当前位置:文档之家› 医用X线球管技术参数

医用X线球管技术参数

医用X线球管技术参数
医用X线球管技术参数

气体放电管

放电管特性及选用 吴清海 放电管的分类 放电管主要分为气体放电管和半导体放电管,其中气体放电管由烧结的材料不同分为玻璃气体放电管和陶瓷气体放电管,玻璃气体放电管和陶瓷气体放电管具有相同的特性。 气体放电管主要有密封的惰性气体组成,由金属引线引出,用陶瓷或是玻璃进行烧结。其工作原理为,当加在气体放电管两端的电压达到气体电离电压时,气体放电管由非自持放电过度到自持放电,放电管呈低阻导通状态,可以瞬间通过较大的电流,气体放电管击穿后的维持电压可以低到30V以内。气体放电管同流量大,但动作电压较难控制。 半导体放电管由故态的四层可控硅结构组成,当浪涌电压超过半导体放电管的转折电压V BO时放电管开始动作,当放电管动作后在返送装置,的作用下放电管两端的电压维持在很低(约20V以下)时就可以维持其在低阻高通状态,起到吸收浪涌保护后级设备的作用。半导体放电管的保护机理和应用方式和气体放电管相同。半导体放电管动作电压控制精确,通流量较小。 放电管动作后只需要很低的电压即可维持其低阻状态,所以放电管属于开关型的SPD。当正常工作时放电管上的漏电流可忽略不计;击穿后的稳定残压低,保护效果较好;耐流能力较大;在使用中应注意放电管的续流作用遮断,在适当场合中应有有效的续流遮断装置。 气体放电管 气体放电管:气体放电管由封装在小玻璃管或陶瓷管中相隔一定距离的两个电极组成;其电气性能主要取决于气体压力,气体种类,电极距离和电极材料;一般密封在放电管中的气体为高纯度的惰性气体。放电管主要由:电极、陶瓷管(玻璃管)、导电带、电子粉、Ag-Cu 焊片和惰性气体组成。 在放电管的两电极上施加电压时,由于电场作用,管内初始电子在电场作用下加速运动,与气体分子发生碰撞,一旦电子达到一定能量时,它与气体分子碰撞时发生电离,即中性气体分子分离成电子和阳离子,电离出来的电子与初始电子在行进过程中还要不断地再次与气体分子碰撞发生电离,从而电子数按几何级数增加,即发生电子雪崩现象,另外,电离出来的阳离子也在电场作用下向阴极运动,与阴极表面发生碰撞,产生二次电子,二次电子也参加电离作用,一旦满足: r(ead-1)=1 时放电管由非自持放电过渡到自持放电,管内气体被击穿,放电管放电,此时放电电压称为击穿电压Vs。其中,r表示一个正离子轰击阴极表面而

气体放电管介绍及使用注意事项

气体放电管介绍及使用注意事项 气体放电管 气体放电管包括二极管和三极管,电压范围从75V—3500V,超过一百种规格,严格按照CITEL标准进行生产、监控和管理。放电管常用于多级保护电路中的第一级或前两级,起泄放雷电暂态过电流和限制过电压作用。 气体放电管包括贴片、二极管和三极管,电压范围从75V—3500V,超过一百种规格,严格按照CITEL标准进行生产、监控和管理。 放电管常用于多级保护电路中的第一级或前两级,起泄放雷电暂态过电流和限制过电压作用。 优点:绝缘电阻很大,寄生电容很小,浪涌防护能力强。 缺点:在于放电时延(即响应时间)较大,动作灵敏度不够理想,部分型号会出现续流现象,长时间续流会导致失效,对于波头上升陡度较大的雷电波难以有效地抑制。 结构简介 放电管的工作原理是气体放电。 当外加电压增大到超过气体的绝缘强度时,两极间的间隙将放电击穿,由原来的绝缘状态转化为导电状态,导通后放电管两极之间的电压维持在放电弧道所决定的残压水平。 五极放电管的主要部件和两极、三极放电管基本相同,有较好的放电对称性,可适用于多线路的保护。(常用于通信线路的保护) 注意事项 接地连线应当具有尽量短的长度 接地连线应具有足够的截面,以泄放暂态大电流。 放电管的失效模式 放电管受到机械碰撞,超耐受的暂态过电压多次冲击以及内部出现老化后,将发生故障。 故障的模式(即失效模式)有两种:

第一种是呈现低放电电压和低绝缘电阻状态;第二种是呈现高放电电压状态。 开路故障模式比短路故障模式具有更大的危害性: 开路故障模式令人难以及时察觉,从而不能采取补救措施。 现在的电源SPD产品中,带有失效报警装置,如声,光报警,颜色变化提示等,这些措施的采取对于及时发现和更换已经失效的SPD是有利的。 透明的容器(当然常见的是玻璃)中充有某种低压气体。在这气体中放电,会有特殊的现象。比如柔光,弧光,闪光。 导体中的游离电荷是电子承载的,电子是带负电的。当然要从阴极射出。 本文由深圳市瑞隆源电子有限公司提供,专业制造各种防雷器,避雷器,放电管,陶瓷气体放电管等。TEL=+86-755-82908296。

X射线球管工作原理

X 射线球管工作原理 分析文档 ;. .

目录 文档说明 (3) 一.X 射线的产生 (4) 二.固定阳极管 (4) 三.旋转阳极管 (5) 四.X 线管的基本特性 (6) 五.特殊X 线管 (7) 1. 三级X 线管 (8) 2. 金属陶瓷大功率X 线管 (8) 3. 软组织摄影用X 线管 (8) ;. .

文档说明;. .

