当前位置:文档之家› 抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德.

抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德.

抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德.
抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德.

抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理。

把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果。这个人所皆知的常识就是抽屉原理在日常生活中的体现。用它可以解决一些相当复杂甚至无从下手的问题。

原理1:把n+1个元素分成n类,不管怎么分,则一定有一类中有2个或2个以上的元素。

原理2:把m个元素任意放入n(n<m=个集合,则一定有一个集合呈至少要有k个元素。

其中 k=n (当n能整除m时)

〔 n〕+1 (当n不能整除m时)

原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。

二、应用抽屉原理解题的步骤

第一步:分析题意。分清什么是“东西”,什么是“抽屉”,也就是什么作“东西”,什么可作“抽屉”。

第二步:制造抽屉。这个是关键的一步,这一步就是如何设计抽屉。根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。

第三步:运用抽屉原理。观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。

例1、教室里有5名学生正在做作业,今天只有数学、英语、语文、地理四科作业

求证:这5名学生中,至少有两个人在做同一科作业。

证明:将5名学生看作5个苹果

将数学、英语、语文、地理作业各看成一个抽屉,共4个抽屉

由抽屉原理1,一定存在一个抽屉,在这个抽屉里至少有2个苹果。

即至少有两名学生在做同一科的作业。

例2、木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?

解:把3种颜色看作3个抽屉

若要符合题意,则小球的数目必须大于3

大于3的最小数字是4

故至少取出4个小球才能符合要求

答:最少要取出4个球。

例3、班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书。

解:把50名学生看作50个抽屉,把书看成苹果

根据原理1,书的数目要比学生的人数多

即书至少需要50+1=51本

答:最少需要51本。

例4、在一条长100米的小路一旁植树101棵,不管怎样种,总有两棵树的距离不超过1米。

解:把这条小路分成每段1米长,共100段

每段看作是一个抽屉,共100个抽屉,把101棵树看作是101个苹果

于是101个苹果放入100个抽屉中,至少有一个抽屉中有两个苹果

即至少有一段有两棵或两棵以上的树

例5、 11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本

试证明:必有两个学生所借的书的类型相同

证明:若学生只借一本书,则不同的类型有A、B、C、D四种

若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种

共有10种类型

把这10种类型看作10个“抽屉”

把11个学生看作11个“苹果”

如果谁借哪种类型的书,就进入哪个抽屉

由抽屉原理,至少有两个学生,他们所借的书的类型相同

例6、有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜

试证明:一定有两个运动员积分相同

证明:设每胜一局得一分

由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49种可能

以这49种可能得分的情况为49个抽屉

现有50名运动员得分

则一定有两名运动员得分相同

例7、体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?

解题关键:利用抽屉原理2。

解:根据规定,多有同学拿球的配组方式共有以下9种:

{足}{排}{蓝}{足足}{排排}{蓝蓝}{足排}{足蓝}{排蓝}

以这9种配组方式制造9个抽屉

将这50个同学看作苹果

=5.5 (5)

由抽屉原理2k=〔〕+1可得,至少有6人,他们所拿的球类是完全一致的

抽屉原则

最新数学广角鸽巢问题教案

《鸽巢问题》教学设计 黄岭子镇中心校 赵春宇

数学广角——鸽巢问题 黄岭子中心校赵春宇教学目标 1.经历“抽屉原理”(鸽巢原理)的探究过程,初步了解“抽屉原理”,理解“抽屉原理”,并对一些简单实际问题加以“模型化”。 2.通过操作发展学生的归纳推理的能力,形成比较抽象的数学思维。 3.会用“抽屉原理”解决简单的实际问题,感受数学的魅力。重点难点 重点:经历“抽屉原理”(鸽巢原理)的探究过程,初步了解“抽屉原理”。 难点:理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。 教学过程 第一学时 教学活动 活动1【导入】游戏导入 上课前,我们先来热身一下,做一个预测的游戏。 请各位同学在本子上任意写出三个自己喜爱的老师的名字,之后老师进行预测,如果预测准的话给老师五秒钟的掌声。其实在这个预测的游戏中还蕴含着一个有趣的数学原理,这

节课我们就一起来研究. 活动2【讲授】自主探究,初步感知 1、研究4枝笔放进3个笔筒。 (1)要把4枝笔放进3个笔筒 ,有几种放法?请同学们小组内摆一摆。 (2)反馈:四种放法(课件出示) (3)判断:4枝笔放进3个笔筒,不管怎么放,总有一个杯子里至少放进2支笔。这句话说的对吗?为什么? (4)“总有”什么意思?(一定有) (5)“至少”有2枝什么意思?(不少于2枝) (6)师:4枝笔放进3个笔筒,不管怎么放,总有一个杯子里至少放进几支笔?你是怎么知道的?(先找到每种摆法中笔数最多的杯子,然后再找到这些最多的杯子中最少的笔数) (7)师:实际就是多中找少 师:我们刚刚把所有摆放的方法都一一罗列出来,从而找到总有一个杯子里至少放进2支笔,这种方法叫枚举法。这种方法好不好?(评价:随着数据的扩大,摆放的方法一定会更多,甚至不能一一罗列)那么我们能不能找到一种更为直接的方法,也能得到这个结论呢?请同学们在小组内讨论讨论,怎么摆? (每个杯子都先放进一枝,还剩一枝不管放进哪个杯子,总会有一个杯子至少有2枝笔)(你的方法果然简单)

