当前位置:文档之家› 桥梁颤振导数的耦合强迫振动仿真识别

桥梁颤振导数的耦合强迫振动仿真识别

桥梁颤振导数的耦合强迫振动仿真识别
桥梁颤振导数的耦合强迫振动仿真识别

桥梁专业设计技术规定 第八章 桥梁震动及抗震

8 桥梁振动及抗震 8.1结构抗震体系 8.1.1结构应具有合理的地震作用传力途径和明确的计算简图。结构除了具有必要的承载能力以外,还应具有良好的变形能力和耗能能力,以保证结构的延性性能。 8.1.2结构的质量和刚度应均匀分布,避免因质量和刚度突变而造成地震时结构各部分相对变形过大。对于质量和刚度变化较大的部位,应采取有效措施予以加强。 8.1.3结构基础应建造在坚硬的地基上,尽可能避开活断层及地质条件不好的地基。当结构必须建造在软土地基或可能液化的地基上时,应对地基进行处理。 8.1.4上部结构应尽量采取连续的形式。当上部结构与下部结构之间的支座允许上部结构平动时,必须保证支承面宽度并采取相应的限位措施,防止落梁的发生。 8.1.5确定墩柱的截面尺寸时应避免墩柱的轴压比(墩柱所承受的轴向压力与抗压极限承载力之比)过大,以保证墩柱截面的延性性能。 8.1.6对于多跨连续结构,各中墩柱的截面尺寸和高度应使各柱的纵桥向刚度和横桥向刚度基本相同。跨径相差较大时,应考虑上部结构质量对横桥向频率的影响。对于地面高差较大的地形,可通过下挖地面来调整墩柱的高度。 8.1.7对于大跨度桥梁,应结合桥位处的地质条件和地震动特性等具体情况,对各种结构体系进行分析研究,选择抗震性能较好的结构体系。 8.2地震反应计算 8.2.1工程设计项目应按《地震安全性评价管理条例》(国务院令第323号)及各地方相应管理办法,要求业主对相应区域进行地震危险性分析,

并根据地震危险性分析进行结构的地震反应计算。在桥梁建设中尽量避开具有危险性的活动地震断层。活动性地震断层附近桥梁的地震反应计算要特别注意地面位移对结构的影响。按“条例”不需进行地震安全性评价的一般性工程,应按照《中国地震动参数区划图》(GB18306-xx)规定的设防要求进行抗震设防。 8.2.2应根据工程的重要性等级、场地的地质条件和地震烈度、结构的自振特性等情况,按照规范用反应谱方法进行结构的地震反应计算。对于大跨度桥梁,还应进行时程反应分析,并考虑地震动的空间不均匀性。 8.2.3对于地震作用的计算,应按公路桥梁相关规范执行,城市桥梁应根据道路等级和桥梁的重要性,按表8.1进行重要性系数修正。 表8.1 城市桥梁重要性修正系数Ci 考虑地震引起的位移,避免结构因位移过大而导致非强度破坏。 8.2.5对大跨度桥梁进行地震反应计算时,由于高阶振型的影响较大,必须计算足够多的振型。 8.2.6采用减震措施设计时,应结合具体桥型进行动力时程分析。 8.3构件抗震设计和抗震构造措施 8.3.1 应搜集桥位处地震基本烈度、地质构造、地震活动情况、工程地质及水文地质条件,并根据地震基本烈度及桥梁重要性等级采取相应的

桥梁共振和预防

列车-桥梁共振研究的现状与发展趋势及预防共振的措施 列车通过桥梁时将引起桥梁结构的振动,而桥梁的振动又反过来影响车辆的振动,这种相互作用、相互影响的问题就是车辆与桥梁之间振动耦合的问题。人类自1825年建成第一条铁路以来,便开始了对列车与桥梁相互作用研究探索的漫长历史过程。1849年Willis提交了第一份关于桥梁振动研究的报告,探讨了Chester铁路桥梁塌毁的原因。在随后的近100年时间内,由于当时力学水平、计算技术、方法及手段的落后,研究中通常将车辆、桥梁简单地看作两个独立的模型,在这种模型里,机车车辆被简化成单个或多个集中力,或者将其各种动力因素简化为简谐力,而桥梁被处理成均布等截面梁,采用级数展开的方法进行近似的求解,这些方法基本上只能算是解析或半解析法。 20 世纪60、70年代以来,电子计算机的出现以及有限元技术的发展,使得车桥耦合振动研究有了飞速的发展,从车桥系统的力学模型、激励源的模拟到研究方法和计算手段等都有了质的飞跃,人们可以建立比较真实的车辆和桥梁计算模型,然后用数值模拟法计算车辆和桥梁系统的耦合振动响应,美国、日本、欧洲和国内诸多学者为车桥耦合振动理论的发展做出了重要贡献,在车辆模型、桥梁模型以及车桥系统耦合振动方面取得了不少成就。 本文就车桥耦合振动的研究思路、车辆分析模型、桥梁分析模型、轮轨接触关系、激励源、数值计算方法6个方面,较系统地阐述了列车~桥梁耦合振动研究的现状与进展,总结在上述6个方面已取得的一些研究成果和结论,同时,指出目前研究工作中存在的尚待进一步完善的问题,就如何进一步开展上述领域的研究作了初步探讨。 1 车桥耦合振动研究的现状 20 世纪60、70年代,西欧和日本开始修建高速铁路,对桥梁动力分析提出了更高的要求;同时,电子计算机的出现以及有限元技术的发展,使得车桥振动研究具备了强有力的分析手段,这极大地促进了车桥耦合振动研究的向前发展。 日本在修建本四联络线时,对车桥动力响应做了大量的理论研究、试验研究和现场测试工作。通过分析轮轨横向力、轮重减载率、脱轨系数和车体加速度来

