当前位置:文档之家› 晶体管的输入输出特性曲线详解.

晶体管的输入输出特性曲线详解.

晶体管的输入输出特性曲线详解.
晶体管的输入输出特性曲线详解.

晶体管的输入输出特性曲线详解

届别

系别

专业

班级

姓名

指导老师

二零一二年十月

晶体管的输入输出特性曲线详解

学生姓名:指导老师:

摘要:晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。

根据晶体管的结构进行分类,晶体管可以分为:NPN型晶体管和PNP 型晶体管。依据晶体管两个PN结的偏置情况,晶体管的工作状态有放大、饱和、截止和倒置四种。晶体管的性能可以有三个电极之间的电压和电流关系来反映,通常称为伏安特性。

生产厂家还给出了各种管子型号的参数也能表示晶体管的性能。利用晶体管制成的放大电路的可以是把微弱的信号放大到负载所需的数值

晶体管是一种半导体器件,放大器或电控开关常用。晶体管是规范操作电脑,手机,和所有其他现代电子电路的基本构建块。由于其响应速度快,准确性,晶体管可用于各种各样的数字和模拟功能,包括放大,开关,稳压,信号调制和振荡器。晶体管可独立包装或在一个非常小的的区域,可容纳一亿或更多的晶体管集成电路的一部分。

关键字:晶体管、输入输出曲线、放大电路的静态分析和动态分析。

【Keywords】The transistor, the input/output curve, amplifying circuit static analysis and dynamic analysis.

一、晶体管的基本结构

晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种,如图

1-1(a)、(b)所示。从三个区引出相应的电极,发射极,基极,集电极,各用“E”(或“e”)、“B”(或“b”)、“C”(或“c”)表示。

发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。发射极箭头向外。发射极箭头指向也是PN结在正向电压下的导通方向。硅晶体三极管和锗晶体三极管都有PNP型和NPN型两种类型。当前国内生产的锗管多为PNP型(3A 系列),硅管多为NPN型(3D系列)。

图1-1 晶体管的结构和图形符号

二、晶体管的工作原理

晶体管在电路中工作时,根据两个PN结的偏置情况不同,可以由四种工作状态:放大状态、饱和状态、截止状态、倒置状态。

(1)发射结正向偏置、集电结反向偏置—放大状态

(a)原理图

(b)电路图

图 1.2(a),(b)分别是硅晶体管的发射结正向偏置、集电结反向偏置的原理图和电路图。由于发射区和基区不是同类的参杂半导体,所以扩散到基区的多子在基区属于少子。称为非平衡少数载流子。集电结反向偏置有利于少子漂移,因此大部分非平衡少数载流子在经集电结漂移到集电区。另外,集电结反向偏置也有利于基区和集电区中自身的少数载流子互相漂移,形成反向饱和电流I CBO,其值较小,而且与集电结反向偏置电压达大小无关。通常令I CBO=0时的集电极电流I C 与发射极电流I E之比为

α=I C/I E |ICBO=O

当考虑到ICBO后,各电极之间的关系如下:

I C=αI E+I CBO

I E= I C+I B

I B=(1-α)I E-I CBO

当考虑反向饱和电流时,各电流之间的关系如下

I E=I C+I B

集电极电流I C与基极电流I B之比为共射极直流电流放大系数,记作β,即:

β=I C /I B

α、β二者之间的关系为:

α=β/β+1

β=α/α-1

从以上分析可知,从发射区发射到基区的电子中,只有很小部分与基区的电子复合而形成基极电流I B,绝大部分能通过基区并被集电区收集而形成集电极电流I C.因此,集电极电流I C就会比基极电流I B大得多,这就是晶体管的电流放大作用。如前所述,晶体管的基区之所以做得很薄,并且掺杂浓度远低于发射区,就是为了使集电极电流比基极电流大得多,从而实现晶体管的电流放大作用。

晶体管的电流放大作用实质上是电流控制作用,是用一个较小的基极电流去控制一个较大的集电极电流,这个较大的集电极电流是由直流电源E C提供的,并不是晶体管本身把一个小的电流放大成了一个大的电流,这一点须用能量守恒的观点去分析。所以晶体管是一种电流控制元件。

(4)发射结反向偏置、集电结正向偏置—倒置状态

图1.4

图 1.4是硅晶体管的发射结反向偏置、集电结正向偏置的电路图。与放大状态相比,发射结与集电结的偏执状态被对换,这时管子的工作状态称为倒置状态。由于集电区的掺杂浓度远低于发射区的掺杂浓度,集电结正向偏置后,由集电区扩散到基区的多子较少,另外,发射结的结面积小于集电结,其收集基区的非平衡少数载流子的能力较差,所以管子工作于倒置状态时,其电流放大系数比放大状态时的小得多。

二、晶体管共射极接法的伏安特性曲线

晶体管的性能可以有三个电极之间的电压和电流关系来反映,通常称为伏安特性。晶体管虽然只有三个电极,但是在使用时总是有一个电极作为输入和输出回路的公共端,一个端口网络有四个变量,可有多种曲线表示他们之间的关系,我们常用两组曲线族来表示晶体管的特性。其中最常用的晶体管伏安特性是共射极伏安特性。共射极伏安特性包括输入特性和输出特性。

最常用的是共发射极接法的输入特性曲线和输出特性曲线,实验测绘是得到特性曲线的方法之一。特性曲线的测量电路见图1.5。

图1.5

1.共射极输入特性

反映晶体管输入回路基极—发射极间电压u EB 与基极电流i B 之间的伏安特性称为共射极输入特性。由于这一关系也受输入回路电压u CE 的影响,所以其定义为

I b =f (U eb )|U CE=常数

共射极输入特性常用一簇曲线来表示,称为共射极输入特性曲线。如图1.6

C

图1.6

由曲线可知:

(1)晶体管的输入特性曲线,也有死区。硅管的死区电压大约为0.5v,

锗管的死区电压大约为0.1v。

(2)在相同的u EB下u CE从0增大时,i B将减小。这是因为u CE=0时,

J E与J C均正偏,i B为两个正向偏置PN结的电流之和;当u CE增大时J C从正向偏置逐渐往反向偏执过度,有越来越多的非平衡少刘子到达集电区,使i B减小。

(3)当u CE继续增大,使J C反向偏置后,受u CE的影响减小,不同u CE

值时的输入特性曲线几乎重合在一起,这时由于基区很薄在J C反向偏置时,绝大多数非平很少数载流子几乎都可以漂移到极电区,形成I C所以当继续增大u CE时,对输入特性曲线几乎不产生影响。

2共射极输出特性

以i B 为参变量的i C 与u CE 关系称为共射极输出特性,其定义为 Ic=f(Uce)|i B =常数

其共射极输出特性曲线如图1.7所示。

图 1.7

由图可见,晶体管的输入特性曲线将晶体管分为三个工作区,它们是:

(1)饱和区 只输出特性曲线几乎垂直上升部分与纵轴之间的区域。在此区域内,不同i B 值的输出特性曲线几乎重合,i C 不受i B 的控制,只随u CE 增大而增大。

(2)截止区 对与i B =—I CBO 的输出特性曲线与横轴之间的区域。在此区域内,i C 几乎为零,三极管没有放大能力。

(3)放大区 指饱和区域截止区之间的区域。在此区域内管子工

U CE (V) 3 6 9 12

作与放大状态。在这一区域内,i C还受u CE的影响。当i B一定以后,随u CE增大,i C略有增加。这是因为当Uce越大时J C反向偏置电压越大,集电结越宽,使基区变得更薄,发射区多子扩散到基区后,与基区多子复合的机会少,若要保持i B不变,就会有更多的多子从发射区扩散到基区,i C将增加,这种情况称为基区调宽效应。