六年级下数学广角-鸽巢问题知识点

第五单元:数学广角-鸽巢问题 【知识点一】“鸽巢原理”(一) “鸽巢原理”(一):把m个物体任意分放进n个鸽巢中(m和n是非0自然数,且 m>n),那么一定有一个鸽巢中至少放进了2个物体。【知识点二】“鸽巢原理”(二) “鸽巢原理”(二):把多于kn个物体任意分进n个鸽巢中(k和n是非0自然数), 那么一定有一个鸽巢中至少放进了(k+1)个物体。【知识点三】应用“鸽巢原理”解决简单的实际问题 应用“鸽巢原理”解题的一般步骤(1)分析题意,把实际问题转化成“鸽 巢问题”,即弄清楚“鸽巢”(“鸽巢”是什么,有几个鸽巢) 和分放的物体。(2)设计“鸽巢”的具体形式。(3)运用 原理得出某个“鸽巢”中至少分放的物体个数,最终解决问 题。 【误区警示】 误区一:判断:因为11÷3=3....2,所以把11本书放进3个抽屉中,总有一个 抽屉里至少放5本书。(√) 错解分析此题错在把这个抽屉至少放的书的本数用“3(商)+2(余数)” 计算了,应该是“3(商)+1”。 错解改正× 误区二:有红、绿、蓝三种颜色的小球各5个,至少取出几个能保证有2个同色的? 5×3÷3=5(个) 错解分析此题错在把小球的总数作为要分放物体的数量了,求得的结果也是 与问题要求不符。本题属于已知鸽巢数量(3中颜色即3个 鸽巢)和分的结果(保证一个鸽巢里至少有2个同色的), 求要分放物体的数量,各种颜色小球的数量并与参与运算。 错解改正3+1=4(个) 【方法运用】运用逆推法解决鸽巢问题 典型例题把25个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里有5 个玻璃球?

思路分析由“鸽巢原理”(二)可知,用分放的物体总数除以鸽巢数量求出平均 每个鸽巢里所放物体的数量和余数,其中至少有一个鸽巢中 有(平均每个鸽巢里所放物体的数量+1)个物体。 此题可以把玻璃球的总数看成分放的物体总数,把盒子数看成鸽巢数, 要使其中一个鸽巢里至少有5个玻璃球,则玻璃球的个数至 少要比鸽巢数的(5-1)倍多1个。 正确解答(25-1)÷(5-1)=6个(个) 方法总结(分放的物体总数-1)÷(其中一个鸽巢里至少有的物体个数-1)= a....b(a.b为自然数,且b>a),则a就是所求的 鸽巢数。 典型例题平安路小学组织862名同学去参观甲、乙、丙处景点。规定每名同学 至少参观一处,最多可以参观两处,至少有多少名同学参观 的景点相同? 思路分析参观甲、乙、丙3处景点,若只参观一处,则有3种参观方案;若参观 两处,则有“甲乙、乙丙和甲丙”这3种参观方案。所以, 一共有3+3=6(种)参观方案。求至少有多少名同学参 观的景点相同,可以转化为“鸽巢问题”解答,把862名 同学看成要分放的物体,把6中参观方案看成6个鸽巢。 正确解答3+3=6(种) 862÷6=143(名).....4(名) 143+1=144(名) 【综合测评】 1、 (1)小东玩掷骰子游戏(掷一枚骰子),要保证掷出的骰子数至少有两次是相同 的,小东至少应该掷()次 (2)李阿姨给幼儿园的孩子买衣服,有红、黄、白3种颜色,结果总是至少有2 个孩子的衣服颜色一样,她至少给()个孩子买衣服。 2、11名学生到老师家借书,老师的书房中有A、B、C、D四类书,每名学生最多可借两本不同类型的书,最少可借一本。至少有几名学生所借的书的类型完全相 同?

最新人教版六年级下册数学《数学广角——鸽巢问题》教案

数学广角——鸽巢问题 【教学目标】 1.知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。使学生学会用此原理解决简单的实际问题。 2.过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。 3.情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。 【课时安排】 3课时 【第一课时】 【教学重难点】 1.引导学生把具体问题转化成“鸽巢问题”。 2.找出“鸽巢问题”解决的窍门进行反复推理。 【教学准备】 课件 【教学过程】 一、探究新知: 1.教学例1.(课件出示例题1情境图) 思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。为什么呢?“总有”和“至少”是什么意思? 学生通过操作发现规律→理解关键词的含义→探究证明→认识“鸽巢问题”的学习过程来解决问题。 操作发现规律:通过吧4支铅笔放进3个笔筒中,可以发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。 理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。 探究证明。