;. 一.X 射线的产生 在高度真空的X 射线管中产生的,是高速电子与阳极靶面相互作用的结果。高速电子与 核电场作用形成辐射,产生一束连续X 线,X 线由于波长短、能量大,穿透作用强,将 穿过X 管壁、油层、滤过板而射向人体,用作治疗或诊断。 高速电子与带有一定夹角的阳极靶面撞击,产生的X 射线通过X 射线出口进入束光器 供医疗使用,如图所示。 束光器又称缩光器,主要作用:(1)指示投照中心和照射野的大小。(2)避免不必要的X 线照射。(3)吸收散射线,提高影像清晰度。 X 线的产生效率随管电流和靶材料原子序数的增加而成正比例增加。管电压不仅影响X 线的量,也影响X 线的质。X 线产生的效率比较低,同时X 线的利用率也比较低。通常, 在X 线诊断和治疗中,从X 线管窗口射出被利用的那一部分射线,仅占阳极靶面产生X 线额10%以下,其余90%以上的X 线都被X 线管的管壁和管套吸收或散射掉了。 通常,X 线管可分为固定阳极管和旋转阳极管。 二.固定阳极管 固定阳极管X 线管的结构由(阳极)、(阴极)和(玻璃壳)三个部分组成,如图所示: 阳极由靶面、铜体、阳极罩、阳极柱 4 部分组成。作用是产生X 射线、散热、吸收二 次电子和散射线。阳极柱由紫铜制成,将铜体引出管外,通过与油之间的热传导把热量传导 出去。 阴极由灯丝和集射罩组成。作用:发射电子和聚焦,使打在靶面的电子束具有一定的形 状和大小,形成X 线管的焦点。灯丝由钨制成,用来发射电子。调节灯丝温度即可调节管 电流,从而调节X 射线的量。但是灯丝点燃时间越长,工作温度越高,蒸发速度越快,灯 丝寿命越短。 ;. .

气体放电管和压敏电阻组合构成的抑制电路原理

气体放电管和压敏电阻组合构成的抑制电路原理 上传者:dolphin 由于压敏电阻(VDR)具有较大的寄生电容,用在交流电源系统,会产生可观的泄漏电流,性能较差的压敏电阻使用一段时间后,因泄漏电流变大可能会发热自爆。为解决这一问题在压敏电阻之间串入气体放电管。图1 中,将压敏电阻与气体放电管串联,由于气体放电管寄生电容很小,可使串联支路的总电容减至几个pF。在这个支路中,气体放电管将起一个开关作用,没有暂态电压时,它能将压敏电阻与系统隔开,使压敏电阻几乎无泄漏电流。但这又带来了缺点就是反应时间为各器件的反应时间之和。例如压敏电阻的反应时间为25ns,气体放电管的反应时间为100ns,则图2 的R2、G、R3 的反应时间为150ns,为改善反应时间加入R1 压敏电阻,这样可使反应时间为25ns。 金属氧化物压敏电阻(MOV)的电压-电流特性见图3,金属氧化物压敏电阻(MOV)特性参数见表1。气体放电管(GDT)的电压-电流特性见图4,气体放电管(GDT)特性参数见表2。

金属氧化物压敏电阻(MOV)特性参数 由于浪涌干扰所致,一旦加在气体放电管两端的电压超过火花放电电压(图4 的u1)时,放电管内部气体被电离,放电管开始放电。放电管端的压降迅速下降至辉光放电电压(图4 的u2)(u2 在表2 中的数值为140V 或180V,与管子本身的特性有关),管内电流开始升高。随着放电电流的进一步增大,放电管便进入弧光放电状态。在这种状态下,管子两端电压(弧光电压)跌得很低(图4的u3)(u3 在表2 中数值为15V 或20V,与管子本身的特性有关),且弧光电压在相当宽的电流变动范围(从图4 的i1→i2 过程中)内保持稳定。因此,外界的高电压浪涌干扰,由于气体放电管的放电作用,被化解成了低电压和大电流的受保护情况(u3 和i2),且这个电流(从图4 的i2→i3)经由气体放电管本身流回到干扰源里,免除了干扰对灯具可能带来的危害。随着浪涌过电压的消退,流过气体放电管的电流降到维持弧光放电状态所需的最小值以下(约为10mA~100mA,与管子本身的特性关),弧光放电便停止,并再次通过辉光放电状态后,结束整个放电状态(熄弧)。

GDT气体放电管2RXXXL-5.5×6参数

2RXXXL-5.5×6 Series Features ●Size:5.5mm*6mm ●Stable breakdown voltage. ●High insulation resistance. ●Low capacitance (≤1pF) ●High holdover voltage ●Storage and operational temperature: -40℃~ +90℃●UL Certificate Number:E511538Applications ●Transient Voltage Surge Suppression(TVSS) ●Cable Telephone Product ●Modems/Cable Modems ●Broadband/CATV/Coaxial Protectors ●Communication Lines ●Power Supplies Specification Status:Draft (mm) Electrical Characteristics (TA = 25 °C unless otherwise noted) Part Number DC Breakdown Voltage Tolerance Impulse Spark-over Voltage Impulse Discharge Current 10hits(5hits each polarity) AC Discharge Current 5 hits Insulation Resistance* Capacitance 100V/s of Vs 1kv/μs8/20μs50Hz GΩ1MHz 2R075L-5.5×6 75V ±20% ≤600V 5KA 5A ≥10 ≤1pF 2R090L-5.5×6 90V ±20% ≤600V 5KA 5A ≥10 ≤1pF 2R150L-5.5×6 150V ±20% ≤600V 5KA 5A ≥10 ≤1pF 2R200L-5.5×6 200V ±20% ≤700V 5KA 5A ≥10 ≤1pF 2R230L-5.5×6 230V ±20% ≤700V 5KA 5A ≥10 ≤1pF 2R300L-5.5×6 300V ±20% ≤900V 5KA 5A ≥10 ≤1pF 2R350L-5.5×6 350V ±20% ≤1000V 5KA 5A ≥10 ≤1pF 2R400L-5.5×6 400V ±20% ≤1000V 5KA 5A ≥10 ≤1pF 2R470L-5.5×6 470V ±20% ≤1200V 5KA 5A ≥10 ≤1pF 2R600L-5.5×6 600V ±20% ≤1400V 5KA 5A ≥10 ≤1pF 2R1000L-5.5×6 1000V ±20% ≤2000V 3KA 3A ≥1 ≤1pF 2R2000L-5.5×6 2000V ±20% ≤2700V 2KA 2A ≥1 ≤1pF 1)At delivery AQL 0.65 leave ⅡMilitary Standard 105 E. 2)In ionized mode 3)Test according to ITU-T Rec.k.12 1

