当前位置:文档之家› 大豆蛋白分离工艺研究

大豆蛋白分离工艺研究

大豆蛋白分离工艺研究
大豆蛋白分离工艺研究

大豆分离蛋白的主要工艺流程

1 大豆分离蛋白的主要技术性能指标 水份:≤6% 干基粗蛋白:≥90% 水溶氮指数:≥60% TPC:≤10000个 大肠杆菌:0个 色泽:浅黄/乳白 气滋味:具有分离蛋白特有的气滋味 PH值:6.8~7.2 密度:过200目筛95%,过270目筛 90% 产品的功能特性将根据不同应用领域来确认 乳化型:通过1(蛋白):4(水):4(脂肪)的测试,肠体光亮、有弹性,无油、水渗出。 高凝胶型:通过1(蛋白):5(水):2(脂肪)的测试,肠体光洁度好,有弹性,无油、水渗出。 高分散(注射)型:1:10(蛋白:水)试验:稍搅拌溶解,静置三分钟无分层,0.5mm注射针头完全通过。 2 大豆分离蛋白工艺流程 低温豆粕——萃取——分离——酸沉——分离——水洗——分离——中和——杀菌——闪蒸——干燥——超细粉碎——混合造粒——喷涂——筛选——金属检测——包装 3 工艺简要描述: 萃取:将大豆低温豆粕置入萃取罐中按1:9的比例加入9倍的水,水温控制为40C0,加入碱使溶液在PH为9的条件下低温豆粕豆粕中的蛋白溶解于水中。 分离:将低温豆粕溶液送入高速分离机,将混合溶液中的粗纤维

(豆渣)与含有蛋白的水(混合豆乳)分离开。豆渣排到室外准备作饲料销售。混合豆乳回收置入酸沉罐中。 酸沉:利用大豆蛋白等电点为4.2的原理,加入酸调整酸沉罐中混合豆乳的PH到4.2左右。使蛋白在这个条件下产生沉淀。 分离:将酸沉后的混合豆乳送入分离机进行分离,使沉淀的蛋白颗粒与水分离。水(豆清水)排入废水处理场治理后达标排放。回收蛋白液(凝乳)到暂存罐。 水洗:按1(凝乳):4的比例加水入暂存罐中搅拌。使凝乳中的盐份和灰份溶解于水中。 分离:将暂存罐中的凝乳液送入离心机进行分离。水排入废水处理场治理达标排放,凝乳回收入中和罐。 中和:加入碱入中和罐,使凝乳的PH调整到7。 杀菌:将中和后的凝乳利用140C0的高温进行瞬时杀菌 干燥:将杀菌后的溶解送入干燥塔,在干燥温度为180C0的条件下将溶解干燥。 筛选:对干燥的大豆分离蛋白进行初步筛选。使98%通过100目标准筛。 超微粉碎:用特殊超微粉碎机对产品进行粉碎,使90%通过200目标准筛造粒:产品随后进行造粒设备进行造粒,使产品粒度均匀。 筛选:对产品进行进一步筛选。 喷涂:在产品表面喷涂表面活性剂,提高产品乳化稳定效果。 金属检测:对产品进行金属检测。 包装:检测后的产品进行自动包装系统,按规定的重量进行包装。

大豆分离蛋白在肉制品中的应用教学资料

大豆分离蛋白在肉制品中的应用

大豆分离蛋白在肉制品中的应用 1、大豆蛋白在肉制品中重要作用 由于大豆蛋白具有蛋白质的功能特性,因此在食品加工中得到广泛的应用。近年来,随着社会生产力的发展,人民的生活水平得到了提高,肉制品的消费量也达到了前所未有的高度,各种各样的肉制品也随着消费者的需要而走向了市场。大豆蛋白以其重要的功能特性在肉制品加工中所起的重要作用也越来越受到肉制品加工业的关注,在肉制品加工中主要利用大豆蛋白以下方面的特性。 1 )强化营养的高性价比蛋白源 大豆蛋白以其低廉的价格、良好的蛋白质量在肉制品中得到了广泛的应用,在灌肠、火腿等产品中添加大豆蛋白,不仅能提高蛋白质的含量,而且能改善蛋白质的配比,使蛋白质的营养更全面、更合理。 2)在肉制品中的调味作用 大豆蛋白含有少量的脂肪酸和碳水化合物,在加热之后会产生独特的豆香气,而肉制品;中有时原料肉(如鱼肉)或辅料所具有的以及由于加工工艺 (如杀菌)所产生的一些不愉快气味,可能会引起消费者的反感,大豆蛋白的独特香气对以上气味产生掩蔽作用,因而大豆蛋白对肉制品具有一定的调味作用。 3)大豆蛋白能改善肉制品的结构 大豆蛋白有良好的凝胶特性和粘结特性,在肉制品加工中利用这一特性加入大豆蛋白后可有效的改善产品的结构、增强产品的弹性、硬度,使产品的结构致密、口感更好,肉感更强。 4 )利用大豆蛋白的乳化性,解决肉制品的出水、出油问题 出水、出油是肉制品加工生产、存放过程中最常出现的问题之一,利用大豆蛋白同时具有亲水基团和亲油基团的特性,对水和油脂具有良好的亲和能力,能吸附水和油脂形成较为稳定网络结构,从而使肉制品中的水和油脂不游离出来,在加工和存放的过程中不发生出水、出油现象。 大豆分离蛋白在肉制品的应用已相当广泛,虽我国分离蛋白生产能力发展很快,但生产技术仍无明显提高,产品质量停滞不前,尚未形成多品种、多功能、系列化,致使大豆蛋白的高营养、高附加值的产品特性没有充分体现出来,市场价格一直处于低迷状态,而且国内的分离蛋白品种单一,功能性区别不大,产品质量不能满足客户的要求。国外大豆分离蛋白产品可生产出数百种,广泛应用于各个工业领域,国外产品由于品种多、质量好,虽然价格高出国产品很多,但仍占国内约 l/3市场。 国外大豆分离蛋白生产工艺、技术发展很快,由萃取方法、到改性方法,已形成多系列的配方技术。按照产品的应用领域、产品性能不同,其萃取方式、改性方法均不同。由此生产出的产品广泛适于肉类、乳品类、轻化工类等领域的不同需求,真正体现大豆蛋白 的高营养、高附加值特性。 1、大豆蛋白在肉制品中的重要作用:强化营养的高性价比蛋白源;在肉制品中的调味作用;大豆蛋白能改善肉制品的结构;利用大豆蛋白的乳化性,解决肉制品的出水、出油问 题。 2、大豆分离蛋白在肉制品中应用的一些性能指标

