当前位置:文档之家› 1-7线面垂直的判定与证明

1-7线面垂直的判定与证明

1-7线面垂直的判定与证明
1-7线面垂直的判定与证明

专题7 线面垂直的判定与证明

秒杀秘籍:第一讲 在被垂直平面找垂直(鳖臑法则)

定理:若一条直线l 垂直于一个平面,如果在被垂直的平面内找到相互垂直的两条线1l ⊥2l (1l 与l 相交),则与l 异面的直线2l 垂直于l 和1l 构成的平面.鳖臑是最典型的例子.

当出现重垂线P A 时,就需要在水平面ACB 内找到两条垂直相交的直线BC AC ⊥,由于AC 与重垂线P A 相交,故能得到PAC BC 面⊥,同理,P AC 作为被垂直的平面,在平面内找到PC AD ⊥,BC 与PC 相交,故可以得到PBC AD 面⊥,PBC 作为被垂直的平面,需要在这个面内找到垂直的两条直线,当PB DE ⊥时(或PB AE ⊥),能得到ADE PB 面⊥. 具体书写格式:

PAC BC A AC PA AC BC CB PA ACB BC ACB PA 面面面⊥??????????=⊥⊥?????⊥ ,同理PBC AD C

BC PC PC AD BC AD PAC AD PAC BC 面面面⊥??????

?

?

??=⊥⊥????

?⊥

()

()ADE PB A AD AE D AD DE PB AE PB DE PB

AD PBC PB PBC AD 面或或面面⊥????

??

????

==⊥⊥⊥??

??

?⊥

【例1】已知ABC △中?=∠90ACB ,⊥SA 面ABC ,SC AD ⊥,求证:⊥AD 面SBC . 【例2】已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,E 为BC 的中点. (1)求证:DE ⊥平面PAE ;

(2)求直线DP 与平面PAE 所成的角.

【小结】按照推导式写的证明步骤比传统方式更简洁明了.

【例3】如图,在四棱锥ABCD P -中,平面⊥PAD 平面ABCD ,AD AB =,?=∠60BAD ,E ,F 分别是AP ,

AD 的中点.求证:

(1)直线EF ∥平面PCD ;

(2)平面

BEF ⊥平面PAD . 【例4】如图,已知AB ⊥平面

BCE ,CD ∥AB ,△BCE 是正三角形,AB =BC =2CD .

(1)在线段BE 上是否存在一点F ,使CF ∥平面ADE ? (2)求证:平面ADE ⊥平面ABE .

秒杀秘籍:第二讲 等腰三角形三线合一构造法

在没有特殊的重垂线和水平面,证一些线面垂直则需要一些特殊的几何性质,由有着共底边的两个等腰三角形构成的立体图形,则两个顶点的连线一定垂直于底边.

【例5】如图,已知空间四边形ABCD 中,AC BC =,BD AD =,E 是AB 的中点. 求证:(1)⊥AB 平面CDE ;

(2)平面⊥CDE 平面ABC .

【例6】如图,在四棱锥ABCD P -中,底面ABCD 是?=∠60DAB 且边长为a 的菱形,侧面P AD 是等边三角形,且平面P AD 垂直于底面ABCD .

(1)若G 为AD 的中点,求证:⊥BG 平面P AD ; (2)求证:PB AD ⊥.

PA

BC PAD BC D PD AD BC AD CD BD AC AB BC PD CD BD PC PB ⊥?⊥????

?

?

?

??

?

??=⊥????==⊥????

==面

1.(2018?江苏)在平行六面体1111ABCD A B C D -中,1AA AB =,111AB B C ⊥.求证:平面11ABB A ⊥平面1A BC .

2.(2018?新课标Ⅲ)如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.求证:平面AMD ⊥平面BMC .

3.(2018?北京)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA PD ⊥,

PA PD =,E ,F 分别为AD ,PB 的中点.

(1)求证:PE BC ⊥;

(2)求证:平面PAB ⊥平面PCD .

4.(2018?新课标Ⅰ)如图,在平行四边形ABCM 中,3AB AC ==,90ACM ∠=?,以AC 为折痕将ACM ?折起,使点M 到达点D 的位置,且AB DA ⊥. (1)求证:平面ACD ⊥平面ABC ;

(2)Q 为线段AD 上一点,P 为线段BC 上一点,

且2

3

BP DQ DA ==,求三棱锥Q ABP -的体积.

5.(2017?新课标Ⅰ)如图,在四棱锥P ABCD -中,//AB CD ,且90BAP CDP ∠=∠=?. (1)求证:平面PAB ⊥平面PAD ;

(2)若PA PD AB DC ===,90APD ∠=?,且四棱锥P ABCD -的体积为8

3

,求该四棱锥的侧面积.

6.(2017?山东)由四棱柱1111ABCD A B C D -截去三棱锥111C B CD -后得到的

几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,1A E ⊥平面ABCD ,设M 是OD 的中点,求证:平面1A EM ⊥平面11B CD .

7.(2016?江苏)如图,在直三棱柱111ABC A B C -中,D ,E 分别为AB ,BC 的中点,点F 在侧棱1B B 上,且11B D A F ⊥,1111AC A B ⊥.求证:平面1B DE ⊥平面11A C F .

8.(2016?四川)如图,在四棱锥P ABCD -中,PA CD ⊥,//AD BC ,90ADC PAB ∠=∠=?,1

2

BC CD AD ==

. 求证:平面PAB ⊥平面PBD .

9.(2015?新课标Ⅰ)如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD . (1)求证:平面AEC ⊥平面BED ;

(2)若120ABC ∠=?,AE EC ⊥,三棱锥E ACD -的体积为6

3

,求该三棱锥的侧面积.

10.(2015?重庆)如图,三棱锥P ABC -中,平面PAC ⊥平面ABC ,2

ABC π

∠=,点D 、E 在线段AC 上,

且2AD DE EC ===,4PD PC ==,点F 在线段AB 上,且//EF BC .

(1)求证:AB ⊥平面PFE ;

(2)若四棱锥P DFBC -的体积为7,求线段BC 的长.

11.(2015?陕西)如图,在直角梯形ABCD 中,//AD BC ,2

BAD π

∠=

,1

2

AB BC AD a ==

=,E 是AD 的中点,O 是AC 与BE 的交点.将ABE ?沿BE 折起到如图2中△1A BE 的位置,得到四棱锥1A BCDE -. (1)求证:CD ⊥平面1A OC ;

(2)当平面1A BE ⊥平面BCDE 时,四棱锥1A BCDE -的体积为362,求a 的值.

