当前位置:文档之家› 鸽巢原理

鸽巢原理

鸽巢原理
鸽巢原理

摘要

鸽巢原理是组合数学中最基本的计数原理之一,也是证明存在性问题的一种重要方法.本文首先介绍了鸽巢原理的不同表述形式及其推论,然后从整除关系的证明、几何图形的分割以及解决实际问题等几个角度介绍了鸽巢原理的应用,并对例题中鸽巢的构造技巧做了分析.

关键词:鸽巢原理;简单形式;一般形式;加强形式

Abstract

The pigeonhole principle is one of the basic counting principle in combinatorics, but also it is an important method to prove the problem of the existence. This paper first introduces the different expressions of the pigeonhole principle and its deduction, then the applications of the pigeonhole principle are introduced from several angles of proof of aliquot relationship, division of the geometrical figure and solving practical problems, the structured skills of the pigeonhole principle in examples are analysed.

Key words: pigeonhole principle; simple form; general form; strengthend form

目录

摘要 ....................................................................................................................................... I Abstract .................................................................................................................................. II 第1章鸽巢原理 (1)

第1节鸽巢原理的基本形式 (1)

第2节鸽巢原理的相关推论 (4)

第2章鸽巢原理的应用 (6)

第1节鸽巢原理应用于数的整除关系 (6)

第2节鸽巢原理应用于几何图形 (7)

第3节鸽巢原理应用于实际生活 (9)

总结 (12)

参考文献 (13)

致谢 (14)

第1章 鸽巢原理

鸽巢原理是组合数学中的一个基本原理.应用鸽巢原理可以解决涉及存在性的许多组合问题.本章将介绍鸽巢原理的表现形式及其相关推论,并以例题的形式作简单的说明.

第1节 鸽巢原理的基本形式

鸽巢原理又称鸽笼原理、抽屉原理.从其产生到现在,已产生有多种不同的表达形式.

1.1鸽巢原理的简单形式

定理1 如果把1+n 个物体放入到n 个盒子中去,则至少有一个盒子放有两个或更多的物体.

证明(反证法) 假设n 个盒子中的每个盒子里至多放入了一个物体,则放入n 个盒子中的物体总数至多为n 个.这与题设“共有1+n 个物体”相矛盾,所以知道假设是错误的,从而证明了至少有一个盒子中放有两个或更多的物体.

定理1仅能被用于证明一个排列或某种现象的存在性,不能对任何构造排列或寻找现象的例证给出任何指示. 例1 在一次舞会上,来了n 位舞伴,彼此认识的握手问候.证明:在无论什么情况下,这n 位舞伴中至少有两个人握手的次数一样多.

解 由已知条件可知,这n 位舞伴中,每个人握手的次数最少有0次,最多有1-n 次.比如,如果有一位舞伴握手的次数是0次,那么其他舞伴握手次数最多不能多于2-n 次,即握手次数为0,1,2, ,2-n ;如果有一位舞伴握手的次数是1-n 次,那么其他舞伴握手次数最少不能少于1次,即握手的次数为1,2, ,1-n .总之,这n 位舞伴握手次数有1-n 种情况.把这1-n 种情况看成1-n 个抽屉,并把舞会上的n 位舞伴按照其握手的次数归入相应的“抽屉”,则根据抽屉原理可知,至少有两个人属于同一抽屉,即可得这两个人握手的次数一样多.

例2 设1a ,2a ,3a ,4a 为任意四个整数,1b ,2b ,3b ,4b 为1a ,2a ,3a ,4a 的任一排列,则11a b -,22a b -,33a b -,44a b -中必有两个数之差是3的倍数.

证明 既然1b ,2b ,3b ,4b 是1a ,2a ,3a ,4a 的一个排列,显然11a b -,22a b -,33a b -,44a b -为四个整数.这四个整数被3除的余数只能是0,1,2中的一个,于是

按余数的情形构造3个抽屉,把这四个数11a b -,22a b -,33a b -,44a b -视为四个物体,放入这3个抽屉中去,根据抽屉原理,至少有一个抽屉里面放了两个或两个以上的物体,不妨设这两个数为i i a b -与j j a b -,显然有

)3(mod j j i i a b a b -≡-,

根据同余与整除的关系,有

)]()[(|3j j i i a b a b ---,

从而11a b -,22a b -,33a b -,44a b -中必有两个数之差是3的倍数.

注:以2为标准,可以把全体整数分成奇数与偶数两类,这实际上是把整数用2除,余数为1的那些数构成了模2的一个剩余类1K ,即为奇数集;把整数用2除,余数为0的那些数构成了模2的一个剩余类0K ,即为偶数集,这两个集合的交集为空集,而其并集为整数集.这种做法可以推广,即可以把整数集按照被模m (1)m >除的余数分成m 个两两互不相交的集合0K ,1K , ,1-m K ,例2就是把整数集按照用3除而分为0K 、1K 和2K 三个抽屉,然后把11a b -,22a b -,33a b -,44a b -这四个物体放到三个抽屉里面去,由于物体数目多于抽屉个数,所以就有一个抽屉至少被放入了两个物体.

1.2鸽巢原理的一般形式

在定理1中,如果将1+n 改写成12221+-+++=+n n (式中含n 个2),于是定理1就可以叙述为:如果把12221+-+++=+n n 个物体放入n 个盒子中去,则至少存在一个i ),,2,1(n i =,使得第i 个盒子中至少放有两个物体.设想,如果将1222+-+++n 中的第i 个2改为正整数i q ),,2,1(n i =,就得到鸽巢原理的一般形式.

定理2 设i q 是正整数),,2,1(n i =,121+-+++≥n q q q q n ,如果把q 个物体放入n 个盒子中去,则必存在一个i ,使得第i 个盒子中至少有i q 个物体.

证明(反证法) 假设结论不成立,即对每个i ,第i 个盒子中至多放有1-i q 个物体,从而这n 个盒子放入的物体的总数最多为q n q q n

i i n i i <-=-∑∑==11)1(,这与“把q 个物

体放入n 个盒子中”矛盾,所以假设是错的,即:必存在一个i ,使得第i 个盒子中至少有i q 个物体.

例3 一个箱子里装有三种不同颜色(红球、蓝球和黑球)的球,为了保证箱子内至少装有8个红球,或者至少装有6个蓝球,或者至少装有9个黑球,则放入箱子中的球数最少是多少?

解 由鸽笼原理的一般形式可知,无论怎样装入,2113968=+-++个球将保证箱子内的球满足所要求的性质,但7个红球,5个蓝球和8个黑球,即总数为20个球不能满足所要求的性质,因此,放入箱子中的球数最少是21.

例4 设A 是6个正整数的集合,可以证明存在非空的子集A B ?,使得B 的元素之和能被6整除,设},,,{621a a a A =.

证明 取A 的6个子集为}{11a A =,},{212a a A =, ,6126{,,,}A a a a = .令

)6(mod 11r a ≡,)6(mod 221r a a ≡+, ,)6(mod 6621r a a a ≡+++ ,

60<≤i r ,6,,2,1 =i ,

若存在0=h r ,则)6(mod 021≡+++h a a a ,否则,1r ,2r , ,6r 为小于6的正整数,根据鸽巢原理,将余数1,2,3,4,5看作5个鸽巢,六个余数看作6只鸽子,必存在i r 和j r 相等,不妨设j i <,

1212(mod6)j i a a a a a a +++≡+++ ,

)6(mod 021≡+++++j i i a a a ,

)(|621j i i a a a +++++ ,

从而说明了12{,,,}i i j a a a ++ 就是满足题目要求的集合B .

注:由以上对定理2的证明及例题可知,定理2在解决实际问题的证明中有着独特的作用.

1.3鸽巢原理的加强形式

定理3 设A 是有限集,1q ,2q , ,n q 都是正整数,如果1||21+-+++≥n q q q A n ,

A A i ?),,2,1(n i =,且A A n

i i == 1,则必有正整数k )1(n k ≤≤,使得k k q A ≥||.