方法一:用“枚举法”证明。 方法二:用“分解法”证明。 把4分解成3个数。 由图可知,把4分解成3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。 方法三:用“假设法”证明。 通过以上几种方法证明都可以发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。 认识“鸽巢问题” (1)像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描述就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。 这里的“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。 小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放进2支铅笔。 (2)如果放的铅笔数比笔筒的数量多2,那么总有1个笔筒至少放2支铅笔;如果放的铅笔比笔筒的数量多3,那么总有1个笔筒里至少放2只铅笔…… 小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放2支铅笔。 归纳总结: 鸽巢原理(一):如果把m个物体任意放进n个抽屉里(m>n,且n是非零自然数),那么一定有一个抽屉里至少放进了2个物体。 2.教学例2(课件出示例题2情境图) 思考问题: (1)把7本书放进3个抽屉,不管怎么放,总有1个抽屉里至少有3本书。为什么呢? (2)如果有8本书会怎样呢?10本书呢? 学生通过“探究证明→得出结论”的学习过程来解决问题(一)。 探究证明。 方法一:用数的分解法证明。 把7分解成3个数的和。把7本书放进3个抽屉里,共有如下8种情况: 由图可知,每种情况分得的3个数中,至少有1个数不小于3,也就是每种分法中最多那个数最小是3,即总有1个抽屉至少放进3本书。

高斯小学奥数六年级下册含答案第05讲_抽屉原理

第五讲抽屉原理二 本讲知识点汇总: 一、最不利原则:为了保.证.能完成一件事情,需要考虑在最倒霉(最不利)的情况下,如何能 达到目标. 二、抽屉原理: 形式1:把n 1个苹果放到n个抽屉中,一定有2个苹果放在一个抽屉里; 形式2:把m n 1个苹果放到n 个抽屉中,一定有m 1个苹果放在一个抽屉里. 例1.中国奥运代表团的173 名运动员到超市买饮料,已知超市有可乐、雪碧、芬达、橙汁、味全和矿泉水 6 种饮料,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?「分析」本题的“抽屉”是饮料的选法,“苹果”是 1 73名运动员. 练习1、中国奥运代表团的83 名运动员到超市买饮料.超市有可乐、雪碧、芬达和橙汁,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同? 例2.国庆嘉年华共有5项游艺活动,每个学生至多参加2项,至少参加1项.那么至少有多少个学生,才能保证至少有 4 个人参加的活动完全相同?「分析」本题的“抽屉”是参加活动的方法. 练习2、高思运动会共有 4 个项目,每个学生至多参加3项,至少参加 1 项.那么至少有多少个学生,才能保证至少有 5 个人参加的活动完全相同?

例3.从1到50这50个自然数中,至少选出多少个数,才能保证其中一定有两个数的和是50? 「分析」思考一下:哪两个数的和是50? 练习3、从1到35这35 个自然数中,至少选出多少个数才能保证其中一定有两个数的和为34? 例4.从1到100这100个自然数中,至少选出多少个数才能保证其中一定有两个数的和是7的倍数?如果要保证是 6 的倍数呢?「分析」两个数的和是7 的倍数,这两个数除以7 的余数要符合什么条件哪? 练习4、从1至99这99 个自然数中任意取出一些数,要保证其中一定有两个数的和是 5 的倍数,至少要取多少个? 例5.至少取出多少个正整数,才能保证其中一定有两个整数的和或差是100 的倍数? 「分析」从余数角度思考一下:什么样的两个数的和或差是100? 例6.在边长为 2 的正六边形中,放入50 个点,任意三点不共线,请证明:一定能从中选出三个点,以它们为顶点的三角形面积不大于 「分析」通过把正六边形均分,来构造“抽屉” 1.

5 数学广角——鸽巢问题

第五单元数学广角——鸽巢问题 【例1】红、黄、蓝三种颜色的球各6个,混合后放在一个布袋里,一次至少摸出几只,才能保证有两只是同色的? 球看作元素,从最不利情况考虑,每个抽屉先放1个 球,共需要3个,再取出1个不论是什么颜色,总有 一个抽屉里的球和它同色,所以至少要取出:3+1=4 (个)。 解答:3+1=4(个) 答:一次至少摸出4个,才能保证有两个是同色的。 【例2】在一次春游活动中,三年级1班有31人带了面包,38人带了饮料,36人带了水果,34人带了巧克力,全班有45人。可以肯定的是有()人这4种都带了。 解析:可能没带面包的:45 - 31 = 14 、可能没带饮料的:45 - 38 = 7 、可能没带水果的:45 - 36 = 9 、可能没带巧克力的:45 - 34 = 11 、可能只带四样中其中一样的:14 + 7 + 9 + 11 = 41 ,所以可以肯定四样都带了的至少有:45 - 41 = 4 (人)。 解答:可以肯定至少有4人这四样都带了。 【例3】一个袋里有红珠子6粒,黄珠子8粒,蓝珠子10粒。最少要抽出多少 粒珠子才可保证有3粒是同一颜色? 一共摸出6粒:同时摸出红色、蓝色、黄色各2颗;此时再 任意摸出一个,就一定有3粒珠子颜色相同。 解答:3×2+1=7(粒) 答:最少要抽出7粒珠子才可保证有3粒是同一颜色。 【例4】笔筒里有3支红笔和2支黑笔,如果蒙上眼睛摸一次,至少拿出几支笔 才能保证有1支红笔? 解析:把红笔和黑笔看做是两个抽屉,5只笔看做是5个元素,根据抽屉原理考 虑最差情况:摸出2支全是黑笔,那么再任意摸出一支就是红笔。 2+1=3(支) 答:一次必须摸出3支铅笔才能保证至少有一支红笔。 【例5】一个兴趣小组有16名同学,他们都订阅了甲乙两种杂志中的一种或两 种,那么至少有()名同学都订阅的杂志种类相同。 A 5 B 4 C 6 解析:可以订阅杂志的情况有甲、乙或甲和乙一共三种可能,也就是说有3个抽 屉,根据抽屉原理,从最不利的情况考虑:16÷3=5(人)…1(人),所以至少 有5+1=6(名)同学订阅的杂志种类相同。 解答: C 【例6】有100个苹果分给幼儿园某班的小朋友,已知其中有人至少分到了3个。 那么,这个班的小朋友最少有多少人? 解析:本题考查的知识点是抽屉原理。解答时把小朋友的人数为抽屉个数,人数 最少,则分得3个苹果的人数最多,所以用100÷3=33…1,33+1=34(人) 解答:100÷3=33…1 33+1=34