悬索桥的风致振动及控制方法的探讨

悬索桥的风致振动及控制方法的探讨 刘琳娜,何杰,王志春 武汉理工大学,道路桥梁与结构工程湖北省重点实验室,湖北武汉(430070) 摘要:风对悬索桥的作用是十分复杂的现象,随着桥梁结构的大跨度发展,桥梁对风作用反应的敏感和复杂逐渐成为设计的控制因素。本文章就悬索桥的三个重要组成部分——梁体,主塔以及缆索各自的风致振动研究现状和控制方法进行了分析介绍,同时探讨了悬索桥应该进一步研究的风致振动方面的问题。 关键词:悬索桥,风致振动,振动形式,控制方法 1. 引言 悬索桥以其受力性能好、跨越能力大、轻型美观,抗震能力好,而成为跨越江河、海峡港湾等交通障碍的首选桥型。由于桥梁是裸露于地球表面大气边界层内的建筑物,不可避免的会受到风的作用。而且随着桥梁理论的不断完善和施工技术的不断提高,桥梁结构型式向轻型化、长大化发展[1],这就使风对桥梁的作用更加明显。风荷载逐渐成为悬索桥设计的主要控制荷载。然而,桥梁界对风对桥梁的作用的认识是在惨痛的历史教训中总结发展的。据不完全统计,18世纪以来,世界上至少有11座悬索桥由于风的作用而毁坏[2]。直到1940年秋,美国华盛顿州建成才4个月的Tacoma吊桥在不到20 m/s 的8级大风作用下发生破坏才引起了国际桥梁工程界和空气动力界的极大关切。 目前,世界上已修建的最大跨度的悬索桥为日本的明石海峡大桥,其主跨跨度已达到1990m,而一些跨度更大的特大跨悬索桥,如Messina海峡大桥、Gilbralter海峡大桥也己先后提上议事日程。随着我国经济的迅速发展,桥梁建设事业也得到了飞速发展,我国也己成功修建了汕头海湾大桥、广东虎门大桥、西陵长江大桥和江阴长江大桥等多座悬索桥,尤其江阴长江大桥跨度达到1385米,进入世界前列;目前还有多座大跨悬索桥在规划中,如珠江口伶仃洋跨海工程、杭州舟山大桥等。因此,二十一世纪中国的桥梁事业将有更崭新的发展。 随着悬索桥跨度的增加,结构刚度和阻尼显著下降,因此对风的作用更为敏感,从而抗风设计已逐渐成为大跨悬索桥设计中的控制因素。而对于悬索桥风致振动及其控制方法的研究也显的越来越重要了。悬索桥的风致振动在其结构上主要表现为梁体、主塔、缆索等三个构件的振动,因此本文从这三个构件的风致振动机理的研究入手,借以探讨对悬索桥各个构件的控制方法。 2. 梁体的风致振动和控制方法 由于悬索桥轻柔、大跨的性质,梁体的振动机理是最受关注的,一般来说,其主要风致振动形式有两种——对桥梁具有摧毁作用的颤振和最常见的抖振。 2.1 颤振 颤振是一种危险性的自激发散振动。对于近流线型的扁平断面可能发生类似机翼的弯扭耦合颤振。对于非流线型断面则容易发生分离流的扭转颤振[3]。上述两种颤振分析理论可以较好地解决悬索桥的颤振问题。 对桥梁结构进行颤振分析可首推Bleich,他于1948年首次将以Theodorson函数为基础

韩学良的桥梁结构与技术

桥梁工程与技术 08房建1班韩学良 200810701038 1、桥梁结构工程的分类 按结构分类,按结构体系分类是以桥梁结构的力学特征为基本着眼点,对桥梁进行分类,以利于把握各种桥梁的基本特点,也是桥梁工程学习的重点之一。以主要的受力构件为基本依据,可分为梁式桥、拱式桥、刚架桥、斜拉桥、悬索桥五大类。 1.1、梁式桥 主梁为主要承重构件,受力特点为主梁受弯。主要材料为钢筋混凝土、预应力混凝土,多用于中小跨径桥梁。简支梁桥合理最大跨径约20米,悬臂梁桥与连续梁桥合宜的最大跨径约60-70米。优点:采用钢筋砼建造的梁桥能就地取材、工业化施工、耐久性好、适应性强、整体性好且美观;这种桥型在设计理论及施工技术上都发展得比较成熟。缺点:结构本身的自重大,约占全部设计荷载的30%至60%,且跨度越大其自重所占的比值更显著增大,大大限制了其跨越能力。 1.2、拱式桥 拱肋为主要承重构件,受力特点为拱肋承压、支承处有水平推力。主要材料是圬工、钢筋砼,适用范围视材料而定。跨径从几十米到三百多米都有,目前我国最大跨径钢筋砼拱桥为170米。优点:跨越能力较大;与钢桥及钢筋砼梁桥相比,可以节省大量钢材和水泥;能耐久,且养护、维修费用少;外型美观;构造较简单,有利于广泛采用。缺点:由于它是一种推力结构,对地基要求较高;对多孔连续拱桥,为防止一孔破坏而影响全桥,要采取特殊措施或设置单向推力墩以承受不平衡的推力,增加了工程造价;在平原区修拱桥,由于建筑高度较大,使两头的接线工程和桥面纵坡量增大,对行车极为不利。 1.3、钢架桥 钢架桥是一种桥跨结构和吨台结构整体相连的桥梁,支柱与主梁共同受力,受力特点为支柱与主梁刚性连接,在主梁端部产生负弯矩,减少了跨中截面正弯矩,而支座不仅提供竖向力还承受弯矩。主要材料为钢筋砼,适宜于中小跨度,常用于需要较大的桥下净空和建筑高度受到限制的情况,如立交桥、高架桥等。优点:外形尺寸小,桥下净空大,桥下视野开阔,混凝土用量少。缺点:基础造价较高,钢筋的用量较大,且为超静定结构,会产生次内力。 1.4、斜拉桥 梁、索、塔为主要承重构件,利用索塔上伸出的若干斜拉索在梁跨内增加了弹性支承,减小了梁内弯矩而增大了跨径。受力特点为外荷载从梁传递到索,再到索塔。主要材料为预应力钢索、混凝土、钢材。适宜于中等或大型桥梁。优点:梁体尺寸较小,使桥梁的跨越能力增大;受桥下净空和桥面标高的限制小;抗风稳定性优于悬索桥,且不需要集中锚锭构造;便于无支架施工。缺点:由于是多次超静定结构,计算复杂;索与梁或塔的连接构造比较复杂;施工中高空作业较多,且技术要求严格。 1.5、悬索桥 主缆为主要承重构件,受力特点为外荷载从梁经过系杆传递到主缆,再到两端锚锭。主要材料为预应力钢索、混凝土、钢材,适宜于大型及超大型桥梁。优点:由于主缆采用高强钢材,受力均匀,具有很大的跨越能力。缺点:整体钢度小,抗风稳定性不佳;需要极大的两端锚锭,费用高,难度大。

