当前位置:文档之家› 抗体纯化的方法有哪些

抗体纯化的方法有哪些

抗体纯化的方法有哪些
抗体纯化的方法有哪些

抗体纯化的方法有哪些?

抗体制备出来之后,需要进一步纯化得到纯的多抗或单抗,既有利于保存也有利于排除杂蛋白对结果的影响。常规用于纯化的材料就是腹水与细胞培养上清,而通常经过免疫制备

:

抗体非还原型PAGE/kDa 还原型PAGE/kDa

IgG 150 50,25

IgM 900 65,25

IgM单体180 65,25

硫酸铵沉淀法:

基本原理:高浓度的硫酸铵通过与球蛋白竞争水分子破坏蛋白表明的水化膜,降低球蛋白的溶解性,就是分离免疫球蛋白的常用方法,而且不同的免疫球蛋白适宜的硫酸铵浓度也稍有差别,一般用来分离抗体的硫酸铵饱与度在33~50%。

适用于:鼠抗所有亚类、其她种属抗体、任何种属的IgM、IgG、IgA

基本操作:

1、过滤、离心腹水或者培养上清得上清;

2、加入饱与硫酸铵至终浓度45%,静置沉淀蛋白;

3、沉淀蛋白用最小体积PBS或硼酸盐缓冲液溶解,用PBS或硼酸盐缓冲液透析除盐;

4、过聚丙烯酰胺葡聚糖凝胶柱,PBS或硼酸盐(含0、02%叠氮钠)缓冲液洗脱;

5、电泳检测分子量大小,分光光度法测定抗体浓度;

6、抗体保存浓度在0、1-30 mg/mL适宜,-20 ℃保存不超过一个月,避免反复冻融。

亲与层析法

基本原理:基因工程改造的protein A与protein G能特异性结合哺乳动物IgG的Fc区段,将protein A与protein G结合到柱料上,通过亲与层析的方式,可将IgG及其亚类与片段纯化出来。

成员介绍:protein A分离自Staphylococcus aureus的细胞壁,分子量42 kDa,由spa基因编码,具有五个同型的免疫球蛋白结合结构域,每个结构域由三个α螺旋构成。

protein A的B结构域

protein A的各个结构域

protein A可结合多数免疫球蛋白的Fc段(尤其就是人的IgG1、IgG2、IgG4,豚鼠,猕猴,鼠类IgG2a、兔)以及人VH3家族的Fab段。基因工程改造的protein A通常使用大肠杆菌作为表达宿主,表达产物仍含有五个Fc结合结构域。对其结构上的改造主要就是为了增加与多孔性材料的偶联性能,也有的改造protein A含有四个或六个同型Fc结合结构域,另外结构域数目较少的protein A能得到更好的抗体纯化效果。

protein G分离自G Streptococcus的细胞壁,分子量65 kDa,由spg基因编码,可结合抗体的Fc段、Fab段以及血清中的白蛋白。基因工程改造的protein G去掉了与白蛋白的结合位点仅仅保留Fc结合结构域,其结合力较protein A更强。

protein G的B结构域

protein G的各个结构域

还有一种protein A/G蛋白,就是基因工程改造产物,就是将protein A的4个Fc结合结构域与protein G的2个Fc结合结构域融合表达得到的。protein A/G结合了二者的特性,能结合人与鼠的IgG所有亚型,不结合鼠的IgA、IgM。

①protein A亲与层析

适用于:人(IgG3除外)、兔、豚鼠、猪的抗体;

基本操作:

1、过滤、离心腹水或者培养上清得上清;

2、调节pH到8、0:腹水以10倍体积pH8、0 PBS稀释、培养上清用pH8、0 PBS透析或强氧化钠调节;

3、过protein A琼脂糖凝胶柱,pH8、0 PBS洗杂;

4、柠檬酸缓冲液洗脱抗体(小鼠IgG1用pH6、5,IgG2a用pH4、5,IgG2b与IgG3用pH3、0),并注意收集管内需加入Tris缓冲液中与滴下的抗体溶液;

5、用PBS透析;

6、电泳检测分子量大小,分光光度法测定抗体浓度。

②protein G亲与层析

与protein A相比,protein G通常情况下在低pH环境下与抗体结合力较强,不过高pH环境下小鼠IgG1与兔、人的抗体在仍可以与protein G结合。

适用于:小鼠IgG1、大鼠抗体、猴抗体、兔抗体、牛抗体、山羊抗体、马抗体、绵羊抗体; 基本操作:

1、过滤、离心腹水或者培养上清得上清;

2、调节pH到5、0:腹水以10倍体积0、1 M醋酸钠(pH5、0)稀释、培养上清以2倍体积0、1 M醋酸钠(pH5、0)稀释;

3、过protein G柱,0、1 M醋酸钠(pH5、0)洗杂;

4、0、1 M甘氨酸(pH2、8)洗脱抗体,并注意收集管内需加入Tris缓冲液中与滴下的抗体溶液

5、用PBS透析;

6、电泳检测分子量大小,分光光度法测定抗体浓度。

③抗原亲与层析法

抗原亲与纯化一般用在多抗的纯化上,这种纯化方式去掉了血清中那些非特异性结合的抗体分子,得到的抗体分子基本上都就是能特异性与抗原结合的。抗原亲与纯化需要先将抗原偶联到柱料上,然后通过亲与层析的方式去除非特异性抗体及杂蛋白,得到特异性抗体。通常采用的柱料为溴化氢预处理与N-羟基琥珀酰亚胺预处理琼脂糖凝胶柱料,前者适合偶联大分子,后者适合偶联小分子物质,在实际操作中还就是需要根据情况进行选择。