证明(反证法) 假设有正整数k )1(n k ≤≤,使得1||-≤i k q A ),,2,1(n i =,此时

∑∑====-≤≤=n

i i n i n i i n i i q A A A 1111)1(|||||| n q q q n -+++= 21,

这与1||21+-+++≥n q q q A n 矛盾,所以假设不成立,因此,必有正整数k )1(n k ≤≤,使得k k q A ≥||.

例5 随意地给正八边形的8个顶点编上号码1,2, ,8,求证:必有一个顶点,该顶点及与之相邻的两个顶点的号码之和不小于14.

证明 以1A ,2A , ,8A 表示正八边形的8个顶点,以i q )8,,2,1( =i 表示顶点i A 及与i A 相邻的两个顶点的号码之和,则

18)114(1083)821(821+?->=?+++=+++ q q q .

由定理3,必有正整数k )81(≤≤k ,使得14≥k q ,这表示必有一个顶点,该顶点及与之相邻的两个顶点的号码之和不小于14.

第2节 鸽巢原理的相关推论

在上一节中我们介绍了鸽巢原理的基本形式及其简单证明,但是对于一些更加复杂的、有关存在性的组合问题,鸽巢原理的基本形式显得无能为力,为此,本节将对鸽巢原理进行更进一步的深入研究,以得到某些推论.

在定理2中,若令r q q q n ==== 21,则可以得到下面的结论.

推论 1 如果把1)1(+-r n 个物体放入n 个盒子中,则至少存在一个盒子放有不少于r 个物体.

例1 分别将两个大小不一的圆盘分成100个相等的扇形,在大圆盘上任意选取50个扇形染成红色,将其余50个大扇形染成蓝色,并将小圆盘上的100个小扇形中的每一个任意地染成红色或蓝色,然后将小圆盘放在大圆盘上面,使得两个圆盘的中心重合.这样,转动小圆盘能使其每一扇形都能叠放于大圆盘的某一扇形内.证明:当适当转动小圆盘时,可使叠放的扇形对中,同色者至少有50对.

证明 小圆盘的每个扇形都叠放于大圆盘的一个扇形中,有100种可能的位置,所以将这100种可能位置看作100个不同的盒子.在这100种可能位置中,将同色的扇形对看作放入盒子中的物体,小圆盘上的每一扇形都有50次配成同色的扇形对.因此这样的扇形对一共有50100?个.而

1)150(10050100+-?>?,

由推论1知,至少有一种小圆盘与大圆盘的叠放方式,可使叠放的扇形中至少有50个同色的扇形对.

例2 在某中学A 班有50名学生,其中年龄最小的是15岁,最大的是16岁.证明这个班中至少有三个学生是同年同月生的.

证明 1)125(24950+-?=>,由于年龄最小的是15岁,最大的是16岁,故将15岁、

16岁看作2个“盒子”

,将50名学生放入这2个“盒子”中,由鸽巢原理推论1知:至少有一个“盒子”中放有25名学生,即至少有25名学生同岁,也是就是说这25名学生同年生.再将十二个月分为12个“盒子”,将这25名同年生的学生放入这12个“盒子”中,因为1)13(1225+-≥,故由推论1知,至少有一个“盒子”中放有3名学生,即在此25个同年出生的学生中至少有3个人是同月生的,故这个班中至少有三个人是同年同月生的.

推论 2 对于任意n 个正整数1m ,2m , ,n m ,如果这n 个正整数满足不等式1)(121->+++r m m m n

n ,则1m ,2m , ,n m 中至少有一个不小于r . 证明(反证法) 假设对所有的1m ,2m , ,n m ,都有1m ,2m , ,n m 小于r ,即1-≤r m i ),,2,1(n i =,于是

)1(21-=-≤+++r n n nr m m m n ,

所以

1)(121-≤+++r m m m n

n , 这与1)(121->+++r m m m n

n 矛盾,因此,假设不成立,原命题成立,所以1m ,2m , ,n m 中至少有一个不小于r 的结论成立.

推论3 m 只鸽子,n 个鸽巢,则至少有一个鸽巢里有不少于1]1[+-n

m 只鸽子. 注:这里的符号“][”为取整符号,即][x 表示不超过x 的最大整数.

至此,本章总结了鸽巢原理的表现形式及其部分推论.虽然原理的表述比较简单,但是应用原理证明问题的时候,构造鸽巢的方法是比较不容易得到的.

第2章 鸽巢原理的应用

运用鸽巢原理的关键是“制造抽屉”及“元素”.通常,可采用把n 个“鸽子”进行合理分类的方法来制造抽屉.本章将主要研究鸽巢原理在代数学、几何学以及日常生活中的应用.

第1节 鸽巢原理应用于数的整除关系

鸽巢原理与数的整除有着密切的关系,在解决有关数的整除问题时,往往将余数作为“抽屉”,将整数看作放入抽屉中的“物体”,最后再利用鸽巢原理解决整数的相关问题.

例1 设1a ,2a , ,2012a 是2012个任意正整数的序列,则至少存在整数k 和l ,20121≤<≤l k ,使得和l k k a a a +++++ 21是2012的倍数.

证明 构造一个序列:

11a s =,212a a s +=,3213a a a s ++=, ,2012212012a a a s +++= ,

由于每一个i a 均为正整数,所以,201221s s s <<< .有两种可能:

(1)存在某一个n s 是2012的倍数,则定理已得证.

(2)假设在上面的序列中没有任何一个元素是2012的倍数,用模2012的剩余类0K ,1K , ,2011K 做成2012个鸽巢.由假设,1s ,2s , ,2012s 均不属于0K 中,从而1s ,2s , ,2012s 这2012个数应属于0K ,1K , ,2011K 这2011个鸽巢,于是根据

鸽巢原理,有一个i K 至少被放入了两个数,不妨设为k s ,l s .

k k a a a s +++= 21,l l a a a s +++= 21,

这样 2012|()k l s s -,即

)(|201221l k k a a a +++++ ,

也就是和l k k a a a +++++ 21是2012的倍数.

例 2 设1a ,2a , ,1997a 是正整数1,2, ,1997的一个排列.求证:乘积)1997()2)(1(199721---a a a 是一个偶数.

证明 因为1997是奇数,故排列1,2, ,1997中共有999个奇数,1a ,2a , ,

1997a 中也共有999个奇数,因此,在1,2,

,1997,1a ,2a , ,1997a 中共有19989992=?

个奇数,把1998个奇数看作“物体”放入1997个盒子中,必有两个奇数在同一盒子中,其对应的差为偶数,设这两个奇数为i a 和i ),,2,1(n i =,则可得i a i -为偶数,进而可得出乘积)1997()2)(1(199721---a a a 是一个偶数,故本题结论成立.

例3 证明:在任意27个整数中,必存在两个数,其和或差能被50整除.

证明 设27个整数为1a ,2a , ,27a ,它们被50除的余数分别为1r ,2r ,

,27r ,而任意一整数被50除的可能余数为0,1,2, ,49,共50个,它可分为26个类:

}0{,}49,1{,}48,2{, ,}26,24{,}25{.

将26个类看为鸽巢,27个余数看为鸽子,则27个鸽子放入26个鸽巢中,由鸽巢原理知,至少有两个鸽子属于同一类,例如i r ,j r ,于是j i r r =或50=+j i r r ,这就是说j i a a -可被50整除,或j i a a +可被50整除.

例4 任意给定1008个不同的自然数,求证其中必有两个整数,其和或差是2013的倍数.

解 以整数除以2013的余数0,1,2, ,2012为标准,制造2013个抽屉,标以]0[,]1[,]2[, ,[2012].再作调整,[2011],[2012]这两个抽屉分别与]2[,]1[合并, ,则可得到1007个抽屉,任意给定1008个不同的自然数放入这1007个抽屉,则至少有一个抽屉里有两个数,它们的和或差是2013的倍数.

由此可见,鸽巢原理在整除关系的应用中具有重要的作用.为解决数的整除关系问题提供了很好的方法.

第2节 鸽巢原理应用于几何图形

在上节中主要介绍了鸽巢原理在整除中的应用,然而鸽巢原理的应用并不仅仅局限于此.在某些与几何图形相关命题的证明中,也可以根据题目的特点构造抽屉,应用鸽巢原理解题.