桥梁结构涡激振动实例及减振措施比较研究

桥梁结构涡激振动实例及减振措施比较研究 摘要:针对设计中不被重视的涡激共振问题,讨论了桥梁结构涡激振动及其响应分析的复杂性,介绍了几座国外大跨度桥梁结构的涡激振动问题,并比较分析了这些桥梁结构所采用的不同减振措施方案,推荐设计阶段首先选择气动控制措施来抑制桥梁涡激振动,而已建成的桥梁发生涡振病害则更适宜选用机械减振措施。abstract: in view of the ignored problem of vortex-induced resonance in design, this article analyzes vortex-induced vibration of bridge structure and the complexity of response analysis. the vortex-induced vibration problem of some foreign large span bridge structures is introduced and different vibration reducing measures of these bridges are analyzed and compared. it is recommended that pneumatic control measures be firstly used to control the vortex-induced vibration of bridges in design phase, while for vortex-induced vibration of built-up bridges, mechanical vibration reduction measures are more appropriate. 关键词:桥梁;涡激振动;振动控制;气动措施 key words: bridge;vortex-induced vibration;vibration control;pneumatic measures 中图分类号:u441 文献标识码:a 文章编号:1006-4311(2013)24-0100-03

公路桥梁车桥耦合振动研究

公路桥梁车桥耦合振动研究 【摘要】近年来,我国路桥工程建设为交通行驶创造了优越的环境,推动了地区之间的经济文化交流,促进了国民经济收入水平的提高。与发达国家相比,国内路桥施工技术相对落后,对动力学理论研究不足误导了后期作业秩序,限制了路桥结构性能的充分发挥。“车桥耦合振动”现象是路桥交通的常见现象,若控制不当则会影响路桥的使用寿命及运行状态。针对这一点,本文分析了影响车桥耦合振动的相关因素,并通过计算机建立自动分析平台,为路桥交通的正常运行提供了帮助。 【关键词】路桥;耦合振动;成因;处理对策 耦合振动是动力学理论中研究的重点,对不同物体在不同状态下的受力情况进行了详细地分析。车桥耦合振动是由于车辆与路桥结构之间产生相互的力作用,两种受力荷载大小相同时易产生车桥耦合振动现象,约束了路桥结构性能的正常发挥,不利于交通行驶的安全运行。工程单位在维护路桥工程阶段,应加强车桥耦合振动的分析,结合具体原因制定有效的控制对策。 一、车桥耦合振动研究的现状 从本质上看,车桥耦合振动是一种相互性的力学作用,力学作用控制不当会限制路桥性能的发挥。车辆过桥时会引起桥梁的振动,桥梁的振动反过来也会影响车辆的振动,即形成车桥耦合振动问题。当前,我国公路交通运输的全面提速,为了有效的对既有桥梁运营状态进行评估,以及对新建、改建桥梁进行优化设计,均需对车辆过桥时的车桥耦合振动问题进行分析[1]。随着公路交通事业的迅速发展,车辆与桥梁结构的动力相互作用越来越受到重视。车辆和桥梁间力学作用形式多样,会呈现出不同的动力特点,如:车辆的动力特性,车型、阻尼、自振频率等;桥梁结构的动力特性,质量与刚度分布、桥跨结构形式、材料阻尼等;桥头引道和桥面的平整状态、伸缩缝装置及桥头沉陷的状况。而计算机仿真模拟是目前最方便、最快捷、最经济的计算分析方法。 二、计算机力学模型研究的优点 从长远角度考虑,选择一种通用性强、应用性广、开发前景广阔的研究模式,分析车桥耦合振动响应具有多方面的意义。由于车桥耦合振动属于力学理论研究的范畴,其在分析时必须要结合力学模型,以保证研究结果的准确性。计算机操作系统在数据处理方面具有明显的优势,通过计算机平台建立力学模型,帮助研究者更加深入地分析耦合振动情况。数据库是计算机中存储信息的主要区域,为了保证车桥振动时力学数据得到准确地计算,应利用数据挖掘功能进一步分析力学模型,以获得与耦合振动相关的力学参数。从实际操作情况看,数据挖掘的优越性表现:一是高效性,由于采用了计算机操作平台,调用数据库资源显得更加便捷,数据挖掘有助于数据操作效率的提升;二是时效性,与传统观数据处理模式相比,数据挖掘采用了自动化处理平台,短时间内可完成数据信息的检查审核工作[2]。数据挖掘具备了这些优势,为其在车桥耦合振动中的运用创造了有利

第四章 桥梁振动试验

第四章桥梁振动试验 4.1概述 振动是设计承受动荷载的工程结构必须研究的问题,桥梁不仅要研究由车辆移动荷载引起的振动,还要研究桥梁结构本身的抗震、抗风性能和能力。 随着结构计算、施工技术和建筑材料等方面科技水平的不断进步,桥梁的跨度越来越大,因此对桥梁振动性能的研究分析提出了更高的要求。桥梁振动试验可以求的基本问题可以归类为三种:桥梁振源、桥梁自振特性和结构动力反应。 桥梁振源的测定一般包括对能引起桥梁振动的风、地震和车辆振动等振动荷载的测定。 桥梁自振特性是桥梁结构的固有特性,也是桥梁振动试验中最基本的测试内容。 车辆、风和地震等外荷载作用下桥梁结构动力反应的测定是评价桥梁结构动力性能的基本内容之一。 传统的结构动力学方法,根据力学原理建立结构的数学模型,然后由已知振源(输入力或运动)去求所需要的动态响应。这种方法至少有两方面的问题难以完善:一是阻尼系数只能凭假定设置;其次是计算图式和设计图式与实际结构之间的差异。 振动试验已经发展起来的参数识别与模态分析技术,是改善理论计算不足的有力手段。它的基本做法是,利用已知(或未知)输入力对结构激振,用仪器测得结构的输出响应,然后通过输入、输出的关系(或仅输出)求取结构的数学模型,使更接近于结构的实际情况。 振动试验作为一门独立的工程振动学科,解决了许多理论计算上无法解决的实际问题,我国从1976年唐山地震后滦河大桥的抗震试验开始,各高校、科研单位先后对许多实桥和模型桥做过振动试验,特别是近年来对新建的一些大跨度桥梁进行施工阶段和运营阶段的振动试验,许多实测数据已直接为桥梁结构的振动分析、抗震抗风研究所利用。 4.2桥梁自振特性参数测定 测定桥梁自振特性参数是桥梁振动试验的基本内容,要研究桥梁结构的抗震、抗风或抗其它动荷载的性能和能力必须了解桥梁结构的自振特性。 自振特性参数,也称动力特性参数和振动模态参数,主要包括结构的自振频率(自振周期)、阻尼比和振型等,是由结构形式、材料性能等结构固有的特性决定,与外荷载无关。 4.2.1自振特性参数 1.自振频率和自振周期 自振频率是自振特性参数中最重要的概念,物理上指单位时间内完成振动的次数,通常用f表示,单位为赫兹(Hz),也可以用圆频率ω(ω =2πf)表示,单位为1/秒(1/s)。 自振周期(T)指物体振动波形重复出现的最小时间,单位为秒(s),它和自振频率互成倒数关系T=1/f。

