当前位置:文档之家› 利用韦达定理求一元二次方程的根

利用韦达定理求一元二次方程的根

利用韦达定理求一元二次方程的根
利用韦达定理求一元二次方程的根

利用韦达定理求一元二次方程的根

一、关于韦达定理的性质

1.韦达定理:假设一元二次方程ax2+bx+c=0的两根分别为x1、x2,则有x1+x2=-\f(b,a),x1x2=错误!.

2.推导:(法一)根据一元二次方程的求根公式x=-b±\r(b2-4ac)

2a

不妨假设x1=错误!, x2=错误!

不难得出x1+x2=-\f(b,a),x1x2=错误!.

(法二)若一元二次方程的两根分别为x

、x2,则方程可以写成以下形式

a(x-x1)(x-x2)=0 (a≠0) (双根式) 按照x的次数降幂排列,得ax2-a(x1+x2)x+ax1x2=0

对比一元二次方程的一般式ax2+bx+c=0,得

b=-a(x1+x2),c=ax1x2,

∴x1+x2=-错误!,x1x2=错误!.

3. 推论:(一)当二次项系数为1时,即一元二次方程满足x2+px+q=0的形式假设方程的两根分别为x1、x2,则有x1+x2=-p,x1x2=q.

(二)已知一元二次方程两根分别为x1、x2,则方程可以写成以下形式

x2-(x1+x2)x+x1x2=0.

4.实质:韦达定理告诉了我们一元二次方程的根与系数的关系.

二、利用韦达定理求一元二次方程的根

例如,求一元二次方程x2―22x―6=0的根.

很明显,根据我们所学习惯,首选方法是十字相乘法.

(法一)

因式分解,得(x-32)(x+\r(2))=0,

解得, x1=3\r(2),x2=-错误!.

当然,利用十字相乘法很难凑数时,我们就会选用求根公式法.

(法二) a=1,b=-22,c=-6,

∴b2-4ac=8+24=32,

∴x=错误!=错误!=错误!±2错误!,

于是有x

=3\r(2),x2=- 2.

结合以上两种方法,我们发现,十字相乘法计算速度快,但是凑数的过程十

分灵活,若每一个系数都是整数,且满足x2-(x

+x2)x+x1x2=0形式的方程可以很快算出来,但如果系数是分数、根式我们发现利用这种方法解方程是十分困难的,而且这种方法并不是对一切一元二次方程都适用. 而利用求根公式解一元二次方程时,虽然是一种万能的方法,但有时会给我们带来无比的计算量. 那有什么

方法既可以减少计算量,使运算变得简单快捷,同时又可以用来解一切的一元二次方程呢?接下来,我们看以下解法.

(法三)已知方程x2―2错误!x―6=0,

+x2=2错误!,x1x2=―6.

根据韦达定理有x

在方程有解的情况下,必然会存在某一个实数a(假定为正数),使得

x1=错误!+a, x2=错误!-a, (满足条件x1+x2=2错误!)且(2+a)(\r(2)-a)=―6. (满足条件x1x2=―6)

于是有2-a2=―6,则a2=8,因此a=2\r(2)

∴x1=错误!+2错误!=3错误!,x2=错误!-2错误!=-错误!.

上述解法中a取正取负并不影响计算的最终结果,为了方便,习惯上可以假定a为正数.观察以上解法,我们可以发现,这种解法并不像十字相乘法需要有凑数的灵感,也不像求根公式法会带来无比的计算量,反而还结合两者的优点,计算快捷且万能通用.当然我们也可以看以下例子.

例1: 解方程x2―6x―25=0,

根据韦达定理有x1+x2=6,x1x2=―25.

在方程有解的情况下,必然会存在某一个实数a(假定为正数),使得

x1=3+a, x2=3-a,(满足条件x1+x2=6)且(3+a)(3-a)=―25.(满足条件x1x2=―25) 于是有9-a2=―25,则a2=34, 因此a=错误!

∴x1=3+34, x2=3-错误!.

例2:解方程x2+24x―63=0,

根据韦达定理有x1+x2=-24,x1x2=―63.

在方程有解的情况下,必然会存在某一个实数a(假定为正数),使得

x1=-12+a, x2=-12-a,(满足条件x1+x2=-24) 且(-12+a)(-12-a)=―63. (满足条件x

x2=―63)

于是有144-a2=―63, 则a2=207, 因此a=错误!

=-12+207,x2=-12-错误!.

∴x

例3:解方程x2―14x+48=0,

根据韦达定理有x1+x2=14,x1x2=48.

在方程有解的情况下,必然会存在某一个实数a(假定为正数),使得x1=7+a, x2=7-a,(满足条件x1+x2=14)且(7+a)(7-a)=48.(满足条件x1x2=48)

于是有49-a2=48, 则a2=1,因此a=1

∴x1=7+1=8, x2=7-1=6.

例4:解方程x2+18x+40=0,

根据韦达定理有x1+x2=-18,x1x2=40.

在方程有解的情况下,必然会存在某一个实数a(假定为正数),使得

=-9+a,x2=-9-a,(满足条件x1+x2=-18)

x

且(-9+a)(-9-a)=40 (满足条件x1x2=40)

于是有81-a2=40,则a2=41, 因此a=41

∴x1=-9+41,x2=-9-错误!.

