这样的加速度只能维持到物体的速度达到10m/s 为止,其对应的时间和位移分别为: ,1s 10 101s a v t === m 52 21==a s υ<16m 以后物体受到的摩擦力变为沿传送带向上,其加速度大小为(因为mgsin θ>μmgcos θ)。 22m/s 2cos sin =-=m mg mg a θμθ。 设物体完成剩余的位移2s 所用的时间为2t , 则2222022 1t a t s +=υ, 11m= ,10222t t + 解得:)s( 11 s, 1 2212舍去或-==t t , 所以:s 2s 1s 1=+=总t 。

受力分析导学案

1 编制:杨振林 审核:唐军 【学习目标】 1、认识什么是受力分析及对物体进行受力分析的重要性。 2、初步掌握物体受力分析的一般顺序。 3、加深对力的概念、常见三种力的认识。 【重难点】 分析物体的受力情况 【知识梳理】 1、物体的受力分析:要研究物体的运动必须分析物体的受力情况,把指定物体(研究对象)在物理情景中受到的作用力都分析出来,并画出物体所受力的示意图,这个过程就是受力分析. 2、物体受力分析的思路如下: (1)明确研究对象 明确研究对象,即弄清要分析谁受到的力。在进行受力分析时,研究对象可以是某一个物体,也可以是保持相对静止的若干个物体(整体)。在解决比较复杂的问题时,灵活地选取研究对象可以使问题简洁地得到解决。 (2)隔离研究对象 把研究对象从实际情景中分离出来。 (3)按一定顺序找力 按已知力→重力→弹力→摩擦力→其它力的顺序分析,并画出各力的示意图。 地面上一切物体都要受到重力的作用,且方向竖直向下,故先分析重力。然后到接触处去找弹力,找出研究对象与其它物体的每一个接触处,若接触处有形变,则有弹力。若接触处除有形变外,还有相对运动或相对运动趋势,且接触面粗糙,则有摩擦力。对装有动力机械的物体(如:汽车、火车、轮船等),还要考虑是否有牵引力。最后分析电场力、磁场力…… 3、特别提醒: (1)在进行受力分析时,分析的是物体“受到”的力,而不是物体对外施加的力. (2)区分内力和外力:对几个物体的整体进行受力分析时,这几个物体间的作用力为内力,不能在受力图中出现;当把某一物体单独隔离分析时,原来的内力变成了外力,要画在受力分析图上. 课堂探究 知识点一 单个物体受力分析 画出下列物体的受力分析图 (1)在力F 作用下匀速向 右运动 4)A 静止在墙面 上 v (5)A (6)A 静止在光滑墙面 (7)A 静止在粗糙斜面上 A

传送带问题解题技巧

传送带问题 传送带问题是高中物理习题中较为常见的一类问题,因其涉及的知识点较多(力的分析、运动的分析、牛顿运动定律、功能关系等),包含的物理过程比较复杂,所以这类问题往往是习题教学的难点,也是高考考查的一个热点。下面以一道传送带习题及其变式题为例,谈谈这类题目的解题思路和突破策略。 题目如图1所示,水平传送带以5m/s的恒定速度运动,传送带长l=7.5m,今在其左端A将一工件轻轻放在上面,工件被带动,传送到右端B,已知工件与传送带间的动摩擦因数μ=0.5,试求:工件经多少时间由传送带左端A运动到右端B?(取g=10m/s2) 解析工件被轻轻放在传送带左端,意味着工件对地初速度v0=0,但由于传送带对地面以v=5m/s向右匀速运动,所以工件相对传送带向左运动,故工件受水平向右的滑动摩擦力作用,即:F f=μF N=μmg。 依牛顿第二定律,工件加速度m/s2,a为一恒量,工件做初速度为零的匀加速直线运动,当工件速度等于传送带速度时,摩擦力消失,与传送带保持相对静止,一起向右做匀速运动,速度为v=5m/s。 工件做匀加速运动的时间s,工件做匀加速运动的位移m。 由于x1

变式二若工件以对地速度v0=5m/s滑上传送带,则工件相对传送带无运动趋势,工件与传送带间无摩擦力,所以工件做匀速运动,工件运动时间s。 变式三若工件以速度v0=7m/s滑上传送带,由于工件相对传送带向右运动,工件受滑动摩擦力水平向左,如图2所示。工件做匀减速运动,当工件速度等于传送带速度后,二者之间摩擦力消失,工件随传送带一起匀速运动。 工件做匀减速运动时间s 工件做匀减速运动的位移m 工件做匀速运动的时间s 所以工件由左端A到右端B的时间t=t1+t2=1.42s。 变式四若工件以v0=3m/s速度滑上传送带,由于v0

动力学问题中的“传送带”与“板—块”等问题-湖北省通山县第一中学高中物理必修一导学案(无答案)