大豆分离蛋白项目可行性计划

大豆分离蛋白项目 可行性计划 规划设计/投资分析/实施方案

大豆分离蛋白项目可行性计划说明 我国大豆蛋白细分产品包括脱脂大豆蛋白粉、大豆浓缩蛋白和大豆分离蛋白等,其中大豆分离蛋白(SPI)是利用脱皮脱脂冷榨豆饼或低温脱溶豆粕为原料,经稀碱萃取、酸沉淀、离心分离、喷雾干燥等工序加工而成的食用大豆蛋白产品。国内外应用较为成熟的大豆分离蛋白生产工艺为碱提酸沉工艺。 该大豆分离蛋白项目计划总投资9209.90万元,其中:固定资产投资6701.68万元,占项目总投资的72.77%;流动资金2508.22万元,占项目总投资的27.23%。 达产年营业收入20882.00万元,总成本费用16056.35万元,税金及附加187.29万元,利润总额4825.65万元,利税总额5678.55万元,税后净利润3619.24万元,达产年纳税总额2059.31万元;达产年投资利润率52.40%,投资利税率61.66%,投资回报率39.30%,全部投资回收期4.04年,提供就业职位372个。 报告针对项目的特点,分析投资项目能源消费情况,计算能源消费量并提出节能措施;分析项目的环境污染、安全卫生情况,提出建设与运营过程中拟采取的环境保护和安全防护措施。 ......

报告主要内容:基本信息、建设必要性分析、市场研究分析、项目建 设内容分析、选址科学性分析、土建工程、工艺技术说明、环境保护说明、项目安全卫生、项目风险情况、项目节能评价、项目实施安排方案、投资 方案说明、项目经济效益分析、项目综合评价等。

第一章基本信息 一、项目概况 (一)项目名称 大豆分离蛋白项目 我国大豆蛋白细分产品包括脱脂大豆蛋白粉、大豆浓缩蛋白和大豆分离蛋白等,其中大豆分离蛋白(SPI)是利用脱皮脱脂冷榨豆饼或低温脱溶豆粕为原料,经稀碱萃取、酸沉淀、离心分离、喷雾干燥等工序加工而成的食用大豆蛋白产品。国内外应用较为成熟的大豆分离蛋白生产工艺为碱提酸沉工艺。 (二)项目选址 xxx产业园区 (三)项目用地规模 项目总用地面积26853.42平方米(折合约40.26亩)。 (四)项目用地控制指标 该工程规划建筑系数51.86%,建筑容积率1.08,建设区域绿化覆盖率7.91%,固定资产投资强度166.46万元/亩。 (五)土建工程指标

大豆纤维的前处理工艺模板

大豆纤维的前处理工艺 一、前言 大豆蛋白纤维又简称大豆蛋白或大豆纤维, 这种纤维实质上是一种多组分复合纤维。其中大豆蛋白质实采用化学和生物方法处理大豆渣提取球状蛋白, 再和其它高分子物( 例如PV A) 及添加剂, 经湿法纺丝而成的复合纤维, 是国内研究并己首次商品化生产的新型纤维, 市场前景十分广阔。该纤维具有蛋白质纤维的特性, 织物光泽柔和, 产品有类似蚕丝绸的手感、柔软性, 又具有麻棉的吸湿性和透气性, 故此纤维织物穿着舒适, 深受客户青睐。可是它的前处理和染色到当前还不是很成熟, 特别是它的漂白, 大家都知道大豆纤维漂不白, 因此染色时染鲜艳的浅色有一定的困难, 限制了它的发展。在此我们就大豆纤维的漂白和染色加以研究。 二、前处理大豆纤维是短纤维, 纤维截面是不规则的哑铃状, 纵向不光滑, 有凹槽, 其中蛋白质含量为23%-25%, 其余主要是PV A, 蛋白质主要呈不连续的块状分散在连续的PV A介质中。这种组成和结构使它具有较好的吸湿性和导湿透气性。它耐酸性较好, 耐碱性差, 其中的蛋白质易水解, PV A也易溶胀。因此在前处理时要特别注意湿热碱液处理, 不能采用强碱退浆。大豆蛋白纤维的前处理比较简单, 主要去除纤维制造加工中添加的上油剂、抗静电剂、润滑剂、色素等杂质, 主要经过精炼漂白工序即可获得纯净、渗透性好。有一定白度的半制品要求。再生大豆蛋白纤维呈现米黄色, 类似于柞蚕丝的色泽。由于大豆本身呈黄色, 而纤维中的有色成份及

形成原因尚未搞清, 采用常规的漂白方式很难达到理想的白度要求。漂白后的大豆蛋白纤维还呈现淡黄色泽, 需要时进行增白整理。资料表明, 采用传统的氧漂工艺漂白效果差, 一般采取氧漂-还原漂复合法, 大豆蛋白纤维白度较好。 大豆蛋白散纤维精练漂白生产试验工艺和结果如下: 1.工艺流程: 纤维准备→氧漂→水洗→还原漂→水洗→( 增白) →柔软处理→脱水→开松→烘干 2.精练漂白工艺: 氧漂: 双氧水( 30%) 10-35g/L 纯碱1-2g/L( 调pH值在10-10.5) 稳定剂( 泡化碱) 2-4g/L 精练剂1-2g/L 渗透齐1-2g/L 浴比1∶10左右 保温温度和时间90-95℃×60-90分钟 还原复漂: 还原剂2-6g/L 纯碱1-4g/L 精练剂l-2g/L 渗透剂l2g/L 浴比1∶10左右 温度和时间90℃×30-40分钟 3.增白由于大豆蛋白纤维中色素在漂白精练过程中难以净除, 前面已讨论了经过氧漂——还原漂后的大豆蛋白纤维还略带微黄色光,