通过以上4个例子,我们可以熟悉,若二次项系数为1时,利用韦达定理解一元二次方程的流程. 实际上当一元二次方程二次项系数不为1时,我们也可以离此流程解一元二次方程. 如

例5:解方程2x2+9x―5=0,

(法一)根据韦达定理有x1+x2=-\f(9,2),x1x2=―错误!.

在方程有解的情况下,必然会存在某一个实数a(假定为正数),使得x1=-错误!+a,x2=-错误!-a,(满足条件x1+x2=-错误!)

且(-9

+a)(-错误!-a)=―错误!. (满足条件x1x2=―错误!)

于是有81

16-a

2=―\f(5,2),则a2=

121

16,因此

a=

11

4

∴x

=-\f(9,4)+错误!=错误!, x2=-错误!-错误!=-5.

(法二)a=2,b=9,c=-5,

∴b2-4ac=81+40=121,

∴x=错误!=错误!,

于是有x1=\f(1,2),x2=-5.

当然,当二次项系数不为1时,运用韦达定理或求根公式解方程的计算量差不太多,因此当系数都是整数、分数时可根据实际情况讨论;若系数出现根式可考虑用韦达定理.

一元二次方程计算题_解法练习题(四种方法)

一元二次方程解法练习题 一、用直接开平方法解下列一元二次方程。 1、0142=-x 2、2)3(2=-x 3、()162812 =-x 二、 用配方法解下列一元二次方程。 1、.0662=--y y 2、x x 4232=- 3 、9642=-x x 三、 用公式解法解下列方程。 1、0822=--x x 2、223 14y y -= 3、y y 32132=+ 4、01522=+-x x 5、1842-=--x x 6、02322=--x x

四、 用因式分解法解下列一元二次方程。 1、x x 22= 2、 x 2+4x -12=0 3、0862=+-x x 4、03072=--x x 五、用适当的方法解下列一元二次方程。(选用你认为最简单的方法) 1、()()513+=-x x x x 2、x x 5322=- 3、2 260x y -+= 4、01072=+-x x 5、()()623=+-x x 6、()()03342 =-+-x x x

7、()02152 =--x 8、0432=-y y 10、()()412=-+y y 11、()()1314-=-x x x 12、()025122 =-+x 13、22244a b ax x -=- 14、36 31352=+x x 15、()()213=-+y y 16、)0(0)(2≠=++-a b x b a ax 17、03)19(32 =--+a x a x 18、012=--x x 19 、02932=+-x x 20、02222=+-+a b ax x

一元二次方程公共根

一元二次方程公共根问题 若已知若干个一元二次方程有公共根,求方程系数的问题,叫一元二次方程的公共根问题, 两个一元二次方程只有一个公共根的解题步骤: 1.设公共根为α,则α同时满足这两个一元二次方程; 2.用加减法消去α2的项,求出公共根或公共根的有关表达式; 3.把共公根代入原方程中的任何一个方程,就可以求出字母系数的值或字母系数之间的关系式. 一、公共根问题 二次方程的公共根问题的一般解法:设公共根,代入原方程(两个或以上),然后通过恒等变形求出参数的值和公共根. 二、整数根问题 对于一元二次方程20ax bx c ++=(0)a ≠的实根情况,可以用判别式24b ac ?=-来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质. 方程有整数根的条件: 如果一元二次方程20ax bx c ++=(0)a ≠有整数根,那么必然同时满足以下条件: ⑴ 2?= ⑵ 2b ak -=或2b ak --,其中k 为整数. 以上两个条件必须同时满足,缺一不可. 另外,如果只满足判别式为完全平方数,则只能保证方程有有理根(其中a 、b 、c 均为有理数) 三、方程根的取值范围问题 先使用因式分解法或求根公式法求出两根,然后根据题中根的取值范围来确定参数的范围 1 已知一元二次方程x 2-4x +k =0有两个不相等的实数根, (1)求k 的取值范围. (2)如果k 是符合条件的最大整数,且一元二次方程x 2-4x +k =0与x 2+mx -1=0有一个相同的根,求此时m 的值. 2 若两个关于x 的方程x 2+x +a =0与x 2+ax +1=0只有一个公共的实数根,求a 的值 3 已知a >2,b >2,试判断关于x 的方程x 2-(a +b )x +ab =0与x 2-abx +(a +b )=0有没有公共根,请说明理由. 4求k 的值,使得一元二次方程210x kx +-=,2(2)0x x k ++-=有相同的根,并求两个方程的根. 5二次项系数不相等的两个二次方程222(1)(2)(2)0a x a x a a --+++=和 222(1)(2)(2)0b x b x b b --+++=(其中a ,b 为正整数)有一个公共根,求a b b a b a a a --++的值

(完整版)一元二次方程解法及其经典练习题

一元二次方程解法及其经典练习题 方法一:直接开平方法(依据平方根的定义) 平方根的定义:如果一个数 的平方等于a ( ),那么这个数 叫做a 的平方根 即:如果 a x =2 那么 a x ±= 注意;x 可以是多项式 一、 用直接开平方法解下列一元二次方程。 1.0142=-x 2、2)3(2=-x 3、()162812=-x 4..25)1(412=+x 5.(2x +1)2=(x -1)2. 6.(5-2x )2=9(x +3)2. 7..063)4(22 =--x 方法二:配方法解一元二次方程 1. 定义:把一个一元二次方程的左边配成一个 ,右边为一个 ,然后利用开平方数求解,这种解一元二次方程的方法叫做配方法。 2. 配方法解一元二次方程的步骤:(1) (2) (3) 4) (5) 二、用配方法解下列一元二次方程。 1、.0662=--y y 2、x x 4232=- 39642=-x x 、 4、0542=--x x 5、01322=-+x x 6、07232=-+x x