例1 在边长为a 的正三角形内任意放置17个点,则其中至少有两个点的距离不大于4

a . 证明 将边长为a 的正三角形分成边长为4

a 的16个 小正三角形,如图2-1所示,将17个点放入16个小正三 图2-1

角形中,由鸽巢原理知,至少有一个三角形中放有2个或两个以上的点,而这两点的距离不大于4

a . 例2 证明:把5个点放到边长为2的正方形内部,则至少存在两个点,它们之间的距离小于2.

证明 如图2-2把边长为2的正方形分成四个相等的小正方形,

则每个小正方形的对角线长为2.如果把每个小正方形当作一个盒

子,由鸽巢原理知,把5个点放入4个盒子中,必有一个盒子中放入

了至少两个点,则有一个小正方形中有两个点.而小正方形的对角线长为2,也就是说,小正方形中任意两点的最大距离为2,但是, 由于5个点放在正方形的内部,因此它们之间的距离小于2. 2-2

例3 如图2-3所示,每个方格着红色、蓝色或黑色,证明至少存在两列有相同的着色.

图2-3

证明 用三种颜色按列着色,根据乘法规则,每列着色的方式只可能有27333=??种(视为27个鸽巢),而图中有28列方格(视为28个鸽子).根据鸽巢原理,至少有两列着色方式相同.

例4 在直径为5的圆内任意给定10个点,证明存在两个点,它们之间的距离小于2.

证明 根据题意,我们最先考虑到把圆等分成9个扇形而

构造出9个抽屉,但是虽然必有两个点在某一扇形内,但不能

确定它们之间的距离小于2.于是我们考虑先用一个与已知圆

同心,半径为1的不包含边界的小圆作为一个抽屉,然后再把

圆环部分等分成八个部分(如图2-4所示)这样就构成9个抽

屉.根据抽屉原理可知,一个抽屉(包括边界)中,若这两 图2-4

个点在小圆(不包含边界)中,显然它们之间的距离小于2.若这两个点在圆环部分的八个等分中的某一图形里,不妨设在图形ABCD .由于

292.152222<

293.12

215.2215.24cos 22222<

Rr r R AC , 由此可知,这时两点之间的距离也小于2,从而命题得证.

显然,适当的将图形进行分割,可以将几何中的一些问题用组合数学的思想解决,可见鸽巢原理能用于某些几何问题的证明.

第3节 鸽巢原理应用于实际生活

例1 某单位举行踩气球比赛,共有21人参加,共有181个气球,其中最少一人能踩5个气球,最多一人能踩10个气球,则至少有5人踩气球的数量相同.

分析 按踩气球的多少,从5到10个气球可以构造6个抽屉,这个问题就转化为至少有5人踩气球的数量在同一个抽屉里.

证明(反证法) 按踩气球的多少,从5到10个气球可以构造6个抽屉,假设无5人或5人以上踩气球的数量在同一个抽屉里,那只有5人以下踩气球的数量在同一个抽屉里,而参加踩气球的人数为21人,所以,每个抽屉最多有4人,故踩气球总数量最多有

4(5610)180181+++=< ,

得出矛盾,因此,至少有5人踩气球的数量相同.

例2 某校有55个同学参加英语比赛,已知将参赛人任意分成四组,则必有一组的女生多于2人,又知参赛者中任何10人中必有男生,则参赛男生的人数为多少人?

解 因为任意分成四组,必有一组的女生多于2人,所以女生至少有9124=+?(人),因为任意10人中必有男生,所以女生人数至多有9人.所以女生有9人,男生有46955=-(人).

例 3 11名学生到老师家借书,老师的书房中有A 、B 、C 、D 四类书,每名学生最多可借两本不同的书,最少借一本.试证明必有两个学生所借的书的类型相同.

证明 若学生只借一本书,则不同的类型有A 、B 、C 、D 四种,若学生借两本不同类型的书,则不同类型有AB 、AC 、AD 、BC 、BD 、CD 六种.共有10种类型,

把这10种类型看作10个“抽屉”,把11个学生看作11个“苹果”.如果谁借哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相同.

例4 某一制造铁盘的工厂,由于设备和技术的原因只能将生产盘子的重量控制在50克到1.50克之间.现需要制成重量相差不超过005.0克的两铁盘来配制一架天平,问该工厂至少要生产多少铁盘才能保证得到一对符合要求的铁盘.

解 将铁盘按重量分类,所有50克到005.50克的分为一类,005.50克到01.50克的分为一类,01.50克到015.50克的又分为一类, ,最后,095.50克到1.50克为一类,共计20类视为20个鸽笼,由鸽笼原理知,若该工厂生产21个铁盘,那么就有两个铁盘属于同一类,它们之间的重量不超过005.0克.故该工厂至少要生产21个铁盘才能得到一对符合要求的铁盘.

例5 证明:在任意的一群人中,一定有这样的两个人,他们在这群人中有相同个数的熟人(某人与自己不能算是熟人).

证明(归纳法) 设任意一群人的个数为n ,且2≥n .(因为1=n 时,不成其为一个人群)

当2=n 时,这两个人或者相互是熟人或者相互是生人.当这两人是熟人时,则他们的熟人都是1个人.当这两个人互不相识时,则他们的熟人都是0.故当2=n 时,结论成立.

当3≥n 时,假设i x ),,2,1(n i =表示第i 个人的熟人数目.下面分三种情况讨论.

(1)假设这群人中每人都是熟人,即0≠i x 且11-≤≤n x i .视1x ,2x , ,n x 为n 个物体,1,2, ,1-n 为1-n 个盒子.这样一来,问题就成为把n 个物体放入1-n 个盒子的问题了.由鸽巢原理知至少有两个物体放在同一个盒子中,不妨设k x 与l x 在同一盒子中(l k ≠),即l k x x =.这表明第k 个人与第l 个人有相同数目的熟人.在这种情况下,结论成立.

(2)假设这群人中只有1个人没有熟人,不妨设这个人就是第n 个人,即0=n x 且21-≤≤n x i )1,,2,1(-=n i .同样,视1x ,2x , ,1-n x 为1-n 个物体,视1,2, ,2-n 为2-n 个盒子,则由鸽巢原理知至少有一个盒子里放了两个物体.不妨设k x 与l x )1,1,(-≤-≤≠n l n k l k 在同一个盒子里,即l k x x =.故第k 个人与第l 个人的熟人数目相同.故在此情况下,结论成立.

(3)假设在这群人中至少有两个人都没有熟人,也就是说这两个人的熟人数目为0.故在此情况下,结论依然成立.

综上所述,结论成立.

从上面的例题中可以充分的说明鸽巢原理为我们的生活带来了很大的方便.

总结

本文对鸽巢原理、鸽巢原理的基本形式、鸽巢原理的相关推论以及鸽巢原理的应用方面进行了分析、总结与证明,在应用方面,利用鸽巢原理及其相关的推论证明了其在生活中的一些应用,通过本文的论述,充分体现了鸽巢原理在整数、几何图形及实际生活等方面的应用性,同时也充分体现了鸽巢原理在数学中所具有的重要地位,当然在对鸽巢原理应用的方面上,本文并不是对所有的应用都进行了讨论,所以在应用的完整性上有待改进,并可以继续进行研究讨论.