12.(2015?福建)如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直于圆O 所在的平面,且1PO OB ==,

(1)若D 为线段AC 的中点,求证;AC ⊥平面PDO ; (2)求三棱锥P ABC -体积的最大值;

(3)若2BC =,点E 在线段PB 上,求CE OE +的最小值.

13.(2014?江苏)如图,在三棱锥P ABC -中,D ,E ,F 分别为棱PC ,AC ,AB 的中点,已知PA AC ⊥,6PA =,8BC =,5DF =.求证:平面BDE ⊥平面ABC .

14.(2014?福建)如图,三棱锥A BCD -中,AB ⊥平面BCD ,CD BD ⊥.

(1)求证:CD ⊥平面ABD ;

(2)若1AB BD CD ===,M 为AD 中点,求三棱锥A MBC -的体积.

15.(2019?南通模拟)如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,2AD =,1AB =,60BAD ∠=?,平面PCD ⊥平面ABCD ,点M 为PC 上一点.求证:平面MBD ⊥平面PCD .

16.(2019?揭阳二模)已知如图,长方体1111ABCD A B C D -中,4AB BC ==,122BB =,点E ,F ,M 分别为11C D ,11A D ,11B C 的中点,过点M 的平面α与平面DEF 平行,且与长方体的面相交,交线围成一个几何图形.

(1)在图中画出这个几何图形,并求这个几何图形的面积(画图说出作法,不用说明理由); (2)求证:

1D B ⊥平面DEF .

17.(2019?四川模拟)如图,在三棱柱111ABC A B C -中,已知点M 在棱1BB 上,且11

2

BM BB =,点N 在线

段1A C 上,且1A N NC =,且1MN AA ⊥,1MN AC ⊥.求证:平面1A MC ⊥平面11A ACC .

18.(2019?沭阳期中)如图,AB 是O 的直径,点C 是O 上的动点,PA 垂直于O 所在的平面ABC . (1)求证:平面PAC ⊥平面PBC ;

(2)设3PA =,3AC =,求点A 到平面PBC 的距离.

19.(2019?聊城二模)如图,四边形ABCD 是边长为2的正方形,E 为CD 的中点,以AE 为折痕把ADE ?折起,使点D 到达点P 的位置,且60PAB ∠=?.

(1)求证:平面PEC ⊥平面PAB ; (2)若三棱锥E PEC -的体积为3

3

,求该三棱锥的表面积.

20.(2019?大兴一模)如图,四棱锥P ABCD -,平面PAB ⊥平面ABCD ,PA AB ⊥,//AB CD ,90DAB ∠=?,

PA AD =,2DC AB =,E 为PC 中点.

(1)求证:PA BC ⊥;

(2)求证:直线//BE 平面PAD ; (3)求证:平面PBC ⊥平面PDC .

线面垂直判定经典证明题

线面垂直判定 1、已知:如图,PA⊥AB,PA⊥AC。 求证:PA⊥平面ABC。 ] 2、已知:如图,PA⊥AB,BC⊥平面PAC。 求证:PA⊥BC。 ' 3、如图,在三棱锥V-ABC中,VA=VC,AB=BC。 求证:VB⊥AC | 4、在正方体ABCD-EFGH中,O为底面ABCD中心。 求证:BD⊥平面AEGC 5、如图,AB是圆O的直径,PA⊥AC, PA⊥AB, 求证:BC⊥平面PAC ;

6、如图,AD ⊥BD, AD ⊥DC,AD=BD=CD,∠BAC=60° 求证: BD ⊥平面ADC : 7、.如图所示,PA ⊥矩形ABCD 所在平面,M 、N 分别是AB 、PC 的中点. (1)求证:MN ∥平面PAD . (2)求证:MN ⊥CD . (3)若∠PDA =45°,求证:MN ⊥平面PCD . 《 . 8、已知:如图,P 是棱形ABCD 所在平面外一点,且PA=PC 求证:AC PBD 平面 : A D ~ C B P

9、已知四面体ABCD 中,CD BD AC AB ==,,平面⊥ABC 平面BCD ,E 为棱BC 的中点。 (1)求证:⊥AE 平面BCD ; (2)求证:BC AD ⊥; \ 10、三棱锥A-BCD 中,AB=1,BC=2,BD=AC=3 AD=2,求证:AB ⊥平面BCD > ! 11、 在四棱锥S-ABCD 中,SD ⊥平面ABCD ,底面ABCD 是正方形 求证:AC ⊥平面SBD > ? 12、 如图,正方形ABCD 所在平面与三角形CDE 所在平面相交于CD ,AE ⊥平面CDE ,求证:AB ⊥平面ADE ; · C B A E D A B

高中数学立体几何线面垂直的证明

立体几何证明 【知识梳理】 1. 直线与平面平行 判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行?线面平行”) 性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行?线线平行”) 2..直线与平面垂直 判定定理一如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直?线面垂直”) 判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面. 性质1.如果一条直线垂直于一个平面,那么这条直线垂直于这个平面内的所有直线。 (线面垂直?线线垂直) 性质2:如果两条直线同垂直于一个平面,那么这两条直线平行. 三。平面与平面 空间两个平面的位置关系:相交、平行. 1. 平面与平面平行 判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(“线面平行?面面平行”) 2. 两个平面垂直 判定定理:如果一条直线与一个平面垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直?面面垂直”) 性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.(面面垂直?线面垂直)

知识点一 【例题精讲】 1.在棱长为2的正方体1111D C B A ABCD -中,E 、F 分别为1DD 、DB 的中点。 (1)求证:EF//平面11D ABC ;(2)求证: 平面B 11D C C B 1⊥ EF C B 1⊥; (3)求三棱锥EFC B -1的体积V. 2.如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,2,BA AD CD AD CD AB PA ⊥⊥=⊥底面ABCD , E 为PC 的 中点, PA =AD =AB =1. (1)证明: //EB PAD 平面; (2)证明: BE PDC ⊥平面; (3)求三棱锥B -PDC 的体积V . 3、如图所示,在四棱锥P ﹣ABCD 中,PA ⊥底面 ABCD ,AB ⊥AD ,AC ⊥CD ,∠ABC=60°,PA=AB=BC ,E 是PC 的中点,证明: (1)AE ⊥CD (2)PD ⊥平面ABE .