气体放电管基础知识教学提纲

2.1气体放电管 2.1.1简介 气体放电管是在放电间隙内充入适当的气体介质,配以高活性的电子发射材料及放电引燃机构,通过银铜焊料高温封接而制成的一种特殊的金属陶瓷结构的气体放电器件。它主要用于瞬时过电压保护,也可作为点火开关。在正常情况下,放电管因其特有的高阻抗(>1000MΩ)及低电容 (<2pF)特性,在它作为保护元件接入线路中时,对线路的正常工作几乎没有任何不利的影响。当有害的瞬时过电压窜入时,放电管首先被击穿放电,其阻抗迅速下降,几乎呈短路状态,此时,放电管将有害的电流通过地线或回路泄放,同时将电压限制在较低的水平,消除了有害的瞬时过电压和过电流,从而保护了线路及元件。当过电压消失后,放电管又迅速恢复到高阻抗状态,线路继续正常工作。 气体放电管是一种间隙式的防雷保护元件,它在通信系统的防雷保护中已获得了广泛应用。放电管常用于多级保护电路中的第一级或前两级,起泄放雷电暂态过电流和限制过电压作用。由于放电管的极间绝缘电阻很大,寄生电容很小,对高频电子线路的雷电防护具有明显的优势。 气体放电管的基本特点是:通流量容量大,绝缘电阻高,漏电流小。但残压高,反应时间慢(≤100ns),动作电压精度较低,有续流现象。 Figure 1气体放电外观图 2.1.2气体放电的伏安特性 气体放电管的伏安特性通常与管子的哪些电极间施加什么极性的电压没有关系。现以一个直流放电电压为150V的二极放电管为例,来说明放电管伏安特性的基本特征。下图是按电子元件伏安特性的惯用画法,即以电压为自便量,画作横坐标;以电流为应变量,画作纵坐标。由于电流的范围很大,其变化常达几个数量级,所以电流用对数坐标表示。 如图所示的伏安特性上,当逐渐增加两电极间的电压时,放电管在A点放电,A点的电压称为放电管的直流放电电压。在A到B之间的这段伏安特性上,其斜率(即动态电阻du/di)是负的,称为负阻区。如果200V的直流电压源经1MΩ的电阻加到放电管上,放电管即工作在此区间,这时的放电具有闪变特征。BC段为正常辉光放电区,在此区间内电压基本不随电流而变,当辉光覆盖整个阴极表面时,电流再增加,电压也不增加。CD段称为异常辉光放电区。直流放电电压为90V~300V放电管,其辉光放电区BD的最大电流一般在0.2A~1.5A 之间。当电流增加到足够大时放电E点突然进入电弧放电区,即使是同一个放电管,放电由辉光转入电弧时的电流值也是不能精确重复的。在电弧放电时,处在电场中加速了的正离子轰击阴极表面,阴极材料被溅射到管壁上,阴极被烧蚀,使间隙距离增加,管壁绝缘变坏。在采用合适的材料后,放电管可以做到导通10KA、8/20μs电流数百次。在电弧区,放电管

陶瓷气体放电管及其主要参数

关于陶瓷气体放电管及其主要参数 放大器和光接收机的信号输入、输出接线柱上,通常都和“地”之间接一只陶瓷气体放电管,用以避雷和防止干扰脉冲损坏放大模块、光接收组件。当发生钢绞线和电源线相碰的事故以后,由于陶瓷气体放电管击穿放电持续时间比较长,内部的电极往往融化失效,损坏的比例极高;遭雷击时,也会有较高比例的陶瓷气体放电管损坏。损坏的陶瓷气体放电管有一部分引脚烧断、或短路,比较容易发现和检出,但是有相当一部分从外表上看不出来,也没有短路,维修人员往往以为好的而没有将其更换。 损坏的陶瓷气体放电管在修理时必须更换新管,否则,这些光光接收机和放大器极容易遭雷击和脉冲干扰危害而引起放大模块和光接收组件损坏!许多各地同仁反应,修理过的光接收机和放大器比较容易再次损坏,其中最主要的原因就可能就是损坏的陶瓷气体放电管没有更换! 更换陶瓷气体放电管时必须注意换进原来型号的管子,因为不同型号的陶瓷气体放电管的性能参数是不一样的。 下面简要介绍陶瓷气体放电管的基本结构和基本特性,并附表列出两个厂家的产品参数供同仁参考。 陶瓷气体放电管内部有二个相对的针柱形金属电极,每个电极由支架和敷了钡(容易发射电子)的钨丝所组成,极间距离1.2mm左右(因此是互相绝缘的),放电管内部涂有氧化钠和消气剂,充有80~200毫米汞柱的氖气或氩气。有线电视上用的陶瓷放电管的极间电容通常≤2pf,因此它接在光接收机、放大器的信号输出、输入端子上对信号影响极微;陶瓷放电管的击穿放电时间通常≤2微妙(10-6s级),比雷击电流数十微妙的波头时间要短些,因此能保护器件免遭雷击。但是两者的时间处于同一个数量级,而且差距很小,因此陶瓷放电管一定要直接接在光接收机、放大器的信号输出、输入端子上,中间不可有电感线圈隔着,否则会造成延时,致使雷击电流波头电流到达之前不能导通放电,达不到防雷保护的作用。 另一种防雷器件叫“压敏电阻”,它的击穿放电时间通常达到10-8s级,比陶瓷气体放电管要快二个数量级,因此是很好的防雷器件,广泛用于交流电源电路的防雷保护。但是它不能代替接在光接收机、放大器信号输入、输出接线柱上的陶瓷气体放电管。因为压敏电阻存在几十微安的漏电流,极间电容也大,取代进去会造成信号损失等问题。 陶瓷气体放电管规格型号和参数 主要用于有线电视、长话、市话程控交换设备及各种电子、电器设备的防雷、防过电压保护。