人教版小学数学六年级下册抽屉原理

《抽屉原理》教学设计 教学内容:义务教育课程标准实验教科书六年级下册《抽屉原理》。教学目标: 1.知识与能力:初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。 2.过程和方法:经历抽屉原理的探究过程,通过动手操作、分析、推理等活动,发现、归纳、总结原理。 3.情感与价值:通过“抽屉原理”的灵活应用感受数学的魅力;提高同学们解决问题的能力和兴趣。 教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。教具学具:课件、扑克牌、每组都有相应数量的笔筒、铅笔、书,各小组。备好自己的记分牌教学过程: 一、创设情景导入新课 师:同学们,昨天晚上与爸爸、妈妈做过导学案中的扑克牌游戏吗?取出两张王牌,在剩下的52张扑克牌中任意取出5张,我不看牌,我敢肯定的说:这5张牌至少有两张是同花色,大家相信吗?(师生演示) 师生共同做两轮抽牌游戏,让没有做过游戏的同学观察、思考、验证 师:为什么会出现这种情况呢?如何解释呢?今天我们就来探索这其

中的规律——抽屉原理 教师板书:抽屉原理 二、自主操作探究新知 1 活动) 一( 课件出示:把4枝铅笔放到3个笔筒里,可以怎么放? 师:你们摆摆看,会有什么发现?把你们发现的结果用自己喜欢的方式记录下来。 1、学生动手操作,师巡视,了解情况。 2、汇报交流说理活动 学生动手操作,教师巡视,了解情况,并参与到较弱的小组中适当点拨:要把所有可能的情况摆出来 一个小组上台展示,四人操作,一人同时解说,教师协助学生将记录放在投影机上展示比较 教师展示数组的形式(4,0,0)(3,1,0)(2,2,0)(2,1,1),让学生比较认识到数组形式的简洁) 引导学生再认真观察记录,还有什么发现?并请刚才展示的小组回答板书:总有一个笔筒里至少有2枝铅笔。 ③怎样摆可以一次得出结论?(启发学生用平均分的摆法,引出用除法计算。)板书:4÷3=1(枝)……1(枝) ④这样摆挺麻烦,那么怎样摆可以一次得出结论?各组摆摆、想想。

鸽巢原理及其应用+6

学号:20115034032 学院数学与信息科学学院 专业信息与计算科学 年级2011级 姓名陈婷婷 论文题目鸽巢原理及其应用 指导教师沈明辉职称教授 成绩 2014年3月16日

学年论文成绩评定表评语 成绩: 指导教师(签名): 201 年月日学院意见:____________________ 学院院长(签名): 201 年月日

目录 摘要 (1) 关键字 (1) Abstract (1) Key words (1) 前言 (2) 1.鸽巢原理 (2) 1.1 鸽巢原理的简单形式 (2) 1.2 鸽巢原理的一般形式 (3) 1.3 鸽巢原理的加强形式 (3) 2. 鸽巢原理的相关推论 (4) 3.鸽巢原理的应用 (6) 3.1 鸽巢原理应用于数的整除关系 (6) 3.2 鸽巢原理应用于实际生活 (7) 参考文献 (9)