参考文献

[1] 卢开澄,卢华明,组合数学(第3版) [M],北京:清华大学出版社,(2002):259-274

[2] 石力叶,于娜,抽屉原理及其应用[J],今日科苑,2009(17):1

[3] 孙世新,组合数学(第3版) [M],西安:电子科技大学出版社,(2003):25-34

[4] 肖美英,抽屉原理及其应用[J],晋中师范高等专科学校学报,2002(03):1-2

[5] 孙世新,卢光辉,戴波,组合数学习题解答[M],西安:电子科技大学出版社,

(2006):22-23

[6] 杨骅飞,王朝瑞,组合数学及其应用[M],北京:北京理工大学出版社,(1992):

5-13

[7] 曹汝成,组合数学[M],广州:华南理工大学出版社,(1999):170-176

[8] 赵晶,抽屉原理及其应用[J],科协论坛(下半月),2008(03):1-2

[9]孙世新,张先迪,组合原理及其应用[M],北京:国防工业出版社,(2006):35-58

[10] 潘可为,抽屉原理及其应用[J],湖州师专学报,1993(05):2-5

致谢……………………………………………………

六年级鸽巢问题

教学辅导教案 学科任课教师:授课时间:年月日(星期) 鸽巢问题 基础知识点 1.鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的, 因此,也称为狭利克雷原理。把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果。 类似的, 如果有5只鸽子飞进四个鸽笼里, 那么一定有一个鸽笼飞进了2只或2只以上的鸽子。 2. 鸽巢原理(一):如果把m个物体任意放进n个抽屉里(m>n,且n是非零自然数),那么一定有一个抽 屉里至少放进了放进了2个物体。 如:将4支铅笔放入3个笔筒,总有一个笔筒至少有2支铅笔,“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。 3. 鸽巢原理(二):如果把多于kn个的物体任意分别放进n个空抽屉(k是正整数,n是非0的自然数), 那么一定有一个抽屉中至少放进了(k+1)个物体。 如:把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。我们把这些例子中的“苹果”、“鸽子”、“信”看作一种物体,把“盒子”、“鸽笼”、“信箱”看作鸽巣, 可以得到鸽巣原理最简单的表达形式物体个数÷鸽巣个数=商……余数至少个数=商+1 摸同色球计算方法:①要保证摸出同色的球,摸出的球的数量至少要比颜色数多1。 物体数=颜色数×(相同颜色数-1)+1 ②极端思想(最坏打算):用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个 什么颜色的球,都能保证一定有两个球是同色的。 鸽巢问题的计算总结:

二、例题讲解: 1、教室里有5名学生正在做作业,今天只有数学、英语、语文、地理四科作业求证:这5名学生中,至少 有两个人在做同一科作业。 2、班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书。 3、木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同, 则最少要取出多少个球? 4、把红、白、蓝三种颜色的球各10个放到一个袋子里,至少取多少个球,可以保证取到3个颜色相同的球。 5、证明:某班有52名学生,至少有5个人在同一个月出生? 6、一幅扑克牌除大小王有52张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?最少 要抽取几张牌,方能保证其中至少有2张牌有相同的花色? 7、幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意 七个小朋友中总有两个彼此选的玩具都相同,试说明道理。 8、学校图书馆里科普读物、故事书、连环画三种图书。每个学生从中任意借阅两本,那么至少要几个学生借 阅才能保证其中一定有2人借阅的读书相同? 9、某班有学生49名,在这一次的英语期中考试中,除3人以外,分数都在85分以上,是否可以推断,至少 有几人的分数会一样? 三、课堂练习 1、6只鸡放进5个鸡笼,至少有几只鸡要放进同一个鸡笼里。 2、400人中至少有两个人的生日相同,请证明。 3、红、黄、蓝、白四色小球各10个,混合放在一个暗盒中,一次至少摸出多少个,才能保证有6个小球是 同色的。 4、有一个晚上你的房间的电灯忽然间坏了,伸手不见五指,而你又要出去,于是你就摸床底下的袜子。你有 三双分别为红、白、蓝颜色的袜子,可是你在黑暗中不能知道哪一双是颜色相同的。你想拿最少数目的袜子出去,在外面借街灯配成同颜色的一双。这最少数目应该是多少? 5、某班有42人开展读书活动,他们从学校图书馆借了212本图书,那么其中至少有一人借多少本书? 6、学校五(一)班40名学生中,年龄最大的是13岁,最小的是11岁,那么其中必有几名学生是同年同月出 生的。

《鸽巢原理(1)》教案

《鸽巢原理(1)》名师教案 一、学习目标 (一)学习内容 《义务教育教科书数学》(人教版)六年级下册第五单元第68~69页的例1、2。“抽屉原理”是一类较为抽象和艰涩的数学问题,对全体学生而言具有一定的挑战性。为此,教材选择了一些常见的、熟悉的事物作为学习内容,经历将具体问题“数学化”的过程。 (二)核心能力 经历将具体问题“数学化”的过程,初步形成模型思想,发展抽象能力、推理能力和应用能力。 (三)学习目标 1.理解“鸽巢原理”的基本形式,并能初步运用“鸽巢原理”解决相关的实际问题或解释相关的现象。 2.通过操作、观察、比较、说理等数学活动,经历鸽巢原理的形成活动,初步形成模型思想,发展抽象能力、推理能力和应用能力。 (四)学习重点 了解简单的鸽巢问题,理解“总有”和“至少”的含义。 (五)学习难点 运用“鸽巢原理”解决相关的实际问题或解释相关的现象。 (六)配套资源 实施资源:《鸽巢原理(1)》名师课件 二、学习设计 (一)课堂设计 1.谈话导入 师:我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请一位同学任意抽5张,不要让我看到你抽的是什么牌。但是老师却知道,其中至少有两张牌是同种花色的,再找一个学生再次证明。 师:看来我两次都猜对了。谢谢你们。老师为什么能料事如神呢?到底有什么秘诀呢?学习完这节课以后大家就知道了。

2.问题探究 (1)呈现问题,引出探究 出示例1:小明说“把4支铅笔放进3个笔筒里。不管怎么放,总有一个笔筒里至少放进2支铅笔”,他说得对吗?请说明理由。 师:“总有”是什么意思?“至少”有2支是什么意思? 学生自由发言。 预设:一定有 不少于两只,可能是2支,也可能是多于2支。 就是不能少于2支。 (2)体验探究,建立模型 师:好的,看来大家已经理解题目的意思了。那么把4支铅笔放进3个笔筒里,可以怎样放?有几种不同的摆法?(我们用小棒和纸杯分别表示铅笔和笔筒)请大家摆摆看,看有什么发现? 小组活动:学生思考,摆放。 ①枚举法 师:大部分同学都摆完了,谁能说说你们是怎么摆的。能不能边摆边给大家说。 预设1:可以在第一个笔筒里放4支铅笔,其它两个空着。 师:这种放法可以记作:(4,0,0),这4支铅笔一定要放在第一个笔筒里吗? (不一定,也可能放在其它笔筒里。) 师:对,也可以记作(0,4,0)或者(0,0,4),但是,不管放在哪个笔筒里,总有一个笔筒里放进4支铅笔。还可以怎么放? 预设2:第一个笔筒里放3支铅笔,第二个笔筒里放1支,第三个笔筒空着。 师:这种放法可以记作(3,1,0) 师:这3支铅笔一定要放在第一个笔筒里吗? (不一定) 师:但是不管怎么放——总有一个笔筒里放进3支铅笔。 预设3:还可以在第一个笔筒里放2支,第二个笔筒里也放2支,第三个笔

新教材人教版小学六年级下册第五单元数学广角知识点归纳总结:鸽巢问题

新教材人教版小学六年级下册第五单元数学广角知识点归纳总结:鸽巢问题 新教材人教版小学六年级下册第五单元数学广角知识点归纳总结:鸽巢问题 1、鸽巣原理是一个重要而又基本的组合原理, 在解决数学问题时有非常重要的作用。 ①什么是鸽巣原理?先从一个简单的例子入手, 把3个苹果放在2个盒子里, 共有四种不同的放法,如下表:放法盒子1盒子2 130 221 312 403 无论哪一种放法, 都可以说“必有一个盒子放了两个或两个以上的苹果”。这个结论是在“任意放法”的情况下, 得出的一个“必然结果”。 类似的, 如果有5只鸽子飞进四个鸽笼里, 那么一定有一个鸽笼飞进了2只或2只以上的鸽子。 如果有6封信, 任意投入5个信箱里, 那么一定有一个信箱至少有2封信。