方法三:公式法 1.定义:利用求根公式解一元二次方程的方法叫做公式法 2.公式的推导:用配方法解方程ax 2+bx +c = 0(a ≠0) 解:二次项系数化为1,得 , 移项 ,得 , 配方, 得 , 方程左边写成平方式 , ∵a ≠0,∴4a 2 0,有以下三种情况: (1)当b 2-4ac>0时,=1x , =2x (2)当b 2-4ac=0时,==21x x 。 (3)b 2-4ac<0时,方程根的情况为 。 3.由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因 (1)式子ac b 42-叫做方程ax 2+bx +c = 0(a ≠0)根的 ,通常用字母 “△” 表示。当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根; 当△ 0时, 方程ax 2+bx+c=0(a ≠0)有 实数根; 当△ 0时, 方程ax 2+bx+c=0(a ≠0) 实数根。 (2)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c = 0,当ac b 42-≥0时,?将a 、b 、c 代入式子=x 就得到方程的根.这个式子叫做一元二次方程的求根公式,利用求根公式解一元二次方程的方法叫公式法. 4.公式法解一元二次方程的步骤:(1) (2) (3) (4) (5) 二、用公式解法解下列方程。 1、0822=--x x 2、22 314y y -= 3、y y 32132=+

一元二次方程求根公式

一元二次方程求解 一、一周知识概述 1、一元二次方程的求根公式 将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为 . 该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法. 说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0); (2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的; (3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式. 2、一元二次方程的根的判别式 (1)当b2-4ac>0时,方程有两个不相等的实数根; (2)当b2-4ac=0时,方程有两个相等的实数根; (3)当b2-4ac<0时,方程没有实数根. 二、重难点知识 1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。 (1) “开平方法”一般解形如“”类型的题目,如果用“公式

法”就显得多余的了。 (2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。 (3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。 (4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方 程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。 2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点: (1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac; (2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c; (3)根的判别式是指b2-4ac,而不是 三、典型例题讲解 例1、解下列方程: (1); (2); (3). 分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,

一元三次方程求根公式的解法

一元三次方程求根公式的解法 一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。 一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下: (1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到 (2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3)) (3)由于x=A^(1/3)+B^(1/3),所以(2)可化为 x^3=(A+B)+3(AB)^(1/3)x,移项可得 (4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知 (5)-3(AB)^(1/3)=p,-(A+B)=q,化简得 (6)A+B=-q,AB=-(p/3)^3 (7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A 和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即 (8)y1+y2=-(b/a),y1*y2=c/a (9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a (10)由于型为ay^2+by+c=0的一元二次方程求根公式为 y1=-(b+(b^2-4ac)^(1/2))/(2a) y2=-(b-(b^2-4ac)^(1/2))/(2a) 可化为 (11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2) y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2) 将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得 (12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2) B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2) (13)将A,B代入x=A^(1/3)+B^(1/3)得 (14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3) 一、(14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了。由于计算太复杂及这个问题历史上已经解决,我不愿花过多的力气在上面,我做这项工作只是想考验自己的智力,所以只要关键的问题解决了另两个根我就没有花力气去求解。 二、我也曾用类似的方法去求解过一元四次方程的解,具体就是假设一元四次方程的根的形式为x=A^(1/4)+B^(1/4)+C^(1/4),有一次我好象解出过,不过后来多次求解好象说明这种方法求解一元四次方程解不出。不过我认为如果能进一步归纳出A、B、C的形式,应该能求出一元四次方程的求根公式的。由于计算实在太复杂及这个问题古人已经解决了,我后来一直没能完成这项工作。 三、通过求解一元三次方程的求根公式,我获得了一个经验,用演绎法(就是直接推

15道九年级一元二次方程计算题【附详细过程】

15道九年级一元二次方程计算题1、解方程:x2—2x—1=0. 2、解方程: 3、解方程:x2+x-+1=0. 4、解方程: 5、用配方法解方程: 6、解方程:3 ( x - 5 )2 = 2 ( 5- x ) 7、解方程:. 8、 9、解方程:(x -1)2 + 2x (x - 1) = 0 10、解方程:. 11、用配方法解方程:。 12、解方程:. 13、解方程:x2-6x+1=0. 14、用配方法解一元二次方程: 15、解方程:.

参考答案 一、计算题 1、解:a=1,b=-2,c=-1 B2-4ac=(-2)2-4*1*(-1)=8 X= 方程的解为x=1+ x=1- 2、原方程化为 ∴ 即 ∴, 3、解:设x2+x=y,则原方程变为y-+1=0. 去分母,整理得y2+y-6=0, 解这个方程,得y1=2,y2=-3. 当y=2 时,x2+x=2,整理得x2+x-2=0, 解这个方程,得x1=1,x2=-2. 当y=-3 时,x2+x=-3,整理得x2+x+3=0, ∵△=12-4×1×3=-11<0,所以方程没有实数根.经检验知原方程的根是x1=1,x2=-2.