怎么证明面面垂直

怎么证明面面垂直证明一个面上的一条线垂直另一个面;首先可以转化成 一个平面的垂线在另一个平面内,即一条直线垂直于另一个平面 然后转化成 一条直线垂直于另一个平面内的两条相交直线 也可以运用两个面的法向量互相垂直。 这是解析几何的方法。 证:连接AC,BD.PD垂直面ABCD=>PD垂直AC.ABCD为正方形=>AC垂直BD.而BD是PB 在面ABCD内的射影=>PB垂直AC.PD垂直AC=>AC垂直面PBD.AC属于面ACE=>面PBD 垂直面ACE 2 1利用直角三角形中两锐角互余证明 由直角三角形的定义与三角形的内角和定理可知直角三角形的两个锐角和等于90°,即直角三角形的两个锐角互余。 2勾股定理逆定理 3圆周角定理的推论:直径所对的圆周角是直角,一个三角形的一边中线等于这边的一半,则这个三角形是直角三角形。 二、高中部分 线线垂直分为共面与不共面。不共面时,两直线经过平移后相交成直角,则称两条直线互相垂直。 1向量法两条直线的方向向量数量积为0 2斜率两条直线斜率积为-1 3线面垂直,则这条直线垂直于该平面内的所有直线 一条直线垂直于三角形的两边,那么它也垂直于另外一边 4三垂线定理在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。 5三垂线定理逆定理如果平面内一条直线和平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。 3高中立体几何的证明主要是平行关系与垂直关系的证明。方法如下(难以建立坐标系时再考虑): Ⅰ.平行关系: 线线平行:1.在同一平面内无公共点的两条直线平行。2.公理4(平行公理)。3.线面平行的性质。4.面面平行的性质。5.垂直于同一平面的两条直线平行。 线面平行:1.直线与平面无公共点。2.平面外的一条直线与平面内的一条直线平行。3.两平面平行,一个平面内的任一直线与另一平面平行。 面面平行:1.两个平面无公共点。2.一个平面内的两条相交直线分别与另一平面平行。Ⅱ.垂直关系: 线线垂直:1.直线所成角为90°。2.一条直线与一个平面垂直,那么这条直线与平面内的任一直线垂直。 线面垂直:1.一条直线与一个平面内的任一直线垂直。2.一条直线与一个平面内的两条相交直线都垂直。3.面面垂直的性质。4.两条平行直线中的一条垂直与一个平面,那么另一直线也与此平面垂直。5.一条直线垂直与两个平行平面中的一个,那么这条直线也与另一平面垂直。 面面垂直:1.面面所成二面角为直二面角。2.一个平面过另一平面的垂线,那么这两个平面垂直。

线面平行与垂直的证明题

线面平行与垂直的证明1:如图,在棱长为1的正方体ABCD-A1B1C1D1中. (1)求证:AC⊥平面B1BDD1; (2)求三棱锥B-ACB1体积. 2:如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点. 求证:(1)PA∥平面BDE;(2)平面PAC⊥平面BDE. D1 C1 B1 A1 C D B A

3:如图:在底面是直角梯形的四棱锥S —ABCD 中, ∠ABC = 90°,SA ⊥面ABCD ,SA = AB = BC = 1,2 1 AD . (Ⅰ)求四棱锥S —ABCD 的体积; (Ⅱ)证明:平面SBC ⊥平面SCD . 4:已知多面体ABCDFE 中, 四边形ABCD 为矩形,AB ∥EF ,AF ⊥BF ,平面ABEF ⊥平面ABCD , O 、M 分别为AB 、FC 的中点,且AB = 2,AD = EF = 1. (Ⅰ)求证:AF ⊥平面FBC ; (Ⅱ)求证:OM ∥平面DAF .

5:.如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是P C的中点,作EF⊥PB交PB于点F. (1)证明PA//平面EDB;(2)证明PB⊥平面EFD; 6:已知正方形ABCD和正方形ABEF所在的平面相交于AB,点M,N分别在AC和BF上,且 AM=FN. C

求证:MN ‖平面BCE. 7:如图,正方体1111D C B A ABCD -中,棱长为a (1)求证:直线//1B A 平面1ACD (2)求证:平面1ACD ⊥平面D BD 1;

8:如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中点, 求证:(1) FD∥平面ABC (2) AF⊥平面EDB. 9:如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点, (1)求证:平面A B1D1∥平面EFG; (2)求证:平面AA1C⊥面EFG.

(完整版)线面平行证明的常用方法

线面平行证明的常用方法 张磊 立体几何在高考解答题中每年是必考内容,必有一个证明题;重点考察:平行与垂直(线线平行、线面平行、面面平行、线线垂直、线面垂直、面面垂直等),我们现在对线面平行这一方面作如下探讨: 方法一:中位线型:找平行线。 例1、如图⑴,在底面为平行四边形的四棱锥P ABCD -中,点E 是PD 的中点.求证://PB 平面AEC 分析: 如图⑴ 如图⑵ 如图⑶ 方法二:构造平行四边形,找平行线 例2、如图⑵, 平行四边形ABCD 和梯形BEFC 所在平面相交,BE//CF ,求证:AE//平面DCF. 分析:过点E 作EG//AD 交FC 于G , DG 就是平面AEGD 与平面DCF 的交线,那么只要证明AE//DG 即可。 方法三:作辅助面使两个平面是平行, 即:作平行平面,使得过所证直线作与已 知平面平行的平面 例3、如图⑷,在四棱锥O ABCD -中,底面ABCD 为菱形, M 为OA 的中点,N 为BC 的中点,证明:直线MN OCD 平面‖ 分析::取OB 中点E ,连接ME ,NE ,只需证平面MEN 平面OCD 。 方法四:利用平行线分线段成比例定理的逆定理证线线平行。 例4、已知正方形ABCD 和正方形ABEF AC 和BF 上,且AM=FN. 求证:MN ‖平面BCE. 如图⑷ 如图⑸ 如图⑹ E B A D C G F F y C B E D A S z _ M _ D _ A B _ O E P E D C B O A B C D E F N M

例5.如图⑸,已知三棱锥P—ABC,A′,B ′,C ′是△PBC,△PCA,△PAB 的重心. (1)求证:A′B′∥面ABC; (2)求S △A ′B ′C ′:S △ABC . 方法五:(向量法)所证直线与已知平面的法向量垂直,关键:建立空间坐标系 (或找空间一组基底)及平面的法向量。 例6、如图⑹,在四棱锥S ABCD -中,底面ABCD 为正方形, 侧棱SD ⊥底面ABCD E F ,,分别为AB SC ,的中点.证明EF ∥平面SAD ; 分析:因为侧棱SD ⊥底面ABCD ,底面ABCD 是正方形,所以很容易建立空间直角坐标系及相应的点的坐标。 证明:如图,建立空间直角坐标系D xyz -. 设(00)(00)A a S b ,,,,,,则(0)(00)B a a C a ,,,,,, 00222a a b E a F ???? ? ????? ,,,,,, 02b EF a ??=- ?? ?u u u r ,,. 因为y 轴垂直与平面SAD ,故可设平面的法向 量为n r =(0,1,0) 则:02b EF n a ??=- ?? ?u u u r r g g ,,(0,1,0)=0 因此 EF n ⊥u u u r r 所以EF ∥平面SAD .