实验7大豆分离蛋白的制备

综合实验7大豆分离蛋白的制备 1. 实验目的 蛋白质是人们日常生活中必需的重要营养物质,通常可以从动物的乳汁或天然植物(如花生、大豆等)中提取。大豆(黄豆)是目前植物中蛋白质含量最为丰富的一种,蛋白质含量高达40 %以上,大豆蛋白含有人体必需的8种氨基酸,还含有丰富的不饱和脂肪酸、钙、磷、铁、膳食纤维等,不含胆固醇,具有很高的营养价值。蛋白的提取方法有许多种,例如: 碱提酸沉、酶提酸沉、超声酸沉、酶解提取、膜分离法等。 本实验采用超声波辅助碱提酸沉法提取大豆蛋白,通过粉碎、正己烷低温浸提脱脂、纤维素酶酶解增溶等预处理方法,采用超声波辅助“碱提酸沉法”使蛋白质在等电点状态下析出。通过本实验,掌握超声波、酶解、离心分离、浸提、等电点析出等蛋白质分离手段,了解植物蛋白制备的常用技术。 2. 材料、仪器与设备 2.1实验材料 黄豆,1mol/LNaOH、10%HCl、正己烷、纤维素酶 2.2实验仪器 恒温水浴锅、粉碎机、高速离心机、超声波仪、pH计、烘箱、电子天平、250mL 三角瓶、平皿、大烧杯、玻棒、药匙 3. 实验内容与步骤 3.1实验流程 黄豆粉碎→正己烷低温浸提(脱脂)30min→离心分离→收集沉淀→烘干20min →纤维素酶酶解→离心分离→收集沉淀→碱溶(调pH11)→超声波处理20min→离心分离→收集上清→等电点酸沉析出(调pH4.5)→离心分离→收集沉淀→烘干30min称重→计算蛋白质粗提回收率 3.2实验步骤 (1)黄豆预处理 选择果粒饱满,色泽明亮的黄豆为原料,称取黄豆250g用小型粉碎机粉碎,破碎粉末用60目的不锈钢网筛过筛,去除夹杂物,备用。 (2)溶剂低温浸出法制取脱脂豆粕粉 取250mL三角瓶,加入粉碎后的豆粉20g,100mL正己烷,瓶口用平皿覆盖,恒温水浴60℃浸提30min使大豆中的油脂溶出,5000rpm离心15min后去上清液,将沉淀收集后放烘箱内50℃,20min烘干,得脱脂豆粕粉样品。 莁膇袇蚁蚄蒇蒈以下周四完成 (3)纤维素酶酶解辅助提高大豆蛋白溶出率

大豆分离蛋白的提取

大豆分离蛋白的提取 ——紫苏 摘要:本文综述述了大豆分离蛋白的碱提酸沉法、双极膜法、泡沫分离法的分离原理,并讨论了其生产中影响提取率的因素。 关键词:大豆分离蛋白碱提酸沉法双极膜法泡沫分离法 大豆蛋白含量较高而且营养丰富,含有8种人体必需氨基酸,且比例比较合理。目前大豆蛋白已成为一种重要的蛋白资源,特别是大豆分离蛋白含蛋白质90%以上,是一种优良的食品原料。 目前大豆分离蛋白的生产应用较多的是以下几种: 1. 碱提酸沉法 大豆分离蛋白的传统提取方法是碱提酸沉法,主要利用大豆蛋白在大豆蛋白在高pH时溶解度最大,在等电pH条件下溶解度最小的原理,使之凝聚沉淀。一般分3个步骤:弱碱萃取蛋白质、酸沉淀、喷雾干燥。如图[1] 影响等电沉淀的因素较多: ①原料——原料豆粕应是低温或闪蒸脱脂后的低变性豆粕。这种豆粕含杂质少,蛋白含量较高,蛋白变性程度低,适于大豆分离蛋白生产[2]。 ②水分——浸提时,加水量越多,蛋白质的提取率就越高;但是加水太多,酸沉时蛋白的损失量增高;加水太少,大豆蛋白的溶出率大大下降,还会增加后续各工序的难度。试验得出,浸提时脱脂豆粕与水的比例为1∶10~12最适合提取[3]。 ③pH——蛋白质的溶解度与浸提pH有很大的关系,pH太低的时候,蛋白组分解离; pH 太高,易发生“胱赖反应”,生成有毒物质。 ④温度——温度的高低对蛋白收率、纯度及色泽有显著影响。浸提温度过高,会使蛋白变性,而且粘度增加,分离困难,耗能提高[4]。经试验认为等电酸沉温度控制在40~45℃为宜[1]。 ⑤时间——一般来说浸提时间越长,蛋白的溶出率就越高。但一定的时间后,蛋白得率随浸提时间的延长而无显著的变化。生产中要综合考虑能源消耗、生产周期、工艺成本等各种因素来确定合理的时间[4]。 ⑥另外,当浆料粒度太细反而会使蛋白得率和浸提效果下降,同时增加了过滤分离的难度。加酸速度和搅拌速度控制不好容易出现虽到等电点,但蛋白质凝集下沉缓慢,上清液混浊[1]。 ⒉双极膜电解法 双极性膜是一种新型离子交换复合膜,它通常由阳离子交换层和阴离子交换层复合而成,中 间是亲水界面层,结构如图1所示[5]: 双极膜由3层组成:阴离子交换膜和阳离子交换膜以及阴阳离子交换膜中间的亲水层。在电流作用下,水分子在双极膜上电离为H+和OH-,离子在电势的驱动下,通过膜选择透过阴离子或阳离子,导致溶液的pH值降低,达到大豆蛋白质的等电点而使蛋白质沉淀。这种方法不需要加入酸或碱调整蛋白质溶液的pH值,避免分离得到的大豆蛋白质中混入盐离子,并且可保护大豆蛋白质的功能性。[3]

大豆分离蛋白项目建议书

大豆分离蛋白项目 建议书 规划设计/投资分析/实施方案

大豆分离蛋白项目建议书 我国大豆蛋白细分产品包括脱脂大豆蛋白粉、大豆浓缩蛋白和大豆分离蛋白等,其中大豆分离蛋白(SPI)是利用脱皮脱脂冷榨豆饼或低温脱溶豆粕为原料,经稀碱萃取、酸沉淀、离心分离、喷雾干燥等工序加工而成的食用大豆蛋白产品。国内外应用较为成熟的大豆分离蛋白生产工艺为碱提酸沉工艺。 该大豆分离蛋白项目计划总投资13835.50万元,其中:固定资产投资9633.41万元,占项目总投资的69.63%;流动资金4202.09万元,占项目总投资的30.37%。 达产年营业收入28400.00万元,总成本费用21925.29万元,税金及附加246.04万元,利润总额6474.71万元,利税总额7613.81万元,税后净利润4856.03万元,达产年纳税总额2757.78万元;达产年投资利润率46.80%,投资利税率55.03%,投资回报率35.10%,全部投资回收期4.35年,提供就业职位438个。 报告根据项目实际情况,提出项目组织、建设管理、竣工验收、经营管理等初步方案;结合项目特点提出合理的总体及分年度实施进度计划。 ......