三、晶体管的主要电参数

晶体管除了可以用伏安特性曲线来表示管子性能外,,生产厂家还给出了各种管子型号的参数。

晶极管的主要参数

1、直流参数

(a)共基极直流电流放大系数α

其定意为:α=I C/I E︱I CBO=0

(b)共发射极直流电流放大系数β

(1),称为晶体管共射接法时的静态(直流)电流放大系数。

(2),称为晶体管共射接法时的动态(交流)电流放大系数。

(3)与β两者的含意是不同的,但两者的数值较为接近,今

后在进行估算时,可认为=β。

?集电极—基极间反向饱和电流I CBO它是指发射极开路时,流过集电极与基极的电流。

(d) 集电极—发射极间反向饱和电流I CEO它是指基极开路时,流过集电极与发射极的电流。由于这一电流从集电极贯穿基区流至

发射极,所以又被称为穿透电流。

2、交流参数

(1)交流电流放大系数β(或hfe )这是指共发射极接法,集电极输出电流的变化量△Ic 与基极输入电流的变化量△Ib 之比,即: β= △Ic/△Ib

当I C 较小时,β随I C 增大而增大;当I C 增大到某一范围时,β几乎不变;但当I C 过大时,β随IC 继续增大而减小。β与I C 的关系如图 1.8 中曲线所示

图 1.8 一般电晶体的β大约在10-200之间,如果β太小,电流放大作用差,如果β太大,电流放大作用虽然大,但性能往往不稳定。

(2)共基极交流放大系数α(或hfb )这是指共基接法时,集电极输出电流的变化是△Ic 与发射极电流的变化量△Ie 之比,即:

α=△Ic/△Ie

因为△Ic <△Ie ,故α<1。高频三极管的α>0.90就可以使用 α与β之间的关系:

α= β/(1+β)

β= α/(1-α)≈1/(1-α)

(3)截止频率fβ、fα当β下降到低频时0.707倍的频率,就什发射极的截止频率fβ;当α下降到低频时的0.707倍的频率,就什基极的截止频率fαo fβ、fα是表明管子频率特性的重要参数,它们之间的关系为:

fβ≈(1-α)fα

(4)特征频率fT因为频率f上升时,β就下降,当β下降到1时,对应的fT是全面地反映电晶体的高频放大性能的重要参数。

3、极限参数

(1)集电极最大允许电流I CM当集电极电流Ic增加到某一数值,引起β值下降到额定值的2/3或1/2,这时的Ic值称为I CM。所以当Ic 超过I CM时,虽然不致使管子损坏,但β值显著下降,影响放大品质。(2)集电极----基极击穿电压B VCBO当发射极开路时,集电结的反向击穿电压称为B VEBO。

(3)发射极-----基极反向击穿电压B VEBO当集电极开路时,发射结的反向击穿电压称为B VEBO。

(4)集电极-----发射极击穿电压B VCEO当基极开路时,加在集电极和发射极之间的最大允许电压,使用时如果Vce>BVceo,管子就会被击穿。

(5)集电极最大允许耗散功率P CM 集电流过Ic,温度要升高,管子因受热而引起参数的变化不超过允许值时的最大集电极耗散功率称为P CM。管子实际的耗散功率于集电极直流电压和电流的乘积,即

Pc=Uce×Ic.使用时庆使Pc<P CM。

PCM与散热条件有关,增加散热片可提高P CM。

在输出特性曲线上,把凡是该点坐标对应的Uce与Ic乘积等于PCM的那些点连成线,可得一条曲线。称为等功耗线,如图1.9

图1.9

四、共射极放大电路的组成和工作原理

放大电路的主要作用是把微弱的信号放大到负载所需的数值。图1,10是共射极放大电路的组成。

图1.10

放大的概念和放大电路的主要性能指标

放大电路放大的本质是能量的控制和转换,在输入信号的作用下,通过放大电路将直流电源的能量转换成负载所获得的能量,使负载从电源获得的能量大于信号源所提供的能量。

1、性能指标

(1)放大倍数:电压放大倍数i

O V U U A = 电流放大倍数β≈=i O I I I A (2)输入电阻:从放大电路输入端看进去的等效电阻,i i i I U R =,放大电路输入电阻的大小要视需要而设计。

(3)输出电阻:从放大电路输出端看进去的等效电阻,L O o o R U U R )1(-'=,放大电路输出电阻的大小要视需要而设计。R O 越小,放大电路带负载

能力愈强。

(4)通频带:衡量放大电路对不同频率信号的放大能力。L H bw f f f -=。

(5)最大输出功率om P 与效率η。

21. 电路组成放大电路组成原则:

o

i i i

图1.11

由图1.11放大电路组成可得

(1).提供直流电源,为电路提供能源。

(2).电源的极性和大小应保证BJT基极与发射极之间处于正向偏置;而集电极与基极之间处于反向偏置,从而使BJT工作在放大区。

(3).电阻取值与电源配合,使放大管有合适的静态点。

(4).输入信号必须能够作用于放大管的输入回路。

(5).当负载接入时,必须保证放大管输出回路的动态电流能够作用于负载,从而使负载获得比输入信号大得多的信号电流或信号电压。

共射极基本放大电路的电压放大作用是利用了BJT的电流控制作用,并依靠Rc将放大后的电流的变化转为电压变化来实现的。

3. 放大电路的静态和动态

静态:输入信号为零时,电路的工作状态,也称直流工作状态。

动态:输入信号不为零时,电路的工作状态,也称交流工作状态。

电路处于静态时,三极管个电极的电压、电流在特性曲线上确定为一点,称为静态工作点,常称为Q点。一般用I B、I C、和V CE(或I BQ、I CQ、和V CEQ)表示。

对于放大电路来说其最基本要求,一是不失真,二是能够放大。只有在信号的整个周期内BJT始终工作在放大状态,输出信号才不会产生失真。

静态工作点设置合适能实现线性放大;静态工作点设置偏高会产生饱和失真;静态工作点设置偏低会产生截止失真。Q点不仅影响电

路是否会产生失真,而且影响着放大电路几乎所有的动态系数。 放大电路的分析方法

1直流通路和交流通路

根据叠加原理可将电路中的信号分解为:直流信号和交流信号。直流信号通过直流通路求解,交流信号通过交流通路求解。

直流通路:当没加输入信号时,电路在直流电源作用下,直流电流流经的通路。直流通路用于确定静态工作点。

直流通路画法:①电容视为开路;②电感线圈视为短路;③信号源视为短路,但保留其内阻。

交流通路:在输入信号作用下交流信号流经的通路。交流通路用于计算电路的动态性能指标。

交流通路画法:①容量大的电容视为短路;②直流电源视为短路。 .. 图解分析法

2. 用近似估算法求静态工作点:采用该方法,必须已知三极管的β值。

根据直流通路:硅管V BE =0.7V ,锗管V BE =0.2V

3. 用图解分析法确定静态工作点(Q 点):

采用该方法分析静态工作点,必须已知三极管的输入输出特性曲线。 首先,画出直流通路;在输入特性曲线上,作出直线V BE =V CC -I B R b ,两线的交点即是Q 点,