鸽巢原理及其应用 姓名:陈婷婷学号:20115034032 数学与信息科学学院信息与计算科学专业 指导老师:沈明辉职称:教授 摘要:鸽巢原理是组合数学中研究存在性问题的基本原理之一,也是非常规解题方法的重要类型之一,在数论和组合论中有着广泛的应用. 本文简单介绍了鸽巢原理的几种形式,便于了解鸽巢原理到底是什么东西.本文主要研究鸽巢原理和其原理的应用.应用主要从数学领域的应用和现实生活中的应用两大方面进行研究,数学领域方面主要应用于整除关系的证明等几方面的解题. 关键字:鸽巢原理; 组合数学; 鸽巢原理的应用 Pigeonhole principle and the application of the pigeonhole Abstract:Pigeonhole principle is a mathematical combination of problem of the existence of one of the basic principles of nonconventional problem solving method , is also one of the important types in number theory and combination has a wide range of applications. This paper briefly introduces the principle of Pigeonhole in several forms, easy to understand what the Pigeonhole principle is. This paper mainly studies the principle of Pigeonhole principle and the application of the principle. Application mainly from the mathematical field of application and the reality of life in the application of the two major aspects of research, mathematical fields mainly used in number theory, algebra, geometry and so on several aspects of the problem solving, in real life, most used computer fortune-telling, predict some existence results etc.. Key words:Pigeonhole principle;Mathematical combination ;The application of the principle

最新小学六年级数学抽屉原理练习题

小学六年级数学抽屉原理练习题 1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球? 解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求. 2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数? 解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同.这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2张点数相 同. 3.11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本.试证明:必有两个学生所借的书的类型相同. 证明:若学生只借一本书,则不同的类型有A、B、C、D四种,若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种.共有10种类型,把这10种类型看作10个“抽屉”,把11个学生看作11个“苹果”.如果谁借哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相 同. 4.有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜,试证明:一定有两个运动员积分相同. 证明:设每胜一局得一分,由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49种可能,以这49种可能得分的情况为49个抽屉,现有50名运动员得分,则一定有两名运动员得分相同. 5.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致 的? 解题关键:利用抽屉原理2. 解:根据规定,多有同学拿球的配组方式共有以下9种:﹛足﹜﹛排﹜﹛蓝﹜﹛足足﹜﹛排排﹜﹛蓝蓝﹜﹛足排﹜﹛足蓝﹜﹛排蓝﹜.以这9种配组方式制造9个抽屉,将这50个同学看作苹果50÷9 =5 (5) 由抽屉原理2k=[m/n ]+1可得,至少有6人,他们所拿的球类是完全一致的. 6.某校有55个同学参加数学竞赛,已知将参赛人任意分成四组,则必有一组的女生多于2人,又知参赛者中任何10人中必有男生,则参赛男生的人生为 __________人. 解:因为任意分成四组,必有一组的女生多于2人,所以女生至少有4×2+1=9(人);因为任意10人中必有男生,所以女生人数至多有9人.所以女生有9人,男生有55-9=46(人)

六年级数学抽屉原理

抽屉原理 知识框架 一、 知识点介绍 抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决. 二、 抽屉原理的定义 (1)举例 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。 (2)定义 一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。我们称这种现象为抽屉原理。 三、 抽屉原理的解题方案 (一)、利用公式进行解题 苹果÷抽屉=商……余数 余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()1 1x n -, 结论:至少有(商+1)个苹果在同一个抽屉里 (3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题 将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法. 重难点 抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。本讲的主要教学目标是: (1) 理解抽屉原理的基本概念、基本用法; (2) 掌握用抽屉原理解题的基本过程; (3) 能够构造抽屉进行解题; (4) 利用最不利原则进行解题;

鸽巢原理及其应用

鸽巢原理是组合数学中最基本的计数原理之一,也是证明存在性问题的一种重要方法.本文首先介绍了鸽巢原理的不同表述形式及其推论,然后从整除关系的证明、几何图形的分割以及解决实际问题等几个角度介绍了鸽巢原理的应用,并对例题中鸽巢的构造技巧做了分析. 关键词:鸽巢原理;简单形式;一般形式;加强形式

Abstract The pigeonhole principle is one of the basic counting principle in combinatorics, but also it is an important method to prove the problem of the existence. This paper first introduces the different expressions of the pigeonhole principle and its deduction, then the applications of the pigeonhole principle are introduced from several angles of proof of aliquot relationship, division of the geometrical figure and solving practical problems, the structured skills of the pigeonhole principle in examples are analysed. Key words: pigeonhole principle; simple form; general form; strengthend form

容斥原理与鸽巢原理的应用

摘要 容斥原理和鸽巢原理作为组合数学中的基本内容,就原理本身而言简单易懂.然而,由于此二者分别在组合计数问题和存在性问题的应用中所展现出来的魅力,国内外学者在很多书籍、学术性论文中关于容斥原理和鸽巢原理的应用进行了探讨,并且关于此方面的研究已取得一系列的成果. 本文主要是以综述的方式从起源、理论和应用三方面对容斥原理和鸽巢原理进行了介绍和分类探讨. 首先介绍了容斥原理分别与加法理论、减法理论的区别与优势,并与实际问题相结合突出其优势所在.其次本文介绍了鸽巢原理的两种具体形式及其推论,并对鸽巢原理在数学理论研究、数学竞赛题目、解决实际生活中的问题等方面的应用进行介绍后,对鸽巢原理的应用中所常见的几种构造“鸽巢”的方法进行了分类谈论. 最后,针对鸽巢原理,我们给出针对新疆某区域关于旅游产品的实际应用实例,并提出了个人见解. 关键词:容斥原理,鸽巢原理,构造方法,鸽巢,鸽子