如何证明线面垂直

如何证明线面垂直∵PA⊥平面α,直线L∈平面α ∴PA⊥L========================① ∵PB⊥平面β,直线L∈平面β ∴PB⊥L========================② 综合①②得: 直线L⊥平面PAB(垂直于平面两条相交直线的直线垂直于这个平面) ∴L⊥AB(垂直于平面的直线垂直于平面内的任一直线) 线面垂直的判定定理证明,我一直觉得证明过程太过复杂。前年曾经这样证明,今天写在这里。m和n为平面中两条相交直线,通过平移或者说原本就在,使得l经过m、n的交点O,我们只需证明l垂直与平面中的任意一条直线g 即可!在m、n上分别以O点为中点截取AC、BD,则得到平行四边形ABCD。此时不难由三角形全等的知识得到l⊥g。 答案补充 证明:已知直线L1 L22相交于O点且都与直线L垂直,L3是L1 L2所在平面内任意1条不与L1 L2重合或平行的直线(重合或平行直接可得它与L1平行) 在L3上取E、F令OE=OF,分别过E、F作ED、FB交L2于D、B (令OD=OB)则⊿OED ≌⊿ OFB (SAS) 延长DE、BF分别交 L1于A、C 则⊿OEA≌⊿OFC(ASA)(注意角AEO与角CFO的补角相等所以它们相等)。所以OA=OC,所以⊿OAD≌⊿OBC(SAS)所以AD=CB 因为L3垂直于L1 L2所以MA=MC,MD=MB 所以⊿MAD≌⊿MCD(SSS)所以角MAE= 角MCF 所以⊿MAE≌⊿MCF(SAS) 所以ME=MF,所以⊿MOE≌⊿MOF(SSS),所以角MOE=角MOF 又因为角MOE与角MOF互补,所以角MOE=角MOF=90度,即L⊥L3 1利用直角三角形中两锐角互余证明 由直角三角形的定义与三角形的内角和定理可知直角三角形的两个锐角和等于90°,即直角三角形的两个锐角互余。 2勾股定理逆定理 3圆周角定理的推论:直径所对的圆周角是直角,一个三角形的一边中线等于这边的一半,则这个三角形是直角三角形。 二、高中部分 线线垂直分为共面与不共面。不共面时,两直线经过平移后相交成直角,则称两条直线互相垂直。 1向量法两条直线的方向向量数量积为0 2斜率两条直线斜率积为-1 3线面垂直,则这条直线垂直于该平面内的所有直线 一条直线垂直于三角形的两边,那么它也垂直于另外一边 4三垂线定理在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。 5三垂线定理逆定理如果平面内一条直线和平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。 2高中立体几何的证明主要是平行关系与垂直关系的证明。方法如下(难以建立坐标系时再考虑): Ⅰ.平行关系: 线线平行:1.在同一平面内无公共点的两条直线平行。2.公理4(平行公理)。3.线面平行的性质。4.面面平行的性质。5.垂直于同一平面的两条直线平行。 线面平行:1.直线与平面无公共点。2.平面外的一条直线与平面内的一条直线平行。3.两平面平行,一个平面内的任一直线与另一平面平行。 面面平行:1.两个平面无公共点。2.一个平面内的两条相交直线分别与另一平面平行。

线面、面面平行和垂直的八大定理

线面、面面平行和垂直的八大定理 一、线面平行。 1、判定定理:平面外一条直线与平面内一条直线平行,那么这条直线与这个平 面平行。符合表示: β ββ////a b a b a ??? ????? 2、性质定理:如果一条直线与平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 符号表示: b a b a a a ////??? ?????=??βαβαα 二、面面平行。 1、判定定理:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。 符号表示: β α//////????? ?????==N n m M b a a m b n 2、性质定理:如果两个平面平行同时与第三个平面相交,那它们的交线平行。 符号表示: d l d l ////??? ???==γβγαβα (更加实用的性质:一个平 面内的任一直线平行另一平面) 三、线面垂直。 1、判定定理:如果一条直线与一个平面内的两条相交直线都垂直,那么这条直 线垂直这个平面。 符号表示: α⊥?????? ??????=⊥⊥a M c b b a c a $:三垂线定理:(经常考到这种逻辑)在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

符号表示: PA a A oA a po oA a ⊥??? ? ????=⊥⊥??ααα 2、性质定理:垂直同一平面的两条直线互相平行。(更加实用的性质是:一个平面的垂线垂直于该平面内任一直线。) 四、面面垂直。 1、判定定理:经过一个平面的垂线的平面与该平面垂直。 βααβ⊥??⊥a a , 2、性质定理:已知两个平面垂直,在一个平面内垂直于交线的直线垂直于另一个平面。βαβαβα⊥?⊥?=?⊥a b a a b ,,,

线面垂直的证明及应用(含答案)

线面垂直的证明及应用 一、单选题(共10道,每道10分) 1.若为平面,为直线,则下列选项中能得到的是( ) A. B. C. D. 答案:B 解题思路:

试题难度:三颗星知识点:直线与平面垂直的判定 2.如图,PO⊥平面ABC,BO⊥AC,则图中一定与AC垂直的直线共有( ) A.1条 B.2条 C.3条 D.4条 答案:D 解题思路: 试题难度:三颗星知识点:直线与平面垂直的判定

3.如图,在三棱柱中,底面是正三角形,且侧棱,若E是BC的中点,则下列叙述正确的是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:直线与平面垂直的性质 4.在长方体中,已知AB=BC=1,,E是侧棱的中点,则直线 AE与平面所成角的大小为( ) A.60° B.90° C.45° D.以上都不正确

答案:B 解题思路: 试题难度:三颗星知识点:直线与平面垂直的性质 5.如图,四棱锥S-ABCD的底面为正方形,且SD⊥底面ABCD,则下列结论不正确的是( ) A.AC⊥SB B.AB∥平面SCD C.AC⊥平面SBD D.AB与SC所成的角等于CD与SA所成的角 答案:D 解题思路:

试题难度:三颗星知识点:直线与平面垂直的性质 6.如图,在正方体中,O是底面ABCD的中心,,H为垂足,则与平面的位置关系是( ) A.垂直 B.平行 C.斜交 D.以上都不对 答案:A

试题难度:三颗星知识点:直线与平面垂直的判定 7.如图,在等边三角形ABC中,CD是AB边上的高,E,F分别是AC,BC的中点,现将△ACD 沿CD折起,使平面ACD⊥平面BCD,则下列结论中不正确的是( ) A.AB∥平面DEF B.CD⊥平面ABD C.EF⊥平面ACD D. 答案:C

立体几何线面平行垂直,线面角二面角的证明方法

A P B C E D 一:线面平行的证明方法: 1、用“近似平行法”先找到面上与已知直线平行的直线(一般为表示面的三角形的边界直线,或三角形某边上的中线) 看找到的这条线与已知线的长度关系,1)若相等应该构造平行四边形;2)若不相等一般利用三角形中位线的性质(将这两个不相等的线段的端点连结并延长即会出现关键三角形)。 2、若既不能构造平行四边形也不能性用中位线性质,则应再构造一个此直线所在的平面,证明此平面与已知平面平行(先证面面平行,推出线面平行) 例一:如图,已知菱形ABCD ,其边长为2, 60BAD ∠= ,ABD ?绕着BD 顺时针旋转120 得到PBD ?,M 是PC 的中点. (1)求证://PA 平面MBD ; (2)求直线AD 与平面PBD 所成角的正弦值. 例二:已知四棱锥P-ABCD ,底面ABCD 是 60=∠A 、 边 长为a 的菱形,又ABCD PD 底⊥,且PD=CD ,点M 、N 分别是 棱AD 、PC 的中点. (1)证明:DN//平面PMB ; (2)证明:平面PMB ⊥平面PAD ; (3)求点A 到平面PMB 的距离. 例三:如图,已知点P 是平行四边形ABCD 所在平面外的一点, 上的点且PE EA BF FD =∶∶,求证:EF //平面PBC . 二:线面垂直的证明方法: 通过线线垂直,证明线面垂直 1) 利用勾股定理逆定理及三角形中两个角和为90°; 2) 利用等边、等腰三角形(中线即高线),正方形、矩形邻边垂直,正方形菱形对角线垂 直等; 3) 通过线面垂直,反推线线垂直; 4) 利用面面垂直的性质,证明垂直于交线即垂直于另一个平面。 例四:如图,四边形ABCD 为矩形,CF ⊥平面ABCD ,DE ⊥平面ABCD , AB=4a ,BC= CF=2a,P 为AB 的中点. (1)求证:平面PCF ⊥平面PDE ; (2)求四面体PCEF 的体积. C

《线面垂直判定定理》教学设计

《直线与平面垂直的判定》教学设计 一、学习内容分析 本节课内容选自《普通高中课程标准实验教科书·数学必修2(人教A版)》第二章节。本节课主要学习直线与平面垂直的定义、判定定理及其初步运用。 本节课中的线面垂直定义是探究线面垂直判定定理的基础;线面垂直的判定定理充分体现了线线垂直与线面垂直之间的转化,它既是后面学习面面垂直的基础,又是连接线线垂直和面面垂直的纽带。学好这部分内容,对于学生建立空间观念,实现从认识平面图形到认识立体图形的飞跃,是非常重要的。 二、学习者分析 本节课的学生是高一的学生,在学习本节课之前,学生已经学习了掌握了线线垂直的证明,并且学习了空间内直线与平面位置关系以及直线与平面平行的知识,因此学生对于线面垂直的判定定理的学习有良好的认知基础。但是学生对于理解线面垂直的定义有一定的困难,受线面平行的影响,很容易由一直线垂直于一平面内一直线得出线面垂直,由于平面内看不到直线,要让学生去体会“与平面内所有直线垂直”就有一定困难;同时,线面垂直判定定理的发现具有一定的隐蔽性,学生不易想到。 三、教学重点、难点 重点:直线与平面垂直的判定定理。 【 难点:探究得出出直线与平面垂直的判定定理及初步运用. 四、教学目标 (1)知识与技能目标: 1.描述直线与平面垂直的定义; 2.运用直线与平面垂直的判定定理证明简单的的空间位置关系问题. (2)过程与方法目标: 1.通过对实例、图片的观察,概括定义,正确理解定义,增强观察能力; 2.在探索直线与平面垂直判定定理的过程中感悟和体验“空间问题转化为平面问题”、“线面垂直转化为线线垂直”、“无限转化为有限”等数学思想. ' (3)情感态度与价值观目标: 1.通过对空间中直线与平面垂直定义的归纳,感受生活中的数学美; 2.通过经历直线与平面垂直判定定理的探究,体验探索的乐趣 五、教学过程 1.复习回顾,引入新课