C C CC CE B C b

BE CC B R I V V I I R V V I -==-=;;β

得到I BQ 。在输出特性曲线上,作出直流负载线 V CE =V CC -I C R C ,与I BQ 曲线的交点即为Q 点,从而得到V CEQ 和I CQ 。图1.12即为所示

图1.12

4.动态工作情况分析

(1).交流通路及交流负载线

过输出特性曲线上的Q 点做一条斜率为-1/(R L ∥R c )直线,该直线即为交流负载线。交流负载线是有交流输入信号时Q 点的运动轨迹。R 'L = R L ∥R c ,是交流负载电阻。

(2). 输入交流信号时的图解分析

由图1.13通过图解分析,可得如下结论:

a.||o CE C B BE i v v i i v v →→→→→

b. v o 与v i 相位相反;

c. 可以测量出放大电路的电压放大倍数;

/V i

/mA 截止区

3. BJT 的三个工作区

饱和区特点: i C 不再随i B 的增加而线性增加,

截止区特点:i B = 0,i C = I CEO

当工作点进入饱和区或截止区时,将产生非线性失真

1. 波形的失真

饱和失真:由于放大电路的工作点达到了三极管的饱和区而引起的非线性失真。对于NPN 管,输出电压表现为底部失真。

截止失真:由于放大电路的工作点达到了三极管的截止区而引起的非线性失真。对于NPN 管,输出电压表现为顶部失真。

2. 放大电路的动态范围

/V /V /V

XJ4810晶体管特性图示仪 说明书

XJ4810晶体管特性图示仪说明书 晶体管测量仪器是以通用电子测量仪器为技术基础,以半导体器件为测量对象的电子仪器。用它可以测试晶体三极管(NPN型和PNP型)的共发射极、共基极电路的输入特性、输出特性;测试各种反向饱和电流和击穿电压,还可以测量场效管、稳压管、二极管、单结晶体管、可控硅等器件的各种参数。下面以XJ4810型晶体特性图示仪为例介绍晶体管图示仪的使用方法。 图A-23 XJ4810型半导体管特性图示仪 7.1 XJ4810型晶体管特性图示仪面板功能介绍 XJ4810型晶体管特性图示仪面板如图A-23所示: 1. 集电极电源极性按钮,极性可按面板指示选择。 2. 集电极峰值电压保险丝:1.5A。 3. 峰值电压%:峰值电压可在0~10V、0~50V、0~100V、0~500V之连续可调,面板上的标称值是近似值,参考用。 4. 功耗限制电阻:它是串联在被测管的集电极电路中,限制超过功耗,亦可作为被测半导体管集电极的负载电阻。 5. 峰值电压范围:分0~10V/5A、0~50V/1A、0~100V/0.5A、0~500V/0.1A四挡。当由低挡改换高挡观察半导体管的特性时,须先将峰值电压调到零值,换挡后再按需要的电压逐渐增加,否则容易击穿被测晶体管。 AC挡的设置专为二极管或其他元件的测试提供双向扫描,以便能同时显示器件正反向的特性曲线。 6. 电容平衡:由于集电极电流输出端对地存在各种杂散电容,都将形成电容性电流,因而在电流取样电阻上产生电压降,造成测量误差。为了尽量减小电容性电流,测试前应调节电容平衡,使容性电流减至最小。 7. 辅助电容平衡:是针对集电极变压器次级绕组对地电容的不对称,而再次进行电容平衡调节。 8. 电源开关及辉度调节:旋钮拉出,接通仪器电源,旋转旋钮可以改变示波管光点亮度。 9. 电源指示:接通电源时灯亮。 10. 聚焦旋钮:调节旋钮可使光迹最清晰。 11. 荧光屏幕:示波管屏幕,外有座标刻度片。 12. 辅助聚焦:与聚焦旋钮配合使用。 13. Y轴选择(电流/度)开关:具有22挡四种偏转作用的开关。可以进行集电极电流、基极电压、基极电流和外接的不同转换。 14. 电流/度×0.1倍率指示灯:灯亮时,仪器进入电流/度×0.1倍工作状态。 15. 垂直移位及电流/度倍率开关:调节迹线在垂直方向的移位。旋钮拉出,放大器增益扩大10倍,电流/度各挡I C标值×0.1,同时指示灯14亮. 16. Y轴增益:校正Y轴增益。 17. X轴增益:校正X轴增益。 18.显示开关:分转换、接地、校准三挡,其作用是: ⑴转换:使图像在Ⅰ、Ⅲ象限内相互转换,便于由NPN管转测PNP管时简化测试操作。 ⑵接地:放大器输入接地,表示输入为零的基准点。 ⑶校准:按下校准键,光点在X、Y轴方向移动的距离刚好为10度,以达到10度校正目的。 19. X轴移位:调节光迹在水平方向的移位。 20. X轴选择(电压/度)开关:可以进行集电极电压、基极电流、基极电压和外接四种功能的转换,共17挡。 21. “级/簇”调节:在0~10的范围内可连续调节阶梯信号的级数。 22. 调零旋钮:测试前,应首先调整阶梯信号的起始级零电平的位置。当荧光屏上已观察到基极阶梯信号后,按下测试台上选择按键“零电压”,观察光点停留在荧光屏上的位置,复位后调节零旋钮,使阶梯信号的起始级光点仍在该处,这样阶梯信号的零电位即被准确校正。 23. 阶梯信号选择开关:可以调节每级电流大小注入被测管的基极,作为测试各种特性曲线的基极信号源,共22挡。一般选用基极电流/级,当测试场效应管时选用基极源电压/级。 24. 串联电阻开关:当阶梯信号选择开关置于电压/级的位置时,串联电阻将串联在被测管的输入电路中。 25. 重复--关按键:弹出为重复,阶梯信号重复出现;按下为关,阶梯信号处于待触发状态。 26. 阶梯信号待触发指示灯:重复按键按下时灯亮,阶梯信号进入待触发状态。 27. 单簇按键开关:单簇的按动其作用是使预先调整好的电压(电流)/级,出现一次阶梯信号后回到等待触发位置,因此可利用它瞬间作用的特性来观察被

常见大中功率管三极管参数(精)

常见大中功率管三极管参数 晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型2SD1402 1500V 5A 120W * * NPN 2SD1399 1500V 6A 60W * * NPN 2SD1344 1500V 6A 50W * * NPN 2SD1343 1500V 6A 50W * * NPN 2SD1342 1500V 5A 50W * * NPN 2SD1941 1500V 6A 50W * * NPN 2SD1911 1500V 5A 50W * * NPN 2SD1341 1500V 5A 50W * * NPN 2SD1219 1500V 3A 65W * * NPN 2SD1290 1500V 3A 50W * * NPN 2SD1175 1500V 5A 100W * * NPN 2SD1174 1500V 5A 85W * * NPN 2SD1173 1500V 5A 70W * * NPN 2SD1172 1500V 5A 65W * * NPN 2SD1143 1500V 5A 65W * * NPN 晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型2SD1142 1500V 3.5A 50W * * NPN 2SD1016 1500V 7A 50W * * NPN 2SD995 2500V 3A 50W * * NPN 2SD994 1500V 8A 50W * * NPN 2SD957A 1500V 6A 50W * * NPN 2SD954 1500V 5A 95W * * NPN 2SD952 1500V 3A 70W * * NPN 2SD904 1500V 7A 60W * * NPN 2SD903 1500V 7A 50W * * NPN 2SD871 1500V 6A 50W * * NPN 2SD870 1500V 5A 50W * * NPN 2SD869 1500V 3.5A 50W * * NPN 2SD838 2500V 3A 50W * * NPN 2SD822 1500V 7A 50W * * NPN 2SD821 1500V 6A 50W * * NPN 晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型2SD348 1500V 7A 50W * * NPN 2SC4303A 1500V 6A 80W * * NPN 2SC4292 1500V 6A 100W * * NPN 2SC4291 1500V 5A 100W * * NPN 2SC4199A 1500V 10A 100W * * NPN 2SC3883 1500V 5A 50W * * NPN 2SC3729 1500V 5A 50W * * NPN 2SC3688 1500V 10A 150W * * NPN