常用全系列场效应管MOS管型号参数封装资料

场效应管分类DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET DISCRETE MOS FET 型号简介封装2N7000 2N7002 IRF510A IRF520A IRF530A IRF540A IRF610A IRF620A IRF630A IRF634A IRF640A IRF644A IRF650A IRF654A IRF720A 60V,0.115A 60V,0.2A 100V,5.6A 100V,9.2A 100V,14A 100V,28A 200V,3.3A 200V,5A 200V,9A 250V,8.1A 200V,18A 250V,14A 200V,28A 250V,21A 400V,3.3A TO-92 SOT-23 TO-220 TO-220 TO-220 TO-220 TO-220 TO-220 TO-220 TO-220 TO-220 TO-220 TO-220 TO-220 TO-220

DISCRETE MOS FET IRF730A 400V,5.5A TO-220 DISCRETE MOS FET IRF740A 400V,10A TO-220 DISCRETE MOS FET IRF750A 400V,15A TO-220 DISCRETE MOS FET IRF820A 500V,2.5A TO-220 DISCRETE MOS FET IRF830A 500V,4.5A TO-220 DISCRETE MOS FET IRF840A 500V,8A TO-220 DISCRETE MOS FET IRF9520 DISCRETE MOS FET IRF9540 DISCRETE MOS FET IRF9610 DISCRETE MOS FET IRF9620 DISCRETE MOS FET IRFP150A 100V,43A TO-3P DISCRETE MOS FET IRFP250A 200V,32A TO-3P DISCRETE MOS FET IRFP450A 500V,14A TO-3P DISCRETE MOS FET IRFR024A 60V,15A D-PAK DISCRETE MOS FET IRFR120A 100V,8.4A D-PAK TO-220 TO-220 TO-220 TO-220

陶瓷气体放电管工作原理及选型应用

陶瓷气体放电管工作原理及选型应用 、产品简述 陶瓷气体放电管(Gas Tube)是防雷保护设备中应用最广泛的一种开关器件,无论是交直流电源的防雷还是各种信号电路的防雷,都可以用它来将雷电流泄放入大地。其主要特点是:放电电流大,极间电容小(≤3pF),绝缘电阻高(≥109Ω),击穿电压分散性较大(±20%),反应速度较慢(最快为0.1~0.2μs)。按电极数分,有二极放电管和三极放电管(相当于两个二极放电管串联)两种。其外形为圆柱形,有带引线和不带引线两种结构形式(有的还带有过热时短路的保护卡)。 2、工作原理 气体放电管由封装在充满惰性气体的陶瓷管中相隔一定距离的两个电极组成。 其电气性能基本上取决于气体种类、气体压力以及电极距离,中间所充的气体主要是氖或氩, 并保持一定压力,电极表面涂以发射剂以减少电子发射能。这些措施使得动作电压可以调整(一般是70伏到几千伏),而且可以保持在一个确定的误差范围内。当其两端电压低于放电电压时,气体放电管是一个绝缘体(电阻Rohm>100MΩ)。当其两端电压升高到大于放电电压时,产生弧光放电,气体电离放电后由高阻抗转为低阻抗, 使其两端电压迅速降低,大约降几十伏。气体放电管受到瞬态高能量冲击时,它能以10-6秒量级的速度,将其两极间的高阻抗变为低阻抗,通过高达数十千安的浪涌电流。 3、特性曲线

Vs导通电压,Vg辉光电压,Vf弧光电压,Va熄弧电压 4、主要特性参数 ①直流击穿电压Vsdc:在放电管上施加100V/s的直流电压时的击穿电压值。这是放电管的标称电压,常用的有90V、150V、230V、350V、470V、600V、800V 等几种,我们有最高3000V、最低70V的。其误差范围:一般为±20%,也有的为±15%。 ②脉冲(冲击)击穿电压Vsi:在放电管上施加1kV/μs的脉冲电压时的击穿电压值。因反应速度较慢,脉冲击穿电压要比直流击穿电压高得多。 陶瓷气体放电管对低上升速率和高上升速率电压的响应如下图所示。