适用于:多抗抗体的纯化,对抗体亚型无限制

偶联基本操作:

1、抗原用0、1 M NaHCO3偶联缓冲液(含0、5 M NaCl,pH8、3)溶解;

2、用1 mM稀盐酸洗涤柱料;

3、混合抗原与柱料,在室温混悬1 h或者4 ℃混悬过夜;

4、用偶联缓冲液洗涤偶联的柱料去掉未偶联抗原;

5、用0、1 M Tris(pH8、0)或1 M乙醇胺(pH8、0)处理偶联柱料2 h以封闭未偶联位点;

6、依次用0、1 M醋酸钠缓冲液(含0、5 M NaCl,pH4、0)与0、1 M Tris(含0、5 M NaCl,pH8、0)洗涤偶联柱料五次,重复此操作三遍。

纯化基本操作:

1、过滤、离心腹水或者培养上清得上清;

2、0、01 M PBS(pH7、4)平衡偶联柱料;

3、抗体样品过柱,0、01 M PBS(pH7、4)洗杂;

4、抗体洗脱液洗脱抗体;

5、用0、01 M PBS(pH7、4)透析;

6、电泳检测分子量大小,分光光度法测定抗体浓度。

随着技术的发展抗体的纯化方法越来越多,例如分子筛层析、离子交换层析等技术也被用于抗体的纯化,在实际运用中需要根据实验目的及其她因素进行方法的选择。

抗体ProteinA纯化方法

抗体ProteinA纯化 一.P roteinA柱子的制备 1.配制溶液; 结合/洗涤缓冲液:NaCl,0.5M ;Na2HPO4,20mM ;PH8.0。 配制500ml的方法: 称取NaCl 4.383g,Na2HPO43.5814g溶解于450ml的双蒸水中。调节PH为8.0,补加双蒸水至总体积500ml。 2. 制备空柱子 (1)先打开用过的PD-10上盖,拿掉上面的盖膜。盖上盖子,摇晃,倒去里面的填料,用PBS清洗3次。 (2)用胶带固定好PD-10空柱子,要求垂直放置。 (3)在PD-10空柱子里加入2ml的Binding Wash buffer.结合缓冲液。 (4)ProteinA填料混匀,(10ml包装一小瓶)。 (5)加入5ml的ProteinA到柱子中。 (6) (7) (8) 二.纯化步骤 1.样品准备;将兔血清与结合缓冲液1:1混合,过滤(防止堵塞柱子)。 2.平衡柱子:用5-10倍体积的结合缓冲液过Protein A柱。 3.上样:将准备好的血清样品上样,根据柱子的结合能力考虑上样量的体积。 4.洗脱杂蛋白:用结合缓冲液冲洗柱子,直至结合液中不含蛋白。 5.收集抗体:用洗脱液过柱,同时收集漏出液(约3-4ml/管),直至漏出液中不含蛋白。 测定各收集管中的蛋白含量,合并蛋白管。(注意:收集管中需事先加入约150ul的1M PH9.0 Tris-HCl缓冲液,防止抗体在过酸的环境下失活) 6.柱子再生:用5-10倍体积的再生液再生柱子。 7.PBS透析收集的抗体。 三.试剂的制备 1. 结合缓冲液1000ml 500ml 甘氨酸112.6g 56.3g 氯化钠175.2g 87.6g 氢氧化钠调PH至9.0 2. 洗脱缓冲液500ml

单克隆抗体制备的基本原理

单克隆抗体制备的基本原理 一、单克隆抗体的概念 抗体(antibody)是机体在抗原刺激下产生的能与该抗原特异性结合的免疫球蛋白。常规的抗体制备是通过动物免疫并采集抗血清的方法产生的,因而抗血清通常含有针对其他无关抗原的抗体和血清中其他蛋白质成分。一般的抗原分子大多含有多个不同的抗原决定簇,所以常规抗体也是针对多个不同抗原决定簇抗体的混合物。即使是针对同一抗原决定簇的常规血清抗体,仍是由不同B细胞克隆产生的异质的抗体组成。因而,常规血清抗体又称多克隆抗体(polyclonal antibody),简称多抗。由于常规抗体的多克隆性质,加之不同批次的抗体制剂质量差异很大,使它在免疫化学试验等使用中带来许多麻烦。因此,制备针对预定抗原的特异性均质的且能保证无限量供应的抗体是免疫化学家长期梦寐以求的目标。随着杂交瘤技术的诞生,这一目标得以实现。 1975年,Kohler和Milstein建立了淋巴细胞杂交瘤技术,他们把用预定抗原免疫的小鼠脾细胞与能在体外培养中无限制生长的骨髓瘤 细胞融合,形成B细胞杂交瘤。这种杂交瘤细胞具有双亲细胞的特征,既像骨髓瘤细胞一样在体外培养中能无限地快速增殖且永生不死,又能像脾淋巴细胞那样合成和分泌特异性抗体。通过克隆化可得到来自单个杂交瘤细胞的单克隆系,即杂交瘤细胞系,它所产生的抗体是针

