当前位置:文档之家› 一元二次方程根与系数的关系(韦达定理)

一元二次方程根与系数的关系(韦达定理)

一元二次方程根与系数的关系(韦达定理)
一元二次方程根与系数的关系(韦达定理)

一元二次方程根与系数的关系(韦达定理)

【学习目标】

1、学会用韦达定理求代数式的值。

2、理解并掌握应用韦达定理求待定系数。

3、理解并掌握应用韦达定理构造方程,解方程组。

4、能应用韦达定理分解二次三项式。

知识框图

求代数式的值

求待定系数

一元二次 韦达定理 应用 构造方程

方程的求 解特殊的二元二次方程组

根公式 二次三项式的因式分解

【内容分析】

韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,那么 说明:(1)定理成立的条件0?≥

(2)注意公式重12b x x a +=-

的负号与b 的符号的区别 根系关系的三大用处

(1)计算对称式的值

例 若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值:

(1) 2212x x +; (2) 1211x x +; (3) 12(5)(5)x x --; (4) 12||x x -.

解:由题意,根据根与系数的关系得:12122,2007x x x x +=-=-

(1) 2222121212()2(2)2(2007)4018x x x x x x +=+-=---= (2) 121212112220072007

x x x x x x +-+===- (3) 121212(5)(5)5()2520075(2)251972x x x x x x --=-++=---+=- (4) 22212121212||()()4(2)4(2007)22008x x x x x x x x -=-=+-=---=说明:利用根与系数的关系求值,要熟练掌握以下等式变形: 222121212()2x x x x x x +=+-,

12121211x x x x x x ++=,22121212()()4x x x x x x -=+-, 2121212||()4x x x x x x -=+-2212121212()x x x x x x x x +=+,

33312121212()3()x x x x x x x x +=+-+等等.韦达定理体现了整体思想.

【课堂练习】

1.设x 1,x 2是方程2x 2-6x +3=0的两根,则x 12+x 22的值为_________

2.已知x 1,x 2是方程2x 2-7x +4=0的两根,则x 1+x 2= ,x 1·x 2= ,

(x 1-x 2)2=

3.已知方程2x 2-3x+k=0的两根之差为212

,则k= ; 4.若方程x 2+(a 2

-2)x -3=0的两根是1和-3,则a= ;

5.若关于x 的方程x 2+2(m -1)x+4m 2=0有两个实数根,且这两个根互为倒数,那么m 的值

为 ;

6. 设x 1,x 2是方程2x 2-6x+3=0的两个根,求下列各式的值:

(1)x 12x 2+x 1x 22 (2) 1x 1 -1x 2

7.已知x 1和x 2是方程2x 2-3x -1=0的两个根,利用根与系数的关系,求下列各式的值:

(2)构造新方程

解实系数一元二次方程

课题解实系数一元二次方程 教学目标: 1.掌握在复数集内解一元二次方程和解二项方程的方法;使学生掌握含有未知数 的解法. 2.教学过程中,渗透数学转化思想及方程的思想,提高学生灵活运用数学知识解题的能力;培养学生严谨的逻辑思维. 3.通过对实系数一元二次方程在实数范围内求解和在复数范围内求解的比较,认识到任何事物都是相对的,而不是绝对的这一辩证唯物主义的观点. 教学重点与难点: 个复数相等的充分必要条件的运用. 教学过程: 一、引入新课 问题一:方程x2+1=0在复数范围内有没有解,解集是什么? 因为-1=i2,则原方程化为x2-i2=0,即(x+i)(x-i)=0.所以原方程解集为{i,-i}.问题二:方程ax2+bx+c=0(a,b,c是实数)在复数范围内解集是什么? 当Δ=b2-4ac>0时,方程有两个不相等的实根,解集为 二、讲授新课 引导思考:方程x2+1=0中,Δ=-4<0,上述结论对吗? 解为: 无意义.此时方程的解集为 1、实系数一元二次方程ax2+bx+c=0在复数范围内解的情况为: 当Δ≥0时有实根; 当Δ<0时,有一对共轭的虚根. 例1 、在复数集上解方程x2-4x+5=0

i i x ac b ±=±=<-=-2244,0442所以 解: 例2 已知实系数一元二次方程2x 2+ax +b=0的一个根为2i-3,求a ,b 的值. 解:2x 2+ax +b=0一根为2i-3,另一根为-3-2i .由韦达定理知: b=(2i-3)(-2i-3)=9+16=25, a=2i-3+(-2i-3)=-6. 我们上面解决了实系数一元二次方程求解问题.对于至少有一个系数是虚数的一元二次方程应该如何解? 例3 求方程x 2-2ix-5=0的解. 解:将方程左端配方,得(x-i )2-4=0,即(x-i )2=4.解得x-i=±2,即x 1=2+i ,x 2=-2+i . 练习P22 1、2、3 2、二项方程:形如),0,,,0(N n a C b a b ax n ∈≠∈=+的方程,任何一个二项方程都可以化为)(C c c x n ∈=的形式,都可以用复数的开方来求根. 例4、在复数集上解方程x 5=32. ??? ??+=+===+=+=54sin 54cos 2)5 2sin 52(cos 22 4,3,2,1,0),5 2sin 52(cos 2) 0sin 0(cos 323215ππππππi x i x x k k i k x i x 即:所以解:原方程就是 ??? ??+=+=58sin 58cos 2)56sin 56(cos 254ππππi x i x 这个方程的根的几何意义是复平面内的五个点,这些点均匀分布在以原点为圆心,以2为半径的圆上.