常用场效应管参数大全

常用场效应管参数大全 型号材料管脚用途参数 3DJ6NJ 低频放大20V0.35MA0.1W 4405/R9524 2E3C NMOS GDS 开关600V11A150W0.36 2SJ117 PMOS GDS 音频功放开关400V2A40W 2SJ118 PMOS GDS 高速功放开关140V8A100W50/70nS0.5 2SJ122 PMOS GDS 高速功放开关60V10A50W60/100nS0.15 2SJ136 PMOS GDS 高速功放开关60V12A40W 70/165nS0.3 2SJ143 PMOS GDS 功放开关60V16A35W90/180nS0.035 2SJ172 PMOS GDS 激励60V10A40W73/275nS0.18 2SJ175 PMOS GDS 激励60V10A25W73/275nS0.18 2SJ177 PMOS GDS 激励60V20A35W140/580nS0.085 2SJ201 PMOS n 2SJ306 PMOS GDS 激励60V14A40W30/120nS0.12 2SJ312 PMOS GDS 激励60V14A40W30/120nS0.12 2SK30 NJ SDG 低放音频50V0.5mA0.1W0.5dB 2SK30A NJ SDG 低放低噪音频50V0.3-6.5mA0.1W0.5dB 2SK108 NJ SGD 音频激励开关50V1-12mA0.3W70 1DB 2SK118 NJ SGD 音频话筒放大50V0.01A0.1W0.5dB 2SK168 NJ GSD 高频放大30V0.01A0.2W100MHz1.7dB 2SK192 NJ DSG 高频低噪放大18V12-24mA0.2W100MHz1.8dB 2SK193 NJ GSD 高频低噪放大20V0.5-8mA0.25W100MHz3dB 2SK214 NMOS GSD 高频高速开关160V0.5A30W 2SK241 NMOS DSG 高频放大20V0.03A0.2W100MHz1.7dB 2SK304 NJ GSD 音频功放30V0.6-12mA0.15W 2SK385 NMOS GDS 高速开关400V10A120W100/140nS0.6 2SK386 NMOS GDS 高速开关450V10A120W100/140nS0.7 2SK413 NMOS GDS 高速功放开关140V8A100W0.5 (2SJ118) 2SK423 NMOS SDG 高速开关100V0.5A0.9W4.5 2SK428 NMOS GDS 高速开关60V10A50W45/65NS0.15 2SK447 NMOS SDG 高速低噪开关250V15A150W0.24可驱电机2SK511 NMOS SDG 高速功放开关250V0.3A8W5.0 2SK534 NMOS GDS 高速开关800V5A100W4.0 2SK539 NMOS GDS 开关900V5A150W2.5 2SK560 NMOS GDS 高速开关500V15A100W0.4 2SK623 NMOS GDS 高速开关250V20A120W0.15 2SK727 NMOS GDS 电源开关900V5A125W110/420nS2.5 2SK734 NMOS GDS 电源开关450V15A150W160/250nS0.52 2SK785 NMOS GDS 电源开关500V20A150W105/240nS0.4 2SK787 NMOS GDS 高速开关900V8A150W95/240nS1.6 2SK790 NMOS GDS 高速功放开关500V15A150W0.4 可驱电机

气体放电管简介

气体放电管简介 气体放电管是一种间隙式的防雷保护元件,它在通信系统的防雷保护中已获得了广泛应用。放电管常用于多级保护电路中的第一级或前两级,起泄放雷电暂态过电流和限制过电压作用。由于放电管的极间绝缘电阻很大,寄生电容很小,对高频电子线路的雷电防护具有明显的优势。放电管保护特性的不足之处在于其放电时延较大,动作灵敏度不够理想,对于波头上升陡度较大的雷电波难以有效地抑制。为了改善放电管的保护特性,先进的制造工艺正应用于放电管新型产品的开发中,随着保护特性的不断改善,放电管在电子设备与电子系统防雷保护应用中的适应性正在增强。 第一节结构简介 放电管的工作原理是气体放电。当放电管两级之间施加一定压力时,便在极间产生不均匀电场,在此电场作用下,管内气体开始游离,当外加电压增大到使极间场强超过气体的绝缘强度时,两极之间间隙将放电击穿,由原来的绝缘状态转化为导电状态,导通后放电管两极之间的电压维持在放电弧道所决定的残压水平,这种残压一般很低,从而使得与放电管并联的电子设备免受过电压的损坏。 早期的放电管是以玻璃作为管子的封装外壳,现已改用陶瓷作为封装外壳,放电管内充入电器性能稳定的惰性气体(如氩气和氖气等),放电电极一般为两个、三个或五个,电极之间由惰性气体隔开。按电极个数的设置来划分,放电管可分为二极、三极和五极放电管。图1给出了一个陶瓷二极放电管的结构示意图,它由纯铁电极、镍铬钴合金帽、银铜焊帽和陶瓷管体等主要部件构成。管内放电电极上涂敷有放射性氧化物,管内内壁也涂敷有放射性元素,用于改善放电特性。放电电极主要有针形和杯形两种结构,在针形电极的放电管中,电极与管体壁之间还要加装一个圆筒热屏,该热屏可以使陶瓷管体受热趋于均匀,不致出现局部过热而引起管断裂。热屏内也涂敷放射性氧化物,以进一步减小放电分散性。在杯形电极的放电管中,杯口处装有钼网,杯内装有铯元素,其作用也是减小放电分散性。图-2给出了一个三极放电管的结构示意图,它也是由纯铁电极、镍铬钴合金帽、银铜焊帽和陶瓷管体等主要部件构成。与二极放电管不同,在三极放电管中增加了镍铬钴合金圆筒,作为第三电极,即接地电极。五极放电管的主要部件与二、三极放电管基本相同,它具有较好的放电对称性,可适合于多线路的保护。 1—陶瓷管2—银铜焊帽 3—金属管帽 1—银铜焊帽2—金属管帽 2—接地电极4—电极引线 5—陶瓷管 图1陶瓷二级放电管结构示意图 图2三级放电管结构示意图 第二节伏安特性 气体放电管的伏安特性通常与管子的哪些电极间施加什么极性的电压没有关系。现以一个直流放电电压为150V的二极放电管为例,(其伏安特性如图3所示),来说明放电管伏安特性的基本特征。图3是按电子元件伏安特性的惯用画法,即以电压为自便量,画作横坐标;以电流为应变量,画作纵坐标。由于电流的范围很大,其变化常达几个数量级,所以电流用对数坐标表示。 在图3所示的伏安特性上,当逐渐增加两电极间的电压时,放电管在A点放电,A点的电压称为放电管的直流放电电压。在A到B之间的这段伏安特性上,其斜率