动力学问题中的“传送带”与“板—块”等问题 基础知识 一、“传送带”模型 1.水平传送带模型 项目图示滑块可能的运动情况 情景1 ①可能一直加速 ②可能先加速后匀速 情景2 ①v0>v时,可能一直减速,也可能先减速再匀速 ②v0v返回时速度为v,当v0

【强烈推荐】传送带问题与功能关系

对于匀速运动的传送带传送初速为零的物体,传送带应提供两方面的能量,一是物体动能的增加,二是物体与传送带间的摩擦所生成的热(即内能),有不少同学容易漏掉内能的转化,因为该知识点具有隐蔽性,往往是漏掉了,也不能在计算过程中很容易地显示出来,尤其是在综合性题目中更容易疏忽。突破方法是引导学生分析有滑动摩擦力做功转化为内能的物理过程,使“只要有滑动摩擦力做功的过程,必有内能转化”的知识点在学生头脑中形成深刻印象。 一个物体以一定初速度滑上一粗糙平面,会慢慢停下来,物体的动能通过物体克服滑动摩擦力做功转化成了内能,当然这个物理过程就是要考查这一个知识点,学生是绝对不会犯错误的。 质量为M的长直平板,停在光滑的水平面上,一质量为m的物体,以初速度v0滑上长板,已知它与板间的动摩擦因数为μ,此后物体将受到滑动摩擦阻力作用而做匀减速运动,长板将受到滑动摩擦动力作用而做匀加速运动,最终二者将达到共同速度。其运动位移的关系如图2—9所示。 图2—9 该过程中,物体所受的滑动摩擦阻力和长板受到滑动摩擦动力是一对作用力和反作用力, W物=—μmg·x物 W板=μmg·x板 很显然x物>x板,滑动摩擦力对物体做的负功多,对长板做的正功少,那么物体动能减少量一定大于长板动能的增加量,二者之差为ΔE=μmg(x物—x板)=μmg·Δx,这就是物体在克服滑动摩擦力做功过程中,转化为内能的部分,也就是说“物体在克服滑动摩擦力做功过程中转化成的内能等于滑动摩擦力与相对滑动路程的乘积。”记住这个结论,一旦遇到有滑动摩擦力存在的能量转化过程就立即想到它。 再来看一下这个最基本的传送带问题: 图2—10 物体轻轻放在传送带上,由于物体的初速度为0,传送带以恒定的速度运动,两者之间有相对滑动,出现滑动摩擦力。作用于物体的摩擦力使物体加速,直到它的速度增大到等于传送带的速度,作用于传送带的摩擦力有使传送带减速的趋势,但由于电动机的作用,保持了传送带的速度不变。尽管作用于物体跟作用于传送带的摩擦力的大小是相等的,但物体与传送带运动的位移是不同的,因为两者之间有滑动。如果物体的速度增大到等于传送带的速度经历的时间为t,则在这段时间内物体运动的位移小于传送带运动的位移。在这段时间内,传送带克服摩擦力做的功大于摩擦力对物体做的功(这功转变为物体的动能),两者之差即为摩擦发的热。所谓传送带克服摩擦力做功,归根到底是电动机在维持传送带速度不变的过程中所提供的。

新人教版必修1《摩擦力》导学案

中学物理新课程高效课堂教学设计 ——人教版必修1§3.3《摩擦力》导学案 三维目标: (一)知识与技能 1.知道滑动摩擦力及产生的条件,会判断滑动摩擦力的方向。 2.会用公式F=μF N计算滑动摩擦力的大小,知道影响滑动摩擦力的大小的因素,知道影响动摩擦因数大小的因素。 3.知道静摩擦力及产生的条件,会判断静摩擦力的有无以及大小和方向,知道最大静降擦力的概念。 4.了解滚动摩擦力。 (二)过程与方法 1.培养学生利用物理语言分析,思考,描述摩擦力概念和规律的能力; 2.培养学生通过对生活实例及现象的体验过程去探究物理问题; 3.培养学生合理采用控制变量和实验条件的方法进行实验探究的能力; (三)情感、态度与价值观 1.利用实验和生活实例激发学生的学习兴趣; 2.通过动手实验、分组讨论、交流培养学生的合作精神和探究问题的欲望; 教学重点: 1.滑动摩擦力产生的条件及规律,并会用F摩= F N解决具体问题; 2.静摩擦力产生的条件及规律,正确理解最大静摩擦力的概念。 教学难点: 1.正压力F N的确定; 2.静摩擦力的有无、大小、方向的判定. 教学方法: 生活实例体验、实验探究法 教学用具: 课桌、杯子、长木板、长方体木块、钩码、弹簧秤、毛巾、毛刷(4个学生一组) 预习案(学生课前自主学习用)