对同一抗原决定簇的高度同质的抗体,即所谓单克隆抗体(monoclonal antibody,McAb),简称单抗。 与多抗相比,单抗纯度高,专一性强、重复性好、且能持续地无限量供应。单抗技术的问世,不仅带来了免疫学领域里的一次**,而且它在生物医学科学的各个领域获得极广泛的应用,促进了众多学科的发展。 德国科学家柯勒(Georges Ko1er)和英国科学家米尔斯坦(Cesar Milstein)两人由此杰出贡献而荣获1984年度诺贝尔生理学和医学奖。 二、杂交瘤技术 (一)杂交瘤技术的诞生 淋巴细胞杂交瘤技术的诞生是几十年来免疫学在理论和技术两方面 发展的必然结果,抗体生成的克隆选择学说、抗体基因的研究、抗体结构与生物合成以及其多样性产生机制的揭示等,为杂交瘤技术提供了必要理论基础,同时,骨髓瘤细胞的体外培养、细胞融合与杂交细胞的筛选等提供了技术贮备。1975年8月7日,Kohler和Milstein 在英国《自然》杂志上发表了题为“分泌具有预定特异性抗体的融合细胞的持续培养”(Continuous cultures of fused cells secreting antibody of

抗体纯化

一、抗体纯化部分 1、腹水/血清的亚型测定完成后,IgG亚型的腹水/血清使用Protein G 抗体纯化柱纯化;IgM 亚型的腹水/血清则使用饱和硫酸铵沉淀法沉淀。 1.1 Protein G 抗体纯化步骤: (1)新柱子先用DDW 5ml过柱; (2)10倍柱体积的Binding Buffer (pH 7.0) 平衡纯化小柱; (3)抗体过柱,过程中要求缓慢过柱,以求抗体蛋白更好的结合在结合位点上; (4)继续10倍柱体积的Binding Buffer (pH 7.0) 平衡纯化小柱; (5)5倍柱体积甘氨酸-盐酸缓冲液(pH 2.7)洗脱结合位点上的抗体,并加入Tris-HCI(pH 9.0)中和甘氨酸,使pH保持为适合抗体保存的中性; (6)10倍柱体积的Binding Buffer (pH 7.0) 平衡纯化小柱; (7)5倍柱体积20%乙醇溶液过柱,于4℃条件下保存纯化小柱; (8)将洗脱的抗体用聚乙二醇浓缩并透析,以彻底去除不相干离子。 其中所用试剂配方: DDW:超纯水 Binding Buffer(100ml):A液,0.2M磷酸氢二钠61ml B液,0.2M磷酸二氢钠39ml 磷酸氢二钠4.37g 磷酸二氢钠1.22g 甘氨酸-盐酸缓冲液:0.1M甘氨酸溶液加浓盐酸调pH 2.7 Tris-HCL缓冲液:1M Tris溶液加浓盐酸调pH 9.0 1.2 饱和硫酸铵沉淀法步骤: (1)配制饱和硫酸铵溶液,再用氨水调节pH至8.5 (2)沉淀:a、腹水/血清离心去除细胞碎片,保留上清液并测定体积; b、边搅拌边逐滴滴入等体积的饱和硫酸铵溶液,搅拌均匀使蛋白充分沉淀; c、上述蛋白质溶液经过离心弃上清取沉淀,并用PBS溶液(pH 7.0)溶解; d、继续向上一步蛋白溶液中滴入1/2体积的饱和硫酸铵溶液,搅拌均匀使蛋 白充分沉淀; e、继续离心沉淀弃上清去沉淀,用PBS溶液(pH 7.0)溶解; (3)透析:每隔3-6小时换一次透析液,以彻底去除硫酸铵。 其中所用试剂配方: PBS缓冲液(1L pH 7.0):氯化钾0.2g 磷酸二氢钾0.2g 磷酸氢二钠3.35g 氯化钠8g

微生物菌种的分离和纯化方法

从混杂微生物群体中获得只含有某一种或某一株微生物的过程称为微生物分离与纯化。在分子生物学的研究及应用中,不仅需要通过分离纯化技术从混杂的天然微生物群中分离出特定的微生物,而且还必须随时注意保持微生物纯培养物的“纯洁”,防止其他微生物的混入。 1、用固体培养基分离和纯化 单个微生物在适宜的固体培养基表面或内部生长、繁殖到一定程度可以形成肉眼可见的、有一定形态结构的子细胞生长群体,称为菌落。当固体培养基表面众多菌落连成一片时,便成为菌苔。不同微生物在特定培养基上生长形成的菌落或菌苔一般都具有稳定的特征,可以成为对该微生物进行分类、鉴定的重要依据。大多数细菌、酵母菌、以及许多真菌和单细胞藻类能在固体培养基上形成孤立的菌落,采用适宜的平板分离法很容易得到纯培养。所谓平板,即培养平板的简称,它是指固体培养基倒入无菌平皿,冷却凝固后,盛固体培养基的平皿。这方法包括将单个微生物分离和固定在固体培养基表面或里面。固体培养基用琼脂或其它凝胶物质固化的培养基,每个孤立的活微生物体生长、繁殖形成菌落,形成的菌落便于移植。最常用的分离、培养微生物的固体培养基是琼脂固体培养基平板。这种由Kock建立的采用平板分离微生物纯培养的技术简便易行,100多年来一直是各种菌种分离的最常用手段。1.1 稀释倒平板法 首先把微生物悬液作一系列的稀释(如1:10、1:100、1:1000、1:10000),然后分别取不同稀释液少许,与已熔化并冷却至50℃左右的琼脂培养基混合,摇匀后,倾入灭过菌的培养皿中,待琼脂凝固后,制成可能含菌的琼脂平板,保温培养一定时间即可出现菌落。如果稀释得当,在平板表面或琼脂培养基中就可出现分散的单个菌落,这个菌落可能就是由一个细菌细胞繁殖形成的。随后挑取该单个菌落,或重复以上操作数次,便可得到纯培养。 1.2 涂布平板法 因为将微生物悬液先加到较烫的培养基中再倒平板易造成某些热敏感菌的死亡,且采用稀释倒平板法也会使一些严格好氧菌因被固定在琼脂中间缺乏氧气而影响其生长,因此在微生物学研究中常用的纯种分离方法是涂布平板法。其做法是先将已熔化的培养基倒入无菌平皿,