一元二次方程根与系数关系(附答案)

一元二次方程根与系数的关系(附答案) 评卷人得分 一.选择题(共6小题) 1.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是() A.方程有两个相等的实数根B.方程有两个不相等的实数根 C.没有实数根D.无法确定 · 2.关于x的一元二次方程x2+2x﹣m=0有实数根,则m的取值范围是()A.m≥﹣1 B.m>﹣1 C.m≤﹣1 D.m<﹣1 3.关于x的一元二次方程x2+3x﹣1=0的根的情况是() A.有两个不相等的实数根B.有两个相等的实数根 C.没有实数根D.不能确定 4.设x1、x2是一元二次方程2x2﹣4x﹣1=0的两实数根,则x12+x22的值是()A.2 B.4 C.5 D.6 5.若α、β是一元二次方程x2﹣5x﹣2=0的两个实数根,则α+β的值为()A.﹣5 B.5 C.﹣2 D. 6.已知关于x的方程x2﹣4x+c+1=0有两个相等的实数根,则常数c的值为()》 A.﹣1 B.0 C.1 D.3 评卷人得分 二.填空题(共1小题) 7.若关于x的一元二次方程x2﹣3x+a=0(a≠0)的两个不等实数根分别为p,q,且p2﹣pq+q2=18,则的值为.

评卷人· 得分 三.解答题(共8小题) 8.已知关于x的方程x2﹣(2k+1)x+k2+1=0. (1)若方程有两个不相等的实数根,求k的取值范围; (2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L 的长. 9.已知关于x的方程x2+ax+a﹣2=0. (1)若该方程的一个根为1,求a的值; (2)求证:不论a取何实数,该方程都有两个不相等的实数根. · 10.已知关于x的一元二次方程(x﹣m)2﹣2(x﹣m)=0(m为常数). (1)求证:不论m为何值,该方程总有两个不相等的实数根; (2)若该方程一个根为3,求m的值. 11.已知关于x的一元二次方程x2﹣x+a﹣1=0. (1)当a=﹣11时,解这个方程; (2)若这个方程有两个实数根x1,x2,求a的取值范围; (3)若方程两个实数根x1,x2满足[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,求a的值.12.已知x1,x2是关于x的一元二次方程4kx2﹣4kx+k+1=0的两个实数根.(1)是否存在实数k,使(2x1﹣x2)(x1﹣2x2)=﹣成立若存在,求出k的值;若不存在,说明理由; (2)求使+﹣2的值为整数的实数k的整数值; : (3)若k=﹣2,λ=,试求λ的值. 13.已知关于x的方程(k+1)x2﹣2(k﹣1)x+k=0有两个实数根x1,x2. (1)求k的取值范围;

一元二次方程根与系数之间的关系

中考数学辅导之—一元二次方程根与系数之间关系 从暑假开始,我们系统学习了一元二次方程解法及一元二次根判别式和一元二次方程根与系数之间关系.本次,我们全面复习前面所学内容,下次,我们将学习几何中第六章解直角三角形. 一、基本内容 1.一元二次方程含义:含有一个未知数,且未知数次数最高是2整式方程叫一元二次方程. 2.一般形式:ax 2+bx+c=0(a ≠0) 3.解法: ①直接开平方法:形如x 2=b(b ≥0)和(x+a)2=b(b ≥0)形式可直接开平方.如(3x-1)2=5两边开平方得: 513±=-x 513±=x 3 51,35121-=+=∴x x ②配方法:例:01232=--x x 解:1232=-x x 31322=- x x 9 13191322+=+-x x 94)31(2=-x 3 231±=-x 3231±=x 3 1,121-==∴x x 此类解法在解一元二次方程时,一般不用.但要掌握,因为很多公式推导用这种方法. ③公式法:)0(2)0(02≥??±-=≠=++a b x a c bx ax 的求根公式是 ④因式分解法:方程右边为零.左边分解成(ax+b)(cx+d)形式,将一元二次方程转化成ax+b=0,cx+d=0形式,变成两个一元一次方程来解. 4.根判别式:△=b 2-4ac b 2-4ac>0 方程有两个不相等实根. b 2-4ac=0 方程有两个相等实根. b 2-4ac<0 方程无实根. b 2-4a c ≥0 方程有实根. 有三种应用: ①不解方程确定方程根情况. ②利用方程根条件(如有两个不相等实根,无实根,有实根等) 利用Δ建立不等式求m 或k 取值范围. ③证明Δ必小于零,或Δ必大于零来证明方程无实根或一定有实根,将Δ化成完全平方式,叙述不论m(或k)无论取何值,一定有Δ>0或Δ<0来证.