线面垂直习题精选

线面垂直的证明中的找线技巧 ◆ 通过计算,运用勾股定理寻求线线垂直 1 如图1,在正方体1111ABCD A B C D - 中,M 为1CC 的中点,AC 交BD 于点O ,求证:1A O ⊥平面MBD . 证明:连结MO ,1A M ,∵DB ⊥ 1A A ,DB ⊥AC ,1A A AC A =, ∴DB ⊥平面 11A ACC ,而1 AO ?平面11A ACC ∴DB ⊥1A O . 设正方体棱长为a ,则22132A O a =,2 234MO a =. 在Rt △11A C M 中,2 21 94 A M a =.∵22211A O MO A M +=,∴1AO OM ⊥. ∵OM ∩DB =O ,∴ 1A O ⊥平面MBD . 评注:在证明垂直关系时,有时可以利用棱长、角度大小等数据,通过计算来证明. ◆ 利用面面垂直寻求线面垂直 2 如图2,P 是△ABC 所在平面外的一点,且PA ⊥平面ABC ,平面PAC ⊥平面PBC .求证:BC ⊥平面PAC . 证明:在平面PAC 内作AD ⊥PC 交PC 于D . 因为平面PAC ⊥平面PBC ,且两平面交于PC , AD ?平面PAC ,且AD ⊥PC , 由面面垂直的性质,得AD ⊥平面PBC . 又∵BC ?平面PBC , ∴ AD ⊥BC . ∵PA ⊥平面ABC ,BC ?平面ABC ,∴PA ⊥BC . ∵AD ∩PA =A ,∴BC ⊥平面PAC . (另外还可证BC 分别与相交直线AD ,AC 垂直,从而得到BC ⊥平面PAC ). 评注:已知条件是线面垂直和面面垂直,要证明两条直线垂直,应将两条直线中的一条纳入一个平面中,使另一条直线与该平面垂直,即从线面垂直得到线线垂直.在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,通过本题可以看到,面面垂直?线面垂直?线线垂直. 一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直???→←???判定性质 线面垂直???→←??? 判定性质 面面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面是判定定理,而从后面推出前面是性质定理.同学们应当学会灵活应用这些定理证明 问题.下面举例说明. 3 如图1所示,ABCD 为正方形,SA ⊥平面ABCD ,过 A 且垂直于SC 的平面分别交S B S C S D ,,于 E F G ,,.求证:AE SB ⊥, AG SD ⊥. 证明:∵SA ⊥平面ABCD , ∴SA BC ⊥.∵AB BC ⊥,∴BC ⊥平面SAB .又∵AE ?平面SAB ,∴BC AE ⊥.∵SC ⊥平面AEFG ,∴SC AE ⊥.∴AE ⊥平面SBC .∴AE SB ⊥.同理可证AG SD ⊥. 评注:本题欲证线线垂直,可转化为证线面垂直,在线线垂直与线面垂直的转化中,平面起到了关键作用,同学们应多注意考虑线和线所在平面的特征,从而顺利实现证明所需要的转化. 4 如图2,在三棱锥A-BCD 中,BC =AC ,AD =BD , 作BE ⊥CD ,E为垂足,作AH ⊥BE 于H.求证:AH ⊥平面BCD . 证明:取AB 的中点F,连结CF ,DF . ∵AC BC =,∴CF AB ⊥. ∵AD BD =,∴DF AB ⊥. 又CF DF F =,∴AB ⊥平面CDF . ∵CD ?平面CDF ,∴CD AB ⊥. 又CD BE ⊥,BE AB B =, ∴CD ⊥平面ABE ,CD AH ⊥. ∵AH CD ⊥,AH BE ⊥,CD BE E =, ∴ AH ⊥平面BCD .

38、线面垂直判断与性质(教师版)

**教育ISO讲义 直线、平面垂直的判定及性质 思考:如何一条直线与一个平面不相交,该直线可能与平面垂直吗?如果一个平面与另一个平面不相交,这两个平面可能垂直吗?

一、知识梳理 1.直线与平面垂直的判定定理与性质定理 文字语言 图形语言 符号语言 判定定理 一条直线与一个平面 内的两条相交直线都垂直,则该直线与此平面垂直 ? ????a ,b ?αa ∩b =O l ⊥a l ⊥b ?l ⊥α 性质定理 垂直于同一个平面的两条直线平行 ? ??? ?a ⊥αb ⊥α?a ∥b 2.平面与平面垂直的判定定理与性质定理 文字语言 图形语言 符号语言 判定定理 一个平面过另一个平 面的垂线,则这两个 平面互相垂直 ? ??? ?l ?βl ⊥α?α⊥β 性质定理 两个平面互相垂直, 则一个平面内垂直于交线的直线垂直于另 一个平面 ???? ?α⊥β l ?β α∩β=a l ⊥a ?l ⊥ α 3.空间角 (1)直线与平面所成的角 ①定义:平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角,如图,∠P AO 就是斜线AP 与平面α所成的角. ②线面角θ的范围:θ∈????0,π 2. (2)二面角 ①定义:从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱.两个半平面叫

做二面角的面. 如图的二面角,可记作:二面角α-l -β或二面角P -AB -Q . ②二面角的平面角 如图,过二面角α-l -β的棱l 上一点O 在两个半平面内分别作BO ⊥l ,AO ⊥l ,则∠AOB 就叫做二面角α-l -β的平面角. ③二面角的范围 设二面角的平面角为θ,则θ∈[0,π]. ④当θ=π 2时,二面角叫做直二面角. 常用结论 1.线线、线面、面面垂直间的转化 2.两个重要定理 (1)三垂线定理 在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直. (2)三垂线定理的逆定理 在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直. 3.重要结论 (1)若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面. (2)若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线(证明线线垂直的一个重要方法). (3)垂直于同一条直线的两个平面平行. (4)一条直线垂直于两平行平面中的一个,则这一条直线与另一个平面也垂直. 考点1 线面垂直的判定与性质(多维探究) 【例1】如图所示,在四棱锥P -ABCD 中,AB ⊥平面P AD ,AB ∥CD ,PD =AD ,E 是PB 的中点,F 是DC 上的点,且DF =1 2 AB ,PH 为△P AD 中AD 边上的高.

立体几何线面与面面垂直的证明

理科数学复习专题 立体几何 线面垂直与面面垂直专题复习 【知识点】 一.线面垂直 (1)直线与平面垂直的定义: 如果直线l 和平面α的__________一条直线都垂直,我们就说直线l 与平面α垂直,记作__________. 重要性质:__________________________________________________________ (2)直线与平面垂直的判定方法: ①判定定理:一条直线与一个平面的两条__________都垂直,那么这条直线就垂直于这个平面.用符号表示为: ②常用结论:如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面.用符号可表示为: (3)直线与平面垂直的性质: ①由直线和平面垂直的定义知:直线与平面垂直,则直线垂直于平面的_______直线. ②性质定理:垂直于同一平面的两条直线平行.用符号可表示为: 二、面面垂直 (1)平面与平面垂直的定义: 两平面相交,如果它们所成的二面角是__________,就说这两个平面互相垂直. (2)平面与平面垂直的判定定理: 如果一个平面经过另一个平面的一条__________,那么这两个平面互相垂直.简述为“线面垂直,则面面垂直”, 用符号可表示为: (3)平面与平面垂直的性质: 如果两个平面互相垂直,那么在一个平面垂直于它们交线的直线垂直于另一个平面.用符号可表示为: 【题型总结】 题型一 小题:判断正误 1.“直线l 垂直于平面α的无数条直线”是“l ⊥α”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件 2.已知如图,六棱锥P -ABCDEF 的底面是正六边形,PA ⊥平面ABC .则下列结论不正确的是( ). A.CD ∥平面PAF B.DF ⊥平面PAF C.CF ∥平面PAB D .CF ⊥平面PAD 2. 设m ,n, l 是三条不同的直线,,,αβγ是三个不同的平面,判断命题正误: α αααααββααβαβα//n ,,m //,,n ,//,,//,//,,则⑤则④则③则②则①n m n m n m n m m m m m m ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ γ αβγβαγαγββααα⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥则,⑩则⑨则,⑧则⑦则⑥,//m ,//,m //,//m ,,m n ,//,n m l l n n l l n n m

线线垂直、线面垂直、面面垂直的习题及答案解析

线线垂直、线面垂直、面面垂直部分习及答案1.在四面体ABCD中,△ABC与△DBC都是边长为4的正三角形. (1)求证:BC⊥AD; 2如图,在三棱锥S—ABC中,SA⊥平面 ABC,平面SAB⊥平面SBC. (第1题) (1)求证:AB⊥BC; 3.如图,四棱锥P—ABCD的底面是边长为a的形,PA⊥底面ABCD,E为AB的中点,且PA=AB. (1)求证:平面PCE⊥平面PCD;(2)求点A到平面PCE的距离. 4. 如图2-4-2所示,三棱锥S—ABC中,SB=AB,SC=AC,作AD⊥BC于D,SH⊥AD于H,求证:SH⊥平面ABC.