车辆耦合振动

车辆耦合振动课程报告 2016年3月 随着我国经济的飞速发展,大跨度桥梁越来越多,由于柔度很大,所以在风和上面的车辆作用下,会产生较大的变形和振动会对

上面的行人以及桥梁产生较大的危险。因而对风 - 车 - 桥耦合振动的研究也越来越重要。在此简要介绍国内和国外风 - 车 - 桥耦合振动发展的概况 1 国内风车桥耦合振动研究概况 我国学者以结构动力学为基础,分析了连续梁桥结构在汽车荷载作用下的动态性能,并运用计算机模拟、讨论了不同车速、车型情况下的桥梁动态响应变化,以此分析出影响结构动态性能的主要因素。为简化分析的过程,在他们的研究中将桥梁简化为线性系统,略去了桥面和横梁的约束,在计算中采用设计中常用的截面换算法,将钢筋换算成混凝土,同时将截面折算成等面积的矩形,且仅考虑梁的弯曲振动,而不计梁的转动惯量和剪切变形的效应[4]。2005 年,王解军等采用 2 轴车辆分析模型与梁单元,建立了适应于大跨桥梁车辆振动计算的车桥耦合单元模型,基于功率谱密度函数生成随机路面粗糙度,分析阻尼对行车荷载作用下桥梁振动性能的影响。 北方交通大学等研究了考虑车 - 桥 - 基础相互作用系统的结构动力可靠性问题桥梁结构在多种随机荷载作用下车桥系统动力可靠性问题、脉动风与列车荷载同时作用下桥梁的动力响应问题,分析了地震荷载对桥上列车运行平稳性的影响得到了许多有价值的结论。

2 国外风车桥耦合振动研究概况 20 世纪 60;70 年代西欧和日本开始修建高速铁路对桥梁动力分析提出了更高的要求同时电子计算机的出以及有限元技术的发展使得车桥振动研究具备了强有力的分析手段这极大地促进了车桥耦合振动研究的向前发展。美国伊利诺理工学院的 K.H.Chu 等人最早采用复杂的车辆模型来分析铁路车桥系统的振动响应问题即将机车车辆简化为由车体、前后转向架、各轮对等部件组成各部件看成刚体在空间具有 6 个自由度之间通过弹簧与阻尼联系起来[7]。以轨道横向与竖向不平顺为激励源将整个车桥系统划分成车辆与桥梁两个子系统分别建立车辆与桥梁的运动方程以轮轨相互作用将这两个运动方程联系起来 K.H.Chu 等人所建立的多刚体多自由度车辆分析模型得到了后来各国研究人员的广泛采纳对现代车桥振动研究理论产生了深远影响。在此前后欧洲的法国、意大利、丹麦等国研究者也进行了类似的甚至更深入的研究工作。 G.Diana 探讨了大跨度悬索桥的列车走行问题以及列车在已经发生变形的大跨度悬索桥上运行时的动力响应 M.Olsson采用有限元 - 模态技术求解车桥动力响应 Green 和 Cebon 提出了在频域内求解分离的车桥系统方程的新方法,他们利用模态脉冲响应函数与模态激扰力采用模态迭加法并结合 FFT 和 IFFT 技术来求解桥梁的动力响应。Yeong-Bin yang 采用动态凝聚法求解车桥系统的

结构振动控制的概念及分类

耗能方案 性能来抵御地震作用的,即由结构本身储存和消耗地震能量,以满足结构抗震设防标准,小震不坏,可能无法满足安全性的要求;另一方面,在满足设计要求的情况下,结构构件的尺寸可能需做得很大木工程领域新兴一种新型的抗震方式——结构振动控制,即对结构施加控制机构,由控制机构和结构 半主动控制和混合控制。 是由控制装置随结构一起振动变形而被动产生的。被动控制可分为基础隔震技术、耗能减震技术和吸是由控制装置按某种控制规律,利用外加能源主动施加的。主动控制系统由传感器、运算器和施力作术。主动控制有主动拉索系统(ATS)、主动支撑系统(ABS)、主动可变刚度系统(AVSS)、主动质期开始研究主动控制。目前,主动控制在土木工程中的应用已达30多项,如日本的Takenaka实验控制力虽也由控制装置自身的运动而被动的产生,但在控制过程中控制装置可以利用外加能源主动调置、半主动TMD、半主动力触动器、半主动变刚度装置和半主动变阻尼装置等。 主动控制,或者是同时应用不止一种的被动控制装置,从而充分发挥每一种控制形式和每一种控制装:同时采用AMD和TMD的混合控制系统、主动控制和基础隔震相结合的混合控制系统以及主动控制和

京的清水公司技术研究所。 ,但由于建筑结构体形巨大导致所需的外加能源较大,加之控制装置的控制的算法比较复杂,而且存好,容易实现,目前发展最快,应用最广,尤其是其中的基础隔震技术已相当成熟,并得到了一定程主动控制低廉,而且不需要较大的动力源,因此其具有广阔的应用和发展前景;混合控制综合了某几 和耗能减震技术。 置控制机构来隔离地震能量向上部结构传输,使结构振动减轻,防止地震破坏。目前研究开发的基础和混合隔震等。近年来,越来越多的国家开展了基础隔震技术的研究,因此,隔震技术也得到了飞速:日本94栋,美国21栋,中国46栋,意大利19栋,新西兰16栋,已采用了基础隔震技术。最近有 使结构的振动能量分散,即结构的振动能量在原结构和子结构之间重新分配,从而达到减小主结构振尼器(TLD);(3)质量泵;(4)液压—质量控制系统(HMS);(5)空气阻尼器。其中,应用最多两个重300吨的TMD,质量块在9米长的钢板上滑动,它很好地减小了大楼的风振反应,防止了玻璃幕nade桥的桥塔均安装了TMD,其减震效果均令人十分满意。日本的Yokohama海岸塔是一个高101米析表明,安装了TLD后塔的阻尼比由0.6%增加到4.5%,在强风作用下塔的加速度减小到原来的1/3 TLD以控制其风振反应。