晶体管的特性曲线

晶体管的特性曲线 晶体管特性曲线即管子各电极电压与电流的关系曲线,是管子内部载流子运动的外部表现,反映了晶体管的性能,是分析放大电路的依据。为什么要研究特性曲线: (1) 直观地分析管子的工作状态 (2) 合理地选择偏置电路的参数,设计性能良好的电路重点讨论应用最广泛的共发射极接法的特性曲线 1.测量晶体管特性的实验线路 图1 共发射极电路 共发射极电路:发射极是输入回路、输出回路的公共端。如图1所示。 2.输入特性曲线 输入特性曲线是指当集-射极电压U CE为常数时,输入电路( 基极电路)中基极电流I B与基-射极电压U BE之间的关系曲线I B = f (U BE),如图2所示。 图2 3DG100晶体管的输入特性曲线 U CE=0V时,B、E间加正向电压,这时发射结和集电结均为正偏,相当于两个二极管正向并联的特性。 U CE≥1V时,这时集电结反偏,从发射区注入基区的电子绝大部分都漂移到

集电极,只有小部分与空穴复合形成I B。U CE>1V以后,I C增加很少,因此I B 的变化量也很少,可以忽略U CE对I B的影响,即输入特性曲线都重合。 由输入特性曲线可知,和二极管的伏安特性一样,晶体管的输入特性也有一段死区。只有在发射结外接电压大于死区电压时,晶体管才会导通,有电流I B。 晶体管死区电压:硅管0.5V,锗管0.1V。晶体管正常工作时发射结电压:NPN型硅管U BE0.6 ~ 0.7) V PNP型锗管U BE0.2 ~ 0.3) V 3.输出特性曲线 输出特性曲线是指当基极电流I B为常数时,输出电路(集电极电路)中集电极电流I C与集-射极电压U CE之间的关系曲线I C = f (U CE),如图3所示。 变化曲线,所以晶体管的输出特性曲在不同的I B下,可得出不同的I C随U CE 线是一族曲线。下面结合图4共发射极电路来进行分析。 图3 3DG100晶体管的输出特性曲线图4 共发射极电路 晶体管有三种工作状态,因而输出特性曲线分为三个工作区 (1) 放大区 在放大区I C=βI B,也称为线性区,具有恒流特性。在放大区,发射结处于正向偏置、集电结处于反向偏置,晶体管工作于放大状态。 对NPN 型管而言, 应使U BE> 0, U BC< 0,此时,U CE> U BE。 (2) 截止区I B = 0 的曲线以下的区域称为截止区。 I B = 0 时, I C = I CEO(很小)。(I CEO<0.001mA)。对NPN型硅管,当U BE<0.5V 时, 即已开始截止, 为使晶体管可靠截止, 常使U BE≤0。截止时, 集电结也处于反向偏置(U BC≤ 0),此时, I C≈0, U CE≈U CC。 (3) 饱和区当U CE< U BE时,集电结处于正向偏置(U BC> 0),晶体管工作于饱和状态。

半导体管特性图示仪的使用和晶体管参数测量

半导体管特性图示仪的使用和晶体管参数测量 一、实验目的 1、了解半导体特性图示仪的基本原理 2、学习使用半导体特性图示仪测量晶体管的特性曲线和参数。 二、预习要求 1、阅读本实验的实验原理,了解半导体图示仪的工作原理以及XJ4810 型半导体管图示仪的各旋钮作用。 2、复习晶体二极管、三极管主要参数的定义。 三、实验原理 (一)半导体特性图示仪的基本工作原理 任何一个半导体器件,使用前均应了解其性能,对于晶体三极管,只要知道其输入、输出特性曲线,就不难由曲线求出它的一系列参数,如输入、输出电阻、电流放大倍、漏电流、饱和电压、反向击穿电压等。但如何得到这两组曲线呢?最早是利用图4-1 的伏安法对晶体管进行逐点测试,而后描出曲线,逐点测试法不仅既费时又费力,而而且所得数据不能全面反映被测管的特性,在实际中,广泛采用半导体特性图示仪测量的晶体管输入、输出特性曲线。 图4-1 逐点法测试共射特性曲线的原理线路用半导体特性图示仪测量晶体管的特性曲线和各种直流参量的基本原理是用图4-2(a)中幅度随时间周期性连续变化的扫描电压UCS代替逐点法中的可调电压EC,用图4-2(b)所示的和扫描电压UCS的周期想对应的阶梯电流iB来代替逐点法中可以逐点改变基极电流的可变电压EB,将晶体管的特性曲线直接显示在示波管的荧光屏上,这样一来,荧光屏上光点位置的坐标便代替了逐点法中电压表和电流表的读数。

1、共射输出特性曲线的显示原理 当显示如图4-3 所示的NPN 型晶体管共发射极输出特性曲线时,图示仪内部和被测晶体管之间的连接方式如图4-4 所示. T是被测晶体管,基极接的是阶梯波信号源,由它产生基极阶梯电流ib 集电极扫描电压UCS直接加到示波器(图示仪中相当于示波器的部分,以下同)的X轴输入端,,经X轴放大器放大到示波管水平偏转板上集电极电流ic经取样电阻R得到与ic成正比的电压,UR=ic,R加到示波器的Y轴输入端,经Y轴放大器放大加到垂直偏转板上.子束的偏转角与偏转板上所加电压的大小成正比,所以荧光屏光点水平方向移动距离代表ic的大小,也就是说,荧光屏平面被模拟成了uce-ic 平面. 图4-4 输出特性曲线显示电路输出特性曲线的显示过程如图4-5 所示 当t=0 时, iB =0 ic=0 UCE =0 两对偏转板上的电压均为零,设此时荧光屏上光点的位置为坐标原点。在0-t1,这段时间内,集电极扫描电压UCS 处于第一个正弦半波周期。

微电子器件试验-晶体管开关特性的测试分析

电子科技大学微固学院 标准实验报告 (实验)课程名称微电子器件 电子科技大学教务处制表 电子科技大学 实验报告 学生姓名:学号:指导教师:张有润 实验地点:211楼605 实验时间: 一、实验室名称:微电子器件实验室 二、实验项目名称:晶体管开关特性的测试分析 三、实验学时:3 四、实验原理: 图1 如图1所示,如果在晶体管基极输入一脉冲信号Vi,则基极和集电极电流波型如 图所示。故由图可读出其延迟时间T d 、上升时间T r 、存储时间T s 和下降时间T f 。 晶体管开关时间参数一般是按照集电极电流i C 的变化来定义:?延迟时间t d:从脉冲信号加入到i C上升到0.1I CS。 ?上升时间t r:从0.1I CS上升到0.9 I CS。 ?存储时间t s:从脉冲信号去除到i C下降到0.9 I CS。