我们把这些例子中的“苹果”、“鸽子”、“信”看作一种物体,把“盒子”、“鸽笼”、“信箱”看作鸽巣, 可以得到鸽巣原理最简单的表达形式 ②利用公式进行解题 物体个数÷鸽巣个数=商……余数至少个数=商+1 2、摸2个同色球计算方法: ①要保证摸出两个同色的球,摸出的球的数量至少要比颜色数多1。 物体数=颜色数×(至少数-1)+1 ②极端思想:用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球, 都能保证一定有两个球是同色的。 ③公式: 两种颜色:2+1=3(个) 三种颜色:3+1=4(个) 四种颜色:4+1=5(个) …… 3、鸽巢原理也叫抽屉原理。 抽屉原理:把八个苹果任意地放进七个抽屉里,不论怎样放,至少有一个抽屉放有两个或两个以上的苹果。这种现象叫着抽屉原理。 以上就是为大家整理的新教材人教版小学六年级下册

六年级下数学广角-鸽巢问题知识点

第五单元:数学广角-鸽巢问题 【知识点一】“鸽巢原理”(一) “鸽巢原理”(一):把m个物体任意分放进n个鸽巢中(m和n是非0自然数,且 m>n),那么一定有一个鸽巢中至少放进了2个物体。【知识点二】“鸽巢原理”(二) “鸽巢原理”(二):把多于kn个物体任意分进n个鸽巢中(k和n是非0自然数), 那么一定有一个鸽巢中至少放进了(k+1)个物体。【知识点三】应用“鸽巢原理”解决简单的实际问题 应用“鸽巢原理”解题的一般步骤(1)分析题意,把实际问题转化成“鸽 巢问题”,即弄清楚“鸽巢”(“鸽巢”是什么,有几个鸽巢) 和分放的物体。(2)设计“鸽巢”的具体形式。(3)运用 原理得出某个“鸽巢”中至少分放的物体个数,最终解决问 题。 【误区警示】 误区一:判断:因为11÷3=3....2,所以把11本书放进3个抽屉中,总有一个 抽屉里至少放5本书。(√) 错解分析此题错在把这个抽屉至少放的书的本数用“3(商)+2(余数)” 计算了,应该是“3(商)+1”。 错解改正× 误区二:有红、绿、蓝三种颜色的小球各5个,至少取出几个能保证有2个同色的? 5×3÷3=5(个) 错解分析此题错在把小球的总数作为要分放物体的数量了,求得的结果也是 与问题要求不符。本题属于已知鸽巢数量(3中颜色即3个 鸽巢)和分的结果(保证一个鸽巢里至少有2个同色的), 求要分放物体的数量,各种颜色小球的数量并与参与运算。 错解改正3+1=4(个) 【方法运用】运用逆推法解决鸽巢问题 典型例题把25个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里有5 个玻璃球?

思路分析由“鸽巢原理”(二)可知,用分放的物体总数除以鸽巢数量求出平均 每个鸽巢里所放物体的数量和余数,其中至少有一个鸽巢中 有(平均每个鸽巢里所放物体的数量+1)个物体。 此题可以把玻璃球的总数看成分放的物体总数,把盒子数看成鸽巢数, 要使其中一个鸽巢里至少有5个玻璃球,则玻璃球的个数至 少要比鸽巢数的(5-1)倍多1个。 正确解答(25-1)÷(5-1)=6个(个) 方法总结(分放的物体总数-1)÷(其中一个鸽巢里至少有的物体个数-1)= a....b(a.b为自然数,且b>a),则a就是所求的 鸽巢数。 典型例题平安路小学组织862名同学去参观甲、乙、丙处景点。规定每名同学 至少参观一处,最多可以参观两处,至少有多少名同学参观 的景点相同? 思路分析参观甲、乙、丙3处景点,若只参观一处,则有3种参观方案;若参观 两处,则有“甲乙、乙丙和甲丙”这3种参观方案。所以, 一共有3+3=6(种)参观方案。求至少有多少名同学参 观的景点相同,可以转化为“鸽巢问题”解答,把862名 同学看成要分放的物体,把6中参观方案看成6个鸽巢。 正确解答3+3=6(种) 862÷6=143(名).....4(名) 143+1=144(名) 【综合测评】 1、 (1)小东玩掷骰子游戏(掷一枚骰子),要保证掷出的骰子数至少有两次是相同 的,小东至少应该掷()次 (2)李阿姨给幼儿园的孩子买衣服,有红、黄、白3种颜色,结果总是至少有2 个孩子的衣服颜色一样,她至少给()个孩子买衣服。 2、11名学生到老师家借书,老师的书房中有A、B、C、D四类书,每名学生最多可借两本不同类型的书,最少可借一本。至少有几名学生所借的书的类型完全相 同?

鸽巢原理教案

数学广角“鸽巢问题”教学设计【教学目标】: 1、使学生理解“鸽巢原理”的基本形式,并能初步运用“鸽巢原理”解决相关的实际问题或解释相关的现象。 2、通过操作、观察、比较、说理等数学活动,使学生经历鸽巢原理的形成过程,体会和掌握逻辑推理思想和模型思想,提高学习数学的兴趣。 3、在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。 【教学重点】: 经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”。 【教学难点】: 理解“鸽巢原理”,并对一些简单实际问题加以“模型化”。 【教学准备】: 多媒体课件、扑克牌、铅笔、纸杯。 【教学过程】: (一)游戏引入 出示一副扑克牌。

教师:今天老师要给大家表演一个“魔术”。取出大王和小王,还剩下52张牌,下面请5位同学上来,每人随意抽一张,不管怎么抽,至少有2张牌是同花色的。 5位同学上台,抽牌,亮牌,统计。 教师:这里蕴含着一个有趣的数学原理,今天我们就一起来研究这个数学原理。 (二)探索新知 1.教学例1。 (1)把4支铅笔放到3个笔筒里,不管怎么放,总有一个笔筒里至少有2支铅笔。 理解“总有”和“至少”是什么意思 (2)小组讨论“为什么”。 (3)汇报交流列举法 学生:可以放(4,0,0);(3,1,0);(2,2,0);(2,1,1)。(教师根据学生回答在黑板上画图表示四种结果)引导学生得出“不管怎么放,总有一个铅笔盒里至少有2支铅笔”。 (4)假设法(反证法): 教师:前面我们是通过动手操作得出这一结论的,想一想,能不能找到一种更为直接的方法得到这个结论呢?

如果每个盒子里放1支铅笔,最多放3支,剩下的1支不管放进哪一个盒子里,总有一个盒子里至少有2支铅笔。首先通过平均分,余下1支,不管放在哪个盒子里,一定会出现“总有一个盒子里至少有2支铅笔”。这就是平均分的方法。 提问:这样只能证明总有一个笔筒中肯定有2支笔,怎样能证明至少有2支呢? 2、拓展。 (1)把5支铅笔放到4个笔筒里,不管怎么放,总有一个笔筒里至少有2支铅笔。为什么? 引导学生分析“如果每个盒子里放1支铅笔,最多放4支,剩下的1支不管放进哪一个盒子里,总有一个盒子里至少有2支铅笔。首先通过平均分,余下1支,不管放在哪个盒子里,一定会出现“总有一个盒子里至少有2支铅笔”。 (2)把6支铅笔放到5个铅笔盒里呢?把100支铅笔放到99个铅笔盒里呢?让学生口头回到加深对假设法的理解。 (3)提问:我们为什么都采用假设法来分析,而不是列举法呢!通过刚才的分析,你发现了什么 引导学生得出“只要铅笔数比铅笔盒数多1,总有一个盒子里至少有2支铅笔”。

最新六年级下数学广角-鸽巢问题知识点

最新六年级下数学广角-鸽巢问题知识点 【知识点一】“鸽巢原理”(一) “鸽巢原理”(一):把m个物体任意分放进n个鸽巢中(m和n是非0自然数,且 m>n),那么一定有一个鸽巢中至少放进了2个物体. 【知识点二】“鸽巢原理”(二) “鸽巢原理”(二):把多于kn个物体任意分进n个鸽巢中(k和n是非0自然数), 那么一定有一个鸽巢中至少放进了(k+1)个物体. 【知识点三】应用“鸽巢原理”解决简单的实际问题 应用“鸽巢原理”解题的一般步骤(1)分析题意,把实际问题转化成“鸽 巢问题”,即弄清楚“鸽巢”(“鸽巢”是什么,有几个鸽巢) 和分放的物体.(2)设计“鸽巢”的具体形式.(3)运用 原理得出某个“鸽巢”中至少分放的物体个数,最终解决问 题. 【误区警示】 误区一:判断:因为11÷3=3....2,所以把11本书放进3个抽屉中,总有一个 抽屉里至少放5本书. (√) 错解分析此题错在把这个抽屉至少放的书的本数用“3(商)+2(余数)” 计算了,应该是“3(商)+1”. 错解改正× 误区二:有红、绿、蓝三种颜色的小球各5个,至少取出几个能保证有2个同色的? 5×3÷3=5(个) 错解分析此题错在把小球的总数作为要分放物体的数量了,求得的结果也是 与问题要求不符.本题属于已知鸽巢数量(3中颜色即3个 鸽巢)和分的结果(保证一个鸽巢里至少有2个同色的), 求要分放物体的数量,各种颜色小球的数量并与参与运算. 错解改正3+1=4(个) 【方法运用】运用逆推法解决鸽巢问题 典型例题把25个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里有5 个玻璃球?