放电管介绍及选型(详解)

放电管介绍及选型(详解)

放电管特性及选用 吴清海 放电管的分类 放电管主要分为气体放电管和半导体放电管,其中气体放电管由烧结的材料不同分为玻璃气体放电管和陶瓷气体放电管,玻璃气体放电管和陶瓷气体放电管具有相同的特性。 气体放电管主要有密封的惰性气体组成,由金属引线引出,用陶瓷或是玻璃进行烧结。其工作原理为,当加在气体放电管两端的电压达到气体电离电压时,气体放电管由非自持放电过度到自持放电,放电管呈低阻导通状态,可以瞬间通过较大的电流,气体放电管击穿后的维持电压可以低到30V以内。气体放电管同流量大,但动作电压较难控制。 半导体放电管由故态的四层可控硅结构组成,当浪涌电压超过半导体放电管的转折电压V BO 时放电管开始动作,当放电管动作后在返送装置,的作用下放电管两端的电压维持在很低(约20V以下)时就可以维持其在低阻高通状态,起到吸收浪涌保护后级设备的作用。半导体放电管的保护机理和应用方式和气体放电管相同。半导体放电管动作电压控制精确,通流量较小。

放电管动作后只需要很低的电压即可维持其低阻状态,所以放电管属于开关型的SPD。当正常工作时放电管上的漏电流可忽略不计;击穿后的稳定残压低,保护效果较好;耐流能力较大;在使用中应注意放电管的续流作用遮断,在适当场合中应有有效的续流遮断装置。 气体放电管 气体放电管:气体放电管由封装在小玻璃管或陶瓷管中相隔一定距离的两个电极组成;其电气性能主要取决于气体压力,气体种类,电极距离和电极材料;一般密封在放电管中的气体为高纯度的惰性气体。放电管主要由:电极、陶瓷管(玻璃管)、导电带、电子粉、Ag-Cu焊片和惰性气体组成。 在放电管的两电极上施加电压时,由于电场作用,管内初始电子在电场作用下加速运动,与气体分子发生碰撞,一旦电子达到一定能量时,它与气体分子碰撞时发生电离,即中性气体分子分离成电子和阳离子,电离出来的电子与初始电子在行进过程中还要不断地再次与气体分子碰撞发生电离,从而电子数按几何级数增加,即发生

气体放电管

气体放电管 气体放电管是一种开关型保护器件,图是气体放电管的原理图符号。 气体放电管的工作原理是气体放电。当两极间的电压足够大时,极间间隙将被放电击穿,由原来的绝缘状态转化为导电状态,类似短路。导电状态下两极间维持的电压很低,一般在20~50V之间,因此可以起到保护后级电路的效果。气体放电管的主要指标有响应时间、直流击穿电压、冲击击穿电压、通流容量、绝缘电阻、极间电容及续流遮断时间。 气体放电管的响应时可以达到数百ns以至数s,在保护器件中是最慢的。当线缆上的雷击过电压使防雷器中的气体放电管击穿短路时,初始的击穿电压基本为气体放电管的冲击击穿电压,一般在600V 以上。放电管击穿导通后,两极间维持电压下降到20~50V。另一方面,气体放电管的通流量比压敏电阻和TVS管要大。气体放电管与TVS等保护器件合用时应使大部分的过电流通过气体放电管泄放,因此气体放电管一般用于保护电路的最前级,其后级的保护电路由压敏电阻或TVS管组成。这两种器件的响应时间很快,对后级电路的保护效果更好。气体放电管的绝缘电阻非常高,可以达到千兆欧姆的量级。极间电容的值非常小,一般在5pF以下。极间漏电流非常小,为nA 级。因此气体放电管并接到线路上对线路基本不会构成什么影响。

气体放电管的续流遮断是设计电路需要重点考虑的一个问题。如前所述,气体放电管在导电状态下续流维持电压一般为20~50V。在直流电源电路中应用时,如果两线间电压超过15V,则不可以在两线间直接应用放电管,在50Hz交流电源电路中使用时,虽然交流电压有过零点,可以实现气体放电管的续流遮断,但气体放电管类的器件在经过多次导电击穿后,其续流遮断能力将大大降低,长期使用后,在交流电路的过零点也不能实现续流遮断。因此,在交流电源电路的相线对保护地线、中线对保护地线单独使用气体放电管是不合适的。在以上的线对之间使用气体放电管时需要与压敏电阻串联。在交流电源电路的相线对中线的保护中基本不使用气体放电管。 在防雷电路的设计中,应注重气体放电管的直流击穿电压、冲击击穿电压、通流容量等参数值的选取。设置在普通交流线路上的放电管,要求它在线路正常运行电压及其允许的波动范围内不能动作,则它的直流放电电压应满足:min(Ufdc) 1.8 U。式中,Ufdc为直 P 流击穿电压;min(Ufdc)为直流击穿电压的最小值; U为线路正常 P 运行电压的峰值。 气体放电管主要可应用在交流电源口相线、中线的对地保护,直流电源口的工作地和保护地之间的保护,信号口中线对地的保护,射频信号馈线芯线对屏蔽层的保护。 气体放电管的失效模式在多数情况下为开路,因电路设计原因或其他因素导致放电管长期处于短路状态而被烧坏时,也可引起短路的失效模式。气体放电管使用寿命相对较短,以多次冲击后性会下降。