?下降时间t f:从0.9 I CS下降到0.1 I CS。 ?其中t d + t r即开启时间、 t s + t f即关闭时间。 五、实验目的: 掌握晶体管开关特性测量原理。并能熟练地运用仪器其对双极晶体管的开关时间进行测试。 六、实验内容: 掌握晶体管开关特性测量原理,用如下实验装置图2观察晶体管输入输出波型,读出各参数。 改变外电路偏置,研究电路偏置对开关时间的影响。 图2 七、实验器材(设备、元器件): 双踪示波器、脉冲发生器、直流稳压电源、测试盒、9031NPN 八、实验步骤: 1、按上图2连接仪器,校准仪器。 2、上脉冲,记录输入输出波型及NPN的开关参数。

九、实验数据及结果分析: 测量9103NPN的开关参数即:延迟时间T d、上升时间T r、存储时间T s和下降时间T f。 十、实验结论: 通过测试,可以知道:晶体管的开关时间中存储时间比例最高。 十一、总结及心得体会: 晶体管开关时间是衡量晶体管开关速度特性的重要参数。据了解,晶体管开关作用优点如下:控制大功率、直接工作在整流380V市电上的晶体管功率开关,以及简单和优化的基极驱动造就的高性能。从而可以知道它对数字电路的工作频率和整机性能有直接影响。本实验的使我掌握了晶体管开关时间的物理性质和测量原理方法,理解了双极晶体管开关特性的基本参数。促进了我能够结合课本更加直观地认识晶体管开关作用的相关概念,继而提高了自己对于晶体管的学习兴趣,为将来的学术和工作都打下了良好的的实践基础。 十二、对本实验过程及方法、手段的改进建议: 实验仪器老旧,建议更新。 报告评分: 指导教师签字:

功率晶体管(GTR)的特性

功率晶体管(GTR)的特性 功率晶体管(GTR)具有控制方便、开关时间短、通态压降低、高频特性好、安全工作区宽等优点。但存在二次击穿问题和耐压难以提高的缺点,阻碍它的进一步发展。 —、结构特性 1、结构原理 功率晶体管是双极型大功率器件,又称巨型晶体管或电力勗体管,简称GTR。它从本质上讲仍是晶体管,因而工作原理与一般晶体管相同。但是,由于它主要用在电力电子技术领域,电流容量大,耐压水平高,而且大多工作在开关状态,因此其结构与特性又有许多独特之处。 对GTR的要求主要是有足够的容量、适当的增益、较高的速度和较低的功耗等。由于GTR电流大、功耗大,因此其工作状况出现了新特点、新问题。比如存在基区大注入效应、基区扩展效应和发射极电流集边效应等,使得电流增益下降、特征频率减小,导致局部过热等,为了削弱这种影响,必须在结构上采取适当的措施。目前常用的GTR器件有单管、达林顿管和模块三大系列。 三重扩散台面型NPN结构是单管GTR的典型结构,其结构和符号如图1所示。这种结构的优点是结面积较大,电流分布均匀,易于提高耐压和耗散热量;缺点是电流增益较低,一般约为10~20g。 图1、功率晶体管结构及符号 图2、达林顿GTR结构 (a)NPN-NPN型、(b)PNP-NPNxing 达林顿结构是提高电流增益的一种有效方式。达林顿GTR由两个或多个晶体管复合而成,可以是PNP或NPN型,如图2所示,其中V1为驱动管,可饱和,而V2为输出管,不会饱和。达林顿GTR的电流增益β大大提高,但饱和压降VCES也较高且关断速度较慢。不难推得 IC=ΒIB1.VCES= VCES1+VCES2(其中β≈β1β2) 目前作为大功率开关应用最多的是GTR模块。它是将单个或多个达林顿结构GTR及其辅助元件如稳定电阻、加速二极管及续流二极管等,做在一起构成模块,如图3所示。为便于改善器件的开关过程或并联使用,有些模块的中间基极有引线引出。GTR模块结构紧凑、功能强,因而性能价格比大大提高。

晶体管特征频率的测量

晶体 管特征频率的测量 晶体管特征频率t f 的测量定义为共射极输出交短路电流放大系数||β随频率增加而下降到1 小时的工作频率,它反映了晶体管共发射运用具有电流放大作用的频率极限,是晶体管的一个重要频率特性参数。t f 主要取决于晶体管的合理的结构设计,但也与晶体管工作时的偏置条件密切相关。 因而,晶体管的特征频率t f 是指在一定集团偏置条件下的测量值 。其测试原理通常采用“增益- 带宽”积的方法。 本实验的目的是掌握晶体管特征频率t f 的测试原理及测量方法,熟悉t f 分别随CE V 和E I 变化的规律,加深其与晶体管结构参数各工作偏置条件的理解,为晶体管的频率特性设计,制造和应用奠定基础。 一、实验原理 共发射交流工作下,晶体管发射结电压周期性变化引起发射结,收集结空间电荷区的电荷和其区,发射区,收集区的少子,多子也随之不断重新分布,这种现象可视为势垒电容各扩散电容的充放电作用。势垒电容各扩散电容的充放电使由发射区通过基区传输的载流子减少,传输的电流幅度值下降,同时产生载流子传输的延时,加之载流子渡越收集结空间电荷区时间的影响,使输入,输出信号产生相移,电流放大系数β变为复数,并且其幅值随频率的升高 而下降,相位移也随频率的升高而增大,因此,晶体管共发射极交流短路放大系数β的幅值和相位移是工作频率的函数。 理论上晶体管共发射交流短路放大系数可表示为 β=b b j jm ωωωωβ/1)/ex p(0+- (1) 其幅值和相位角随频率变化的有关系分别为 ||β=2/120 ])/(1[ββf f + (2) ?=]/)/([ββωωωωm arctg +- (3) 可见,当工作频率f <<βf 时,0ββ≈,几乎与频率无关; 当f =βf 时,||β=0β/2, ||β下降3dB ;

(整理)常用晶体管参数表

常用晶体管参数表 索引晶体管型号反压Vbeo 电流Icm 功率Pcm 放大系数特征频率管子类型9011 50V 0.03A 0.4W * 150MHZ NPN 9012 50V 0.5A 0.6W * * PNP 9013 50V 0.5A 0.6W * * NPN 9014 50V 0.1A 0.4W * 150MHZ NPN 9015 50V 0.1A 0.4W * 150MHZ PNP 9018 30V 0.05A 0.4W * 1GHZ NPN 2N2222 60V 0.8A 0.5W 45 * NPN 2N2369 40V 0.5A 0.3W * 800MHZ NPN 2N2907 60V 0.6A 0.4W 200 * NPN 2N3055 100V 15A 115W * * NPN2N 2N3440 450V 1A 1W * * NPN 2N3773 160V 16A 150W * * NPN 2N5401 160V 0.6A 0.6W * 100MHZ PNP 2N5551 160V 0.6A 0.6W * 100MHZ NPN 2N5685 60V 50A 300W * * NPN 2N6277 180V 50A 300W * * NPN 2N6678 650V 15A 175W * * NPN 2SA 2SA1009 350V 2A 15W ** PNP 2SA1012Y 60V 5A 25W ** PNP 2SA1013R 160V 1A 0.9W * * PNP 2SA1015R 50V 0.15A 0.4W * * PNP 2SA1018 150V 0.07A 0.75W * * PNP 2SA1020 50V 2A 0.9W * * PNP 2SA1123 150V 0.05A 0.75W * * PNP 2SA1162 50V 0.15A 0.15W * * PNP 2SA1175H 50V 0.1A 0.3W * * PNP 2SA1216 180V 17A 200W * * PNP 2SA1265 140V 10A 30W ** PNP 2SA1266Y 50V 0.15A 0.4W * * PNP 2SA1295 230V 17A 200W * * PNP 2SA1299 50V 0.5A 0.3W * * PNP 2SA1300 20V 2A 0.7W * * PNP 2SA1301 200V 10A 100W * * PNP 2SA1302 200V 15A 150W * * PNP 2SA1304 150V 1.5A 25W ** PNP 2SA1309A 25V 0.1A 0.3W * * PNP 2SA1358 120V 1A 10W *120MHZ PNP 2SA1390 35V 0.5A 0.3W * * PNP 2SA1444 100V 1.5A 2W * 80MHZ PNP 2SA1494 200V 17A 200W * 20MHZ PNP 2SA1516 180V 12A 130W * 25MHZ PNP