教学案 教学过程 (一)引入新课 视频演示:1、用一定大小的力推课桌,课桌为什么不动? 2、用一根筷子为何能提起装有米和适量水的杯子?(如图3.3-1) 3、用手握水杯(水杯竖直),水杯为什么不掉落地面? 设问激趣,引入本节课的课题——摩擦力 (二)进行新课 学生活动:将手放在桌面上,用逐渐增大的力向前推直到手由静止开始向前滑动,体会手受到的摩擦阻力,使学生产生对摩擦力的感性认识,并回忆初中学过的摩擦力知识,叙述摩擦力概念。 归纳小结:两个相互接触的物体,当它们发生相对运动或具有相对运动趋势时,就会在接触面上产生阻碍相对运动或相对运动趋势的力,这种力叫做摩擦力。 1、探究静摩擦力 (1)实验探究摩擦力及其产生条件 学生参与实验:1、学生用逐渐增大的力推教室中水平放置的课桌,而课桌不动; 2、用一根筷子提起装有米和适量水的杯子; 3、用手握水杯悬在空中。 思考讨论:1、为什么用力推课桌而课桌不一定运动?用一根筷子为何能提起装有米和适量水的杯子?用手握水杯(悬空),水杯为什么不掉落地面? 2、三个实验有什么共同点? 3、如果接触面光滑,上述实验还能成功吗? 学生分组讨论、分析回答上述问题:桌子、米、杯子都受到摩擦力的作用;课桌与地面、米与筷子、杯子与手都相对静止但有相对运动趋势。如果接触面光滑,上述实验不会成功。 结论:(1)两个相互接触的物体之间有相对运动趋势而又保持相对静止时,在接触面间产生的阻碍相对运动趋势的力叫静摩擦力。 (2)产生静摩擦力的条件:①接触面粗糙②接触面相互挤压有弹力产生③两物体保持相对静止但有相对运动趋势 (2)实验探究静摩擦力的大小 实验1:如图3.3-2,把木块放在水平长木板上,用弹簧测力计沿水平方向拉木块,在弹簧测力计的指针下轻塞一个小纸团它(可以作为指针到达最大位置的标记),可以随指针移动,拉力F逐渐增大,直到 图3.3-1

牛顿运动定律之滑块与传送带问题(含解析)

牛顿运动定律 滑块与传送带专题 一“滑块—滑板”模型 1.模型特点 上、下叠放两个物体,在摩擦力的相互作用下两物体发生相对滑动. 2.两种位移关系 滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长. 3.解题思路 处理此类问题,必须弄清滑块和滑板的加速度、速度、位移等关系. (1) 加速度关系 如果滑块和滑板之间没有发生相对运动,可以用“整体法”求出它们一起运动的加速度;如果滑块和滑板之间发生相对运动,应采用“隔离法”分别求出滑块和滑板的加速度.应注意找出滑块和滑板之间是否发生相对运动等隐含的条件. (2) 速度关系 滑块和滑板之间发生相对运动时,分析速度关系,从而确定滑块受到的摩擦力的方向.应注意当滑块和滑板的速度相同时,摩擦力会发生突变的情况. (3) 位移关系 滑块和滑板叠放在一起运动时,应仔细分析滑块和滑板的运动过程,认清对地位移和相对位移之间的关系.这些关系就是解题过程中列方程所必需的关系,各种关系找到了,自然也就容易列出所需要的方程了. 例一、如图,两个滑块A和B的质量分别为m A=1 kg和m B=5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4 kg,与地面间的动摩擦因数为μ2=0.1.某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3 m/s.A、B相遇时,A与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10 m/s2.求:

(1)B与木板相对静止时,木板的速度; (2)A、B开始运动时,两者之间的距离. 解析:(1)滑块A和B在木板上滑动时,木板也在地面上滑动.设A、B和木板所受的摩擦力大小分别为F f1、F f2和F f3,A和B相对于地面的加速度大小分别为a A和a B,木板相对于地面的加速度大小为a1,在物块B与木板达到共同速度前有 F f1=μ1m A g ① F f2=μ1m B g ② F f3=μ2(m+m A+m B)g ③ 由牛顿第二定律得 F f1=m A a A ④ F f2=m B a B ⑤ F f2-F f1-F f3=ma1 ⑥ 设在t1时刻,B与木板达到共同速度,其大小为v1,由运动学公式有 v1=v0-a B t1 ⑦ v1=a1t1 ⑧ 联立①②③④⑤⑥⑦⑧式,代入已知数据得 v1=1 m/s,方向与B的初速度方向相同⑨ (2)在t1时间间隔内,B相对于地面移动的距离为 s B=v0t1-1 2a B t 2 1⑩ 设在B与木板达到共同速度v1后,木板的加速度大小为a2,对于B与木板组成的体系,由牛顿第二定律有 F f1+F f3=(m B+m)a2 ? 由①②④⑤式知,a A=a B;再由⑦⑧式知,B与木板达到共同速度时,A的速度大小也为v1,但运动方向与木板相反.由题意知,A和B相遇时,A与木板的速度相同,设其大小为v2,设A的速度大小从v1变到v2所用的时间为t2,则由运动学公式, 对木板有v2=v1-a2t2 ? 对A有v2=-v1+a A t2 ?

相关主题
文本预览
相关文档 最新文档