大豆分离蛋白项目建议书目录 第一章申报单位及项目概况 一、项目申报单位概况 二、项目概况 第二章发展规划、产业政策和行业准入分析 一、发展规划分析 二、产业政策分析 三、行业准入分析 第三章资源开发及综合利用分析 一、资源开发方案。 二、资源利用方案 三、资源节约措施 第四章节能方案分析 一、用能标准和节能规范。 二、能耗状况和能耗指标分析 三、节能措施和节能效果分析 第五章建设用地、征地拆迁及移民安置分析 一、项目选址及用地方案

大豆分离蛋白工艺设计

大豆分离蛋白工艺 摘要:作为一种食品添加剂,大豆分离蛋白广泛应用于各种各样的食品体系中。大豆分离蛋白的成功应用在于它具有多种样的功能性质,功能性质是大豆分离蛋白最为重要的理化性质,如凝胶性、乳化性、起护色注、粘度等。本文主要大豆分蛋白的一种制取工艺。 关键字:大豆分离蛋白、分离工艺、影响因素、设备 前言 大豆分离蛋白是重要的植物蛋白产品, 除了营养价值外,它还具有许多重要的功能性质, 这些功能性质对于大豆蛋白在食品中的应用具有重要的价值。大豆蛋白的功能性质可归为三类一是蛋白质的水合性质( 取决于蛋白质-水相互作用),二是与蛋白质-蛋白质相互作用有关的性质,三是表面性质[1]。水合性质包括:水吸收及保留能力、湿润性、肿胀性、粘着性、分散性、溶解度和粘度。而蛋白分子间的相互作用在大豆蛋白发生沉淀作用、凝胶作用和形成各种其它结构(例如面筋) 时才有实际的意义。表面性质主要是指乳化性能和起泡性能[2]。 1.功能特性 1.1乳化性 乳化性是指将油和水混合在一起形成乳状液的性能。大豆分离蛋白是表面活性剂, 它既能降低水和油的表面力,又能降低水和空气的表面力。易于形成稳定的乳状液。乳化的油滴被聚集在油滴表面的蛋白质所稳定,形成一种保护层。这个保护层可以防止油滴聚集和乳化状态的破坏, 促使乳化性能稳定。在烤制食品、冷冻食品及汤类食品的制作中, 加入大豆分离蛋白作乳化剂可使制品状态稳定。

1.2水合性 大豆分离蛋白沿着它的肽链骨架,含有很多极性基,所以具有吸水性、保水性和膨胀性。 1.2. 1吸水性 一般是指蛋白质对水分的吸附能力,它与即水份活度、pH、深度、蛋白质的颗粒大小、颗粒结构、颗粒表面活性等都是密切相关的。随水份活度的增强,其吸水性发生快——慢——快的变化。 1.2. 2保水性 除了对水的吸附作用外,大豆蛋白质在加工时还有保持水份的能力,其保水性与粘度、pH、电离强度和温度有关。盐类能增强蛋白质吸水性却削弱分离蛋白的保水性。最高水分保持能力在pH= 7,温度35~55℃时,为14g水/g蛋白质。 1.2. 3膨胀性 膨胀性即蛋白质的扩作用,是指蛋白质吸收水分后会膨胀起来。它受温度、pH 和盐类的影响显著,加热处理增加大豆蛋白的膨胀性,80℃时为最好,70~100℃之间膨胀基本接近[3]。 1.3吸油性 1.3. 1促进脂肪吸收作用 分离蛋白吸收脂肪的作用是另一种形式的乳化作用。分离蛋白加入肉制品中,能形成乳状液和凝胶基质,防止脂肪向表面移动,因而起着促进脂肪吸收或脂肪结合的作用,可以减少肉制品加工过程中脂肪和汁液的损失,有助于维持外形的稳定。吸油性随蛋白质含量增加而增加,随pH增大而减少。 1.3. 2控制脂肪吸收作用

大豆蛋白污水处理工艺 (1)

大豆蛋白生产废水特点,提出了采用提取蛋白预处理工艺+SRIC+A/O法治理方案,并进行了效益分析。分析结果表明该处理方法能够保证废水稳定达标排放,在削减大量污染物的同时,还可创造出极大的经济效益。具有较明显的经济效益、环境效益和社会效益。 大豆分离蛋白是以低温脱溶豆粕为原料生产的一种全价蛋白类食品添加剂,其营养丰富,不含胆固醇,是植物蛋白中为数不多的可替代动物蛋白的品种之一。大豆分离蛋白的传统提取方法是碱提酸沉法。即将脱脂豆粕与蒸馏水按一定比例混合,用NaOH调整混合物的pH 值为7~9,充分搅拌以浸提出碱溶大豆蛋白,而后用稀盐酸调整上清液的pH值为4.5~4.8,沉淀出蛋白质,离心分离出废水,沉淀再次溶于NaOH溶液中,喷雾或冷冻干燥即得大豆分离蛋白。 该生产过程中的废水主要来源于分离工段。废水中含有部分残留的蛋白质、多糖,导致有机物含量较高。同时,大豆蛋白废水的BOD5/CODCr比值在0.4左右,易于生物降解,这类废水含有足够的N、P等营养物可供微生物生长和繁殖。废水中主要污染物PH值为5~8;COD为19000~20000mg/L;BOD为7600~8000mg/L;悬浮物为1000mg/L左右。总之,该污水属高浓度有机废水,且可生化性强,故采用提取蛋白预处理工艺+SRIC+A/O处理工艺。 1.工艺过程 1.1工艺流程 详见废水处理工艺流程示意如图1: 污水→集水井+蛋白提取设备+调节池→集水池→SRIC厌氧反应器→A/O池→二沉池→达标排放 1.2工艺过程简述 预处理主要包括格栅及、蛋白提取设备、中和调节池。格栅:污水中含有大量较大颗粒的悬浮物和漂流物,格栅的作用就是截留并去除上述污物,对水泵及后续处理单元起保护作用。蛋白提取设备:主要提取废水中的蛋白,回收利用,实现废水中废物回收利用。中和调节池:中和调节池可以调节污水的水质、水量,以及进行PH值的调节,以减轻对后序工艺的冲击。中和调节池为酸碱中和提供充分的反应时间,使废水水质满足后序厌氧、好氧生物处理的条件。