抗体纯化的方法有哪些

抗体纯化的方法有哪些? 抗体制备出来之后,需要进一步纯化得到纯的多抗或单抗,既有利于保存也有利于排除杂蛋白对结果的影响。常规用于纯化的材料是腹水和细胞培养上清,而通常经过免疫制备的 硫酸铵沉淀法: 基本原理:高浓度的硫酸铵通过与球蛋白竞争水分子破坏蛋白表明的水化膜,降低球蛋白的溶解性,是分离免疫球蛋白的常用方法,而且不同的免疫球蛋白适宜的硫酸铵浓度也稍有差别,一般用来分离抗体的硫酸铵饱和度在33~50%。 适用于:鼠抗所有亚类、其他种属抗体、任何种属的IgM、IgG、IgA 基本操作: 1.过滤、离心腹水或者培养上清得上清; 2.加入饱和硫酸铵至终浓度45%,静置沉淀蛋白; 3.沉淀蛋白用最小体积PBS或硼酸盐缓冲液溶解,用PBS或硼酸盐缓冲液透析除盐; 4.过聚丙烯酰胺葡聚糖凝胶柱,PBS或硼酸盐(含0.02%叠氮钠)缓冲液洗脱; 5.电泳检测分子量大小,分光光度法测定抗体浓度; 6.抗体保存浓度在0.1-30 mg/mL适宜,-20℃保存不超过一个月,避免反复冻融。 亲和层析法 基本原理:基因工程改造的protein A和protein G能特异性结合哺乳动物IgG的Fc区段,将protein A和protein G结合到柱料上,通过亲和层析的方式,可将IgG及其亚类与片段纯化出来。 成员介绍:protein A分离自Staphylococcus aureus的细胞壁,分子量42 kDa,由spa 基因编码,具有五个同型的免疫球蛋白结合结构域,每个结构域由三个α螺旋构成。 protein A的B结构域

protein A的各个结构域 protein A可结合多数免疫球蛋白的Fc段(尤其是人的IgG1、IgG2、IgG4,豚鼠,猕猴,鼠类IgG2a、兔)以及人VH3家族的Fab段。基因工程改造的protein A通常使用大肠杆菌作为表达宿主,表达产物仍含有五个Fc结合结构域。对其结构上的改造主要是为了增加与多孔性材料的偶联性能,也有的改造protein A含有四个或六个同型Fc结合结构域,另外结构域数目较少的protein A能得到更好的抗体纯化效果。 protein G分离自G Streptococcus的细胞壁,分子量65 kDa,由spg基因编码,可结合抗体的Fc段、Fab段以及血清中的白蛋白。基因工程改造的protein G去掉了与白蛋白的结合位点仅仅保留Fc结合结构域,其结合力较protein A更强。 protein G的B结构域 protein G的各个结构域 还有一种protein A/G蛋白,是基因工程改造产物,是将protein A的4个Fc结合结构域与protein G的2个Fc结合结构域融合表达得到的。protein A/G结合了二者的特性,能结合人和鼠的IgG所有亚型,不结合鼠的IgA、IgM。 ①proteinA亲和层析 适用于:人(IgG3除外)、兔、豚鼠、猪的抗体; 基本操作: 1.过滤、离心腹水或者培养上清得上清; 2.调节pH到8.0:腹水以10倍体积pH8.0 PBS稀释、培养上清用pH8.0 PBS透析或强氧化钠调节; 3.过proteinA琼脂糖凝胶柱,pH8.0 PBS洗杂; 4.柠檬酸缓冲液洗脱抗体(小鼠IgG1用pH6.5,IgG2a用pH4.5,IgG2b和IgG3用pH3.0),并注意收集管内需加入Tris缓冲液中和滴下的抗体溶液; 5.用PBS透析;