思路分析由“鸽巢原理”(二)可知,用分放的物体总数除以鸽巢数量求出平均 每个鸽巢里所放物体的数量和余数,其中至少有一个鸽巢中 有(平均每个鸽巢里所放物体的数量+1)个物体. 此题可以把玻璃球的总数看成分放的物体总数,把盒子数看成鸽巢数, 要使其中一个鸽巢里至少有5个玻璃球,则玻璃球的个数至 少要比鸽巢数的(5-1)倍多1个. 正确解答(25-1)÷(5-1)=6个(个) 方法总结(分放的物体总数-1)÷(其中一个鸽巢里至少有的物体个数-1)= a....b(a.b为自然数,且b>a),则a就是所求的 鸽巢数. 典型例题平安路小学组织862名同学去参观甲、乙、丙处景点.规定每名同学 至少参观一处,最多可以参观两处,至少有多少名同学参观 的景点相同? 思路分析参观甲、乙、丙3处景点,若只参观一处,则有3种参观方案;若参观 两处,则有“甲乙、乙丙和甲丙”这3种参观方案.所以, 一共有3+3=6(种)参观方案.求至少有多少名同学参 观的景点相同,可以转化为“鸽巢问题”解答,把862名 同学看成要分放的物体,把6中参观方案看成6个鸽巢. 正确解答3+3=6(种) 862÷6=143(名).....4(名) 143+1=144(名) 【综合测评】 1、 (1)小东玩掷骰子游戏(掷一枚骰子),要保证掷出的骰子数至少有两次是相同 的,小东至少应该掷()次 (2)李阿姨给幼儿园的孩子买衣服,有红、黄、白3种颜色,结果总是至少有2 个孩子的衣服颜色一样,她至少给()个孩子买衣服. 2、11名学生到老师家借书,老师的书房中有A、B、C、D四类书,每名学生最多可借两本不同类型的书,最少可借一本.至少有几名学生所借的书的类型完全相

鸽巢原理及其应用+6

学号:20115034032 学院数学与信息科学学院 专业信息与计算科学 年级2011级 姓名陈婷婷 论文题目鸽巢原理及其应用 指导教师沈明辉职称教授 成绩 2014年3月16日

学年论文成绩评定表评语 成绩: 指导教师(签名): 201 年月日学院意见:____________________ 学院院长(签名): 201 年月日

目录 摘要 (1) 关键字 (1) Abstract (1) Key words (1) 前言 (2) 1.鸽巢原理 (2) 1.1 鸽巢原理的简单形式 (2) 1.2 鸽巢原理的一般形式 (3) 1.3 鸽巢原理的加强形式 (3) 2. 鸽巢原理的相关推论 (4) 3.鸽巢原理的应用 (6) 3.1 鸽巢原理应用于数的整除关系 (6) 3.2 鸽巢原理应用于实际生活 (7) 参考文献 (9)

鸽巢原理及其应用 姓名:陈婷婷学号:20115034032 数学与信息科学学院信息与计算科学专业 指导老师:沈明辉职称:教授 摘要:鸽巢原理是组合数学中研究存在性问题的基本原理之一,也是非常规解题方法的重要类型之一,在数论和组合论中有着广泛的应用. 本文简单介绍了鸽巢原理的几种形式,便于了解鸽巢原理到底是什么东西.本文主要研究鸽巢原理和其原理的应用.应用主要从数学领域的应用和现实生活中的应用两大方面进行研究,数学领域方面主要应用于整除关系的证明等几方面的解题. 关键字:鸽巢原理; 组合数学; 鸽巢原理的应用 Pigeonhole principle and the application of the pigeonhole Abstract:Pigeonhole principle is a mathematical combination of problem of the existence of one of the basic principles of nonconventional problem solving method , is also one of the important types in number theory and combination has a wide range of applications. This paper briefly introduces the principle of Pigeonhole in several forms, easy to understand what the Pigeonhole principle is. This paper mainly studies the principle of Pigeonhole principle and the application of the principle. Application mainly from the mathematical field of application and the reality of life in the application of the two major aspects of research, mathematical fields mainly used in number theory, algebra, geometry and so on several aspects of the problem solving, in real life, most used computer fortune-telling, predict some existence results etc.. Key words:Pigeonhole principle;Mathematical combination ;The application of the principle

六年级数学-鸽巢问题

第十讲鸽巢问题 鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家 狭利克雷明确地提出来的,因此,也称为狭利克雷原理。把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果。类似的,如果有5只鸽子飞进四个鸽笼里,那么一定有一个鸽笼飞进了2只或2只以上的鸽子。 鸽巢原理(一):如果把m个物体任意放进n个抽屉里(m>n,且n是非零自然数),那么一定有一个抽屉里至少放进了放进了2个物体。 如:将4支铅笔放入3个笔筒,总有一个笔筒至少有2支铅笔,“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。 鸽巢原理(二):如果把多于kn个的物体任意分别放进n个空抽屉(k是正整数,n是非0的自然数),那么一定有一个抽屉中至少放进了(k+1)个物体。如:把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。 我们把这些例子中的“苹果”、“鸽子”、“信”看作一种物体,把“盒子”、“鸽笼”、“信箱”看作鸽巣,可以得到鸽巣原理最简单的表达形式 物体个数宁鸽巣个数二商……余数至少个数二商+1 摸同色球计算方法: ①要保证摸出同色的球,摸出的球的数量至少要比颜色数多1。 物体数=颜色数x(相同颜色数—1)+ 1 ②极端思想(最坏打算):用最不利的摸法先摸出两个不同颜色的球,再无论摸出 一个什么颜色的球,都能保证一定有两个球是同色的。

1、教室里有5名学生正在做作业,今天只有数学、英语、语文、地理四科作业求证:这5名学生中,至少有两个人在做同一科作业 2、班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书。 3、木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球? 4、把红、白、蓝三种颜色的球各10个放到一个袋子里,至少取多少个球,可以保证取到3个颜色相同的球。 5、证明:某班有52名学生,至少有5个人在同一个月出生 6、一幅扑克牌除大小王有52张,最少要抽取几张牌,方能保证其中至少有2 张牌有相同的点数?最少要抽取几张牌,方能保证其中至少有2张牌有相同的花色? 7、幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件, 那么不

容斥原理与鸽巢原理的应用

摘要 容斥原理和鸽巢原理作为组合数学中的基本内容,就原理本身而言简单易懂.然而,由于此二者分别在组合计数问题和存在性问题的应用中所展现出来的魅力,国内外学者在很多书籍、学术性论文中关于容斥原理和鸽巢原理的应用进行了探讨,并且关于此方面的研究已取得一系列的成果. 本文主要是以综述的方式从起源、理论和应用三方面对容斥原理和鸽巢原理进行了介绍和分类探讨. 首先介绍了容斥原理分别与加法理论、减法理论的区别与优势,并与实际问题相结合突出其优势所在.其次本文介绍了鸽巢原理的两种具体形式及其推论,并对鸽巢原理在数学理论研究、数学竞赛题目、解决实际生活中的问题等方面的应用进行介绍后,对鸽巢原理的应用中所常见的几种构造“鸽巢”的方法进行了分类谈论. 最后,针对鸽巢原理,我们给出针对新疆某区域关于旅游产品的实际应用实例,并提出了个人见解. 关键词:容斥原理,鸽巢原理,构造方法,鸽巢,鸽子