常用X线球管参数

国产医用X 光球管 球 管 型 号 替代型号 备 注 XD1 XD1-3/100 配 30mA 机 XD2 XD2-1 , 4/85 配 10mA , 15mA 机 XD3 XD3-3 , 5/100 配 50mA 单焦点机 XD4-2 XD4-2 , 9/100 配 100mA , 200mA 固定机 XD6 XD6-1.1 , 3.5/100 配 50mA 双焦点机 XD7 XD7-1.05/35 配乳腺机 XD12 XD12-0.56/70 配 牙科光机 XZ1 XZ1-4/250 深 部治疗机 XD55 XD55-10.2/125 配 100maX 线立 透机 KL74-1/2-100 XD51-20,40/100 E7239 配 200maX 线 机 KL74-1/2-125 XD51-20, 40/125 , RAD-8,DRX- 1403/1603 配 300maX 线 机 KL74-1/2-125S XD51-20,40/125S X40S ,E7239 配 300maX 线 机 KL90-1/2-125 XD52-30,50/125 配进口 500maX 线机 KL90-1/2-150 XD52-30,50/150 配进口 500maX 线机 KL90-0.3/1.2-150 XD52-10,40/150 配进口 500maX 线机 KL74-0.6/1.2-150H XD51-20,40/150RAD-68 , A132 配 进口 500maX 线 机 KL90-0.6/1.2-150H P18C , SR033 , XH03 , E7252 配进口 500ma800maX 线机 kL80-0.3/1.2-125 RAD-14 , DRX-1725 , E7299 小焦点 KL100-0.6/1.2-150H RAD21 , P38C , E7254 , DRX3724/0324 , A192 配进口 500mA 800mAX 线机

常用场效应管型号参数管脚识别及检测表

. 常用场效应管型号参数管脚识别及检测表 场效应管管脚识别 场效应管的检测和使用 场效应管的检测和使用一、用指针式万用表对场效应管进 行判别 (1)用测电阻法判别结型场效应管的电极 根据场效应管的PN结正、反向电阻值不一样的现象,可以 判别出结型场效应管的三个电极。具体方法:将万用表拨在R×1k档上,任选两个电极,分别测出其正、反向电阻值。当某两个电极的正、反向电阻值相等,且为几千欧姆时,则该两个电极分别是漏极D和源极S。因为对结型场效应管而言,漏极和源极可互换,剩下的电极肯定是栅极G。也可以将万用表的黑表笔(红表笔也行)任意接触一个电极,另一只表笔依次去接触其余的两个电极,测其电阻值。当出现两次测得的电阻值近似相等时,则黑表笔所接触的电极为栅极,其余两电极分别为漏极和源极。若两次测出的电阻值均很大,说明是PN结的反向,即都是反向电阻,可以判定是N沟道场效应管,且黑表笔接的是栅极;若两次测出的电阻值均很小,说明是正向PN结,即是正向电阻,判定为P沟道场效应管,黑表笔接的也是栅极。若不出现上述情况,可以调换黑、红表笔按上述方法进行测试,直到判别出栅极为止。

1 / 19 . (2)用测电阻法判别场效应管的好坏 测电阻法是用万用表测量场效应管的源极与漏极、栅极与源极、栅极与漏极、栅极G1与栅极G2之间的电阻值同场效 应管手册标明的电阻值是否相符去判别管的好坏。具体方法:首先将万用表置于R×10或R×100档,测量源极S与漏 极D之间的电阻,通常在几十欧到几千欧范围(在手册中可知,各种不同型号的管,其电阻值是各不相同的),如果测 得阻值大于正常值,可能是由于内部接触不良;如果测得阻值是无穷大,可能是内部断极。然后把万用表置于R×10k档,再测栅极G1与G2之间、栅极与源极、栅极与漏极 之间的电阻值,当测得其各项电阻值均为无穷大,则说明管是正常的;若测得上述各阻值太小或为通路,则说明管是坏的。要注意,若两个栅极在管内断极,可用元件代换法进行检测。 (3)用感应信号输人法估测场效应管的放大能力 具体方法:用万用表电阻的R×100档,红表笔接源极S, 黑表笔接漏极D,给场效应管加上1.5V的电源电压,此时 表针指示出的漏源极间的电阻值。然后用手捏住结型场效应管的栅极G,将人体的感应电压信号加到栅极上。这样,由于管的放大作用,漏源电压VDS和漏极电流Ib都要发生变化,也就是漏源极间电阻发生了变化,由此可以观察到表针