ABSTRACT As the basic content of combinatorial mathematics, the principle of tolerance and the theory of pigeon nest the principle itself is simple and understandable. However, due to the charm of the two applications in combinatorial counting and existential problems, scholars at home and abroad have probed into the application of the principle of tolerance and the pigeon nest in many books and academic papers, And the research on this aspect has made a series of achievements. In this paper, the author introduces and classifies the theory of tolerance and doctrine and the principle of pigeon nest in the way of summarization from the origin, theory and application. Firstly, the differences and advantages between the theory of tolerance and exclusion and the theory of addition and subtraction were introduced. and the actual problem with the combination of highlighting its advantages. Secondly, this paper introduces two concrete forms of pigeon nest principle and its inference, and introduces the application of pigeon nest principle in mathematics theory research, Maths contest problem, solving real life problems and so on. , several common methods of constructing pigeon nest in the application of pigeon nest principle are classified and discussed. Finally, according to the pigeon Nest principle, we give a practical example of the tourism products in a region of Xinjiang, and put forward personal opinions. KEY WORDS: inclusion-exclusion principle, pigeonhole principle, construction method, pigeonhole, pigeon

六年级数学下册 抽屉原理 6教案 人教新课标版

抽屉原理 教学目标: 1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。 2.通过操作发展学生的类推能力,形成比较抽象的数学思维。 3.通过“抽屉原理”的灵活应用感受数学的魅力。 教学准备:多媒体课件、每组准备10根小棒和5个杯子。 教学过程: 一、创设情境,导入新知 “抢椅子”游戏 小结:五人坐在四把椅子上,无论怎么坐,总有一把椅子上至少坐两个同学。 二、自主操作,探究新知 1.观察猜测 3枝小棒,2个杯子。 学生摆一摆,说一说,看一共有几种情况? 师引导学生观察后在学生说的基础上小结:3枝小棒放进2个杯子,不管怎么放,总有一个杯子里至少有2枝小棒。 2.教学例1: 把4枝小棒放进3个杯子里,怎么放?有几种不同的放法? (学生先思考,然后在组内动手操作) 师:谁来展示一下你摆放的情况?(根据学生摆的情况,师演示各种情况。) (4,0,0)(3,1,0)(2,2,0)(2,1,1) 师:把四支小棒放入3个铅笔盒中一共有以上4中不同的放法。由于摆放的方法不同,每个杯子总的支数也不相同。请同学们看看,杯子中的指数有哪些不同的情况呢?(0、1.2.3.4) 师:看来,铅笔盒中的的支数是有多有少的。在每一种放法中的支数也是有多有少的。总有一个杯子的支数放的是最多的,同学们能找出来吗? 师:第一种摆法中,哪个铅笔盒的支数是最多的?是几支?那我可以这样说,第一种摆法中,总有一个杯子要放入()支铅笔。那第二种摆法总有一个杯子中要放入几支铅笔呢?第三种?第四种呢? 师:总有一个指的的哪一个? 师:同学们通过操作和观察发现四支小棒放入3个杯子中,不管怎么摆总有一个杯子放的支数是最多的,可能是2支、3支或4支。 3.那么,如果将5支小棒放入4个杯子中,又会出现怎样的情况呢?那么把5枝小棒放进4个杯子里呢?你能根据刚才的操作直接填写出下表吗? (学生完成后汇报。) 师:观察一下你们完成的表格,你又有什么发现呢? 找出每种放法中最多的那杯子的支数。(2.3.4.5) 师:总有一个杯子中要放入2支、3支、4支或5支还可以怎样说?(至少放入2支) 至少是什么意思?

六年级下数学广角鸽巢问题知识点

六年级下数学广角鸽巢 问题知识点 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

第五单元:数学广角-鸽巢问题【知识点一】“鸽巢原理”(一) “鸽巢原理”(一):把m个物体任意分放进n个鸽巢中(m和n是非 0自然数,且m>n),那么一定有一个鸽巢中 至少放进了2个物体。 【知识点二】“鸽巢原理”(二) “鸽巢原理”(二):把多于kn个物体任意分进n个鸽巢中(k和n是 非0自然数),那么一定有一个鸽巢中至少放进 了(k+1)个物体。 【知识点三】应用“鸽巢原理”解决简单的实际问题 应用“鸽巢原理”解题的一般步骤(1)分析题意,把实际问题 转化成“鸽巢问题”,即弄清楚“鸽巢”(“鸽 巢”是什么,有几个鸽巢)和分放的物体。 (2)设计“鸽巢”的具体形式。(3)运用原 理得出某个“鸽巢”中至少分放的物体个数,最 终解决问题。 【误区警示】 误区一:判断:因为11÷3=3....2,所以把11本书放进3个抽屉 中,总有一个抽屉里至少放5本书。 (√)