ABSTRACT As the basic content of combinatorial mathematics, the principle of tolerance and the theory of pigeon nest the principle itself is simple and understandable. However, due to the charm of the two applications in combinatorial counting and existential problems, scholars at home and abroad have probed into the application of the principle of tolerance and the pigeon nest in many books and academic papers, And the research on this aspect has made a series of achievements. In this paper, the author introduces and classifies the theory of tolerance and doctrine and the principle of pigeon nest in the way of summarization from the origin, theory and application. Firstly, the differences and advantages between the theory of tolerance and exclusion and the theory of addition and subtraction were introduced. and the actual problem with the combination of highlighting its advantages. Secondly, this paper introduces two concrete forms of pigeon nest principle and its inference, and introduces the application of pigeon nest principle in mathematics theory research, Maths contest problem, solving real life problems and so on. , several common methods of constructing pigeon nest in the application of pigeon nest principle are classified and discussed. Finally, according to the pigeon Nest principle, we give a practical example of the tourism products in a region of Xinjiang, and put forward personal opinions. KEY WORDS: inclusion-exclusion principle, pigeonhole principle, construction method, pigeonhole, pigeon

鸽巢原理及其应用

鸽巢原理是组合数学中最基本的计数原理之一,也是证明存在性问题的一种重要方法.本文首先介绍了鸽巢原理的不同表述形式及其推论,然后从整除关系的证明、几何图形的分割以及解决实际问题等几个角度介绍了鸽巢原理的应用,并对例题中鸽巢的构造技巧做了分析. 关键词:鸽巢原理;简单形式;一般形式;加强形式

Abstract The pigeonhole principle is one of the basic counting principle in combinatorics, but also it is an important method to prove the problem of the existence. This paper first introduces the different expressions of the pigeonhole principle and its deduction, then the applications of the pigeonhole principle are introduced from several angles of proof of aliquot relationship, division of the geometrical figure and solving practical problems, the structured skills of the pigeonhole principle in examples are analysed. Key words: pigeonhole principle; simple form; general form; strengthend form

六年级下数学广角-鸽巢问题知识点知识分享

六年级下数学广角-鸽巢问题知识点

第五单元:数学广角-鸽巢问题 【知识点一】“鸽巢原理”(一) “鸽巢原理”(一):把m个物体任意分放进n个鸽巢中(m和n是 非0自然数,且m>n),那么一定有一个鸽 巢中至少放进了2个物体。 【知识点二】“鸽巢原理”(二) “鸽巢原理”(二):把多于kn个物体任意分进n个鸽巢中(k和n 是非0自然数),那么一定有一个鸽巢中至少 放进了(k+1)个物体。 【知识点三】应用“鸽巢原理”解决简单的实际问题 应用“鸽巢原理”解题的一般步骤(1)分析题意,把实际问 题转化成“鸽巢问题”,即弄清楚“鸽巢” (“鸽巢”是什么,有几个鸽巢)和分放的物 体。(2)设计“鸽巢”的具体形式。(3) 运用原理得出某个“鸽巢”中至少分放的物体 个数,最终解决问题。 【误区警示】 误区一:判断:因为11÷3=3....2,所以把11本书放进3个抽 屉中,总有一个抽屉里至少放5本书。 (√) 错解分析此题错在把这个抽屉至少放的书的本数用“3 (商)+2(余数)”计算了,应该是“3 (商)+1”。 错解改正× 误区二:有红、绿、蓝三种颜色的小球各5个,至少取出几个能保证有2个 同色的? 5×3÷3=5(个) 错解分析此题错在把小球的总数作为要分放物体的数量了,求 得的结果也是与问题要求不符。本题属于已知

鸽巢数量(3中颜色即3个鸽巢)和分的结果 (保证一个鸽巢里至少有2个同色的),求要 分放物体的数量,各种颜色小球的数量并与参 与运算。 错解改正3+1=4(个) 【方法运用】运用逆推法解决鸽巢问题 典型例题把25个玻璃球最多放进几个盒子里,才能保证至少有一 个盒子里有5个玻璃球? 思路分析由“鸽巢原理”(二)可知,用分放的物体总数除以鸽巢 数量求出平均每个鸽巢里所放物体的数量和余 数,其中至少有一个鸽巢中有(平均每个鸽巢 里所放物体的数量+1)个物体。 此题可以把玻璃球的总数看成分放的物体总数,把盒子数 看成鸽巢数,要使其中一个鸽巢里至少有5个 玻璃球,则玻璃球的个数至少要比鸽巢数的 (5-1)倍多1个。 正确解答(25-1)÷(5-1)=6个(个) 方法总结(分放的物体总数-1)÷(其中一个鸽巢里至少有的物体 个数-1)=a....b(a.b为自然 数,且b>a),则a就是所求的鸽巢数。 典型例题平安路小学组织862名同学去参观甲、乙、丙处景点。 规定每名同学至少参观一处,最多可以参观两 处,至少有多少名同学参观的景点相同? 思路分析参观甲、乙、丙3处景点,若只参观一处,则有3种参观 方案;若参观两处,则有“甲乙、乙丙和甲 丙”这3种参观方案。所以,一共有3+3= 6(种)参观方案。求至少有多少名同学参观 的景点相同,可以转化为“鸽巢问题”解答,

六年级下数学广角鸽巢问题知识点

六年级下数学广角鸽巢 问题知识点 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

第五单元:数学广角-鸽巢问题【知识点一】“鸽巢原理”(一) “鸽巢原理”(一):把m个物体任意分放进n个鸽巢中(m和n是非 0自然数,且m>n),那么一定有一个鸽巢中 至少放进了2个物体。 【知识点二】“鸽巢原理”(二) “鸽巢原理”(二):把多于kn个物体任意分进n个鸽巢中(k和n是 非0自然数),那么一定有一个鸽巢中至少放进 了(k+1)个物体。 【知识点三】应用“鸽巢原理”解决简单的实际问题 应用“鸽巢原理”解题的一般步骤(1)分析题意,把实际问题 转化成“鸽巢问题”,即弄清楚“鸽巢”(“鸽 巢”是什么,有几个鸽巢)和分放的物体。 (2)设计“鸽巢”的具体形式。(3)运用原 理得出某个“鸽巢”中至少分放的物体个数,最 终解决问题。 【误区警示】 误区一:判断:因为11÷3=3....2,所以把11本书放进3个抽屉 中,总有一个抽屉里至少放5本书。 (√)

错解分析此题错在把这个抽屉至少放的书的本数用“3(商) +2(余数)”计算了,应该是“3(商)+ 1”。 错解改正× 误区二:有红、绿、蓝三种颜色的小球各5个,至少取出几个能保证有2个同 色的 5×3÷3=5(个) 错解分析此题错在把小球的总数作为要分放物体的数量了,求得 的结果也是与问题要求不符。本题属于已知鸽巢 数量(3中颜色即3个鸽巢)和分的结果(保证 一个鸽巢里至少有2个同色的),求要分放物体 的数量,各种颜色小球的数量并与参与运算。 错解改正3+1=4(个) 【方法运用】运用逆推法解决鸽巢问题 典型例题把25个玻璃球最多放进几个盒子里,才能保证至少有一个 盒子里有5个玻璃球 思路分析由“鸽巢原理”(二)可知,用分放的物体总数除以鸽巢数 量求出平均每个鸽巢里所放物体的数量和余数, 其中至少有一个鸽巢中有(平均每个鸽巢里所放 物体的数量+1)个物体。 此题可以把玻璃球的总数看成分放的物体总数,把盒子数看 成鸽巢数,要使其中一个鸽巢里至少有5个玻璃