晶体管测试仪

XJ4810型半导体管特性图示仪的使用方法晶体管测试仪的使用方法 晶体管特性图示仪的使用 晶体管测量仪器是以通用电子测量仪器为技术基础,以半导体器件为测量对象的电子仪器。用它可以测试晶体三极管(NPN型和PNP型)的共发射极、共基极电路的输入特性、输出特性;测试各种反向饱和电流和击穿电压,还可以测量场效管、稳压管、二极管、单结晶体管、可控硅等器件的各种参数。下面以XJ4810型晶体特性图示仪为例介绍晶体管图示仪的使用方法。 XJ4810型晶体管特性图示仪面板如图A-23所示: 1. 集电极电源极性按钮,极性可按面板指示选择。 2. 集电极峰值电压保险丝:1.5A。 3. 峰值电压%:峰值电压可在0~10V、0~50V、0~100V、0~500V之连续可调,面板上的标称值是近似值,参考用。 4. 功耗限制电阻:它是串联在被测管的集电极电路中,限制超过功耗,亦可作为被测半导体管集电极的负载电阻。 5. 峰值电压范围:分0~10V/5A、0~50V/1A、0~100V/0.5A、0~500V/0.1A 四挡。当由低挡改换高挡观察半导体管的特性时,须先将峰值电压调到零值,换挡后再按需要的电压逐渐增加,否则容易击穿被测晶体管。

AC挡的设置专为二极管或其他元件的测试提供双向扫描,以便能同时显示器件正反向的特性曲线。 6. 电容平衡:由于集电极电流输出端对地存在各种杂散电容,都将形成电容性电流,因而在电流取样电阻上产生电压降,造成测量误差。为了尽量减小电容性电流,测试前应调节电容平衡,使容性电流减至最小。 7. 辅助电容平衡:是针对集电极变压器次级绕组对地电容的不对称,而再次进行电容平衡调节。 8. 电源开关及辉度调节:旋钮拉出,接通仪器电源,旋转旋钮可以改变示波管光点亮度。 9. 电源指示:接通电源时灯亮。 10. 聚焦旋钮:调节旋钮可使光迹最清晰。 11. 荧光屏幕:示波管屏幕,外有座标刻度片。 12. 辅助聚焦:与聚焦旋钮配合使用。 13. Y轴选择(电流/度)开关:具有22挡四种偏转作用的开关。可以进行集电极电流、基极电压、基极电流和外接的不同转换。 14. 电流/度×0.1倍率指示灯:灯亮时,仪器进入电流/度×0.1倍工作状态。 15. 垂直移位及电流/度倍率开关:调节迹线在垂直方向的移位。旋钮拉出,放大器增益扩大10倍,电流/度各挡IC标值×0.1,同时指示灯14亮. 16. Y轴增益:校正Y轴增益。 17. X轴增益:校正X轴增益。 18.显示开关:分转换、接地、校准三挡,其作用是: ⑴转换:使图像在Ⅰ、Ⅲ象限内相互转换,便于由NPN管转测PNP管时简化测试操作。 ⑵接地:放大器输入接地,表示输入为零的基准点。 ⑶校准:按下校准键,光点在X、Y轴方向移动的距离刚好为10度,以达到10度校正目的。 19. X轴移位:调节光迹在水平方向的移位。 20. X轴选择(电压/度)开关:可以进行集电极电压、基极电流、基极电压和外接四种功能的转换,共17挡。 21. “级/簇”调节:在0~10的范围内可连续调节阶梯信号的级数。

晶体管输入输出特性曲线测试电路实验报告

实验题目:晶体管输入输出特性曲线测试电路的设计 班级: 学号: 姓名: 日期:

一、实验目的 1. 了解测量双极型晶体管输出特性曲线的原理与方法 2. 熟悉脉冲波形的产生和波形变换的原理与方法 3. 熟悉各单元电路的设计方法 二、实验电路图及其说明 晶体管共发射极输出特性曲线如图所示,它是由函数i c=f (v CE)|i B=常数,表示的一簇曲线。它既反映了基极电流i B对集电极电流i C 的控制作用,同时也反映出集电极和发射极之间的电压v CE对集电极电流i C的影响。 如使示波器显示图那样的曲线,则应将集电极电流i C取样,加至示波器的Y轴输入端,将电压v CE加至示波器的X轴输入端。若要显示i B为不同值时的一簇曲线,基极电流应为逐级增加的阶梯波形。通常晶体管的集电极电压是从零开始增加,达到某一数值后又回到零值的扫描波形,本次实验采用锯齿波。 测量晶体管输出特性曲线的一种参考电路框图如图所示。 矩形波震荡电路产生矩形脉冲输出电压v O1。该电路一方面经锯齿波形成电路变换成锯齿波v O2,作为晶体管集电极的扫描电压;另一方面经阶梯波形成电路,通过隔离电阻送至晶体管的基极,作为积极驱动电流i B,波形见图3的第三个图(波形不完整,没有下降)。 电阻R C将集电极电流取样,经电压变换电路转换成与电流i C成正比的对地电压V O3,加至示波器的Y轴输入端,则示波器的屏幕上便会显示出晶体管输出特性曲线。 需要注意,锯齿波的周期与基极阶梯波每一级的时间要完全同步(用同一矩形脉冲

产生的锯齿波和阶梯波可以很好的满足这个条件)。阶梯波有多少级就会显示出多少条输出特性曲线。另外,每一整幅图形的显示频率不能太低,否则波形会闪烁。 选作:晶体管特性曲线数目可调: 主要设计指标和要求: 1、矩形波电压(V O1)的频率f大于500Hz,误差为±10Hz,占空比为4%~6%,电压幅度 峰峰值大约为20V。 2、晶体管基极阶梯波V O3的起始值为0,级数为10级,每极电压0.5V~1V。 3、晶体管集电极扫描电压V O2的起始电压为0V,幅度大约为10V。 三、预习 理论计算:电路设计与仿真: 1.矩形波电路:仿真图如下:

常用场效应管和晶体管参数大全

常用场效应管和晶体管参数大全 常用场效应管和晶体管参数大全 IRFU020 50V 15A 42W * * NMOS场效应IRFPG42 1000V 4A 150W * * NMOS场效应IRFPF40 900V 4.7A 150W * * NMOS场效应IRFP9240 200V 12A 150W * * PMOS场效应IRFP9140 100V 19A 150W * * PMOS场效应IRFP460 500V 20A 250W * * NMOS场效应IRFP450 500V 14A 180W * * NMOS场效应IRFP440 500V 8A 150W * * NMOS场效应IRFP353 350V 14A 180W * * NMOS场效应IRFP350 400V 16A 180W * * NMOS场效应IRFP340 400V 10A 150W * * NMOS场效应IRFP250 200V 33A 180W * * NMOS场效应IRFP240 200V 19A 150W * * NMOS场效应IRFP150 100V 40A 180W * * NMOS场效应IRFP140 100V 30A 150W * * NMOS场效应IRFP054 60V 65A 180W * * NMOS场效应IRFI744 400V 4A 32W * * NMOS场效应IRFI730 400V 4A 32W * * NMOS场效应IRFD9120 100V 1A 1W * * NMOS场效应IRFD123 80V 1.1A 1W * * NMOS场效应IRFD120 100V 1.3A 1W * * NMOS场效应IRFD113 60V 0.8A 1W * * NMOS场效应IRFBE30 800V 2.8A 75W * * NMOS场效应IRFBC40 600V 6.2A 125W * * NMOS场效应IRFBC30 600V 3.6A 74W * * NMOS场效应IRFBC20 600V 2.5A 50W * * NMOS场效应IRFS9630 200V 6.5A 75W * * PMOS场效应IRF9630 200V 6.5A 75W * * PMOS场效应IRF9610 200V 1A 20W * * PMOS场效应IRF9541 60V 19A 125W * * PMOS场效应IRF9531 60V 12A 75W * * PMOS场效应IRF9530 100V 12A 75W * * PMOS场效应IRF840 500V 8A 125W * * NMOS场效应IRF830 500V 4.5A 75W * * NMOS场效应IRF740 400V 10A 125W * * NMOS场效应IRF730 400V 5.5A 75W * * NMOS场效应IRF720 400V 3.3A 50W * * NMOS场效应IRF640 200V 18A 125W * * NMOS场效应IRF630 200V 9A 75W * * NMOS场效应IRF610 200V 3.3A 43W * * NMOS场效应IRF541 80V 28A 150W * * NMOS场效应

实验二.晶体管特性分析与研究

实验二晶体三极管放大电路特性分析和研究 一、实验目的: 1.熟悉仿真软件Multisim的使用,掌握基于软件的电路设计和仿真分析方法; 2.熟悉仿真软件Multisim的直流工作点分析、交流分析、温度扫描和参数扫描分析方法;3.熟悉便携式虚拟仿真实验平台,掌握基本功能的使用方法; 4.通过软件仿真,了解晶体三极管输入特性和输出特性; 5.通过软件仿真和硬件实验验证,观测晶体三极管放大电路输出波形与静态工作点的关系,理解静态工作点在晶体管放大电路中的作用,加深对截止失真和饱和失真的认识; 6、通过软件仿真和硬件实验验证,掌握晶体三极管静态工作点分析和设计方法; 7、信号源内阻对放大器性能的影响。 8、掌握放大器电压放大倍数、输入电阻、输出电阻、频率特性的测试方法。 9、熟悉常用电子仪器的使用。 二、实验预习: 复习有关单级放大电路的内容,熟悉基本原理、性能参数及各元件作用。根据图2.1所示的电路,双极型晶体管2N3904的β≈120,V BE(on)=0.7V。计算Q1的各极直流电流、直流电压和该单级放大器的电压增益A v。设电位器调整到25%。填入表2.1计算栏。 图2.1 晶体三极管静态工作点分析电路 表2.1 晶体三极管2N3904静态工作点(R=20K?) 便携式虚拟仿真实验平台(PocketLab、元器件)、+5V直流稳压电源、数字万用表、信号发生器DF1642C、交流毫伏表DF2710B、双踪数字示波器CS-4125A。

四、实验内容: (一)仿真实验 1.根据图2.2(a)所示电路,在Multisim中进行仿真分析,得到晶体管的输出伏安特性。 图2.2 二极管伏安特性实验电路 (a) IV分析仪与三极管的连接;(b) 用IV分析仪测得的三极管输出伏安特性曲线 仿真任务:二极管选取型号2N3904,用IV分析仪对晶体管的伏安特性进行测量。 仿真设置:根据图2.2(b)所示,点击Sim_Param设置电压扫描范围和电流范围,三极管V_ce 两端电压范围为0~6V,步进50 mV,I_b电流范围为10μA~10 μA,共10步,如图2.3所示。然后运行Run,可得图2.2(b)。点击鼠标右键,弹出菜单,选择select trace ID,弹出如图2.4所示下拉菜单,选择所要的I_b,然后移动测量线,便可读出V_ce值和I_c值,填入表2.2中。根据测得值计算电流放大倍数,填入表中。 图2.3 模拟参数设置 图2.4 select trace ID界面 表2.2 不同基极电流下的集电极电流和放大倍数

晶体管特性曲线测试电路

近代电子学实验之晶体管特性曲线测试电路

2、锯齿波:幅度0—10V连线可调,输出极性可变。 3、阶梯波:3—10阶连线可调。 4、电压—电流变换器:0.001<=I1<=0.2(mA),输出电流方向可变(每阶0.001<=Ib<=0.02(mA))。 实验设计的基本原理: 三极管特性曲线测量电路的基本原理: 晶体三极管为电流控制器件,他们特性曲线的每一根表示当Ib一定时Vc与Ic的关系曲线,一簇表示不同Ib时Vc与Ic的关系曲线的不同关系曲线,就称为单晶体三极管的输出特性曲线,所以在晶体三极管的基级加上阶梯电流源表示不同 Ib。在每级阶梯内测量集射极电压 Vc和集电极定值负载电阻上的电压 Vr,通过电压变换电路将 Vr换算成集电极电流 Ic, 以 Ic作为纵轴, Vc 为横轴, 在数字示波器上即可显示一条晶体管输出特性曲线。示波器的地线与测量电路地不可相通。即测量电路的稳压电源不能接大地。(因为示波器外壳已接大地) 晶体三极管特性曲线测量电路原理框图如下: 框图 在本测量电路中,两种波形的准确性直接影响到了输出曲线的好坏。故在实验中需准确调整主要电阻电容的参数。

电阻R10右边输出的波形就是脉冲方波,之后经过U6积分后,在U6的6脚即可输出锯齿波。 电路中,R5和C1的参数会直接影响到输出锯齿波的波形好坏,所以应注意参数。 2、阶梯波产生部分电路 产生阶梯波的原理: 阶梯波电路如下, 十进制同步计数器 (异步清零 ) 74ls161构成八进制计数器, 将比较器 U1 输出矩形波接至其脉冲端作为触发信号,进行计数。八进制计数器四位输出经过八位 DAC0832进行转换成八级阶梯波电压信号, 再经过放大电路进行放大。 电路中的与非门用于调节阶梯波的阶数,从而实现输出特性曲线中的曲线条数可调。由于74ls161的输出Q0—Q3是四个数的组合,对于该电路使用二输入端与非门作为闸门控制,那么可以得到3—10阶之间的任意数字的阶梯。譬如:Q1、Q0组合,分别接入与非门的两端,那么就可以得到3阶的阶梯波;若Q2、Q3组合,分别接到与非门的两端,即可得到10阶的阶梯波。 该阶梯波是下降的阶梯波,对于实验的结果是不会影响的。 电路图如下:

最新常用晶体管参数查询

常用晶体管参数查询

常用晶体管参数查询 Daten ohne Gewahr 2N109 GE-P 35V 0.15A 0.165W | 2N1304 GE-N 25V 0.3A 0.15W 10MHz 2N1305 GE-P 30V 0.3A 0.15W 5MHz | 2N1307 GE-P 30V 0.3A 0.15W B>60 2N1613 SI-N 75V 1A 0.8W 60MHz | 2N1711 SI-N 75V 1A 0.8W 70MHz 2N1893 SI-N 120V 0.5A 0.8W | 2N2102 SI-N 120V 1A 1W <120MHz 2N2148 GE-P 60V 5A 12.5W | 2N2165 SI-P 30V 50mA 0.15W 18MHz 2N2166 SI-P 15V 50mA 0.15W 10MHz | 2N2219A SI-N 40V 0.8A 0.8W 250MHz 2N2222A SI-N 40V 0.8A 0.5W 300MHz | 2N2223 2xSI-N 100V 0.5A 0.6W >50 2N2223A 2xSI-N 100V 0.5A 0.6W >50 | 2N2243A SI-N 120V 1A 0.8W 50MHz 2N2369A SI-N 40V 0.2A .36W 12/18ns | 2N2857 SI-N 30V 40mA 0.2W >1GHz 2N2894 SI-P 12V 0.2A 1.2W 60/90ns | 2N2905A SI-P 60V 0.6A 0.6W 45/100 2N2906A SI-P 60V 0.6A 0.4W 45/100 | 2N2907A SI-P 60V 0.6A 0.4W 45/100 2N2917 SI-N 45V 0.03A >60Mz | 2N2926 SI-N 25V 0.1A 0.2W 300MHz 2N2955 GE-P 40V 0.1A 0.15W 200MHz | 2N3019 SI-N 140V 1A 0.8W 100MHz 2N3053 SI-N 60V 0.7A 5W 100MHz | 2N3054 SI-N 90V 4A 25W 3MHz 2N3055 SI-N 100V 15A 115W 800kHz | 2N3055 SI-N 100V 15A 115W 800kHz 2N3055H SI-N 100V 15A 115W 800kHz | 2N3251 SI-P 50V 0.2A 0.36W 2N3375 SI-N 40V 0.5A 11.6W 500MHz | 2N3439 SI-N 450V 1A 10W 15MHz 2N3440 SI-N 300V 1A 10W 15MHz | 2N3441 SI-N 160V 3A 25W POWER

晶体管的输入输出特性曲线详解.

晶体管的输入输出特性曲线详解 届别 系别 专业 班级 姓名 指导老师 二零一二年十月

晶体管的输入输出特性曲线详解 学生姓名:指导老师: 摘要:晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。 根据晶体管的结构进行分类,晶体管可以分为:NPN型晶体管和PNP 型晶体管。依据晶体管两个PN结的偏置情况,晶体管的工作状态有放大、饱和、截止和倒置四种。晶体管的性能可以有三个电极之间的电压和电流关系来反映,通常称为伏安特性。 生产厂家还给出了各种管子型号的参数也能表示晶体管的性能。利用晶体管制成的放大电路的可以是把微弱的信号放大到负载所需的数值 晶体管是一种半导体器件,放大器或电控开关常用。晶体管是规范操作电脑,手机,和所有其他现代电子电路的基本构建块。由于其响应速度快,准确性,晶体管可用于各种各样的数字和模拟功能,包括放大,开关,稳压,信号调制和振荡器。晶体管可独立包装或在一个非常小的的区域,可容纳一亿或更多的晶体管集成电路的一部分。

关键字:晶体管、输入输出曲线、放大电路的静态分析和动态分析。 【Keywords】The transistor, the input/output curve, amplifying circuit static analysis and dynamic analysis. 一、晶体管的基本结构 晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种,如图 1-1(a)、(b)所示。从三个区引出相应的电极,发射极,基极,集电极,各用“E”(或“e”)、“B”(或“b”)、“C”(或“c”)表示。 发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。发射极箭头向外。发射极箭头指向也是PN结在正向电压下的导通方向。硅晶体三极管和锗晶体三极管都有PNP型和NPN型两种类型。当前国内生产的锗管多为PNP型(3A 系列),硅管多为NPN型(3D系列)。

实验二场效应晶体管(FET)特性参数测量

实验二、场效应晶体管(FET)特性参数测量 一、实验设备 (1)半导体管特性图示仪(XJ4810A 型),(2)BJT 晶体管(S9014、S8050、S8550),(3)二极管(1N4001) 二、实验目的 1、熟悉BJT 晶体管特性参数测试原理; 2、掌握使用半导体管特性图示仪测量BJT 晶体管特性参数的方法; 3、学会利用手册的特性参数计算BJT 晶体管的混合π型EM1 模型参数的方法。 三、MOS 晶体管特性参数的测量原理 1、实验仪器 实验仪器为场效应管参数测试仪(BJ2922B),与测量双极晶体管直流参数相似,但由于所检测的场效应管是电压控制器件,测量中须将输入的基极电流改换为基极电压,这可将基极阶梯选择选用电压档(伏/级);也可选用电流档(毫安/级),但选用电流档必须在测试台的B-E 间外接一个电阻,将输入电流转换成输入电压。 测量时将场效应管的管脚与双极管脚一一对应,即 G(栅极) B(基极); S(源极) E(发射极); D(漏极) C(集电极)。 值得注意的是,测量MOS管时,若没有外接电阻,必须避免阶梯选择直接采用电流档,以防止损坏管子。另外,由于场效应管输入阻抗很高,在栅极上感应出来的电荷很难通过输入电阻泄漏掉,电荷积累会造成电位升高。尤其在极间电容较小的情况下,常常在测试中造成MOS管感应击穿,使管子损坏或指标下降。因而在检测MOS管时,应尽量避免栅极悬空,且源极接地要良好,交流电源插头也最好采用三眼插头,并将地线(E接线柱)与机壳相通。存放时,要将管子三个电极引线短接。 2、参数定义 (1)、输出特性曲线与转移特性曲线 输出特性曲线(IDS-VDS)即漏极特性曲线,它与双极管的输出特性曲线相似,如图2-1所示。在曲线中,工作区可分为三部分: I 是可调电阻区(或称非饱和区);Ⅱ是饱和区;Ⅲ是击穿区。 转移特性曲线为IDS-VDS之间的关系曲线,它反映了场效应管栅极的控制能力。由于结型场效应晶体管都属于耗尽型,且栅源之间相当于一个二极管,所以当栅压正偏(VGS>0)并大于 0.5V时,转移特性曲线开始弯曲,如图2-2中正向区域虚线所示。这是由于栅极正偏引起栅电流使输入电阻下降。这时如果外电路无保护措施,易将被测管烧毁,而MOS场效应管因其栅极有SiO2绝缘层,所以即使栅极正偏也不引起栅电流,曲线仍向上升。(2)、跨导(gm) 跨导是漏源电压一定时,栅压微分增量与由此而产生的漏电流微分增量之比。 跨导表征栅电压对漏电流的控制能力,是衡量场效应管放大作用的重要参数,类似于双极管的电流放大系数,测量方法也很相似。 跨导常以栅压变化1V时漏电流变化多少微安或毫安表示。它的单位是西门子,用S表示,1S=1A/V。或用欧姆的倒数“姆欧”表示,记作“ -1 ”。 (3)、夹断电压VP和开启电压VT 夹断电压VP是对耗尽型管而言,它表示在一定漏源电压VDS下,漏极电流减小到接近于零(或等于某一规定数值,如50μA)时的栅源电压。 开启电压VT是对增强型管而言。它表示在一定漏源电压VDS下,开始有漏电流时对应的栅

相关主题
文本预览
相关文档 最新文档