一元二次方程(根与系数关系)

一元二次方程(根与系数关系专题测试) 一、单选题(共10题;共30分) 1.已知x1,x2是方程x2﹣3x﹣2=0的两根,则x12+x22的值为() A. 5 B. 10 C. 11 D. 13 2.已知关于x的一元二次方程x2+5x﹣m=0的一个根是2,则另一个根是() A. ﹣7 B. 7 C. 3 D. ﹣3 3.一元二次方程x2-5x+6=0的两根分别是x1、x2,则x1+x2等于() A. 5 B. 6 C. -5 D. -6 4.是方程的两根, 的值是() A. 2017 B. 2018 C. 2019 D. 2020 5.关于x的方程有两个实数根,,且,那么m的值为() A. -1 B. -4 C. -4或1 D. -1或4 6.关于x的方程(为常数)根的情况下,下列结论中正确的是() A. 两个正根 B. 两个负根 C. 一个正根,一个负根 D. 无实数根 7.已知一元二次方程x2﹣4x+m=0有一个根为2,则另一根为() A. ﹣4 B. ﹣2 C. 4 D. 2 8.已知,是一元二次方程的两个实数根且,则的值为(). A. 0或1 B. 0 C. 1 D. -1 9.若α,β是方程x2﹣2x﹣3=0的两个实数根,则α2+β2+αβ的值为() A. 10 B. 9 C. 7 D. 5 10.若a≠b,且则的值为() A. B. 1 C. .4 D. 3 二、填空题(共6题;共18分) 11.如果x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,那么x1+x2=﹣, x1x2= ,这就是一元二次方程根与系数的关系(韦达定理).利用韦达定理解决下面问题:已知m与n是方程x2﹣5x﹣25=0的两根,则+ =________. 12.一元二次方程的两根为,则________

一元三次方程求根公式的解法

一元三次方程求根公式的解法 一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。 一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下: (1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到 (2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3)) (3)由于x=A^(1/3)+B^(1/3),所以(2)可化为 x^3=(A+B)+3(AB)^(1/3)x,移项可得 (4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知 (5)-3(AB)^(1/3)=p,-(A+B)=q,化简得 (6)A+B=-q,AB=-(p/3)^3 (7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A 和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即 (8)y1+y2=-(b/a),y1*y2=c/a (9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a (10)由于型为ay^2+by+c=0的一元二次方程求根公式为 y1=-(b+(b^2-4ac)^(1/2))/(2a) y2=-(b-(b^2-4ac)^(1/2))/(2a) 可化为 (11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2) y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2) 将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得 (12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2) B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2) (13)将A,B代入x=A^(1/3)+B^(1/3)得 (14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3) 一、(14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了。由于计算太复杂及这个问题历史上已经解决,我不愿花过多的力气在上面,我做这项工作只是想考验自己的智力,所以只要关键的问题解决了另两个根我就没有花力气去求解。 二、我也曾用类似的方法去求解过一元四次方程的解,具体就是假设一元四次方程的根的形式为x=A^(1/4)+B^(1/4)+C^(1/4),有一次我好象解出过,不过后来多次求解好象说明这种方法求解一元四次方程解不出。不过我认为如果能进一步归纳出A、B、C的形式,应该能求出一元四次方程的求根公式的。由于计算实在太复杂及这个问题古人已经解决了,我后来一直没能完成这项工作。 三、通过求解一元三次方程的求根公式,我获得了一个经验,用演绎法(就是直接推

复数范围内实系数一元二次方程(19题)答案

复数范围内实系数一元二次方程(19题)(答案) 1 、若实系数一元二次方程的一个根是13+,则这个方程可以是 228039 x x -+= . 2、复数集内分解221x x ++= 2(x x - 3、已知1x 与2x 是方程: 20(0)ax bx c a ++=≠在复数集中的两根,则下列等式成立的是( C ) (A) 1x 与2x 共轭 (B) 240b ac ?=-≥ (C)1212,b c x x x x a a +=-=, (D)12||x x -=212214)(x x x x -+ 4、判断下列命题的真假,并说明理由; (1)在复数范围内,方程20(,,ax bx c a b c ++=∈R ,且0)a ≠总 有两个根.( √ ) ) (2)若12i +是方程20x px q ++=的一个根,则这个方程的另 一个根是12i -.( ? ) (3)若方程20x px q ++=有两个共轭虚根,则p 、q 均为实数.( √) 5、已知复数z ,解方程3i 13i z z -?=+. 解:设i()z x y x y =+∈R ,,则方程可化为(3)(3)i 13i x y y x -+-=+. 由复数相等,有3133x y y x -=??-=?,,解得543.4 x y ?=-????=-??,. ∴53i 44z =--. 6、适合方程20z z i --=的复数z 12 i 7、适合方程2560z z -+=的复数z ; | 若z R ∈,则25602,32,3z z z z z z -+=?==?=±=± 若z 为虚数, 设(,,0)z a bi a b R b =+∈≠ ,则2()60a bi +-= 222226026020a b a b abi ab ??--=-+-=??=?? 2222606056010a b b b b b a ??--=??--=?+-=?=±?=?? 所以,方程的解为2,2,3,3,,i i ---。 8、解方程210x ix i -+-= (1)x R ∈ (2)x C ∈ 解:(1)1x = (2)11x orx i ==-