抗体分离纯化技术的研究进展

生物技术通报 BIOTECHNOLOGYBULLETIN ·技术与方法· 2008年第3期 收稿日期:2007-11-19 基金项目:内蒙古自治区自然科学基金重大项目(编号200408020402)作者简介:侯越(1982-),男,硕士研究生,研究方向:动物学生物技术通讯作者:吴应积,教授 引言 抗体是一种特殊的蛋白质分子,被作为体外诊断的试剂、治疗疾病的药物、免疫亲和层析的配基等,在生命科学研究、生物技术及医学领域中有着广泛的应用。尤其是抗体作为各种免疫分析的核心试剂,对免疫分析结果的灵敏度、 特异性起着至关重要的作用。在对一些与生命体功能关系密切的新基因产物的研究中,是否拥有相应的抗体以检测与鉴定新基因的产物蛋白质,是整个研究工作能否深入开展的关键。 抗体技术是免疫学领域中的一个重要方面,广泛应用于生命科学和医学各学科。从第一代抗体———血清多克隆抗体开始,它就在疾病治疗和体外诊断中发挥了很大的作用。由于免疫动物制备血 清抗体的免疫原性和非均质性,给抗体研究和应用造成了困难[1],激发了人们对抗体进行深入研究的热情。1975年Kohler和Milstein通过杂交瘤技术制备出针对一种抗原决定簇的抗体即第二代抗体—— —单克隆抗体(monoclonalantibody,McAb),是均质的异源抗体[2]。单克隆抗体具有高度均质性、高度特异性,促进了对各种传染病和恶性肿瘤诊断的准确性,是目前应用最广泛的抗体。单克隆抗体的出现,引起了生物学理论的革命,生物学技术的广泛应用提供了重要的工具[3]。20世纪80年代采用基因工程的手段研制抗体,并对抗体的基因进行改造和重组等,制备出第三代抗体——— 基因工程抗体(geneticengineeringantibodyGEAb)。基因工程抗体主要对现有的鼠源性单克隆抗体进行人工改造,并 抗体分离纯化技术的研究进展 侯越 罗奋华吴应积 (内蒙古大学哺乳动物生殖生物学与生物技术教育部重点实验室,呼和浩特010021) 摘 要: 制备高特异性、高效价的抗体是实验免疫学技术的基础,抗体质量的高低,将直接影响试验的成败。抗体 的制备有两个途径:一是一般通用的方法,以纯化的抗原免疫动物,获得多克隆抗体;二是应用杂交瘤技术制备单克隆抗体。但不论用何种技术制备的抗体都需要进行纯化。重要的是根据抗体的性质和来源选择一个合适的分离纯化方法。对当前的纯化方法进行了一个简要的综述。 关键词: 抗体 分离 纯化 ProgressinTechnologyofAntibodyPurificationandSeparation HouYueLuoFenhuaWuYingji (KeyLaboratoryofEducationMinistryofChinaforMammalianReproductiveBiologyandBiotechnology, UniversityofInnerMongolia,Hohhot010021) Abstract: Preparationofantibodiespossessedhighspecificityandaffinityisthebaseofimmunology.Thesuccess ofexperimentdependsonthequalityofantibodies.Preparingantibodieshastwoways:oneiscommonlycurrentmethod,tobeusedtoobtainpolyclonalantibodiesviaimmunizinganimalswithpurifiedantigen;theotherispreparationofmonoclonalantibodybyusinghybridomatechnique.Whatevertechnologyused,thepreparedantibodiesneedstobepurified.Itisessentialtochoosetheproperprocedureforisolationandpurificationofanantibody,accordingtopropertiesandsourceoftheantibody.Thisreviewisfocusedonthecurrentpurificationmethods. Keywords: AntibodiesIsolation Purification

磁珠法分离纯化DNA原理及其步骤

磁珠法分离纯化DNA原理及其步骤 日期:2012-05-22 来源:互联网 标签:核酸纯化核酸分离磁珠法纯化DNA 摘要: 磁珠法纯化DNA主要是利用利息交换吸附材料吸附核酸,从而将核酸和蛋白质等其细胞中其他物质分离。本文主要概述了磁珠法纯化DNA原理、核酸分离与纯化的原则、核酸分离与纯化的步骤。 欢度大力神杯之夏,参与BRAND竞猜活动,获赠BRAND产品! GeneCopoeia:qPCR mix免费试用体验活动开始! 磁珠法纯化DNA主要是利用利息交换吸附材料吸附核酸,从而将核酸和蛋白质等其细胞中其他物质分离。本文主要概述了磁珠法纯化DNA原理、核酸分离与纯化的原则、核酸分离与纯化的步骤。 磁珠法纯化DNA原理 磁珠法核酸纯化技术采用了纳米级磁珠微珠,这种磁珠微珠的表面标记了一种官能团,能同核酸发生吸附反应。硅磁(Magnetic Silica Particle)就是指磁珠微珠表面包裹一层硅材料,来吸附核酸,其纯化原理类型于玻璃奶的纯化方式。离心磁珠是指磁珠微珠表面包裹了一层可发生离心交换的材料(如DEAE,COOH)等,从而达到吸附核酸目的。不同性质的磁珠微珠所对应的纯化原理是不一致。使用磁珠法来纯化核酸的最大优点就是自动化。磁珠在磁场条件下可以发生聚集或分散,从而可彻底摆脱离心等所需的手工操作流程。Omega拥有全面的磁珠法核酸分离试剂盒,基于这种技术的试剂盒,名称前都有’Mag-Bind’。 核酸分离与纯化的原则 核酸在细胞中总是与各种蛋白质结合在一起的。核酸的分离主要是指将核酸与蛋白质、多糖、脂肪等生物大分子物质分开。在分离核酸时应遵循以下原则:保证核酸分子一级结构的完整性:排除其他分子污染。 核酸分离与纯化的步骤 大多数核酸分离与纯化的方法一般都包括了细胞裂解、酶处理、核酸与其他生物大分子物质分离、核酸纯化等几个主要步骤。每一步骤又可由多种不同的方法单独或联合实现。 1. 细胞裂解:核酸必须从细胞或其他生物物质中释放出来。细胞裂解可通过机械作用、化学作用、酶作用等方法实现。 (1) 机械作用:包括低渗裂解、超声裂解、微波裂解、冻融裂解和颗粒破碎等物理裂解方法。这些方法用机械力使细胞破碎,但机械力也可引起核酸链的断裂,因而不适用于高分子量长链核酸的分离。有报道超声裂解法提取的核酸片段长度从< 500bp ~> 20kb 之间,而颗粒匀浆法提取的核酸一般< 10kb。