桥梁结构的风—车—桥耦合振动分析的研究概况

龙源期刊网 https://www.doczj.com/doc/3f13291988.html, 桥梁结构的风—车—桥耦合振动分析的研究概况 作者:贾晓健 来源:《建筑工程技术与设计》2014年第15期 摘要:本文介绍了目前国内和国外风-车-桥耦合振动研究的概况以及工作中尚存的有待进一步完善的问题,并指出了风-车-桥耦合振动问题未来发展趋势。 关键词:桥梁;耦合振动 1 引言:随着我国经济的飞速发展,大跨度桥梁越来越多,由于柔度很大,所以在风和上面的车辆作用下,会产生较大的变形和振动会对上面的行人以及桥梁产生较大的危险。因而对风-车-桥耦合振动的研究也越来越重要。本文介绍了目前国内和国外风-车-桥耦合振动研究的概况以及工作中尚存的有待进一步完善的问题,并指出了风-车-桥耦合振动问题未来发展趋势。 2 国内和国外风-车-桥耦合振动研究的概况以及工作中存在的问题 2.1国内风车桥耦合振动研究概况 我国学者以结构动力学为基础,分析了连续梁桥结构在汽车荷载作用下的动态性能,并运用计算机模拟、讨论了不同车速、车型情况下的桥梁动态响应变化,以此分析出影响结构动态性能的主要因素2]-[3]。为简化分析的过程,在他们的研究中将桥梁简化为线性系统,略去了桥面和横梁的约束,在计算中采用设计中常用的截面换算法,将钢筋换算成混凝土,同时将截面折算成等面积的矩形,且仅考虑梁的弯曲振动,而不计梁的转动惯量和剪切变形的效应[4]。2005年,王解军等采用2轴车辆分析模型与梁单元,建立了适应于大跨桥梁车辆振动计算的车桥耦合单元模型,基于功率谱密度函数生成随机路面粗糙度,分析阻尼对行车荷载作用下桥梁振动性能的影响[5]。 北方交通大学夏禾教授、阎贵平教授等研究了考虑车-桥-基础相互作用系统的结构动力可靠性问题桥梁结构在多种随机荷载作用下车桥系统动力可靠性问题、脉动风与列车荷载同时作用下桥梁的动力响应问题,分析了地震荷载对桥上列车运行平稳性的影响得到了许多有价值的结论[6]。 2.2国外风车桥耦合振动研究概况 20世纪60;70年代西欧和日本开始修建高速铁路对桥梁动力分析提出了更高的要求同时电子计算机的出以及有限元技术的发展使得车桥振动研究具备了强有力的分析手段这极大地促

车桥耦合振动分析软件

第1章系统概述 (1) 1.1系统特点 (1) 1.2软件功能 (1) 1.2.1车辆子系统 (2) 1.2.2激励模型 (2) 1.2.3桥梁/轨道子系统 (3) 1.2.4求解方法 (3) 1.2.5后处理 (3) 1.3计算流程 (4) 第2章软件安装与运行方式 (6) 2.1软件安装 (6) 2.2运行方式 (6) 第3章前处理所需文本文件定义 (8) 3.1输入文件概述 (8) 3.2桥梁/轨道子结构:Modal_Substructure_Bridge.dat (9) 3.2.1第一行控制参数 (9) 3.2.2第二行后的节点坐标参数 (10) 3.2.3轨道节点编号 (10) 3.2.4集中阻尼和非线性弹簧单元定义 (10) 3.2.5与仿真计算同步输出桥梁响应的节点个数 (11) 3.2.6桥梁/轨道结构模态信息 (11) 3.2.7后处理考察节点位移和应力/内力定义 (13) 3.3车辆子结构:Modal_Substructure_Vehicletypes.dat (13) 3.3.1第一行控制参数 (13) 3.3.2第二行控制参数 (14) 3.3.3第二行后的节点坐标参数 (14) 3.3.4车轮节点编号 (14) 3.3.5车轮静载、轮轨/路面耦合类型 (16) 3.3.6车轮刚度、阻尼和质量等参数定义 (16) 3.3.7集中阻尼和非线性弹簧单元定义 (16) 3.3.8与仿真计算同步输出车辆响应的节点个数 (17) 3.3.9车辆结构模态信息 (17) 3.3.10其他车辆的定义 (17) 3.4集中阻尼和非线性弹簧:NonlinearSpringParameters.dat (18)

浅谈风荷载对桥梁结构的影响

浅谈风荷载对桥梁结构的影响 121210104 罗余双 摘要:风荷载是桥梁结构设计需要考虑的重要内容之一。本文先分析了风荷载的静力作用和动力作用对桥梁结构的影响,然后考虑桥梁结构进行抗风设计的主要影响因素,并给出了桥梁结构抗风设计的主要流程。 关键词:桥梁、风荷载、抗风设计 The Impact of Wind Load on the Bridge Structure 121210104 Luo Yushuang Abstract:Wind load is one of the important contents of the bridge structure design needs to consider.At first,this paper analyzes the static effect and dynamic wind load effect on the influence of the bridge structure, and then it considers main influencing factors of wind resistance design of bridge structure, giving the bridge structure wind resistance design of the main process. Key words:Bridge、Wind load、Wind-resistance design 一、风荷载对桥梁结构影响研究的必要性 桥梁的风毁事故最早可以追溯到1818年,苏格兰的Dryburgh Abbey桥首先因风的作用而遭到毁坏。之后,英国的Tay桥因未考虑风的静力作用垮掉,造成75人死亡的惨剧。但直到1940年,美国华盛顿新建成的Tacoma Narrows悬索桥,在不到20 m/s 的风速作用下发生了强烈的振动并导致破坏(见图1),才使工程界注意到桥梁风致振动的重要性。现代桥梁抗风研究自此开始。 众所周知,桥梁是一种在风荷载作用下容易产生变形和振动的柔性结构,而且桥梁一般修建在江河、海峡等风速较大的区域。故此,抗风设计是桥梁结构设计的重要内容之一。 为避免此类惨剧就必须要把风荷载对桥梁结构的影响降到最低,而有效抵抗和预防风荷载对桥梁结构的影响的一大前提,就是清楚的把握风荷载对桥梁结构的影响。