大豆蛋白提取技术研究进展

大豆蛋白提取技术研究进展 系别:食品工程系 专业:食品科学与工程 班级:食科13-2班 学号:242013002003 姓名:陈亚林

摘要 大豆蛋白产品分为三类,即大豆蛋白粉、大豆浓缩蛋白和大豆分离蛋白。大豆分离蛋白含有人体所必需的八种氨基酸,不含胆固醇,具有许多优良的食品性能,添加在食品中可以改善食品的品质和性能,提高食品营养价值。是一种重要的植物蛋白,在食品工业中得到了广泛的应用,是近年来的研究重点。其中,大豆浓缩蛋白的提取方法有稀酸浸提法、酒精浸提法和湿热浸提法。大豆分离蛋白有碱溶酸沉法、离子交换法、超滤膜分离法等。本文以研究方向和工艺改进方面为着力点解释大豆浓缩蛋白和分离蛋白这两种主要的提取方法的发展脉络。 关键词 大豆浓缩蛋白;大豆分离蛋白;稀酸浸提法;酒精浸提法;碱溶酸沉法;离子交换法;超过滤法;湿热浸提法 大豆分离蛋白(soy protein isolate,SPI)是把脱皮大豆中的除蛋白质以外的可能性物质和纤维素、半纤维素物质都除掉,得到的蛋白质含量不低于 90%的制品,又称等电点蛋白。与大豆浓缩蛋白相比,生产大豆分离蛋白不仅要从低温脱溶豆粕中除去低分子可溶性糖等成分,而且还要去除不溶性纤维素、半纤维素等成分。其生产方法主要有碱溶酸沉法、超过滤法和离子交换法。 一、碱溶酸沉法 1.提取原理低温豆粕中的蛋白质大部分能溶于稀碱溶液。将低温豆粕用稀碱溶液浸提后,用离心分离法除去原料中的不溶性物质,然后用酸把浸出物的PH调至4.5左右,蛋白质由于处于等电点状态而凝聚沉淀,经分离可得到蛋白质沉淀,再经洗涤、中和、干燥得到大豆分离蛋白。 2.提取工艺豆粕的质量直接影响大豆分离蛋白的功能特性和提取率,只有高质量的豆粕才能获得高质量和高得率的大豆分离。要求原料无霉变,豆皮含量低,残留溶剂少,蛋白质含量高(45%以上),脂肪含量低,NSI高(不低于80%)。豆粕粉碎后过40-60目筛。 首先利用弱碱溶液浸泡低温豆粕,使可溶性蛋白质、糖类等溶解出来,利用离心机除去溶液中不溶性的纤维素和残渣。在已溶解的蛋白质溶液中加入适量的酸液,调节溶液的PH达到4.5,使大部分蛋白质从溶液中沉析出来,这时只有大约10%的少量蛋白质人仍留在溶液中,这部分溶液称为乳清。乳清中除含有少量蛋白质外,还含有可溶性糖、灰分和其他微量成分,然后将用酸沉析出的蛋白质凝聚体进行搅动、水洗、送入中和罐,加碱中和溶解成溶液状态。将蛋白质溶液调节到合适浓度,由高压泵送入加热器经闪蒸器快速灭菌后,再送入喷雾干燥塔脱水,制成大豆分离蛋白。

大豆蛋白废水处理工艺

大豆蛋白废水处理工艺 生产回用外运处置 工艺流程图

工艺说明: 大豆蛋白废水属高浓度有机废水,主要污染因子有COD、BOD、SS、NH3-N、植物油、PH等,均为一般性有机污染,且多以非溶解态存在(主要包含于SS、植物油滴之中),处理难度中等。处理工艺采用物化结合生化的综合强化处理工艺,并辅以过滤、化学强制氧化等方法,确保废水达到回用要求。 针对污染物主要集中于SS、植物油滴之中废水水质特性,工艺中根据颗粒直径、比重差异等物理性质采用了拦截、沉淀、隔离和浮选的物理分离手段。 针对部分溶解态有机污染,工艺采用了常规的生化处理流程,并且针对物理分离手段无法除尽的大分子有机物采用了水解、酸化的缺(厌)氧生物处理工艺。 对少量难生物降解物质,工艺采用了多介质过滤吸附系统和化学氧化系统。 应废水的绝对污染值极高,而达到回用要求的标准又相对较高,故整个处理流程比较长,重要处理环节和构筑物数量比较多,但各个工艺的选择比较科学。在充分考虑水质特性、处理难度和处理深度的前提下,精简上述工艺可能带来技术风险。 工艺设计: ◇水质 ◇水量 处理能力:12m3/h(288m3/d)。 ◇机械细格栅 数量:1台 栅隙:3mm 栅宽:600mm 过水深度:500~800mm 排渣高度:600mm 功率:0.75kW 格栅井平面尺寸:3000×800mm,深度根据进水管埋深待定

◇废水收集池 数量:1座 平面尺寸:3000×3000mm 有效水深:2000mm 配套提升泵:2台 流量:20m3/h 扬程:15m ◇中和池一 数量:1座 平面尺寸:2000×2000mm 有效水深:4000mm 配套搅拌机:1台 排量:300m3/h 叶轮直径:600mm 功率:1.5kW 配套酸(稀硫酸)投加装置:1套药箱:Φ800×1000mm 搅拌器叶轮直径:250mm 搅拌器功率:0.40kW 计量泵流量:50L/h 计量泵压力:0.7MPa ◇隔油沉淀池 数量:1座 平面尺寸:3000×6000mm 有效水深:3000mm 配套污泥气提装置:2台 流量:6m3/h 扬程:1m

大豆分离蛋白项目规划方案

大豆分离蛋白项目规划方案 规划设计/投资分析/产业运营

摘要 该大豆分离蛋白项目计划总投资9720.39万元,其中:固定资产投资6761.83万元,占项目总投资的69.56%;流动资金2958.56万元,占项目总投资的30.44%。 达产年营业收入20783.00万元,总成本费用15797.80万元,税金及附加193.90万元,利润总额4985.20万元,利税总额5866.71万元,税后净利润3738.90万元,达产年纳税总额2127.81万元;达产年投资利润率51.29%,投资利税率60.35%,投资回报率38.46%,全部投资回收期4.10年,提供就业职位323个。 报告根据项目的经营特点,对项目进行定量的财务分析,测算项目投产期、达产年营业收入和综合总成本费用,计算项目财务效益指标,结合融资方案进行偿债能力分析,并开展项目不确定性分析等。 我国大豆蛋白细分产品包括脱脂大豆蛋白粉、大豆浓缩蛋白和大豆分离蛋白等,其中大豆分离蛋白(SPI)是利用脱皮脱脂冷榨豆饼或低温脱溶豆粕为原料,经稀碱萃取、酸沉淀、离心分离、喷雾干燥等工序加工而成的食用大豆蛋白产品。国内外应用较为成熟的大豆分离蛋白生产工艺为碱提酸沉工艺。 报告主要内容:基本情况、建设背景及必要性、产业研究、项目规划分析、选址方案、土建工程方案、项目工艺技术、环境保护可行性、企业