抗体的制备方法与原理

抗体的制备方法与原理-单克隆抗体的制备 1975年Kohler和Milstein发现将小鼠骨髓瘤细胞与和绵羊红细胞免疫的小鼠脾细胞进行融合,形成的杂交瘤细胞既可产生抗体,又可无性繁殖,从而创立了单克隆抗体杂交瘤技术。这一技术上的突破使血清学的研究进入了一个高度精确的新纪元。 免疫细胞化学的技术关键之一是制备特异性强、亲合力大、滴度高的特异性抗体,由于每种抗原都有几个抗原决定簇,用它免疫动物将产生对各个决定簇的抗体,即多克隆抗体。单克隆抗体则是由一个产生抗体的细胞与一个骨髓瘤细胞融合而形成的杂交廇细胞经无性繁殖而来的细胞群所产生的,所以它的免疫球蛋白属同一类型,质地纯一,而且它是针对某一抗原决定簇的,因此特异性强,亲合性也一致。单克隆抗体(McAb)的特性和常规血清抗体的特性比较见2-3。 表2—3 单克隆抗体(McAb)和常规免疫血清抗体的特性比较 单克隆抗体的制备方法如下。 (一)动物的选择与免疫 1.动物的选择纯种BALB/C小鼠,较温顺,离窝的活动范围小,体弱,食量及排污较小,一般环境洁净的实验室均能饲养成活。目前开展杂交瘤技术的实验室多选用纯种BALA/C小鼠。

2.免疫方案选择合适的免疫方案对于细胞融合杂交的成功,获得高质量的McAb 至关重要。一般在融合前两个月左右根据确立免疫方案开始初次免疫,免疫方案应根据抗原的特性不同而定。 (1)可溶性抗原免疫原性较弱,一般要加佐剂,半抗原应先制备免疫原,再加佐剂。常用佐剂:福氏完全佐剂、福氏不完全佐剂。 初次免疫抗原1~50μg加福氏完全佐剂皮下多点注射或脾内注射(一般0.8~ 1ml,0.2ml/点) ↓3周后 第二次免疫剂量同上,加福氏不完全佐剂皮下或ip(腹腔内注射)(ip剂量不宜超过0.5ml) ↓3周后 第三次免疫剂量同一,不加佐剂,ip(5~7天后采血测其效价) ↓2~3周 加强免疫,剂量50~500μg为宜,ip或iv(静脉内注射) ↓3天后 取脾融合 目前,用于可溶性抗原(特别是一些弱抗原)的免疫方案也不断有所更新,如:①将可溶性抗原颗粒化或固相化,一方面增强了抗原的免疫原性,另一方面可降低抗原的使用量。 ②改变抗原注入的途径,基础免疫可直接采用脾内注射。③使用细胞因子作为佐剂,提高机体的免疫应答水平,增强免疫细胞对抗原的反应性。 (2)颗粒抗原免疫性强,不加佐剂就可获得很好的免疫效果。以细胞性抗原为例,免疫时要求抗原量为1~2×107个细胞。

分离纯化(1)

1.生物药物:是利用生物体、生物组织或其成分,综合应用生物化学、微生物免疫学、和药 学等的原理与方法制造的一大类用于预防、治疗、诊断的制品。 2.生物制品:主要指菌苗、毒素、应变原与血液制品等。 3.合成与部分合成生物药物:以天然药物为分子母体,经化学或生物学方法修饰改造合成 的生物药物。 4.基因药物:以基因物质(RNA或DNA及其衍生物)作为治疗的药物基础,包括基因治 疗用的重组目的DNA片段、重组疫苗、反义药物和核酶等。 5.反义药物:以人工合成的十至几十个反义寡核苷酸序列与模板DNA或mRNA互补形成 稳定的双键结构,抑制靶基因的转录和mRNA的翻译,从而起到抗肿瘤和抗病毒的作用。 6.疫苗:使用病毒或立克次氏体,接种于动物、鸡胚或组织培养后,加以处理制成,可分 为弱毒疫苗和死毒疫苗。 7.类毒素:使用细菌产生的外毒素加入甲醛处理后,使之变为无毒性但仍旧有免疫原性的 制剂。 8.细胞破碎:采用一定的方法,在一定程度上破坏细胞壁和细胞膜,设法使胞内产物最大 程度的释放到液相当中,破碎后的细胞浆液经固液分离除去细胞碎片后,再采用不同的分离手段进一步纯化。 9.过滤:在外力的作用下,悬浮液中的液体通过多孔介质的孔道而固体颗粒被截留下来, 从而实现固液分离的操作。 10.料液:在溶剂萃取中,被提取的溶液被称为料液。 溶质:在溶剂萃取中,欲提取的物质被称为溶质。 萃取剂:用以进行萃取的溶剂。 11.反萃取:将萃取液与反萃取剂(一般为水溶液)相接触,使某种被萃取的有机相溶质转 入水相的过程。 12.萃取液:含溶质的萃取剂溶液。 萃余液:被萃取出溶质以后的溶液。 13.双水相萃取:又称水溶液两相分配技术,它利用物质在互不相溶的两水相间分配系数的 差异来进行萃取的方法。 14.临界胶束浓度(CMC):是胶束形成时所需表现活性剂的最低浓度。 15.正常胶束:将表面活性剂溶于水中,当其浓度超过临界胶束浓度时,表面活性剂就会在 水溶液中聚集在一起而形成聚集体,通常情况下,这种聚集体是水溶液中的胶束,被称为正常胶束。 16.反胶束:将表面活性剂溶于非极性的有机溶剂中,并使其浓度超过临界胶束浓度,便会 在有机溶剂内形成聚集体,这种聚集体被称为反胶束。 17.超临界流体:在临界温度和临界压力以上的流体,高于临界温度和临界压力而接近临界 点的状态。 18.超临界流体萃取技术:是利用处于临界压力和临界温度以上的一些溶剂流体所具有(特 异增加物质溶解能力)来进行分离纯化的技术。 19.固相析出技术:通过加入某种试剂或改变溶液条件,使生化产物以固体形式(沉淀和结 晶)从溶液中沉降析出的分离纯化技术称为固相析出技术。 20.盐析法;是利用各种生物分子在浓盐溶液中溶解度的差异,通过向溶液中引入一定数量的 中性盐,使目的物或杂蛋白以沉淀析出,达到纯化目的的方法。 21.有机溶剂沉淀:向水溶液中加入一定量亲水性的有机溶剂,降低溶质的溶解度,使其沉 淀析出的分离纯化方法。 22.凝胶层析:又称分子筛层析,是将样品混合物通过一定孔径的凝胶固定相,由于各组分 流经体积的差异,使不同分子量的祖坟的一份力的层析方法。 23.类分离(组分离):将分子量极为悬殊的两类物质分开的方法。 24.分级分离:将分子量相差不大的大分子物质加一分离的方法。 25.离子交换法:利用溶液中带电粒子与离子交换剂之间结合力的差异进行物质分离的操作 方法。 26.有效粒径:指筛分树脂时,10%体积的树脂颗粒通过,而90%体积的树脂颗粒保留的筛 孔直径。 27.均一系数:指能通过60%体积(筛上体积40%)树脂的筛孔直径与能通过10%体积(筛 上体积90%)的树脂的筛孔直径之比。均一系数越接近1,表明树脂颗粒越均匀,在文献上常常见到用筛目数表示树脂粒度。 28.树脂再生:使用过的树脂重新获得使用性能的处理过程。 29.转型:树脂去除后,为了发挥其交换能力,按照使用要求人为地赋予平衡离子的过程。 30.毒化:指树脂失去交换性能后,不能用一般的再生手段重获交换能力的现象。 31.洗脱:离子交换完成后,将树脂所吸附的物质释放出来重新转入溶液的过程。