4、解:移项,得配方,得 ∴∴ (注:此题还可用公式法,分解因式法求解,请参照给分)5、)解:移项,得x2 +5x=-2, 配方,得 整理,得()2= 直接开平方,得= ∴x1=,x2= 6、解: 7、解: ∴或 ∴, 8、

9、解法一: ∴, 解法二: ∵a = 3,b = 4,c = 1 ∴ ∴ ∴, 10、解:- -两边平方化简, 两边平方化简. -- 解之得--- 检验:将. 当 所以原方程的解为- 11、解:两边都除以2,得。

三次方程的一般解法

一元三次方程的求根公式称为“卡尔丹诺公式” 一元三次方程的一般形式是 x3+sx2+tx+u=0 如果作一个横坐标平移y=x+s/3,那么我们就可以把方程的二次项消 去。所以我们只要考虑形如 x3=px+q 的三次方程。 假设方程的解x可以写成x=a-b的形式,这里a和b是待定的参数。 代入方程,我们就有 a3-3a2b+3ab2-b3=p(a-b)+q 整理得到 a3-b3 =(a-b)(p+3ab)+q 由二次方程理论可知,一定可以适当选取a和b,使得在x=a-b的同时, 3ab+p=0。这样上式就成为 a3-b3=q 两边各乘以27a3,就得到 27a6-27a3b3=27qa3 由p=-3ab可知 27a6 + p = 27qa3 这是一个关于a3的二次方程,所以可以解得a。进而可解出b和根x. 除了求根公式和因式分解外还可以用图象法解,中值定理。很多高次方程是无法求得精确解的,对于这类方程,可以使用二分法,切线法,求得任意精度的近似解。参见同济四版的高等数学。 一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。 一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。我归纳出来的形如x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下: (1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到 (2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3)) (3)由于x=A^(1/3)+B^(1/3),所以(2)可化为 x^3=(A+B)+3(AB)^(1/3)x,移项可得 (4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知(5)-3(AB)^(1/3)=p,-(A+B)=q,化简得 (6)A+B=-q,AB=-(p/3)^3

(完整word版)100道一元二次方程计算题

(1)x 2 =64 (2)5x 2 - 5 2 =0 (3)(x+5)2=16 (4)8(3 -x )2 –72=0 (5)2y=3y 2 (6)2(2x -1)-x (1-2x=0 (7)3x(x+2)=5(x+2) (8)(1-3y )2+2(3y -1)=0 (9)x 2+ 2x + 3=0 (10)x 2+ 6x -5=0 (11) x 2-4x+ 3=0 (12) x 2 -2x -1 =0 (13) 2x 2 +3x+1=0 (14) 3x 2 +2x -1 =0 (15) 5x 2 -3x+2 =0 (16) 7x 2 -4x -3 =0 (17) x 2 -x+12 =0

x 2-6x+9 =0 0142 =-x 2、2)3(2 =-x 3、()512 =-x 4、()162812 =-x 0662 =--y y 2、x x 4232=- 3、9642=-x x 4 、0542=--x x 5、01322 =-+x x 6、07232=-+x x 0822=--x x 4、01522 =+-x x 1、x x 22= 2、0)32()1(2 2 =--+x x 3、0862 =+-x x 4、 2 2)2(25)3(4-=+x x 5、0)21()21(2=--+x x 6、0)23()32(2=-+-x x

1、()()513+=-x x x x 2、x x 5322 =- 3、2 260x y -+= 4、01072 =+-x x 5、()()623=+-x x 6、()()03342 =-+-x x x 7、()02152 =--x 8、0432=-y y 9、03072 =--x x 10、()()412=-+y y 11、()()1314-=-x x x 12、()025122 =-+x 17、()()213=-+y y 20、012 =--x x 21、02932 =+-x x 23、 x 2+4x -12=0 25、01752 =+-x x 26、1852 -=-x x

用图象法求一元二次方程的根

用图象法求一元二次方程的根 学习了二次函数之后,可以利用图象求一元二次方程的根。下面介绍几种具体的方法: 方法一:直接画出函数y=ax2+bx+c 的图象,则图象与x 轴交点的横坐标就是方程ax2+bx+c=0的根.其步骤一般为:(1)作出二次函数y=ax2+bx+c 的图象;(2)观察图象与x 轴交点的个数;(3)若图象与x 轴有交点,估计出图象与x 轴交点的横坐标即可得到一元二次方程的近似根. 方法二:先将方程变形为ax2+bx=-c ,再在同一坐标系中画出抛物线y=ax2+bx 和直线y=-c 的图象,则图象交点的横坐标就是方程的根. 方法三:可将方程化为 a c x a b x ++ 2=0,移项后为 a c x a b x --=2.设y=x2和y=a c x a b --,在同一坐标系中画出抛物线y=x2和直线y=a c x a b - - 的图象,则图象交点的横坐标就是方程的根.这种方法显然要比方法一快捷得多,因为画抛物线远比画直线困难得多. 例:二次函数2 (0)y ax bx c a =++≠的图象如图1所示,根 据图象解答下列问题: (1)写出方程2 0ax bx c ++=的两个根. (2)写出不等式20ax bx c ++>的解集. (3)写出y 随x 的增大而减小的自变量x 的取值范围. (4)若方程2 ax bx c k ++=有两个不相等的实数根,求k 的取值范围. 解:(1)观察图象,抛物线与x 轴交于两点(1,0)、(3,0)故方程 20ax bx c ++=的两个根 11 x =, 23 x = . (2)不等式2 0ax bx c ++>,反映在函数图象上,应为图象在x 轴上方的部分,因此不等式2 0ax bx c ++>的解集应为13x <<. (3)因为抛物线的对称轴为x=2且开口向下,所以在对成轴的右侧y 随x 的增大而减小故自变量x 的取值范围为2x > (4)若使方程2 ax bx c k ++=有两个不相等的实数根,也就是抛物线 2(0)y ax bx c a =++≠的图象与直线y=k 有2 个不同的交点,观察图象可知抛物线的顶点