5. 如图所示,已知Rt△ABC所在平面外一点S,且SA=SB=SC,点D 为斜边AC的中点. (1)求证:SD⊥平面ABC; (2)若AB=BC,求证:BD⊥平面SAC. 6. 证明:在体ABCD-A1B1C1D1中,A1C⊥平面BC1D 11 A B1 D C B 7. 如图所示,直三棱柱中,∠ACB=90°,AC=1,,侧棱,侧面的两条对角线交点为D,的中点为M. 求证:CD⊥平面BDM.

8.在三棱锥A-BCD中,BC=AC,AD=BD, 作BE⊥CD,E为垂足,作AH⊥BE于H.求证:AH⊥平面BCD. 9. 如图,过S引三条长度相等但不共面的线段SA、SB、SC,且∠ASB=∠ASC=60°,∠BSC=90°,求证:平面ABC⊥平面BSC. 10.如图,在长方体ABCD—A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点,连结ED,EC,EB和DB. (1)求证:平面EDB⊥平面EBC; (2)求二面角E-DB-C的正切值. 11:已知直线PA垂直于圆O所在的平面,A为垂足,AB为圆O的直径,C是圆周上异于A、B的一点。求证:平面PAC^平面PBC。 12..如图1-10-3所示,过点S引三条不共面的直线,使∠BSC=90°,∠ASB=∠ASC=60°,若截取SA=SB=SC.

线面垂直的判定教学设计

1.复习回顾,引入新课 问题:同学们,我们已经学习了空间中直线与平面的位置关系,有哪些位置关系? 【师生活动】学生集体可能回答:直线在平面内,直线与平面平行,直线与平面相交 【追问】有些位置关系是比较特殊的,一种是线面平行,还有一种呢? 【师生活动】教师引导学生回答线面垂直这种位置关系是一种特殊的线面位置关系并揭示课题 2.逐步探索,得出定义 问题:在日常生活中你见到的线面垂直的现象有哪些? 【师生活动】学生列举生活中的线面垂直现象,然后教师也展示生活中的一些线面垂直现象,例如篮球架和地面垂直,旗杆和地面垂直。对于旗杆与地面垂直的现象进行抽象化,让学生对下列问题进行思考。 思考: (1)阳光下,旗杆AB 与它在地面上的影子BC 所成的角度是多少? (2)随着太阳的移动,影子BC 的位置也会移动, 而旗杆AB 与影子BC 所成的角度是否会发生改变? (3)旗杆AB 与地面上任意一条不过点B 的直线11C B 的位置关系如何?依据是什么? 3. 创设情境,猜想定理 【师生活动】教师引导学生认识到由于利用直线与平面垂直的定义直接判定直线与平面垂直是非常困难的,需要寻找简捷、可行的方法来判定直线与平面垂直。 【实验】过△ABC 的顶点A 翻折三角形纸片得到折痕AD,将翻折后的纸片竖起放置在桌面上, 1 ) 折 痕 AD 是 否 与 桌 面 垂 直 2)如何翻折才能使折痕AD 与桌面所在的平面垂直 通过观察,我们容易发现,当且仅当AD ⊥BC,AD所在的直线与桌面所在的平面垂直,而翻折之后垂直关系不变,即AD ⊥CD,AD ⊥BD. B D C B1 A 【师生活动】教师引导学生分别根据这两个示意图进行实验,并思考:

1-7线面垂直的判定与证明

专题7 线面垂直的判定与证明 秒杀秘籍:第一讲 在被垂直平面找垂直(鳖臑法则) 定理:若一条直线l 垂直于一个平面,如果在被垂直的平面内找到相互垂直的两条线1l ⊥2l (1l 与l 相交),则与l 异面的直线2l 垂直于l 和1l 构成的平面.鳖臑是最典型的例子. 当出现重垂线P A 时,就需要在水平面ACB 内找到两条垂直相交的直线BC AC ⊥,由于AC 与重垂线P A 相交,故能得到PAC BC 面⊥,同理,P AC 作为被垂直的平面,在平面内找到PC AD ⊥,BC 与PC 相交,故可以得到PBC AD 面⊥,PBC 作为被垂直的平面,需要在这个面内找到垂直的两条直线,当PB DE ⊥时(或PB AE ⊥),能得到ADE PB 面⊥. 具体书写格式: PAC BC A AC PA AC BC CB PA ACB BC ACB PA 面面面⊥??????????=⊥⊥?????⊥ ,同理PBC AD C BC PC PC AD BC AD PAC AD PAC BC 面面面⊥?????? ? ? ??=⊥⊥???? ?⊥ () ()ADE PB A AD AE D AD DE PB AE PB DE PB AD PBC PB PBC AD 面或或面面⊥???? ?? ???? ==⊥⊥⊥?? ?? ?⊥ 【例1】已知ABC △中?=∠90ACB ,⊥SA 面ABC ,SC AD ⊥,求证:⊥AD 面SBC . 【例2】已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,E 为BC 的中点. (1)求证:DE ⊥平面PAE ; (2)求直线DP 与平面PAE 所成的角. 【小结】按照推导式写的证明步骤比传统方式更简洁明了.