卫生、项目风险情况、节能说明、进度方案、投资方案、项目经济收益分析、项目总结、建议等。

大豆分离蛋白项目规划方案目录 第一章基本情况 第二章建设背景及必要性 第三章项目规划分析 第四章选址方案 第五章土建工程方案 第六章项目工艺技术 第七章环境保护可行性 第八章企业卫生 第九章项目风险情况 第十章节能说明 第十一章进度方案 第十二章投资方案 第十三章项目经济收益分析 第十四章项目招投标方案 第十五章项目总结、建议

014大豆分离蛋白的组成与功能性质[1]

2000年12月第15卷第6期 中国粮油学报 Journal of the Chinese Cereals and Oils Ass ociation Vol.15,No.6 Dec.2000大豆分离蛋白的组成与功能性质 谢 良 王 璋 蔡宝玉 (无锡轻工大学食品学院,无锡 214036) 摘 要 本文对国产和进口的两种大豆分离蛋白进行了分析,比较了它们的化学组成与功能性质。与进口的大豆分离蛋白相比,国产的大豆分离蛋白灰分较高,乳化能力较高,热变性时热焓较小,分子量较小;两种蛋白质水合能力和凝胶性质相近;国产大豆分离蛋白的溶解性好于进口产品,但分散性却低于进口产品;研究结果表明:国产大豆蛋白在加工过程中解聚和降解较多,且粉末未经工艺处理。 关键词 大豆分离蛋白 成分 功能性质 0 前言 大豆分离蛋白是重要的植物蛋白产品,除了营养价值外,它还具有许多重要的功能性质,这些功能性质对于大豆蛋白在食品中的应用具有重要的价值〔1〕。 大豆蛋白的功能性质可归为三类〔1〕,一是蛋白质的水合性质(取决于蛋白质-水相互作用),二是与蛋白质-蛋白质相互作用有关的性质,三是表面性质。水合性质包括:水吸收及保留能力、湿润性、肿胀性、粘着性、分散性、溶解度和粘度。而蛋白分子间的相互作用在大豆蛋白发生沉淀作用、凝胶作用和形成各种其它结构(例如面筋)时才有实际的意义。表面性质主要是指乳化性能和起泡性能。 国外对于大豆分离蛋白的研究可追溯到本世纪30年代,近年来在大豆分离蛋白的结构与功能性质的关系方面做了很多工作,找到了一些规律〔2~5〕。然而,迄今为止,大豆分离蛋白的功能性质的物理化学基础还没有完全搞清楚,至于将大豆分离蛋白添加到某种食品中去之后它们所表现出来的功能性质,由于涉及到大豆分离蛋白产品中的各种蛋白质组分与食品组分之间的相互作用,情况就更复杂了。 影响大豆分离蛋白功能性质的因素非常复杂〔5〕,首先是大豆蛋白产品中蛋白质的含量,各个蛋白质组分的聚集和解聚状态,蛋白质的变性程度和蛋白产品中非蛋白质部分的组成。除了上述这些内 收稿日期:1999-07-08 谢良:男,1964年生,博士,副教授,食品科学与工程专业在因素外,许多外部因素也影响着大豆分离蛋白产品的功能性质,例如,pH、离子强度和温度。因此不同的大豆分离蛋白生产工艺会影响大豆蛋白产品中蛋白质的组成与分子结构,从而影响到产品的功能性质。 本文分析和测定了市售国产的大豆分离蛋白和从美国进口的一种型号的大豆分离蛋白产品的成份和功能性质。 1 试验材料与方法 1.1 材料 国产大豆分离蛋白:市售,食品级 进口大豆分离蛋白:美国,火腿生产用的大豆分离蛋白 1.2 方法 1.2.1 水分测定〔6〕:真空干燥法(680mm汞柱 70℃) 1.2.2 灰分测定〔7〕:高温炉600℃灰化 1.2.3 钾、钠和钙含量(ppm或μg/g)测定〔8〕:原子吸收分光光度法 1.2.4 磷酸盐含量(以PO43-计,mg/g)测定〔9〕:钼蓝比色法 1.2.5 蛋白质含量(N×6.25)测定〔10〕:凯氏定氮法1.2.6 脂肪含量测定〔11〕:索氏抽提法 1.2.7 纤维含量测定〔12〕:酸性洗涤剂法 1.2.8 碳水化合物含量测定〔13〕:费林氏容量法(以转化糖计)

国内大豆分离蛋白生产的现状

国内大豆分离蛋白生产的现状、差距及建议 1、现状 大豆分离蛋白(SoyProteinIsolate, 简称SPI) 是以大豆为原料, 采用先进的加工技术制取的一种蛋白质含量高达90% 以上的功能性食品的添加剂由于它具有良好的溶解性,乳化性、起泡性、持水性和粘弹性等特性, 又兼有蛋白质含量高的 营养性,所以被广泛地应用于肉制品(例如西式火腿、火腿肠午餐肉,三文治、灌肠、香肠及肉馅等), 冷饮制品(例如冰淇淋、 奶油、雪糕、布丁等), 烘焙食品(例如面包、糕点等)。目前世界大豆分离蛋白的年产量约40~50 万t,增长势头十分强劲。 早在50 年代初, 美国已研究开发出大豆分离蛋白, 但是由于技术难度大, 直到70 年代其生产技术才趋于完善和成熟。目前,国际上居垄断地位的大豆分离蛋白生产厂商主要有美国,日本、巴西生产的大豆分离蛋白在国际市场上也占有一定 份额。 我国80 年代初开始生产大豆分离蛋白,迄今为止, 已建、自建、合资和独资的大豆分离蛋白生产厂已有10 多家, 年生产能力约 3 万t,主要在黑龙江、吉林,在哈尔滨,开封,山东、河南等地已建和正在筹建的生产厂。我国大豆分离蛋白的 生产与发展是和食品工业,尤其是肉食品(例如西式火腿)等的迅速发展,需求量大增密切相关。由于国内生产的大豆分离蛋白 的质量与国外相比有较大差距,所以每年大约进口大豆分离蛋白达 2 万t 左右,给国内大豆分离蛋白市场造成严重冲击,给企业 带来很大压力。当前,如何提高大豆分离蛋白的功能特性, 使之达到国际上同类产品的质量指标要求,乃是急待解决的任务。 2 、大豆分离蛋白的功能特性 大豆籽粒中约含蛋白质38%~42%, 碳水化合物(包括粗纤维)25%~27%, 脂肪16%~20%, 水分10%~12%, 灰分3%~5% 。可将大豆籽粒加工成大豆蛋白粉(含蛋白质50%), 浓缩蛋白( 含蛋白质70%), 分离蛋白(含蛋白质90%) 以及组织蛋白,纤维蛋白等产品。大豆蛋白经修饰!改性制取的高纯度大豆分离蛋白具有良好的溶解性、乳化性、起泡性、持水性和粘弹性等功能性乃是大豆分离蛋白非常重要的性质, 而大豆蛋白的组成和结构是决定大豆分离蛋白功能特性的重要因素。 大豆蛋白质是由一系列氨基酸通过肽键结合而成的高分子有机聚合物,它主要由清蛋白和球蛋白组成,其中清蛋白约占5%, 球蛋白约占90% 。由于大豆球蛋白是椭园球形, 故此命名。球蛋白溶于水或碱溶液,加酸调pH 值的等电点4、5, 则沉淀析出,故又称酸沉蛋白, 而清蛋白无此特性, 故又称为非酸沉蛋白。球蛋白中主要为11S 和7S 蛋白,约占总蛋白的70%, 其余为2S 和15S 等,11S 球蛋白的分子量 为17~35 万, 为疏水性聚合体。7S 球蛋白的分子量为14~17 万,为疏水性聚合体。7S 和11S 球蛋白对大豆蛋白的功能特性起着十分重要 的主导作用。国外对7S 和11S 球蛋白的分子结构!功能特性,蛋白质修饰技术以及高品质多功能系列大豆分离蛋白产品的生产工艺进行了 大量深入细致的研究,并取得了重大成果,属于绝密高科技。球蛋白和清蛋白均属于贮藏蛋白,它与大豆加工性能关系密切,而大豆生物活性蛋白,例如胰蛋白酶抑制剂、血球凝集素,脂肪氧化酶等,在总蛋白中所占比例虽然很少,但对大豆制品的质量却关系重大。 3 、大豆分离蛋白的生产工艺