复系数一元二次方程求解

复系数方程的求解 知识点: 1.复系数方程的一般求解方法; 2.复系数方程与实系数方程解的关联性; 教学过程: 1.系数为复数的方程统称为复系数方程; 2.复系数方程的一般求解方程方法为待定系数法; 3.复系数一元二次方程的根满足韦达定理; 4.复系数一元n次方程有且仅有n个根(k重根按k个根记),此结论由高斯在1797年的博士论文中严格证明。并称为代数基本定理 ......。 例1.解关于x的方程: (1)2340 --= x i (2)2(1)0 -++= x i x i (3)2 i x i x i +----= (1)(1)260 (4)2(3)430 -+++= x i x i (5)22 -++--= 252(2)0 x x x x i

例2.设方程20x px k -+=有一个根是12i +。 (1)若p R ∈,求实数k 的值; (2)若4p =,求复数k 的值; 例3.解关于x 的方程(1)(1)0,n n x x n N +--=∈。 例4.设1,,x u vi u v R =+∈是关于x 的方程20,,ax ibx c a b R ++=∈的根,求方程的另一个根; 例5.设k R ∈,关于x 的方程2(2)20x k i x ki ++++=有实数解,求k 的值,并求方程的根。

例6.已知关于x 的方程222(1)(1)0a i x a i a i +++++=有实数解,求实数a 积方程的根。 例7.已知关于x 的方程09)6(2=+++-ai x i x ,a R ∈有实数根b 。 (1)求实数,a b 的值; (2)若复数z 满足02=---- z bi a z ,求z 为何值时,z 有最小值,并求出z 的值。 例8.关于x 的二次方程2120x z x z m +++=中,12,,z z m 均是复数,且i z z 20164221+=-. 设这个方程的两个根为α、β,且满足72||=-βα.求|m |的最大值和最小值。

三次方程的一般解法

一元三次方程的求根公式称为“卡尔丹诺公式” 一元三次方程的一般形式是 x3+sx2+tx+u=0 如果作一个横坐标平移y=x+s/3,那么我们就可以把方程的二次项消 去。所以我们只要考虑形如 x3=px+q 的三次方程。 假设方程的解x可以写成x=a-b的形式,这里a和b是待定的参数。 代入方程,我们就有 a3-3a2b+3ab2-b3=p(a-b)+q 整理得到 a3-b3 =(a-b)(p+3ab)+q 由二次方程理论可知,一定可以适当选取a和b,使得在x=a-b的同时, 3ab+p=0。这样上式就成为 a3-b3=q 两边各乘以27a3,就得到 27a6-27a3b3=27qa3 由p=-3ab可知 27a6 + p = 27qa3 这是一个关于a3的二次方程,所以可以解得a。进而可解出b和根x. 除了求根公式和因式分解外还可以用图象法解,中值定理。很多高次方程是无法求得精确解的,对于这类方程,可以使用二分法,切线法,求得任意精度的近似解。参见同济四版的高等数学。 一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。 一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。我归纳出来的形如x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下: (1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到 (2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3)) (3)由于x=A^(1/3)+B^(1/3),所以(2)可化为 x^3=(A+B)+3(AB)^(1/3)x,移项可得 (4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知(5)-3(AB)^(1/3)=p,-(A+B)=q,化简得 (6)A+B=-q,AB=-(p/3)^3

一元三次方程求根问题

一元三次方程求根问题 一元三次方程求根问题是一个曾经困扰了人们许多年的问题,后来数学家们在经过非常多的计算后,用巧妙的方法将其解决了。目前,我还不知道一元三次方程求根公式和其推导过程,下面,我就尝试将这个问题解决。 显然,所有的一元三次方程都可以转化为 x 3+bx 2+cx +d =0的形式, 先从一些三次多项式的公式入手,其中有这样一个公式 ()()()B A AB B A AB B A B A B A +-+=--+=+3333 22333 在这里令x =A+B ,m =-3AB ,n =-(A 3+B 3),则上述公式转为 x 3+mx+n=0 这便是一个特殊的一元三次方程。 而 ?????-=+-=n B A m B A 333 3327 所以由一元二次方程的韦达定理得A 3与B 3是方程 0273 2 =-+m ny y 的两根, 不考虑A 与B 之间的顺序,得 ???? ?????+--=++-=22742274223223m n n B m n n A

故3323 3 227422742m n n m n n B A x +--+++-=+= 在解二次方程时,可以通过配方的方法 将 ax 2+bx +c =0 转化为 04422=-+??? ??+a b ac 2a b x a 再将a b x 2+换元,以达到消去一次项的目的。 那么,在解x 3+bx 2+cx +d =0的过程中,是否也有类似的方法呢? 我们可以尝试对其进行“配立方”来消去二次项, 得???? ??-+???? ??-+??? ??+=+++2733323 23b d x b c b x d cx bx x ???? ??+-+??? ??+???? ??-+??? ??+=2723333323 b b c d b x b c b x 这就转为x 3+mx+n=0的形式,带入刚才得到的其求根公式,得 3 2233b t n t n x ---++-= 其中108 441827274,3,27233 32223223c d b bcd c b d m n t b c m b bc d n ++--=+=-=+-= 以上只得出了一元三次方程一个根的求根公式,还不一定是实根,而一元三次方程一般有一或三个实根,原因可能是在上述求解过程中只在实数的范围内运算,并没有考虑到虚数。如果考虑虚数,在复数的范围内运算,一元三次方程应当有三个根。在上述方法中,另两个根可能要应用到虚数的一些概念和性质,若只考虑实数,无法将其解出。 接下来尝试一下在复数范围内,能否将另两个根解出。 设刚才求出的根为x 1=A +B,先考虑x 3+mx+n=0形式的方程,