高中数学立体几何专题线面垂直典型例题的判定与性质

线面垂直 ●知识点 1.直线和平面垂直定义 如果一条直线和一个平面内的任何一条直线都垂直,就说这条直线和这个平面垂直. 2.线面垂直判定定理和性质定理 判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面. 判定定理:如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面. 判定定理:一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面. 性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行. 3.三垂线定理和它的逆定理. 三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直. 逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线在该平面上的射影垂直. ●题型示例 【例1】如图所示,已知点S是平面ABC外一点, ∠ABC=90°,SA⊥平面ABC,点A在直线SB和SC上的 射影分别为点E、F,求证:EF⊥SC. 【解前点津】用分析法寻找解决问题的途径,假设 EF⊥SC成立,结合AF⊥SC可推证SC⊥平面AEF,这样 SC⊥AE,结合AE⊥SB,可推证AE⊥平面SBC,因此证明 AE⊥平面SBC是解决本题的关键环节.由题设SA⊥平面ABC, ∠ABC=90°,可以推证BC⊥AE,结合AE⊥SB完成AE⊥平 例1题图 面SBC的证明. 【规范解答】 【解后归纳】题设中条件多,图形复杂,结合题设理清图形中基本元素之间的位置关系是解决问题的关键.

【例2】已知:M∩N=AB,PQ⊥M于Q,PO⊥N于O,OR⊥M于R,求证:QR⊥AB. 【解前点津】由求证想判定,欲证线线垂直,方法有(1)a∥b,a⊥c?b⊥c;(2)a⊥α,b?α?a ⊥b;(3)三垂线定理及其逆定理. 由已知想性质,知线面垂直,可推出线线垂直或线线平行. 【解后归纳】处于非常规位置图形上的三垂线定理或逆定理的应用问题,要抓住“一个面”、“四条线”. 所谓“一个面”:就是要确定一个垂面,三条垂线共处于垂面之上. 所谓“四条线”:就是垂线、斜线、射影以及平面内的第四条线,这四条线中垂线是关键的一条线,牵一发而动全身,应用时一般可按下面程序进行操作:确定垂面、抓准斜线、作出垂线、连结射影,寻第四条线. 【例3】已知如图(1)所示,矩形纸片AA′A′1A1,B、C、B1、C1分别为AA′,A1A′的三等分点,将矩形纸片沿BB1,CC1折成如图(2)形状(正三棱柱),若面对角线AB1⊥BC1,求证:A1C⊥AB1. 例3题图解(1)

线面垂直的判定定理-教学设计

《线面垂直的判定定理》教学设计 一、内容解析: 《直线与平面垂直的判定》是高中新教材人教A版必修2第2章的内容,本节课是在学生学习了空间点、直线、平面之间的位置关系和直线、平面平行的判定及其性质之后进行的,其主要内容是直线与平面垂直的定义、直线与平面垂直的判定定理及其应用。直线与平面垂直是通过直线和平面内的任意一条直线都垂直来定义的,定义本身也表明了直线与平面垂直的意义,即如果一条直线垂直于一个平面,那么这条直线就垂直于这个平面内的所有直线,这也可以看成是线线垂直的一个判定方法;直线与平面垂直的判定定理本节是通过折纸试验来感悟的,即一条直线只要与平面内的两条相交直线垂直就可以判定直线与平面垂直了,它把原来定义中要求与任意一条垂直转化为只要与两条相交直线垂直就行了,概言之,线不在多,相交就行。本节学习内容蕴含丰富的数学思想,即“空间问题转化为平面问题”,“无限转化为有限”“线线垂直与线面垂直互相转化”等数学思想。 线面垂直的定义是线面垂直最基本的判定方法和性质,它是探究线面垂直判定定理的基础;线面垂直的判定定理充分体现了线线垂直与线面垂直之间的转化,它既是后面学习面面垂直的基础,又是连接线线垂直和面面垂直的纽带!学好这部分内容,对于学生建立空间观念,实现从认识平面图形到认识立体图形的飞跃,是非常重要的。

教学重点和难点 《课程标准》指出本节课学习目标是:通过直观感知、操作确认,归纳出线面垂直的判定定理;能运用判定定理证明一些空间位置关系的简单命题;又考虑到学生的认知水平所以我将本节课的教学重点确立为:操作确认并概括直线与平面垂直的定义及判定定理。教学难点确立为:概括出直线与平面垂直的定义及判定定理,定理的初步应用。 二、教学目标 根据以上分析,结合学生的认知水平和课容量,将教材中线面成角问题安排在下节课进行。故而确立本节课的教学目标为: (1)知识与技能 掌握直线和平面、平面和平面垂直的判定定理及性质定理,并能应用. (2)过程与方法 ' 通过“观察”“认识”“画出”空间图形及垂直关系相关定理的学习过程,进一步培养学生的空间想象力及合情推理能力. (3)情感、态度与价值观 垂直关系在日常生活中有广泛的实例,通过本节的教学,可让学生进一步认识到数学和生活的联系,体会数学原理的广泛应用. 三、教学问题诊断分析

线线垂直 线面垂直 面面垂直的判定与性质

空间中的垂直关系 1.线面垂直 直线与平面垂直的判定定理:如果 ,那么这条直线垂直于这个平面。 推理模式: 直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线 。 2.面面垂直 两个平面垂直的定义:相交成 的两个平面叫做互相垂直的平面。 两平面垂直的判定定理:(线面垂直?面面垂直) 如果 ,那么这两个平面互相垂直。 推理模式: 两平面垂直的性质定理:(面面垂直?线面垂直) 若两个平面互相垂直,那么在一个平面内垂直于它们的 的直线垂直于另一个平面。 一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系 为:线线垂直???→←???判定性质线面垂直???→←???判定性质 面面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面是判定定理,而从后面推出前面是性质定理.同学们应当学会灵活应用这些定理证明问题.在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,下面举例说明. 例题:1.如图,AB 是圆O 的直径,C 是圆周上一点,PA ⊥平面ABC . (1)求证:平面PAC ⊥平面PBC ; (2)若D 也是圆周上一点,且与C 分居直径AB 的两侧,试写出图中所有互相垂直的各对平面. 2、如图,棱柱111ABC A B C -的侧面11BCC B 是菱形,11B C A B ⊥ 证明:平面1AB C ⊥平面11A BC 3、如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 是棱CC 1的中点 (Ⅰ)求异面直线A 1M 和C 1D 1所成的角的正切值; (Ⅱ)证明:平面ABM ⊥平面A 1B 1M 1 4、如图,AB 是圆O的直径,C是圆周上一点,PA ⊥平面ABC .若AE ⊥PC ,E为垂足,F是PB 上任意一点,求证:平面AEF ⊥平面PBC . 5、如图,直三棱柱ABC —A 1B 1C 1 中,AC =BC =1,∠ACB =90°,AA 1 =2,D 是A 1B 1 中点.(1)求证C 1D ⊥平面A 1B ;(2)当点F 在BB 1 上什么位置时,会使 得AB 1 ⊥平面C 1DF 并证明你的结论

相关主题
文本预览
相关文档 最新文档