错解分析此题错在把这个抽屉至少放的书的本数用“3(商) +2(余数)”计算了,应该是“3(商)+ 1”。 错解改正× 误区二:有红、绿、蓝三种颜色的小球各5个,至少取出几个能保证有2个同 色的 5×3÷3=5(个) 错解分析此题错在把小球的总数作为要分放物体的数量了,求得 的结果也是与问题要求不符。本题属于已知鸽巢 数量(3中颜色即3个鸽巢)和分的结果(保证 一个鸽巢里至少有2个同色的),求要分放物体 的数量,各种颜色小球的数量并与参与运算。 错解改正3+1=4(个) 【方法运用】运用逆推法解决鸽巢问题 典型例题把25个玻璃球最多放进几个盒子里,才能保证至少有一个 盒子里有5个玻璃球 思路分析由“鸽巢原理”(二)可知,用分放的物体总数除以鸽巢数 量求出平均每个鸽巢里所放物体的数量和余数, 其中至少有一个鸽巢中有(平均每个鸽巢里所放 物体的数量+1)个物体。 此题可以把玻璃球的总数看成分放的物体总数,把盒子数看 成鸽巢数,要使其中一个鸽巢里至少有5个玻璃

抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德.

抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理。 把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果。这个人所皆知的常识就是抽屉原理在日常生活中的体现。用它可以解决一些相当复杂甚至无从下手的问题。 原理1:把n+1个元素分成n类,不管怎么分,则一定有一类中有2个或2个以上的元素。 原理2:把m个元素任意放入n(n<m=个集合,则一定有一个集合呈至少要有k个元素。 其中 k=n (当n能整除m时) 〔 n〕+1 (当n不能整除m时) 原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。 二、应用抽屉原理解题的步骤 第一步:分析题意。分清什么是“东西”,什么是“抽屉”,也就是什么作“东西”,什么可作“抽屉”。 第二步:制造抽屉。这个是关键的一步,这一步就是如何设计抽屉。根据题目条件和结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的抽屉及其个数,为使用抽屉铺平道路。 第三步:运用抽屉原理。观察题设条件,结合第二步,恰当应用各个原则或综合运用几个原则,以求问题之解决。

例1、教室里有5名学生正在做作业,今天只有数学、英语、语文、地理四科作业 求证:这5名学生中,至少有两个人在做同一科作业。 证明:将5名学生看作5个苹果 将数学、英语、语文、地理作业各看成一个抽屉,共4个抽屉 由抽屉原理1,一定存在一个抽屉,在这个抽屉里至少有2个苹果。 即至少有两名学生在做同一科的作业。 例2、木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球? 解:把3种颜色看作3个抽屉 若要符合题意,则小球的数目必须大于3 大于3的最小数字是4 故至少取出4个小球才能符合要求 答:最少要取出4个球。 例3、班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书。 解:把50名学生看作50个抽屉,把书看成苹果 根据原理1,书的数目要比学生的人数多 即书至少需要50+1=51本 答:最少需要51本。

第五单元《数学广角-鸽巢问题》教案

第五单元数学广角——鸽巢问题 教材分析: 本教材专门安排“数学广角”这一单元,向学生渗透一些重要的数学思想方法。和以往的义务教育教材相比,这部分内容是新增的内容。本单元教材通过几个直观例子,借助实际操作,向学生介绍“鸽巢问题”,使学生在理解“鸽巢问题”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢问题”加以解决。在数学问题中,有一类与“存在性”有关的问题。在这类问题中,只需要确定某个物体(或某个人)的存在就是可以了,并不需要指出是哪个物体(或人)。这类问题依据的理论我们称之为“抽屉原理”。“抽屉原理”最先是19世纪的德国数学家狄利克雷运用于解决数学问题的,所以又称“狄利克雷原理”,也称之为“鸽巢问题”。“鸽巢问题”的理论本身并不复杂,甚至可以说是显而易见的。但“鸽巢问题”的应用却是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结论。因此,“鸽巢问题”在数论、集合论、组合论中都得到了广泛的应用。 教学目标: 1、知识与技能:(1)引导学生通过观察、猜测、实验、推理等活动,经历探究“鸽巢原理”的过程,初步了解“鸽巢原理”的含义,会用“鸽巢原理”解决简单的实际问题。 2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。 3、情感态度与价值观:(1)体会数学与生活的紧密联系,体验学数学、用数学的乐趣。(2)理解知识的产生过程,受到历史唯物注意的教育。(3)感受数学在实际生活中的作用,培养刻苦钻研、探究新知的良好品质。 教学重点 应用“鸽巢原理”解决实际问题。引导学会把具体问题转化成“鸽巢问题”。 教学难点: 理解“鸽巢原理”,找出”鸽巢问题“解决的窍门进行反复推理。 学情分析:

数学六年级下册-《数学广角—鸽巢问题》优质教案

数学广角—鸽巢问题 教材分析 例1:本例描述“抽屉原理”的最简单的情况。着重探讨为什么这样的结论是成立的。教材呈现了两种思考方法:第一种方法是用操作的方法,罗列所有的方法,通过完全归纳的方法看到在这四种情况都是满足结论的;还可以是说理的方式,先放3支,在每个笔筒里放1支,这时剩下1支。剩下的1支不管放入哪一个笔筒中,这时都会有一个笔筒里有2支铅笔。这种方法比第一种方法更为抽象,更具有一般性。 通过本例的教学,使学生感知这类问题的基本结构,掌握两种思考的方法──枚举和假设,理解问题中关键词语“总有”和“至少”的含义,形成对“抽屉原理”的初步认识。 例2:本例描述“抽屉原理”更为一般的形式,即“把多于(是正整数)个物体任意分放进个空抽屉里,那么一定有一个抽屉中放进了至少(+1)个物体”。教材首先探究把7本书放进3个抽屉里,总有一个抽屉里至少放进3本书的情形。当数据变得越来越大时,如果还用完全归纳的方法把所有的情形罗列出来的话,对于学生来说是有困难的。这时需要学生用到“反证法”这样一种思想,即如果所有的抽屉最多放2本,那么3个抽屉里最多放6本书,可是题目中是7本书,还剩1本书,怎么办?这就使学生明白只要放到任意一个抽屉里即可,总有一个抽屉里至少放进3本书。通过这样的方式,实际上学生是在经历“反证法”的这样一个过程。在具体编排这道例题的时候,在数据上进行了一个很细微的调整。在过去,由于数据的问题,学生会得到不太正确的推论,比如说如果是两个抽屉的话,最后得到的余数总是1,那么学生很容易得到一个错误的结论:总有一个抽屉里放进“商+余数”本书(因为余数正好是1)。而实际上,这里的结论应该是“商+1”本书,所以教材在这里呈现了8除以3余2的情况,这时候余数是2,可是最后的结论还是“把8本书放进3个抽屉里,总有一个抽屉至少放进了3本书”。通过这样的数据方面的调整,可以让学生得到一个更加正确的推论。 例3:跟之前教材的编排是一样的,是抽屉原理的一个逆向的应用。要解决这个问题,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”。这样,就可以把“摸球问题”转化为“抽屉问题”。教材通过学生的对话,指出了可以通过先猜测再验证的方法来解决问题,也反映了学生在解决这个问题时可能会遇到的困难。很多学生误以为要摸5次才可以摸出球,这可以让学生通过实验来验证。 教学目标 1、知识与技能 知道什么是“鸽巢问题”并掌握解决“鸽巢问题”的方法。 2、过程与方法

小学六年级数学下册《抽屉原理》教学实录

第三届全国“教学中的互联网搜索”优秀教案: 《抽屉原理》课堂教学实录 一、教案背景:人民教育出版社小学数学六年级第十二册六年级下册第68页 二、教材分析: 1.教材分析: “数学广角”是人教版六年级下册第五单元的内容。在数学问题中,有一类与“存在性”有关的问题,如任意367名学生中,一定存在两名学生,他们在同一天过生日。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,我们称之为“抽屉原理”。本节课教材借助把4枝铅笔放进3个文具盒中的操作情境,介绍了一类较简单的“抽屉原理”,即把n+1个物体任意分放进n个空抽屉里(m>n,n是非0自然数),那么一定有一个抽屉中放进了至少2个物体。关于这类问题,学生在现实生活中已积累了一定的感性经验。教学时可以充分利用学生的生活经验,放手让学生自主思考,先采用自己的方法进行“证明”,然后再进行交流,在交流中引导学生对“枚举法”、“反证法”、“假设法”等方法进行比较,使学生逐步学会运用一般性的数学方法来思考问题,发展学生的抽象思维能力。让学生通过本内容的学习,帮助学生加深理解,学会利用“抽屉问题”解决简单的实际问题。在此过程中,让学生初步经历“数学证明”的过程。实际上,通过“说理”的方式来理解“抽屉原理”的过程就是一种数学证明的雏形,有助于提高学生的

逻辑思维能力,为以后学习较严密的数学证明做准备。还要注意培养学生的“模型”思想,这个过程是将具体问题“数学化”的过程,能从纷繁的现实素材中找出最本质的数学模型,是体现学生数学思维和能力的重要方面。 2.学情分析: 抽屉原理是学生从未接触过的新知识,难以理解抽屉原理的真正含义,发现有相当多的学生他们自己提前先学了,在具体分的过程中,都在运用平均分的方法,也能就一个具体的问题得出结论。但是这些学生中大多数只“知其然,不知其所以然”,为什么平均分能保证“至少”的情况,他们并不理解。有时要找到实际问题与“抽屉原理”之间的联系并不容易,即使找到了,也很难确定用什么作为“抽屉”,要用几个“抽屉”。 1.年龄特点:六年级学生既好动又内敛,教师一方面要适当引导,引发学生的学习兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主体性。 2.思维特点:知识掌握上,六年级的学生对于总结规律的方法接触比较少,尤其对于“数学证明”。因此,教师要耐心细致的引导,重在让学生经历知识的发生、发展和过程,而不是生搬硬套,只求结论,要让学生不知其然,更要知其所以然。 三、教学目标: 1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。 2.通过操作发展学生的类推能力,形成比较抽象的数学思维。

相关主题
文本预览
相关文档 最新文档