大豆蛋白分离系统工艺流程及技术

大豆蛋白分离系统工艺流程 及技术 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

大豆蛋白分离系统工艺流程及技术 大豆分离蛋白具有蛋白含量高,几乎不含胆固醇等特点,具有良好的乳化性、凝胶性、溶解性、起泡性、吸油性和持水性等性能,是其它动物蛋白所不能替代的。大豆分离蛋白是一种与人体的必需氨基酸组成比例最接近、更易被人体吸收的天然植物蛋白源,属于全价优质蛋白。 在生产大豆分离蛋白工艺方面,酸沉法工艺应用是最完善的,其主要工艺是粉碎、萃取、分离渣乳、酸沉、凝乳分离、中和老化、杀菌干燥,检验包装等工序。整个进料、分离、出料均是自动、连续、封闭的状态下完成。 一、大豆蛋白质分离纯化工艺 用于生产食用蛋白食品的大豆经过预处理后,浸出油料,提取脱脂豆粕和豆粉,然后在碱性溶液中将大豆蛋白质从豆粉中溶解出来,最后加酸使蛋白质凝集沉淀分离出来。 其中渣液分离是最关键的生产工序,目前普遍采用高转速卧螺离心机,来提高蛋白回收率,萃取后的溶液经卧螺离心机后可直接分离出豆渣和豆浆,根据工序条件又分为一次分离和二次分离。 凝乳分离的目的是将凝乳混合料液中的乳清、碳水化合物、盐类等可溶性部分分离去除,来提纯蛋白的质量,最后再进入水洗工序。 二、其他大豆蛋白生产工艺: 1、传统湿热浸提工艺是由于回收不了可溶于水的大豆蛋白,使得蛋白质得率极低,目前已基本被淘汰。 2、乙醇浸提工艺是醇法制备的大豆浓缩蛋白是一种高蛋白的大豆制品,其氨基酸组成合理,产品的风味清淡、色泽较浅,蛋白损失较小。然而由于醇溶液的变性、沉淀作用,使得产品中的蛋白质发生变性,功能差,使用范围受到限制。由于生产中采用的回液比大,需蒸馏回收乙醇的量较大,因此生产中能源消耗也较高。 3、稀盐酸浸提工艺是产出量虽比前1、2种工艺较大,但工艺复杂,投资较大,工时较多,同时在生产过程中需耗用大量的酸和碱溶液,排出的废水较难处理 三、蛋白质分离纯化工艺优点: 1、产品得率高,百分百回收。 2、不加任何添加剂,绿色环保。 3、不需加热即可浓缩、工艺简单、工时短,能耗低。 4、产品质量好、无变色,变味。 5、可用同一条线生产浓缩蛋白和分离蛋白,不需增加设备。

大豆分离蛋白的提取实验讲义

实验一大豆分离蛋白的提取 1.实验目的 学习掌握大豆分离蛋白的碱提酸沉法。 2.分离原理: 大豆分离蛋白的制取方法,按工艺特点主要有三种:第一种是碱提酸沉法;第二种是离子交换法;第三种是超滤法。 碱提酸沉法生产大豆分离蛋白的原理,是将脱脂大豆内的蛋白质溶解在稀碱溶液中,分离除去豆粕中的不溶物,然后用酸将大豆蛋白质提取液的pH值调至大豆蛋白的等电点,使大豆蛋白质沉淀析出,再经分离清洗,回调pH,得到粉状大豆分离蛋白。 3. 试剂材料:豆粕,5%NaOH,2N HCl(17ml浓盐酸,缓慢用水稀释至100ml)。 4. 提取方法: 将2g大豆磨碎,得到可通过80目筛的豆粕。用重量10倍于豆粕的蒸馏水与脱脂豆粉混合,用5%NaOH 水溶液将豆粉悬浮液的pH调节到8.5,室温或40℃搅拌1.5h。然后将提取液离心除渣4000rpm×15min,得上清液。用2N的HCl将上清液的pH值调到4.5,同时轻度搅拌均匀,可见开始出现沉淀,室温静置30min,然后以4000rpm×15min离心,用蒸馏水清洗沉淀2次,将蛋白沉淀物溶于20 ml水中,并调节pH到7.0,考马斯亮蓝结合法测定蛋白质浓度,计算蛋白提取率。 5. 产品测定指标: (1)可溶性蛋白质的浓度:采用考马斯亮蓝法。 (2)蛋白质的提取率计算公式: 可溶蛋白质的浓度(ug/ml) ×稀释度×体积(ml) 提取率(%)=×100% 原料质量(g) ×106 (附)考马斯亮蓝结合法测定蛋白质浓度 一、实验目的 掌握考马斯亮蓝结合法测定蛋白质浓度的原理和方法,掌握离心机和移液器的正确使用方法。 二、实验原理 考马斯亮蓝G-250是一种甲基取代的三苯基甲烷,在465nm处有最大吸收值。考马斯亮蓝G-250能与蛋白质通过范得华相互作用形成蛋白质-考马斯亮蓝复合物蓝色溶液,引起该染料的最大吸收λmax的位置发生转移,在595nm处有最大吸收值。在一定范围内(蛋白质浓度范围为0~1000μg/mL),蛋白质-考马斯亮蓝复合物溶液颜色的深浅与蛋白质的浓度成正比。 该法是1976年Bradford建立,试剂配制简单,操作简便快捷,反应非常灵敏,灵敏度比Lowry法还 高4倍,可测定微克级蛋白质含量,是一种常用的微量蛋白质快速测定方法。 三、实验试剂 1.标准蛋白液:准确称取100mg牛血清白蛋白,用蒸馏水溶解并定容至1000ml,制成100μg /ml 的原液。 2.考马斯亮蓝G250试剂:准确称取100mg考马斯亮蓝G250,溶于50ml 90%~95%乙醇中,再加入85%磷酸(m/v)100ml,用蒸馏水定容至1000ml。常温下可放置1个月。 四、操作步骤 1.标准曲线的制备 取7支具塞试管,按下表进行编号并加入试剂。以第1管为空白,于波长595nm处比色,读取吸光度,以吸光度为纵坐标,各标准液浓度(μg/mL)作为横坐标作图得标准曲线。