六年级鸽巢原理

授课时间课时第一课时课题鸽巢问题 教学目标1、了解“鸽巢问题”的特点,理解“鸽巢原理”的含义(假如有多于n个元素分成n个集合,那么一定有一个集合中至少含有2个元素)。使学生学会用此原理解决简单的实际问题。 2、经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。 3、通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。 教学重难点引导学生把具体问题转化成“鸽巢问题”,并理解鸽巢问题。 理解“总有”、“至少”的意义,理解平均分后余数不是1时的至少数。 教学方法观察、猜测、实验、推理教具扑克牌、纸杯(笔筒)、 课件 教学过程 师生活动及二次备课设计意图 一、情景导入 老师表演小魔术(扑克牌问题):一副牌,取出大小王,还剩52张,你们5人每人随意抽一张,我知道至少有2张牌是同花色的。 师:同学们,老师手里拿了一副扑克牌,总共几张?(54张) 抽掉了大王、小王,还剩多少张?(52张) 知道扑克牌有几种花色吗?(4种)哪四种? 那我们就用剩下的扑克牌来做游戏。谁愿意来帮这个忙?(1个同学上来。) 任意抽取5张,不要让老师看到。自己看好就行了。 师:同学们,下面就是见证奇迹的时刻。 师:老师猜在这五张牌里,至少有两张牌是同一花色的。 师:把牌拿出来验证一下。 老师猜对了吗?其实在这个游戏中蕴含着一个有趣的数学原理——“抽屉原理”。(引出课题) 接下来就从我们身边熟悉的生活情境入手,来研究这个原理背后的道理。(教师结合学生抽出的扑克牌的情况引导学生理解“至少2张牌”的意思。 ) 二、探究新知 1.教学例1.(课件出示例题1情境图) 把4支笔放进3个笔筒中,有几种放法,是怎样放的? (1)这个要求小组合作来完成。听清老师的要求:设计意图]扑克牌小魔术作为新课的切入点,激起学生认知上的兴趣,趁机抓住他们的求知欲,激发学生探究新知的热情,使学生积极主动地投入到新课的学习中去。同时,在魔术中直观地感知“至少”的意思。 思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至

六年级下册《鸽巢问题》教案知识分享

“鸽巢问题”教案 教学内容:教材第68-70页例1、例2,及“做一做”。 学习目标: 1、知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。使学生学会用此原理解决简单的实际问题。 2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。 3、情感态度与价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。学习重点:引导学生把具体问题转化成“鸽巢问题”。 学习难点:找出“鸽巢问题”解决的窍门进行反复推理。教具准备:多媒体课件。 学习过程: 一、创设情境,导入新知 老师组织学生做“抢椅子”游戏(请3位同学上来,摆开2条椅子),并宣布游戏规则。 其实这个游戏中蕴藏着一个非常有趣的数学原理,这节课我们就一起来研究这类问题。-----出示课题《鸽巢问题》“鸽巢原理”又称“抽屉原理”,最先是由19世纪的德

国数学家狄利克雷提出来的,所以又称“狄利克雷原理”,这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们就来研究这一原理。 二、合作交流,探究新知 1、教学例1(课件出示例题1情境图) 思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。为什么呢? 问题:“总有”和“至少”是什么意思? 学生通过操作发现规律→理解关键词的含义→探究证明→认识“鸽巢问题”的学习过程来解决问题。 (1)操作发现规律:通过把4支铅笔放进3个笔筒中,可以发现:不管怎么放,总有1个笔筒里至少有2支铅笔。 (2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。这里的“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。 (3)探究证明。个人调整意见 方法一:用“分解法”证明。把4分解成3个数。由图

鸽巢原理练习题

鸽巢原理练习题 一、填空 1.箱子中有5个红球,4个白球,至少要取出()个才能保证两种颜色的球都有,至少要取()个才能保证有2个白球。 2.“六一”儿童节那天,幼儿园买来了许多的苹果、桃子、桔子和香蕉,每个小朋友可以任意选择两种水果,那么至少要有()个小朋友才能保证有两人选的水果是相同的;如果每位小朋友拿的两个水果可以是同一种,那么至少要有()个小朋友才能保证两人拿的水果是相同的。 3.将红、黄、蓝三种颜色的帽子各5顶放入一个盒子里,要保证取出的帽子有两种颜色,至少应取出()顶帽子;要保证三种颜色都有,则至少应取出()顶;要保证取出的帽子中至少有两顶是同色的,则至少应取出()顶。 二、选择 1.把25枚棋子放入下图的三角形内,那么一定有一个小三角形中至少放入()枚。

A.6 B.7 C.8 D.9 2.某班有男生25人,女生18人,下面说法正确的是()。 A.至少有2名男生是在同一个月出生的 B.至少有2名女生是在同一个月出生的 C.全班至少有5个人是在同一个月出生的 D.以上选项都有误 三、解答 1.某班同学为地震灾区小朋友捐献图书,所捐图书共分为故事书、科技树和教辅资料书三类,捐书的情况是:有捐一本的,有捐两本的,还有捐三本的。问至少要有几位同学来捐书才能保证一定有两位同学所捐书的类型相同?(每种类型的书最多捐一本) 2.在如下图的盒子中,小华蒙着眼睛往外摸球,至少要摸出多少个,才能保证摸出的球至少有3种不同的颜色?

3.扑克牌里学数学:一副扑克牌(取出两张王牌)。 (1)在剩下的52张牌中任意抽出9张,至少有多少张是同花色的? (2)扑克牌一共有4种花色,每种花色都有13张牌,问至少要抽出几张牌才能保证有一张是红桃? (3)至少要抽出多少张才能保证有5张牌是同一花色的? 4.在下面的方格中,将每一个方格涂上红色或黄色,不论怎么涂,至少有几列的颜色是完全相同的? 5.小花猫钓到了鲤鱼、草鱼、鲫鱼三种鱼共12条,放在桶里提回家去,路上遇见了小白猫,小花猫问小白猫:“你最爱吃什么鱼?”小白猫说:“我最爱吃的是鲤鱼。”小花猫说:“好,你只要从我的桶里随便拿出3条鱼来,就一定会有你最爱吃的鲤

六年级数学鸽巢问题

第十讲鸽巢问题 一、知识点: 鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家 狭利克雷明确地提出来的,因此,也称为狭利克雷原理。把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果。类似的, 如果有5只鸽子飞进四个鸽笼里, 那么一定有一个鸽笼飞进了2只或2只以上的鸽子。 鸽巢原理(一):如果把m个物体任意放进n个抽屉里(m>n,且n是非零自然数),那么一定有一个抽屉里至少放进了放进了2个物体。 如:将4支铅笔放入3个笔筒,总有一个笔筒至少有2支铅笔,“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。 鸽巢原理(二):如果把多于kn个的物体任意分别放进n个空抽屉(k是正整数,n是非0的自然数),那么一定有一个抽屉中至少放进了(k+1)个物体。如:把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。 我们把这些例子中的“苹果”、“鸽子”、“信”看作一种物体,把“盒子”、“鸽笼”、“信箱”看作鸽巣, 可以得到鸽巣原理最简单的表达形式 物体个数÷鸽巣个数=商……余数至少个数=商+1 摸同色球计算方法: ①要保证摸出同色的球,摸出的球的数量至少要比颜色数多1。 物体数=颜色数×(相同颜色数-1)+1 ②极端思想(最坏打算):用最不利的摸法先摸出两个不同颜色的球,再无论摸出 一个什么颜色的球,都能保证一定有两个球是同色的。

二、例题讲解: 1、教室里有5名学生正在做作业,今天只有数学、英语、语文、地理四科作业求证:这5名学生中,至少有两个人在做同一科作业。 2、班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书。 3、木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取 出的球中有两个球的颜色相同,则最少要取出多少个球? 4、把红、白、蓝三种颜色的球各10个放到一个袋子里,至少取多少个球,可 以保证取到3个颜色相同的球。 5、证明:某班有52名学生,至少有5个人在同一个月出生 6、一幅扑克牌除大小王有52张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?最少要抽取几张牌,方能保证其中至少有2张牌有相同的花色?

相关主题
文本预览
相关文档 最新文档