一元三次方程求根问题

一元三次方程求根问题 一元三次方程求根问题是一个曾经困扰了人们许多年的问题,后来数学家们在经过非常多的计算后,用巧妙的方法将其解决了。目前,我还不知道一元三次方程求根公式和其推导过程,下面,我就尝试将这个问题解决。 显然,所有的一元三次方程都可以转化为 x 3+bx 2+cx +d =0的形式, 先从一些三次多项式的公式入手,其中有这样一个公式 ()()()B A AB B A AB B A B A B A +-+=--+=+3333 22333 在这里令x =A+B ,m =-3AB ,n =-(A 3+B 3),则上述公式转为 x 3+mx+n=0 这便是一个特殊的一元三次方程。 而 ?????-=+-=n B A m B A 333 3327 所以由一元二次方程的韦达定理得A 3与B 3是方程 0273 2 =-+m ny y 的两根, 不考虑A 与B 之间的顺序,得 ???? ?????+--=++-=22742274223223m n n B m n n A

故3323 3 227422742m n n m n n B A x +--+++-=+= 在解二次方程时,可以通过配方的方法 将 ax 2+bx +c =0 转化为 04422=-+??? ??+a b ac 2a b x a 再将a b x 2+换元,以达到消去一次项的目的。 那么,在解x 3+bx 2+cx +d =0的过程中,是否也有类似的方法呢? 我们可以尝试对其进行“配立方”来消去二次项, 得???? ??-+???? ??-+??? ??+=+++2733323 23b d x b c b x d cx bx x ???? ??+-+??? ??+???? ??-+??? ??+=2723333323 b b c d b x b c b x 这就转为x 3+mx+n=0的形式,带入刚才得到的其求根公式,得 3 2233b t n t n x ---++-= 其中108 441827274,3,27233 32223223c d b bcd c b d m n t b c m b bc d n ++--=+=-=+-= 以上只得出了一元三次方程一个根的求根公式,还不一定是实根,而一元三次方程一般有一或三个实根,原因可能是在上述求解过程中只在实数的范围内运算,并没有考虑到虚数。如果考虑虚数,在复数的范围内运算,一元三次方程应当有三个根。在上述方法中,另两个根可能要应用到虚数的一些概念和性质,若只考虑实数,无法将其解出。 接下来尝试一下在复数范围内,能否将另两个根解出。 设刚才求出的根为x 1=A +B,先考虑x 3+mx+n=0形式的方程,

三次因式分解

下面几种方法仅供参考 1、可以用待定系数法来解决。根据高等数学中的理论,任何一个高次多项式,都可以分解 为若干个一次因式和判别式(B^2-4ac<0)的二次因式的乘积。所以你假设原始可以分解为(ax+b)(cx+d)(ex^2+fx+g)然后把这个式子展开,和你要分解的那个原式用对应系数相等的法则来求解出常数a,b,c,d,e,f,g 的值就可以了。 2、试根法 例如x^3-5x^2+17x—13 看看x等于什么可以使他等于0 显然x=1可以 所以有一个因式是x-1 所以x^3—5x^2+17x—13 =x^3—x^2—4x^2+4x+13x—13 =x^2(x—1)—4x(x-1)+13(x—1) =(x-1)(x^2-4x+13) 3一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型. 一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A 和B。方法如下: (1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到 (2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3)) (3)由于x=A^(1/3)+B^(1/3),所以(2)可化为 x^3=(A+B)+3(AB)^(1/3)x,移项可得 (4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知 (5)-3(AB)^(1/3)=p,-(A+B)=q,化简得 (6)A+B=-q,AB=—(p/3)^3 (7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如 ay^2+by+c=0的一元二次方程两个根的韦达定理,即 (8)y1+y2=-(b/a),y1*y2=c/a (9)对比(6)和(8),可令A=y1,B=y2,q=b/a,—(p/3)^3=c/a (10)由于型为ay^2+by+c=0的一元二次方程求根公式为 y1=-(b+(b^2-4ac)^(1/2))/(2a) y2=-(b-(b^2-4ac)^(1/2))/(2a) 可化为 (11)y1=-(b/2a)—((b/2a)^2—(c/a))^(1/2) y2=-(b/2a)+((b/2a)^2—(c/a))^(1/2)