单克隆抗体制备的技术原理

单克隆抗体制备的技术原理 单克隆抗体是由一个杂交瘤细胞及其后代所产生的抗体,具有单一、特异与纯化的特性。该抗体在医学临床诊断及治疗上具有极其重要的作用。因此它的问世在现代免疫学上具有划时代的意义。 大家知道,当外源性物质在人体或动物血液中出现时,机体中有一些淋巴细胞便会做出反应,产生一些特殊的免疫球蛋白,叫做抗体。而那些外源性物质则称为抗原。抗体与抗原能发生特异结合,从而清除异物,达到保护肌体的作用。抗原不同,它所诱发的抗体也不一样。如细菌或病毒表面存在着几种抗原,因此它们就会对应地诱发出几种不同的抗体。过去人们为了获得抗体,就根据上述原理,反复注射某种抗原到动物(如兔、羊、马等)体内,然后从其血清中分离出所需的抗体。长期以来,用这种经典方法得到的抗体,往往存在着两个严重的缺点:第一,这些抗体不是均质的,而是一种抗体的混合物,特异性差,效价低;第二,抗体的产生是有限量的,因为分泌抗体的成熟淋巴细胞寿命很短,一般只能存活几天,无法大量生产。 为了克服上述缺点,许多免疫学家曾进行了长期的研究与探索,这一难题终于在1975年被国外两名免疫学家考勒和米尔斯坦解决了。他们利用自己创立的杂交瘤技术,使产生抗体的淋巴细胞能在体外长期存活,并源源不断地分泌抗体。这就是有高特异性和非常均质的单克隆抗体。 单克隆抗体的技术原理并不十分复杂。它是把能产生单一抗体的淋巴细胞与有增殖能力的骨髓瘤细胞进行融合,形成杂交瘤细胞,又称杂交瘤。由于这些杂种细胞继承了双亲细胞的遗传物质,因此它们不仅能表现出淋巴细胞分泌单一抗体的能力,而且还能表现出骨髓瘤细胞在体外大量繁殖的本领。就这样,取长补短,使杂交瘤变成了一座制造单克隆抗体的理想“工厂”。 目前制备单克隆抗体的具体方法,主要有以下三步(图2-9)。 第一步:将抗原注射到小鼠体内进行免疫,取出受免脾细胞,与小鼠骨髓瘤细胞融合。 第二步:用选择培养基,选出杂交瘤细胞,逐一克隆或扩增,从中挑出能产生抗体的杂交瘤细胞。 第三步:将杂交瘤细胞接种在培养瓶中扩大培养或注射到动物的体液中作为腹水癌生长,然后再分离纯化单克隆抗体。