结构振动的主动控制技术

硕士研究生 非笔试课程考核报告 (以论文或调研报告等形式考核用) 2013 至 2014 学年 第 1 学期 考核课程: 防灾减灾学 提交日期: 2013 年 12月 20 日 姓 名 程伟伟 学 号 2012010305 年 级 研二 专 业 防灾减灾及防护工程 所在学院 土木工程学院 山东建筑大学研究生处制 考核成绩 考核人

结构振动的主动控制技术 程伟伟 (山东建筑大学土木工程学院,济南,250101) 摘要:主动控制是一项积极主动的智能化措施,是根据外界刺激和结构响应预估计所需的控制力,从而输入能量驱使作动器施加控制力或调节控制器性能参数,达到减震效果。对目前的主动控制技术的研究现状作了简要评述,阐述了振动主动控制中主要控制方法和策略及应用中存在的问题,并提出了振动主动控制技术的发展趋势。 Abstraction:Active Control is an intelligent proactive measures, are needed to control the pre-estimate based on external stimuli and response structures, thereby driving the input energy is applied to the actuator control or regulate the controller performance parameters to achieve the damping effect. The current research status of active control techniques are briefly reviewed, elaborated mainly active vibration control and application control methods and strategies for the problems and proposed active vibration control technology trends. 关键词:主动控制作动器与传感器控制方法 引言:主动控制是指在振动控制过程中,经过实时计算,进而驱动作动器对控制目标施加一定的影响,达到抑制或消除振动的目的。其控制效果好,适应性强,正越来越受到人们的重视。近几年,随着科学技术的发展,特别是在计算机技术和测控技术的推动下,振动主动控制有了长足进步。主动控制在越来越多的实际工程中应用的越来越多。 正文 地震给世界各国人民造成了巨大的灾害,土木工程结构振动控制是工程结构抗震领域的新课题。姚治平将振动控制与土木工程相结合,首次提出了土木工程结构振动控制的概念。对有效减轻地震灾害有着重要的现实意义。主动控制在声学中并不是一个新概念,早在20世纪30年代,Paul Lueg 就提出了利用主动噪声抵消发代替被动噪声控制,对低频噪声进行控制。由于振动传递远比声音的传递复杂得多,致使主动振动控制的研究共走进展相对较慢,直到二次世界大战后的军备竞赛才促使其迅速发展。纵观主动振动控制的发展过程,将其划分为重点突破、广泛探索和重点攻关三个阶段。从20世纪50年年代起,主动控制取得了三项突破,即实现了机翼颤振的主动阻尼没提高了飞机航速;主动振动控制提供了超静环境,保证惯导系统满足核潜艇和洲际导弹导航的进度要求;磁浮轴承控制离心机转子成功,创造出分离铀同位素的新工艺。20世纪50-60年代主动振动控制发展的重点突破阶段。上述成就迅速吸引了众多的专家研究这项技术。于是20世纪70年代变成为空广泛探索主动振动控制在各个工程领域应用的阶段。进入20世纪80年代,主动振动技术在几个工程领域的应用前景相当明朗,其中就有控制高挠性土木工程结构振动在、控制,于是,主动振动控制研究进入重点攻关阶段。目前,对主动控制的研究主要集中在:传感器、致动器、动力学建模及其振动控制、传感器/致动器的优化配置等几方面。控制技术分为主动、被动和半主动等类型。主动控制是指在振动控制过程中,根据所检测的振动信号,应用一定的控制策略,经过计算,进而驱动作动器为控制目标施加一定的影响,达到抑制或消除振动的目的。其控制效果好,适应性强,正越来越受到人们的重视。本文主要介绍主动控制技术的发展和展望。 主动控制是一种需要额外能量的控制技术,它与被动控制的根本区别是有无额外能量的消耗,是否具有完整的反馈控制回路。与被动控制相比,主动控制技术复杂、造价昂贵、维护要求高,但对于高层建筑或抗震设防要求高的建筑来说,主动控制具有更好的控制效果。主动控制装置大体上由仪器测量系统(传感器)、控制系统(控制器)、动力驱动系统(作动器)等组成。传感器测量姐欧股的动力响应或外部激励信息;控制器处理传感器测量的信息,实现所需的空置力,并输出作动器

浅谈ANSYS中车桥耦合振动的实现方法与应用

浅谈ANSYS中车桥耦合的实现方法与应用 作者:黄江广安区交通运输局 摘要:弹簧移动质量的振动问题可通过大型通用结构有限元软件ANSYS进行分析解决,解决方法有三种,分别为:位移耦合法、生死单元法和位移接触法。这三种方法各有优势与适用范围,本文对相关方法的具体情况作出简要介绍,并采用简单算例通过位移接触法进行应用介绍,阐述了车桥耦合振动仿真模拟的一般步骤,有利于读者了解这方面的内容。 关键词:位移耦合生死单元位移接触 1前言 车桥耦合振动问题是桥梁振动理论中的一项难题,随着大型通用有限元软件的开发,车桥振动模型在逐步得到精确化模拟,根据不同的车桥模型应有不同的模拟方法。以下结合大型通用结构有限元软件ANSYS将三种模拟方法及应用作简要介绍。 2方法介绍 位移耦合法 位移耦合法的思路是仅创建一个质量单元模拟移动质量,根据移动速度对移动质量施加不同的水平约束位移,将移动质量与所移动到位置处的节点竖向位移耦合。采用位移耦合法时赢注意以下几点: ①因移动质量与梁上节点耦合,因此移动质量只能从梁上一个节点移动到下一节点,而从一个节点移动到下一节点为一个荷载步。在一个荷载步中若设置多个子步,当KBC=0时会造成还没有移动到下一节点时就耦合自由度,也就是耦合位置不对;当KBC=1时,虽然在第一子步到达下一节点位置,即耦合位置正确,但中间收敛结果所产生的速度和加速度会对计算造成“污染”,因此无论KBC 如何设置,宜将NSUBST设置为1。 ②阻尼问题。ANSYS完全法瞬态动力分析不能设置模态阻尼比,但可用质量阻尼系数α和刚度阻尼系数β等效(Rayleigh阻尼假定),但正是因为Rayleigh 阻尼假定会造成ANSYS计算时产生“虚假”阻尼(α×质量矩阵),而理论推到中没有此项。因此考虑阻尼进行结果对比时可仅考虑刚度阻尼。 ③采用CP命令耦合自由度时,因自由度为线性耦合,不适合大变形情况。如打开大变形,ANSYS计算的梁体位移、速度和加速度正确,但移动质量位移和加速度虽然趋势基本一致,但数值均存在很大误差或数值不正确,且误差随速度增大而增大。 ④理论推导中没有考虑梁体自重引起的变形,在ANSYS中也不应考虑该变形,因梁体存在质量,如施加重力加速度则必然产生自重变形,因此可对移动质