三次因式分解

下面几种方法仅供参考 1、可以用待定系数法来解决。根据高等数学中的理论,任何一个高次多项式,都可以分解 为若干个一次因式和判别式(B^2-4ac<0)的二次因式的乘积。所以你假设原始可以分解为(ax+b)(cx+d)(ex^2+fx+g)然后把这个式子展开,和你要分解的那个原式用对应系数相等的法则来求解出常数a,b,c,d,e,f,g 的值就可以了。 2、试根法 例如x^3-5x^2+17x—13 看看x等于什么可以使他等于0 显然x=1可以 所以有一个因式是x-1 所以x^3—5x^2+17x—13 =x^3—x^2—4x^2+4x+13x—13 =x^2(x—1)—4x(x-1)+13(x—1) =(x-1)(x^2-4x+13) 3一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型. 一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A 和B。方法如下: (1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到 (2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3)) (3)由于x=A^(1/3)+B^(1/3),所以(2)可化为 x^3=(A+B)+3(AB)^(1/3)x,移项可得 (4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知 (5)-3(AB)^(1/3)=p,-(A+B)=q,化简得 (6)A+B=-q,AB=—(p/3)^3 (7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如 ay^2+by+c=0的一元二次方程两个根的韦达定理,即 (8)y1+y2=-(b/a),y1*y2=c/a (9)对比(6)和(8),可令A=y1,B=y2,q=b/a,—(p/3)^3=c/a (10)由于型为ay^2+by+c=0的一元二次方程求根公式为 y1=-(b+(b^2-4ac)^(1/2))/(2a) y2=-(b-(b^2-4ac)^(1/2))/(2a) 可化为 (11)y1=-(b/2a)—((b/2a)^2—(c/a))^(1/2) y2=-(b/2a)+((b/2a)^2—(c/a))^(1/2)

一元二次方程根与系数之间的关系

中考数学辅导之—一元二次方程根与系数之间的 关系 我们系统的学习了一元二次方程的解法及一元二次根的判别式和一元,从暑假开始我们将学习几何,二次方程根与系数之间的关系.本次,我们全面复习前面所学内容,下次. 中的第六章解直角三角形一、基本内容的整式方程叫一元且未知数的次数最高是1.一元二次方程含义:含有一个未知数,2. 二次方程20) +bx+c=0(a一般形式:ax≠2.: 3.解法22如=b(b≥0)0)和(x+a)的形式可直接开平方:①直接开平方法形如 x.=b(b≥2: 两边开平方得(3x-1)=551?51??,?x?x5?x53?13x?1??21332 :② 配方法:例03x??2x?11222解:1?2x3x??xx?3311212?xx??? 939321412??x?(x)??3393121?,xx????x?121333因 为很多公式的推导用这种方,.但要掌握此类解法在解一元二次方程时,一般不用. 法?b??2)??0(?0axbx??c?0(a?)的求根公式是x:③公式法a2将一元二次方程转,:方程右边为零.左边分解成(ax+b)(cx+d)的形式④因式分解法. 变成两个一元一次方程来解化成ax+b=0,cx+d=0的形式,2-4ac =b根的判别式:△4.2. 方程有两个不相等实根b-4ac>0 2-4ac=0 方程有两个相等实根. b2-4ac<0 方程无实根. b2-4ac≥0 b方程有实根. 有三种应用: ①不解方程确定方程的根的情况. ②利用方程的根的条件(如有两个不相等实根,无实根,有实根等) 利用Δ建立不等式求m或k的取值范围. ③证明Δ必小于零,或Δ必大于零来证明方程无实根或一定有实根,将Δ化成完 全平. 来证<0Δ或>0Δ一定有,无论取何值k)或m(叙述不论,方式 cb2. +bx+c=0(a≠0)的根,则5.根与系数间的关系,某x,x是ax?x,x?x?x??212121aa: 应用. 求方程中m或k的值或另一根①不解方程,. 求某些代数式的值②不解方程,. 的取值范围m或k③利用两根的关系,求方程中. 使它与原方程有某些关系④建立一个方程,. ⑤一些杂题 : 二、本次练习: 填空题(一)22mx??x3mx?2x?m m=____. 1.关于x是一元二次方程的方程,则2常数化成一元二次方程的形式是____.其一次项系数是 2.将方程4x____,-kx+k=2x-1____. 项是222x=____. 则代数式(x+2)+(x-2)的值相等的值与8(x,-2)3.522 +( )=(x- )4.x?x 22k=____.