半导体放电管和气体放电管的基础知识

半导体放电管和气体放电管的基础知识 气体放电管的结构及特性 开放型气体放电管放电通路的电气特性主要取决于环境参数,因而工作的稳定性得不到保证。为了提高气体放电管的工作稳定性,目前的气体放电管大都采用金属化陶瓷绝缘体与电极进行焊接技术,从而保证了封接的外壳与放电间隙的气密性,这就为优化选择放电管中的气体种类和压力创造了条件,气体放电管内一般充电极有氖或氢气体。气体放电管的各种电气特性,如直流击穿电压、冲击击穿电压、耐冲击电流、耐工频电流能力和使用寿命等,能根据使用系统的要求进行调整优化。这种调整往往是通过改变放电管内的气体种类、压力、电极涂敷材料成分及电极间的距离来实现的。气体放电管有二极放电管及三极放电管两种类型。有的气体放电管带有电极引线,有的则没有电极引线。从结构上讲,可将气体放电管看成一个具有很小电容的对称开关,在正常工作条件下它是关断的,其极间电阻达兆欧级以上。当浪涌电压超过电路系统的耐压强度时,气体放电管被击穿而发生弧光放电现象,由于弧光电压低,仅为几十伏,从而可在短时间内限制了浪涌电压的进一步上升。气体放电管就是利用上述原理来限制浪涌电压,对电路起过压保护作用的。 随着过电压的降低,通过气体放电管的电流也相应减少。当电流降到维持弧光状态所需的最小电流值以下时,弧光放电

停止,放电管的辉光熄灭。气体放电管主要用来保护通信系统、交通信号系统、计算机数据系统以及各种电子设备的外部电缆、电子仪器的安全运行。气体放电管也是电路防雷击及瞬时过压的保护元件。气体放电管具有载流能力大、响应时间快、电容小、体积小、成本低、性能稳定及寿命长等特点;缺点是点燃电压高,在直流电压下不能恢复截止状态,不能用于保护低压电路,每次经瞬变电压作用后,性能还会下降。 半导体放电管也称固体放电管是一种PNPN元件,它可以被看作一个无门电极的自由电压控制的可控硅,当电压超过它的断态峰值电压或称作雪崩电压时,半导体放电管会将瞬态电压箝制到元件的开关电压或称转折电压值之内。电压继续增大时,半导体放电管由于负阻效应进入导通状态。只有在当电流小于维持电流时,元件才会复位并恢复到它的高阻抗状态。半导体放电管的优点包括它的快速响应时间,稳定的电气性能参数以及长期使用的可靠性。其响应速度是气体放电管的千分之一,而寿命是气体放电管的10倍以上。半导体放电管是负阻元件,其能量转移特性使之不会被高电压是你坏。这一点是远胜于TVS二极管的。另一方面,半导体放电管也能做到较高的浪涌电流和很低的电容值。 半导体放电管主要用作电子通讯和数据通讯电路的首级和二级过电压保护器。一、半导体放电管的结构和工作原理

常用场效应管参数大全 (2)

型号材料管脚用途参数 IRFP9140 PMOS GDS 开关 100V19A150W100/70nS0.2 IRFP9150 PMOS GDS 开关 100V25A150W160/70nS0.2 IRFP9240 PMOS GDS 开关 200V12A150W68/57nS0.5 IRFPF40 NMOS GDS 开关 900V4.7A150W2.5 IRFPG42 NMOS GDS 开关 1000V3.9A150W4.2 IRFPZ44 NMOS GDS 开关 1000V3.9A150W4.2 ******* IRFU020 NMOS GDS 开关 50V15A42W83/39nS0.1 IXGH20N60ANMOS GDS 600V20A150W IXGFH26N50NMOS GDS 500V26A300W0.3 IXGH30N60ANMOS GDS 600V30A200W IXGH60N60ANMOS GDS 600V60A250W IXTP2P50 PMOS GDS 开关 500V2A75W5.5 代J117 J177 PMOS SDG 开关 M75N06 NMOS GDS 音频开关 60V75A120W MTH8N100 NMOS GDS 开关 1000V8A180W175/180nS1.8 MTH10N80 NMOS GDS 开关 800V10A150W MTM30N50 NMOS 开关 (铁)500V30A250W MTM55N10 NMOS GDS 开关 (铁)100V55A250W350/400nS0.04 MTP27N10 NMOS GDS 开关 100V27A125W0.05 MTP2955 PMOS GDS 开关 60V12A75W75/50nS0.3 MTP3055 NMOS GDS 开关 60V12A75W75/50nS0.3

常用X线球管参数

国产医用X光球管 球管型号替代型号备注XD1 XD1-3/100 配 30mA 机 XD2 XD2-1 , 4/85 配 10mA , 15mA 机 XD3 XD3-3 , 5/100 配 50mA 单焦点机 XD4-2 XD4-2 , 9/100 配 100mA , 200mA 固定机 XD6 XD6-1.1 , 3.5/100 配 50mA 双 焦点机 XD7 XD7-1.05/35 配乳腺机 XD12 XD12- 0.56/70 配牙科光机 XZ1 X Z1-4/250 深部治疗机 XD55 XD5 5-10.2/125 配 100maX 线立透机 KL74-1/2-100 XD51-20,40/100 E7239 配200maX 线机 KL74-1/2-125 XD51-20, 40/125 , RAD-8,DRX- 1 403/1603 配 300maX 线机 KL74-1/2-125S XD51-20,40/125S X40S ,E7239 配300maX 线机 KL90-1/2-125 XD52-30,50/125 配进口500maX 线机 KL90-1/2-150 XD52-30,50/150 配进口500maX 线机 KL90-0.3/1.2-15 0 XD52-10,40/150 配进口 500maX 线机 KL74-0.6/1.2-15 0H XD51-20,40/150RAD-68 , A132 配进口 500maX 线机 KL90-0.6/1.2-15 0H P18C , SR033 , XH03 , E7252 配进口 500ma800maX 线 机 kL80-0.3/1.2-12 5 RAD-14 , DRX-1725 , E7299 小焦点 KL100-0.6/1.2-1 50H RAD21 , P38C , E7254 , DRX3724/0324 , A192 配进口 500mA 800mAX 线机

相关主题
文本预览
相关文档 最新文档