一元二次方程200道计算题练习

一元二次方程200道计算题练习 1、)4(5)4(2+=+x x 2、x x 4)1(2=+ 3、22)21()3(x x -=+ 4、31022=-x x 5、(x+5)2=16 6、2(2x -1)-x (1-2x )=0 7、x 2 =64 8、5x 2 - 5 2=0 9、8(3 -x )2 –72=0 10、3x(x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=0 13、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2 -2x -1 =0 16、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =0 19、7x 2-4x -3 =0 20、 -x 2-x+12 =0 21、x 2-6x+9 =0 22、(3x+2)2=(2x-3)2 23、x 2-2x-4=0 24、x 2-3=4x 25、3x 2+8 x -3=0 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=-12 28、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2 +3(2x-1)+2=0 31、2x 2-9x +8=0 32、3(x-5)2 =x(5-x) 33、(x +2) 2=8x 34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+= 37、()()24330x x x -+-= 38、2631350x x -+= 39、()2 231210x --= 40、2223650x x -+= 41. (x -2) 2=(2x-3)2 42. 43. 3(1)33x x x +=+ 44. x 2 45. ()()0165852=+---x x 46. 47. 4(x-3)2=25 48. 24)23(2=+x 49. 25220x x -+= 50. 51. 52. 01072=+-x x 53. -x 2+11x -24=0 54. 2x (x -3)=x -3. 55. 3x 2+5(2x+1)=0 56. (x +1) 2-3 (x +1)+2=0 57. 22(21)9(3)x x +=- 58. 59.. 60. 21302x x ++= 61. 4 )2)(1(13)1(+-=-+x x x x 62. 2)2)(113(=--x x 63. x (x +1)-5x =0 .64. 3x (x -3) =2(x -1) (x +1). 65. (x+1)2﹣9=0. 042=-x x 51)12(2 12=-y 012632=--x x 2230x x --=

已知一元二次方程的一个根

已知一元二次方程的一个根,求出另一个根以及字母系数的值。 例2:已知方程的一个根为2,求另一个根及的 值。 分析:此题通常有两种解法:一是根据方程根的定义,把代入原方程, 先求出的值,再通过解方程办法求出另一个根;二是利用一元二次方程的根与系数的关系求出另一个根及的值。 解法一:把代入原方程,得: 即 解得当时,原方程均可化为: ,解得: ∴方程的另一个根为4,的值为3或—1。 解法二:设方程的另一个根为,根据题意,利用韦达定理得: , ∵,∴把代入,可得: ∴把代入,可得:, 即解得 ∴方程的另一个根为4,的值为3或—1。 说明:比较起来,解法二应用了韦达定理,解答起来较为简单。

例3:已知方程有两个实数根,且两个根的平方和比两根的积大21,求的值。 分析:本题若利用转化的思想,将等量关系“两个根的平方和比两根的积大21”转化为关于的方程,即可求得的值。 解:∵方程有两个实数根,∴△ 解这个不等式,得≤0 设方程两根为 则, ∵ ∴ ∴ 整理得: 解得: 又∵,∴ 说明:当求出后,还需注意隐含条件,应舍去不合题意的。 四、运用判别式及根与系数的关系解题。 例5:已知、是关于的一元二次方程的两个非 零实数根,问和能否同号?若能同号,请求出相应的的取值范围;若不能同号,请说明理由,

解:因为关于的一元二次方程有两个非零实数根, ∴则有 ∴ 又∵、是方程的两个实数根,所以由一元二次方程根与系数的关系,可得: 假设、同号,则有两种可能: (1)(2) 若,则有:; 即有: 解这个不等式组,得 ∵时方程才有实树根,∴此种情况不成立。 若,则有:

即有: 解这个不等式组,得; 又∵,∴当时,两根能同号 说明:一元二次方程根与系数的关系深刻揭示了一元二次方程中根与系数的内在联系,是分析研究有关一元二次方程根的问题的重要工具,也是计算有关一元二次方程根的计算问题的重要工具。知识的运用方法灵活多样,是设计考察创新能力试题的良好载体,在中考中与此有联系的试题出

一元二次方程计算题及答案

6X2-7X+1=0 6X2-7X=-1 X2-﹙7/6﹚X+﹙7/12﹚2=-1/6﹢﹙7/12﹚2﹙X-7/12﹚2=25/144 ∴X-7/12=±5/12 ∴X1=1,X2=1/6 5X2-18=9X 5X2-9X=18 X2-1.8X=3.6 ﹙X-0.9﹚2=4.41 ∴X-.9=±2.1 ∴X1=3,X2=-1.2 4X2-3X=52 解:X2-﹙3/4﹚X=13 ﹙X-3/8﹚2=13 ∴X-3/8=±29/8 ∴X1=4,X2 =-13/4 5X2=4-2X 5X2+2X=4 X2+0.2X=0.8 ﹙X+0.1﹚2=0.81 X+0.1=±0.9