数学:13.6《实系数一元二次方程》教案(1)(沪教版高二下)

13.6(1)实系数一元二次方程 上海市新中高级中学 陶志诚 一、教学内容分析 本节内容是在前面学习了复数的运算后,对初中已学过的一元二次方程的求根公式和韦达定理的推广和完善. 为了实际应用和数学自身发展的需要,数的概念需要再一次扩充——由实数扩充到了复数,解决了负数开平方的问题。那么实系数一元二次方程20a x b x c ++=,当240b ac ?=-<时方程在复数集中解的情况同样需要进一步研究.因此,本节课主要是探讨实系数一元二次方程在复数集中解的情况和在复数范围内如何对二次三项式进行因式分解等问题. 二、教学目标设计 理解实系数一元二次方程在复数集中解的情况;会在复数集中解实系数一元二次方程;会在复数范围内对二次三项式进行因式分解;理解实系数一元二次方程有虚数根时根与系数的关系,并会进行简单应用. 三、教学重点及难点 在复数集中解实系数一元二次方程;在复数范围内对二次三项式进行因式分解. 四、教学用具准备 电脑、实物投影仪 五、教学流程设计

六、教学过程设计 (一)复习引入 1.初中学习了一元二次方程20ax bx c ++=(a b c R ∈、、且0)a ≠的求根公式,我 们回顾一下: 当240b ac ?=-≥ 时,方程有两个实数根:2b x a =-± 2.上一节课学习了“复数的平方根与立方根”,大家知道-1的平方根是:i ±. 设问①:一元二次方程210x +=在复数范围内有没有解? 设问②:在复数范围内如何解一元二次方程210x x ++=? [说明] 设问①学生可以根据“复数的平方根”知,x 即为-1的平方根:i ±;设问②是为了引出本节课的课题:实系数一元二次方程. (二)讲授新课 1、实系数一元二次方程在复数集C 中解的情况: 设一元二次方程20(0)ax bx c a b c R a ++=∈≠、、且. 因为0a ≠,所以原方程可变形为2b c x x a a +=-, 配方得

一元二次方程根与系数的关系各种类型题及训练

一元二次方程根与系数的关系应用例析及训练 一、根据判别式,讨论一元二次方程的根。 例1:已知关于的方程(1)有两个不相等的实数根,且关于的方程(2)没有实数根,问取什么整数时,方程(1)有整数解? 分析:在同时满足方程(1),(2)条件的的取值范围中筛选符合条件的的整数值。 解:∵方程(1)有两个不相等的实数根, ∴ 解得; ∵方程(2)没有实数根, ∴ 解得; 于是,同时满足方程(1),(2)条件的的取值范围是 其中,的整数值有或 当时,方程(1)为,无整数根; 当时,方程(1)为,有整数根。 解得: 所以,使方程(1)有整数根的的整数值是。 总结:熟悉一元二次方程实数根存在条件是解答此题的基础,正确确定的取值范围,并依靠熟练的解不等式的基本技能和一定的逻辑推理,从而筛选出 ,这也正是解答本题的基本技巧。 二、判别一元二次方程两根的符号。 例1:不解方程,判别方程两根的符号。

分析:对于来说,往往二次项系数,一次项系数,常数项皆为已知,可据此求出根的判别式△,但△只能用于判定根的存在与否,若 判定根的正负,则需要确定或的正负情况。因此解答此题的关键是:既要求出判别式的值,又要确定或的正负情况。 解:∵,∴△=—4×2×(—7)=65>0 ∴方程有两个不相等的实数根。 设方程的两个根为, ∵<0 ∴原方程有两个异号的实数根。 总结:判别根的符号,需要把“根的判别式”和“根与系数的关系”结合起来进行确定,另外由于本题中<0,所以可判定方程的根为一正一负;倘若>0,仍需考虑的正负,方可判别方程是两个正根还是两个负根。 三、已知一元二次方程的一个根,求出另一个根以及字母系数的值。 例2:已知方程的一个根为2,求另一个根及的值。 分析:此题通常有两种解法:一是根据方程根的定义,把代入原方程,先求出的值,再通过解方程办法求出另一个根;二是利用一元二次方程的根与系数的关系求出另一个根及的值。 解法一:把代入原方程,得: 即 解得 当时,原方程均可化为: ,