大豆分离蛋白在肉制品中的应用

大豆分离蛋白在肉制品中的应用 1、大豆蛋白在肉制品中重要作用 由于大豆蛋白具有蛋白质的功能特性,因此在食品加工中得到广泛的应用。近年来,随着社会生产力的发展,人民的生活水平得到了提高,肉制品的消费量也达到了前所未有的高度,各种各样的肉制品也随着消费者的需要而走向了市场。大豆蛋白以其重要的功能特性在肉制品加工中所起的重要作用也越来越受到肉制品加工业的关注,在肉制品加工中主要利用大豆蛋白以下方面的特性。 1 )强化营养的高性价比蛋白源 大豆蛋白以其低廉的价格、良好的蛋白质量在肉制品中得到了广泛的应用,在灌肠、火腿等产品中添加大豆蛋白,不仅能提高蛋白质的含量,而且能改善蛋白质的配比,使蛋白质的营养更全面、更合理。 2)在肉制品中的调味作用 大豆蛋白含有少量的脂肪酸和碳水化合物,在加热之后会产生独特的豆香气,而肉制品;中有时原料肉(如鱼肉)或辅料所具有的以及由于加工工艺(如杀菌)所产生的一些不愉快气味,可能会引起消费者的反感,大豆蛋白的独特香气对以上气味产生掩蔽作用,因而大豆蛋白对肉制品具有一定的调味作用。 3)大豆蛋白能改善肉制品的结构 大豆蛋白有良好的凝胶特性和粘结特性,在肉制品加工中利用这一特性加入大豆蛋白后可有效的改善产品的结构、增强产品的弹性、硬度,使产品的结构致密、口感更好,肉感更强。 4 )利用大豆蛋白的乳化性,解决肉制品的出水、出油问题 出水、出油是肉制品加工生产、存放过程中最常出现的问题之一,利用大豆蛋白同时具有亲水基团和亲油基团的特性,对水和油脂具有良好的亲和能力,能吸附水和油脂形成较为稳定网络结构,从而使肉制品中的水和油脂不游离出来,在加工和存放的过程中不发生出水、出油现象。 大豆分离蛋白在肉制品的应用已相当广泛,虽我国分离蛋白生产能力发展很快,但生产技术仍无明显提高,产品质量停滞不前,尚未形成多品种、多功能、系列化,致使大豆蛋白的高营养、高附加值的产品特性没有充分体现出来,市场价格一直处于低迷状态,而且国内的分离蛋白品种单一,功能性区别不大,产品质量不能满足客户的要求。国外大豆分离蛋白产品可生产出数百种,广泛应用于各个工业领域,国外产品由于品种多、质量好,虽然价格高出 国产品很多,但仍占国内约l/3市场。 国外大豆分离蛋白生产工艺、技术发展很快,由萃取方法、到改性方法,已形成多系列的配方技术。按照产品的应用领域、产品性能不同,其萃取方式、改性方法均不同。由此生产出的产品广泛适于肉类、乳品类、轻化工类等领域的不同需求,真正体现大豆蛋白的高营 养、高附加值特性。 1、大豆蛋白在肉制品中的重要作用:强化营养的高性价比蛋白源;在肉制品中的调味作用;大豆蛋白能改善肉制品的结构;利用大豆蛋白的乳化性,解决肉制品的出水、出油问题。 2、大豆分离蛋白在肉制品中应用的一些性能指标 1)保水性

植物蛋白加工与工艺学

1.何谓氨基酸?必需氨基酸有那几种? 2.氨基酸熔点非常高的原因是什么? 3.那三种氨基酸在紫外区有吸收?为什么? 4.何谓氨基酸的等电点?已知Glu的pK值分别为2.19、4.25、9.67,推导并计算pI值? 5.氨基酸为何具有缓冲作用? 6.酸水解蛋白质有那些特点? 7.什么是蛋白酶和肽酶?酶水解蛋白质有那些特点? 8.何谓分配定律? 9.氨基酸有那些重要的呈色反应? 10.氨基酸在食品中有那几方面的应用? 11.肽键学说正确性依据是什么?何谓肽? 12.何谓N-末端和C-末端?什么是氨基酸残基? 13.一级、二级、三级结构的定义是什么? 14.何谓超二级结构,结构域? 15.构成蛋白质种类众多的原因是什么? 16.何谓构型和构象? 17.蛋白质分子中有那些重要的次级键?它们是怎样形成的? 18.蛋白质立体化学结构所允许的基本原则是什么? 19.α—螺旋稳定的原因是什么? 20.影响形成α—螺旋的因素有那些?哪两种氨基酸是破坏者? 21.球状蛋白质分子的特点? 22.何谓超速离心沉降速度法和超速离心沉降平衡法? 23.何谓沉降系数?一个漂移单位是多少? 24.什么是蛋白质的等电点?等电点时蛋白质的那些物理特性降为最低? 25.何谓蛋白质的沉淀作用?有那几种? 26.蛋白质胶体溶液稳定的因素有那些? 27.何谓蛋白质的变性作用?有那些变性因素? 28.什么是盐析和盐溶作用? 29.蛋白质形成凝胶的原因是什么?溶胶和凝胶有区别? 30.何谓蛋白质的凝固作用? 31.蛋白质在食品加工中有那些功能特性? 32.加热引起蛋白质营养价值降低的原因有那些? 33.何谓失效氨基酸?蛋白质中有那两种氨基酸容易被破坏? 34何谓蛋白质改性?主要方法有? 35.化学改性及酶法改性的限制因素?

相关主题
文本预览
相关文档 最新文档