列车-桥梁系统共振研究现状及预防措施

列车-桥梁系统共振研究现状及预防措施 一.列车-桥梁系统共振研究现状 列车通过桥梁时将引起桥梁结构的振动,而桥梁的振动又反过来影响车辆的振动,这种相互作用、相互影响的问题就是车辆与桥梁之间振动耦合的问题。人类自1825年建成第一条铁路以来,便开始了对列车与桥梁相互作用研究探索的漫长历史过程。1849年Willis提交了第一份关于桥梁振动研究的报告,探讨了Chester铁路桥梁塌毁的原因。在随后的近100年时间内,由于当时力学水平、计算技术、方法及手段的落后,研究中通常将车辆、桥梁简单地看作两个独立的模型,在这种模型里,机车车辆被简化成单个或多个集中力,或者将其各种动力因素简化为简谐力,而桥梁被处理成均布等截面梁,采用级数展开的方法进行近似的求解,这些方法基本上只能算是解析法或半解析法。 20世纪60、70年代以来,电子计算机的出现以及有限元技术的发展,使得车桥耦合振动研究有了飞速的发展,从车桥系统的力学模型、激励源的模拟到研究方法和计算手段等都有了质的飞跃,人们可以建立比较真实的车辆和桥梁计算模型,然后用数值模拟法计算车辆和桥梁系统的耦合振动响应,美国、日本、欧洲和国内诸多学者为车桥耦合振动理论的发展做出了重要贡献,在车辆模型、桥梁模型以及车桥系统耦合振动方面取得了不少成就。 近年来,随着既有铁路提高行车速度和高速铁路发展的要求,车辆与结构的耦合振动问题变得越来越重要,目前世界各国都在更深入地开展这方面研究。对于车桥耦合振动问题的研究方法可以分为两类:原型实验和理论分析。原型实验是采用测量仪器对于实车或实验车通过桥梁时的动力反应进行记录,并对实测资料进行分析研究,基于实测值找出车桥耦合振动的规律性。有限元出现之前,试验测试是研究的主体,通过对车辆及桥梁状态进行大规模原位试验测试,总结出经验公式或理论,用于指导桥梁设计。理论分析是对车桥系统做一定简化假定,建立系统的相互作用的运动方程式或采用有限元方法求解出结构的动力反应,对该问题进行研究。有限元出现以后,试验与理论分析密切结合,可节省大量的试验工作量。 车一线一桥动力相互作用涉及到车辆(包括车体、转向架和轮轴)、线路和桥梁结构的自身状态等诸多问题,并受到许多随机因素的影响,这就使得该问题变得非常复杂。实测值在一定程度上可以反应车桥耦合系统的实际情况及规律性,但是因测量方法和测量手段的限制,对该问题的研究也在不断地深入。但是只靠试验,就只能随着桥梁结构类型、桥梁跨度、

结构振动控制

武汉理工大学 结构振动控制 Vibration Control of Structure 课程:工程结构振动控制理论 授课老师:周强 学生姓名:吴平 学号:104972081971 班级:土木研0803

结构振动控制 吴平 (土木研0803班) 摘要:本文主要介绍了结构振动控制的概念、基本原理以及分类。重点阐述了 被动控制、主动控制、半主动控制和混合控制的不同特点。 关键字:被动控制,主动控制,半主动控制,混合控制 Vibration Control of Structure Wuping (Department of Civil Engineering,Wuhan University of Technology) Abstract:This paper introduces the conceptand basic principles and classification of structural vibration control. Highlighted the differences among passive control, active control, semi-active control and hybrid control. Key words :passive control, active control, semi-active control,hybrid control. 引言 随着社会的发展,工程结构形式日益多样化以及轻质高强材料的应用,结构 的刚度和阻尼比变小。在强风或强烈地震荷载作用下,结构物的动力反应强烈,很难满足结构舒适性和安全性的要求。按照传统的抗风抗震设计方法,即通过提 高结构本身的强度和刚度来抵御风荷载或地震作用,是一种“硬碰硬”式的抗震 方法,它很不经济,也不一定安全。而且失去了轻质高强材料自身的优势,还不 能满足口益现代化的机器设备不能因为剧烈振动而中断工作或者破坏的要求。 传统的抗震设计方法已不能满足需要,从而使结构振动控制理论在工程结构中开 始得到应用。结构振动控制可以有效地减轻结构在风和地震等动力作用下的反应 和损伤,提高结构的抗震能力和抗灾性能。结构控制通过在结构上设置控制机构,由控制机构与结构共同控制抵御地震动等动力荷载,使结构的动力反应减小。结 构控制是人的主观能动性与自然的高度结合,是结构对策新的里程碑。