《一元二次方程的解法》规律总结

《一元二次方程的解法》规律总结 1.一元二次方程的解法 (1)直接开平方法:根据平方根的意义,用此法可解出形如a x 2=(a ≥0), b )a x (2=-(b ≥0)类的一元二次方程.a x 2=,则a x ±=;b )a x (2=-,b a x ±=-,b a x +=.对有些一元二次方程,本身不是上述两种形式,但可以化为a x 2=或b )a x (2 =-的形式,也可以用此法解. (2)因式分解法:当一元二次方程的一边为零,而另一边易分解成两个一次因式的积时,就可用此法来解.要清楚使乘积ab =0的条件是a =0或b =0,使方程x(x -3)=0的条件是x =0或x -3=0.x 的两个值都可以使方程成立,所以方程x(x -3)=0有两个根,而不是一个根. (3)配方法:任何一个形如bx x 2 +的二次式,都可以通过加一次项系数一半的平方的方法配成一个二项式的完全平方,把方程归结为能用直接开平方法来解 的方程.如解07x 6x 2=++时,可把方程化为7x 6x 2-=+,2 2226726x 6x ??? ??+-=??? ??++,即2)3x (2=+,从而得解. 注意:(1)“方程两边各加上一次项系数一半平方”的前提是方程的二次项系数是1. (2)解一元二次方程时,一般不用此法,掌握这种配方法是重点. (3)公式法:一元二次方程0c bx ax 2=++(a ≠0)的根是由方程的系数a 、b 、 c 确定的.在0ac 4b 2≥-的前提下,a 2ac 4b b x 2-±-=.用公式法解一元二次方 程的一般步骤: ①先把方程化为一般形式,即0c bx ax 2 =++(a ≠0)的形式; ②正确地确定方程各项的系数a 、b 、c 的值(要注意它们的符号); ③计算0ac 4b 2<-时,方程没有实数根,就不必解了(因负数开平方无意义); ④将a 、b 、c 的值代入求根公式,求出方程的两个根. 说明:象直接开平方法、因式分解法只是适宜于特殊形式的方程,而公式法则是最普遍,最适用的方法.解题时要根据方程的特征灵活选用方法. 2.一元二次方程根的判别式 一元二次方程的根有三种情况:①有两个不相等的实数根;②有两个相等的 实数根;③没有实数根.而根的情况,由ac 4b 2-的值来确定.因此ac 4b 2-=?叫做一元二次方程0c bx ax 2 =++的根的判别式. △>0?方程有两个不相等的实数根. △=0?方程有两个相等的实数根. △<0?方程没有实数根.

一元三次方程的解法

一元三次方程的解法 数教091班王超逸 48号 一元三次方程的标准形式为aX^3+bX^2+cX+d=0,将方程两边同时除以最高项系数a,三次方程变为x^3+(b/a)x^2+(c/a)x+d/a=0,所以三次方程又可简写为 X^3+bX^2+cX+d=0. 一元三次方程的韦达定理 设方程为 ax^3+b^2x+cx+d=0 则有 x1*x2*x3=-d/a;x1*x2+x2*x3+x3*x1=c/a;x1+x2+x3=-b/a; 一元三次方程解法思想 一元三次方程解法思想是:通过配方和换元,使三次方程降次为二次方程求解. 一元三次方程解法的发现 三次方程解法的发现是在16世纪的意大利,那时,数学家常常把自己的发现秘而不宣,而是向同伴提出挑战,让他们解决同样的问题.想必这是一项很砥砺智力,又吸引人的竞赛,三次方程的解法就是这样发现的. 最初,有一个叫菲奥尔的人,从别人的秘传中学会了解一些三次方程,便去向另一个大家称为塔尔塔利亚的人挑战.塔尔塔利亚原名丰塔纳,小时因脸部受伤引起口吃,所以被人称为塔尔塔利亚(意为"口吃者")。他很聪明,又很勤奋,靠自学掌握了拉丁文,希腊文和数学.这次他成功解出了菲奥尔提出的所有三次方程,菲奥尔却不能解答他提出的问题.当时很有名的卡尔丹于是恳求他传授解三次方程的办法,并发誓保守秘密,塔尔塔利亚才把他的方法写成一句晦涩的诗交给卡尔丹.后来卡尔丹却背信弃义,把这个方法发表在1545年出版的书里.在书中他写道:"波伦亚的费罗差不多在三十年前就发现了这个方法,并把它传给了菲奥尔.菲奥尔在与塔尔塔利亚的竞赛中使后者有机会发现了它.塔尔塔利亚在我的恳求下把方法告诉了我,但保留了证明.我在获得帮助的情况下找出了它各种形式的证明.这是很难做到的."卡尔丹的背信弃义使塔尔塔利亚很愤怒,他马上写了一本书,争夺这种方法的优先权.他与卡尔丹的学生费拉里发生了公开冲突.最后,这场争论是以双方的肆意谩骂而告终的.三次方程解法发现的过程虽不愉快,但三次方程的解法被保留了下来,并被错误的命名为"卡尔丹公式"沿用至今.以下介绍的解法,就是上文中提到的解法. 一元三次方程的解法 一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax+bx+cx+d=0的标准型一元三次方程形式化为x+px+q=0的特殊型。 一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A 和B。方法如下:

含字母系数的一元二次方程

(6)含字母系数的一元一次方程 班别______姓名________ 一、性质:一般地,当 (1)a ≠0?方程ax=b 有且只有一解; (2)a=0且b=0?方程ax=b 有无数多个解; (3)a=0且b ≠0?方程无解。 二、例题 例1 解关于x 的方程(m-1)x – 1=3x + 4 解:整理,得 (m – 4)x=5,当m ≠4时,x= 45-m ;当m=4时,原方程无解。 例2 解关于y 的方程(k 2+2k+3)y + 4=3(y+2)+k 解:整理,得(k 2 +2k )y=2 + k ∴ k (k+2)y=2+k 当k=-2时,方程有无数多个解; 当k ≠-2时,得ky=1 ∴当k ≠-2且k ≠0时,方程的解为y=k 1 当k=0时,原方程无解 当k=-2时,方程有无数多个解。 例3 b (b ≠0)为何值时,关于x 的方程(b+1)x=2bx –3b 2 的解为负数。 解:整理,得(1 - b )x= –3b 2 当b ≠1时,方程有解x = b b --132 ,由于b ≠0分子(–3b 2)为负,只需分母为正,即b ﹤1时,方程的解为负数。 例4 某施工队第一组原有96人现调出16人到第二组,调整人数后,第一组人数是第二组人数的k (k 是不等于1的正整数)倍还多6人,问第二组原有多少人。 解:设第二组原有x 人。调整后,第一组有96 – 16 = 80(人),第二组有x+16(人)。根据题意,得 80=k (x+16)+6 整理,得 kx=74 – 16k k 是不等于1的正整数,∴x=k k 1674-