X1=-1,X2=0.8 就这么几道,最好去百度搜索,那多1)x^2-9x+8=0 答案:x1=8 x2=1 (2)x^2+6x-27=0 答案:x1=3 x2=-9 (3)x^2-2x-80=0 答案:x1=-8 x2=10 (4)x^2+10x-200=0 答案:x1=-20 x2=10 (5)x^2-20x+96=0 答案:x1=12 x2=8 (6)x^2+23x+76=0 答案:x1=-19 x2=-4 (7)x^2-25x+154=0 答案:x1=14 x2=11 (8)x^2-12x-108=0 答案:x1=-6 x2=18 (9)x^2+4x-252=0 答案:x1=14 x2=-18 (10)x^2-11x-102=0 答案:x1=17 x2=-6 (11)x^2+15x-54=0 答案:x1=-18 x2=3 (12)x^2+11x+18=0 答案:x1=-2 x2=-9 (13)x^2-9x+20=0 答案:x1=4 x2=5 (14)x^2+19x+90=0 答案:x1=-10 x2=-9 (15)x^2-25x+156=0 答案:x1=13 x2=12 (16)x^2-22x+57=0 答案:x1=3 x2=19 (17)x^2-5x-176=0 答案:x1=16 x2=-11 (18)x^2-26x+133=0 答案:x1=7 x2=19 (19)x^2+10x-11=0 答案:x1=-11 x2=1 (20)x^2-3x-304=0 答案:x1=-16 x2=19 (21)x^2+13x-140=0 答案:x1=7 x2=-20 (22)x^2+13x-48=0 答案:x1=3 x2=-16

一元二次方程的根与系数的关系

一元二次方程的根与系数的关系 一、目标认知 学习目标 1.掌握一元二次方程的根与系数的关系; 2.能够利用一元二次方程的根与系数的关系求简单的关于根的对称式的值; 3.能够利用一元二次方程的根与系数的关系判断两个数是否是方程的根; 4.能够利用一元二次方程的根与系数的关系求出以两个已知数为根的一元二次方程. 重点 对一元二次方程的根与系数的关系的掌握,以及在各类问题中的运用. 难点 一元二次方程的根与系数的关系的运用. 二、知识要点梳理 一元二次方程根与系数的关系 如果一元二次方程ax2+bx+c=0的两个实根是x1,x2,那么. 注意它的使用条件为a≠0,Δ≥0. 三、规律方法指导 一元二次方程根与系数的关系的用法: ①不解方程,检验两个数是否为一元二次方程的根; ②已知方程的一个根,求另一个根及未知系数; ③不解方程,求已知一元二次方程的根的对称式的值; ④已知方程的两根,求这个一元二次方程; ⑤已知两个数的和与积,求这两数; ⑥已知方程的两根满足某种关系,确定方程中字母系数的值; ⑦讨论方程根的性质。 四、经典例题透析 1.已知一元二次方程的一个根,求出另一个根以及字母系数的值. 1.已知方程x2-6x+m2-2m+5=0一个根为2,求另一个根及m的值. 思路点拨:本题通常有两种做法,一是根据方程根的定义,把x=2代入原方程,先求出m的值,再通过解方程求另一个根;二是利用一元二次方程的根与系数的关系求出另一个根及m的值. 解:法一:把x=2代入原方程,得 22-6×2+m2-2m+5=0 即m2-2m-3=0 解得m1=3,m2=-1 当m1=3,m2=-1时,原方程都化为 x2-6x+8=0

一元三次方程的解法

一元三次方程的解法 数教091班王超逸 48号 一元三次方程的标准形式为aX^3+bX^2+cX+d=0,将方程两边同时除以最高项系数a,三次方程变为x^3+(b/a)x^2+(c/a)x+d/a=0,所以三次方程又可简写为 X^3+bX^2+cX+d=0. 一元三次方程的韦达定理 设方程为 ax^3+b^2x+cx+d=0 则有 x1*x2*x3=-d/a;x1*x2+x2*x3+x3*x1=c/a;x1+x2+x3=-b/a; 一元三次方程解法思想 一元三次方程解法思想是:通过配方和换元,使三次方程降次为二次方程求解. 一元三次方程解法的发现 三次方程解法的发现是在16世纪的意大利,那时,数学家常常把自己的发现秘而不宣,而是向同伴提出挑战,让他们解决同样的问题.想必这是一项很砥砺智力,又吸引人的竞赛,三次方程的解法就是这样发现的. 最初,有一个叫菲奥尔的人,从别人的秘传中学会了解一些三次方程,便去向另一个大家称为塔尔塔利亚的人挑战.塔尔塔利亚原名丰塔纳,小时因脸部受伤引起口吃,所以被人称为塔尔塔利亚(意为"口吃者")。他很聪明,又很勤奋,靠自学掌握了拉丁文,希腊文和数学.这次他成功解出了菲奥尔提出的所有三次方程,菲奥尔却不能解答他提出的问题.当时很有名的卡尔丹于是恳求他传授解三次方程的办法,并发誓保守秘密,塔尔塔利亚才把他的方法写成一句晦涩的诗交给卡尔丹.后来卡尔丹却背信弃义,把这个方法发表在1545年出版的书里.在书中他写道:"波伦亚的费罗差不多在三十年前就发现了这个方法,并把它传给了菲奥尔.菲奥尔在与塔尔塔利亚的竞赛中使后者有机会发现了它.塔尔塔利亚在我的恳求下把方法告诉了我,但保留了证明.我在获得帮助的情况下找出了它各种形式的证明.这是很难做到的."卡尔丹的背信弃义使塔尔塔利亚很愤怒,他马上写了一本书,争夺这种方法的优先权.他与卡尔丹的学生费拉里发生了公开冲突.最后,这场争论是以双方的肆意谩骂而告终的.三次方程解法发现的过程虽不愉快,但三次方程的解法被保留了下来,并被错误的命名为"卡尔丹公式"沿用至今.以下介绍的解法,就是上文中提到的解法. 一元三次方程的解法 一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax+bx+cx+d=0的标准型一元三次方程形式化为x+px+q=0的特殊型。 一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A 和B。方法如下:

一元二次方程100道计算题练习附答案资料26300

一元二次方程100道计算题练习 1、)4(5)4(2+=+x x 2、x x 4)1(2=+ 3、22)21()3(x x -=+ 4、31022=-x x 5、(x+5)2=16 6、2(2x -1)-x (1-2x )=0 7、x 2 =64 8、5x 2 - 52=0 9、8(3 -x )2 –72=0 10、3x(x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=0

13、x2+ 6x-5=0 14、x2-4x+ 3=0 15、x2-2x-1 =0 16、2x2+3x+1=0 17、3x2+2x-1 =0 18、5x2-3x+2 =0 19、7x2-4x-3 =0 20、-x2-x+12 =0 21、x2-6x+9 =0 22、22 -=-23、x2-2x-4=0 24、x2-3=4x x x (32)(23) 25、3x 2+8 x-3=0(配方法)26、(3x+2)(x+3)=x+14 27、(x+1)(x+8)=-12

28、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2 +3(2x-1)+2=0 31、2x 2-9x +8=0 32、3(x-5)2=x(5-x) 33、(x +2) 2=8x 34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+= 37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --= 40、2223650x x -+=

一元二次方程根的分布情况归纳(完整版)

二次方程根的分布与二次函数在闭区间上的最值归纳 1、一元二次方程02 =++c bx ax 根的分布情况 设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) a

根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧 12,x m x n <>,(图形分别如下)需满足的条件是 (1)0a >时,()()00f m f n ???>?? 对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况: 若()0f m =或()0f n =,则此时()()0f m f n

中学代数研究---一元三次方程通解求法1

关于一元三次方程通解的解法 章君、何敏捷 (福建师范大学数学系福建福州350108) 【摘要】本文主要讲解了针对于一元三次方程通解的解法,由一元二次方程通解解法,我们产生联想,可不可以先将一般的一元三次方程化为缺二次项的特殊一元三次方程,然后进行求解,并由此进一步推出一元三次方程根的判别式方法; 【关键词】一元三次方程、通解、一元二次方程、判别式 我们在中学已经学过对于一般的一元二次方程20 ax bx c ++=(0 a≠)的通解的解法,并且我们知道,针对于这样的一般性的一元二次方程,我们可以用多种解法来求得其解,比如,我们可以用求根公式法、因式分解法、配方法等等各种不同的做法来求得其解;这不禁让我们联想到,针对于一般的一元三次方程320 +++=(0 ax bx cx d a≠)我们是否也可以通过像求解一元二次方程的那些做法来求得其解呢?显然,事实证明,对于一般性的一元三次方程是不能用因式分解法、配方法来求解的,除非是比较明显的易于观察的一些方程,我们一眼就能发现它存在某一个特根,然后用多项式相除的办法进行将它分解,然而对于一般性的一元三次方程是不能这样做的,也不能直接给它配方,这就要求我们用其它的方法来求得其解集;由一元二次方程的求根公式法中用到的韦达定理,我们联想到,是否可以先把一元三次方程化成一元二次方程,然后也用韦达定理来求解,事实证明这种猜想是行得通的,以下,我将介绍这种做法的具体演算过程。 设有一般一元三次方程320 +++=(0 ax bx cx d a≠),我们对它先进行化简,目标是将它的二次项系数化为0,这种想法的由来是因为我们通过实践发现无

二次项的一元三次方程比较容易求解,因此,我们想到先除去二次项,然后再求解;具体做法是: 令x y k =+其中k 是一个待定的常数,将其代入原一般一元三次方程320ax bx cx d +++=(0a ≠)中,得到: 32()()()0a y k b y k c y k d ++++++= 展开并整理得到: 32232(3)(32)()0ay ka b y k a bk c y ak bk ck d +++++++++= ---------○ 1 取3b k a =- ,即 3b x y a =- -------○2 , 将其代入原一般方程并整理得: 23322()()03273b b bc ay c y d a a a +-+-+= , 两边同时除以a 得到: 3 0y py q ++= --------○3 其中 21()3b p c a a =- , 3212()273b bc q d a a a =-+ 事实上,以上过程也证明了对于任意一个一元三次方程,我们都可以将它 化为上述○ 3的这种形式,这样我们就可以直接求不含二次项的一元三次方程的解了;接下来,我们只要将方程○ 3的解求出来,就可以自然的求得最原始的一般的一元三次方程的通解了; 我们再次将○3式作变换,令y u v =+(其中u 和v 是未知数),并将其代入 方程○ 3得到:3()()0u v p u v q ++++=,化简后得到: 33(3)()0u v q uv p u v +++++= --------○ 4 因为我们用两个未知数u 和v 代替了y ,因此为了减少○ 4中未知数的个数,我们不妨再要求(3)uv p +=0 -----○5,这样我们就可以得出3 p uv =-------○6,将其代入方程○4我们可以得到:330u v q ++=,从而我们就得到以下方程组: 333p uv u v q ?=-?? ?+=-?,即 3333327p u v u v q ?=-???+=-? 这样我们就可以利用韦达定理知道: 3u 和3v 可以看成是一元二次方程3 2027 p z qz +-=的两个根;

相关主题
文本预览
相关文档 最新文档