公路桥梁与车辆耦合振动研究现状与发展趋势探究

公路桥梁与车辆耦合振动研究现状与发展趋势探究 发表时间:2018-06-05T15:37:22.220Z 来源:《基层建设》2018年第11期作者:温海珍[导读] 摘要:经济全球化的发展,虽然我国经济在与各国经济的竞争中取得了显著的成就,但暴露出的交通物流等方面的问题成为我国经济发展的短板。与交通物流息息相关的因素可归为两个方面:第一方面为运输工具,即各类车辆的总称。 身份证号码:45212419850701xxxx 广西南宁 535008 摘要:经济全球化的发展,虽然我国经济在与各国经济的竞争中取得了显著的成就,但暴露出的交通物流等方面的问题成为我国经济发展的短板。与交通物流息息相关的因素可归为两个方面:第一方面为运输工具,即各类车辆的总称。第二类为交通工具的载体,即本文讨论的主体“公路和桥梁”。现阶段,公路和桥梁建设的速度远远赶不上交通工具普及的速度。车辆与公路桥梁耦合振动造成的公路和桥梁的 损伤已成为制约物流发展的主要方面。因此,分析公路桥梁与车辆耦合振动研究现状与发展趋势具有重要意义。 关键词:公路桥梁;车辆耦合振动;现状;发展趋势汽车以一定的速度过桥时,由于车辆轴重及速度效应,会引起桥梁结构振动,而桥梁的振动又反过来影响车辆的运行。桥面不平整、桥头引道等因素的存在以及车辆各旋转部分的作用,更加剧了桥梁和车辆之间振动的相互影响[1]。这种相互作用、相互影响的问题就是公路车辆与桥梁之间振动耦合的问题。当公路车辆的振动频率与桥跨的振动频率一致时,即形成共振。本文主要对公路桥梁与车辆耦合振动研究现状与发展趋势进行探究。 1.公路桥梁与车辆耦合振动研究现状 由于实际中车桥耦合振动系统本身的复杂性,并且车型和桥型的种类繁多,以及引起振动的各种激振源的随机性,古典理论显然不能全面合理的模拟车桥耦合振动问题。直到20世纪60年代~70年代以后,电子计算机和有限元方法的问世和发展,使得车桥耦合振动的研究有了飞速的进步。人们可以建立比较真实的车辆和桥梁的空间计算模型,然后用数值模拟法计算车辆和桥梁系统的耦合振动效应。 现代车桥振动理论以考虑更接近真实的车辆分析模型和将桥梁理想化为多质量的有限元或有线条模型为主要特点,同时,着重研究道路路面的不平整对荷载效应的影响,对于车辆加速、制动减速效应等复杂的随机因素也进行了一些研究[2]。除简支梁桥之外,连续梁桥、悬索桥、斜拉桥等也逐步涉及。到目前为止,人们对简支梁桥的车桥共振问题的理论和实验研究己经比较系统化,对其它某些桥型,像连续梁桥、索承桥、污工拱桥,也有一定程度的研究成果。 1970年,Veletsos和Huang等早期研究者将桥梁理想化为具有集中质量和粘性阻尼的有限自由度梁,考虑了二维平面多轴拖车荷载作用。Chatterjee和Datta把桥梁理想化为正交各向异性板和集中质量分布模拟的梁,分析简支梁桥上车辆刹车和其初始弹力的影响。 1987年,毛清华在其博士论文中,对公路汽车荷载作用下的山东胜利大桥(跨度280m)的动力效应进行了理论分析和试验研究。其将斜拉桥理想化为弹性支持连续梁模型,考虑一辆STEYR-1491型多轴载重汽车匀速过桥时在跨中受到高70mm的半正弦波(模拟路面不平顺的影响),计算出斜拉桥跨中截面弯矩反应时程曲线,得到弯矩的动态增量为0.29,与实测值接近。 1992年,Wang T L和Huang D Z研究了一座主跨为128m的公路斜拉桥的车桥耦合作用。桥梁模拟为平面杆件系统,考虑桥梁恒载的几何非线性影响;汽车模拟为7个自由度的3轴车辆分析模型,并考虑车辆悬挂系统的非线性;路面采用随机数值方法根据公路路面粗糙度功率谱密度函数模拟出好、一般、差三种公路路面,运用振型叠加法求解车桥系统的振动响应以及冲击系数。研究表明,在非常好的路面情况下,斜拉桥各位置的冲击系数在车辆25km/h―120km/h范围内均小于20,但是冲击系数随着路面粗糙度的增加而增大。此外,斜拉桥在墩底及靠近桥塔的主梁截面产生较大的冲击系数,而在靠近主跨跨中的主梁截面中引起的冲击系数较小。 2000年,我国学者林梅、肖盛燮以结构动力学为基础,分析了连续梁桥结构在汽车荷载作用下的动态性能,并运用计算机模拟、讨论了不同车速、车型情况下的桥梁动态响应变化,以此分析出影响结构动态性能的主要因素[3]。为简化分析的过程,在他们的研究中将桥梁简化为线性系统,略去了桥面和横梁的约束,在计算中采用设计中常用的截面换算法,将钢筋换算成混凝土,同时将截面折算成等面积的矩形,且仅考虑梁的弯曲振动,而不计梁的转动惯量和剪切变形的效应。 2005年,王解军等采用2轴车辆分析模型与梁单元,建立了适应于大跨桥梁车辆振动计算的车桥耦合单元模型,基于功率谱密度函数生成随机路面粗糙度,分析阻尼对行车荷载作用下桥梁振动性能的影响。 2.车桥耦合振动研究的发展趋势 2.1车辆分析模型的进一步完善 近年来各国学者在建立合理的车桥相互作用的模型方面进行了大量的研究。但是,大多仅限于二维平面内的分析,而对于车辆动载产生的空间效应却很少涉及,主要是因为考虑空间效应的车桥相互作用问题更加复杂。虽然在二维平面内的简化模型对于支配振型为纵向弯曲的桥梁是准确的,但实际中有不少桥梁还呈现扭转与横向弯曲振型,如按照二维模型分析,则弯曲基频不能给出准确的动荷载增量。车辆的竖向振动模型、横向振动模型和空间振动模型都值得进一步研究。 2.2车桥随机振动研究和动力可靠度问题 国内以前对桥梁的设计计算多采用确定性分析方法,即认为桥梁所受的力均是确定性的,因此,桥梁在荷载作用下的响应也是确定性的。然而实际中,作用于桥梁上的各种力及桥梁自身的各种响应包含了许多不确定性因素——随机因素,如桥梁上通行的汽车的车型、重量、速度、车距和桥面的不平整、作用于桥上的风载、水对桥墩的冲击力、地震动等以及桥梁材料的不均匀性、施工过程中的误差、车辆加速和制动减速效应等等。因此,有必要对车桥系统随机振动进行分析。 2.3冲击系数的进一步研究 在我国现行的桥梁设计规范中,都是以冲击系数来描述移动车辆-桥梁系统相互作用的强迫振动和车辆对桥梁的动力冲击效应。采用冲击系数描述车辆荷载对桥梁的动力作用出于两方面的便利: 1)关系简单,便于设计中应用;2)很少发生由于车辆荷载作用而直接导致的破坏。但是,使用冲击系数也有明显的缺点:1)我国现行的桥梁设计规范将汽车荷载分为四个等级,冲击系数却采用相同的计算公式,显然这是和实际不相符合的;2)实际中,冲击系数与跨径关系的离散性很大,因而将冲击系数表示为跨径或加载长度的函数是不尽合理的;3)对于桥梁各个不同的部位,车辆荷载作用下的冲击效应也不一致,特别是大跨桥梁的某些部位,如斜拉桥的拉索、拱桥的吊杆等,因车辆振动荷载引起的冲击效应远远大于整体结构的冲击效应。因此,进一步深入研究车桥振动的冲击系数,使其更加合理,为工程实际提供更可靠的参考,具有重要的理论意义和实用价值。

相关主题
文本预览
相关文档 最新文档