因为x 为所求人数,必须为正整数,而k 是不等于1人正整数,故74 – 16K 也是正整数,k 只能取2、3、4。代入计算得k 为3、4均不适合。 ∴当k=2时,得第二组原有x=2 21674?-=21(人) 评注 : 对含字母系数的一元一次方程中的字母系数要讨论,如果是应用问题,还得根..................................据实际意义,对字母系数的取值范围进行取舍.................... 。 三、练习 1、选择题:设关于x 的方程a (x - a )+b (x+b )=0有无穷多个解,则( ) (A )a+b=0 (B )a-b=0 (C )ab=0 (D ) 0=b a 2、填空:若方程249x+8 a ∣x ︱-1=0解小于零,则a 的取值范围是________. 3、解下列关于x 的方程: (1)x+b a b ax +=; (2)=+n x m m n x -; (3)x=b a a b a bx -++; (4)(=-x m n n m )m n n m + 4、k 为何值时,方程(m – 3)(m - 4)x=(m – 3)(m+2)的解是负数? 5、解关于x 的方程m+122++=+m x m mx

中学代数研究---一元三次方程通解求法1

关于一元三次方程通解的解法 章君、何敏捷 (福建师范大学数学系福建福州350108) 【摘要】本文主要讲解了针对于一元三次方程通解的解法,由一元二次方程通解解法,我们产生联想,可不可以先将一般的一元三次方程化为缺二次项的特殊一元三次方程,然后进行求解,并由此进一步推出一元三次方程根的判别式方法; 【关键词】一元三次方程、通解、一元二次方程、判别式 我们在中学已经学过对于一般的一元二次方程20 ax bx c ++=(0 a≠)的通解的解法,并且我们知道,针对于这样的一般性的一元二次方程,我们可以用多种解法来求得其解,比如,我们可以用求根公式法、因式分解法、配方法等等各种不同的做法来求得其解;这不禁让我们联想到,针对于一般的一元三次方程320 +++=(0 ax bx cx d a≠)我们是否也可以通过像求解一元二次方程的那些做法来求得其解呢?显然,事实证明,对于一般性的一元三次方程是不能用因式分解法、配方法来求解的,除非是比较明显的易于观察的一些方程,我们一眼就能发现它存在某一个特根,然后用多项式相除的办法进行将它分解,然而对于一般性的一元三次方程是不能这样做的,也不能直接给它配方,这就要求我们用其它的方法来求得其解集;由一元二次方程的求根公式法中用到的韦达定理,我们联想到,是否可以先把一元三次方程化成一元二次方程,然后也用韦达定理来求解,事实证明这种猜想是行得通的,以下,我将介绍这种做法的具体演算过程。 设有一般一元三次方程320 +++=(0 ax bx cx d a≠),我们对它先进行化简,目标是将它的二次项系数化为0,这种想法的由来是因为我们通过实践发现无

二次项的一元三次方程比较容易求解,因此,我们想到先除去二次项,然后再求解;具体做法是: 令x y k =+其中k 是一个待定的常数,将其代入原一般一元三次方程320ax bx cx d +++=(0a ≠)中,得到: 32()()()0a y k b y k c y k d ++++++= 展开并整理得到: 32232(3)(32)()0ay ka b y k a bk c y ak bk ck d +++++++++= ---------○ 1 取3b k a =- ,即 3b x y a =- -------○2 , 将其代入原一般方程并整理得: 23322()()03273b b bc ay c y d a a a +-+-+= , 两边同时除以a 得到: 3 0y py q ++= --------○3 其中 21()3b p c a a =- , 3212()273b bc q d a a a =-+ 事实上,以上过程也证明了对于任意一个一元三次方程,我们都可以将它 化为上述○ 3的这种形式,这样我们就可以直接求不含二次项的一元三次方程的解了;接下来,我们只要将方程○ 3的解求出来,就可以自然的求得最原始的一般的一元三次方程的通解了; 我们再次将○3式作变换,令y u v =+(其中u 和v 是未知数),并将其代入 方程○ 3得到:3()()0u v p u v q ++++=,化简后得到: 33(3)()0u v q uv p u v +++++= --------○ 4 因为我们用两个未知数u 和v 代替了y ,因此为了减少○ 4中未知数的个数,我们不妨再要求(3)uv p +=0 -----○5,这样我们就可以得出3 p uv =-------○6,将其代入方程○4我们可以得到:330u v q ++=,从而我们就得到以下方程组: 333p uv u v q ?=-?? ?+=-?,即 3333327p u v u v q ?=-???+=-? 这样我们就可以利用韦达定理知道: 3u 和3v 可以看成是一元二次方程3 2027 p z qz +-=的两个根;

相关主题
文本预览
相关文档 最新文档