酶的分离纯化方法介绍

酶的分离纯化方法介绍 酶的分离纯化一般包括三个基本步骤:即抽提、纯化、结晶或制剂。首先将所需的酶从原料中引入溶液,此时不可避免地夹带着一些杂质,然后再将此酶从溶液中选择性地分离出来,或者从此溶液中选择性地除去杂质,然后制成纯化的酶。 关键词:酶抽提纯化结晶制剂细胞破碎cell disruption 盐析亲和沉淀有机溶剂沉淀 生物细胞产生的酶有两类: 一类由细胞内产生后分泌到细胞外进行作用的酶,称为细胞外酶。这类酶大都是水解酶,如酶法生产葡萄糖所用的两种淀粉酶,就是由枯草杆菌和根酶发酵过程中分泌的。这类酶一般含量较高,容易得到; 另一类酶在细胞内产生后并不分泌到细胞外,而在细胞内起催化作用,称为细胞内酶,如柠檬酸、肌苷酸、味精的发酵生产所进行的一系列化学反应,就是在多种酶催化下在细胞内进行的,在类酶在细胞内往往与细胞结构结合,有一定的分布区域,催化的反应具有一定的顺序性,使许多反应能有条不紊地进行。酶的来源多为生物细胞。生物细胞内产生的总的酶量虽然是很高的,但每一种酶的含量却很低,如胰脏中期消化作用的水解酶种类很多,但各种酶的含量却差别很大。 因此,在提取某一种酶时,首先应当根据需要,选择含此酶最丰富的材料,如胰脏是提取胰蛋白酶、胰凝乳蛋白酶、淀粉酶和脂酶的好材料。由于从动物内脏或植物果实中提取酶制剂受到原料的限制,如不能综合利用,成本又很大。目前工业上大多采用培养微生物的方法来获得大量的酶制剂。从微生物中来生产酶制剂的优点有很多,既不受气候地理条件限制,而且动植物体内酶大都可以在微生物中找到,微生物繁殖快,产酶量又丰富,还可以通过选育菌种来提高产量,用廉价原料可以大量生产。 由于在生物组织中,除了我们所需要的某一种酶之外,往往还有许多其它酶和一般蛋白质以及其他杂质,因此为制取某酶制剂时,必须经过分纯化的手续。 酶是具有催化活性的蛋白质,蛋白质很容易变性,所以在酶的提纯过程中应避免用强酸强碱,保持在较低的温度下操作。在提纯的过程中通过测定酶的催化活性可以比较容易跟踪酶在分离提纯过程中的去向。酶的催化活性又可以作为选择分离纯化方法和操作条件的指标,在整个酶的分离纯化过程中的每一步骤,始终要测定酶的总活力和比活力,这样才能知道经过某一步骤回收到多少酶,纯度提高了多少,从而决定着一步骤的取舍。 酶的分离纯化一般包括三个基本步骤:即抽提、纯化、结晶或制剂。首先将所需的酶从原料中引入溶液,此时不可避免地夹带着一些杂质,然后再将此酶从溶液中选择性地分离出来,或者从此溶液中选择性地除去杂质,然后制成纯化的酶制剂。下面就酶的分离纯化的常用方法作一综合介绍: 一、预处理及固液分离技术 1.细胞破碎(cell disruption) 高压均质器法:此法可用于破碎酵母菌、大肠菌、假单胞菌、杆菌甚至黑曲霉菌。将细胞悬浮液在高压下通入一个孔径可调的排放孔中,菌体从高压环境转到低压环境,细胞就容易破碎。菌悬液一次通过均质器的细胞破碎率在12%-67%。细胞破碎率与细胞的种类有关。

《生物分离与纯化技术》授课教案

《生物分离与纯化技术》授课教案 第一章绪论 教学目的:熟悉生物物质的概念、种类和来源;了解分离纯化技术及其基本原理;熟悉分离纯化工艺的优化、放大和验证工作;掌握分离纯化的特点与一般步骤;了解生物分离纯化技术的发展历史;熟悉生物分离纯化技术的发展趋势。 教学重点:生物物质的概念、种类和来源;分离纯化工艺的优化、放大和验证工作;分离纯化的特点与一般步骤;生物分离纯化技术的发展趋势。 教学难点:分离纯化技术及其基本原理;分离纯化工艺的优化、放大和验证工作。教学课时:4 学时 教学方法:多媒体教学 教学内容: 第一节生物分离与纯化的概念与原理 一、生物物质的概念、种类和来源 1. 生物物质:氨基酸及其衍生物类、活性多肽类、蛋白质、酶类、核酸及其降解 物、糖、脂类、动物器官或组织制剂、小动物制剂、菌体制剂 2. 生物物质来源:动物器官与组织、植物器官与组织、微生物及其代谢产物、细胞培养产物、血液、分泌物及其代谢物 二、生物分离纯化概念 指从发酵液、动植物细胞培养液、酶反应液或动植物组织细胞与体液等中分离、纯化生物产品的过程。 三、生物分离纯化技术

生物技术 上游:基因工程、细胞工程、酶工程、发酵工程及组织工程;下游:生物产品的回收——生物分离与纯化技术,主要包括离心技术、细胞破碎技术、萃取技术、固相析出技术、色谱技术和膜分离技术等。 四、分离纯化基本原理 有效识别混合物中不同组分间物理、化学和生物学性质的差别,利用能够识别这些差别的分离介质或扩大这些差别的分离设备来实现组分间的分离或目标产物的纯化。

第二节分离纯化策略 一、生物分离纯化技术的特点 1. 环境复杂、分离纯化困难 2. 含量低、工艺复杂

抗体纯化大全资料

抗体的纯化 第一节硫酸铵沉淀法 基本原理 硫酸铵沉淀法可用于从大量粗制剂中浓缩和部分纯化蛋白质。用此方法可以将主要的免疫球蛋白从样品中分离,是免疫球蛋白分离的常用方法。高浓度的盐离子在蛋白质溶液中可与蛋白质竞争水分子,从而破坏蛋白质表面的水化膜,降低其溶解度,使之从溶液中沉淀出来。各种蛋白质的溶解度不同,因而可利用不同浓度的盐溶液来沉淀不同的蛋白质。这种方法称之为盐析。盐浓度通常用饱和度来表示。硫酸铵因其溶解度大,温度系数小和不易使蛋白质变性而应用最广。 试剂及仪器 ·组织培养上清液、血清样品或腹水等 ·硫酸铵(NH4)SO4 ·饱和硫酸铵溶液(SAS) ·蒸馏水 · PBS(含0.2g/L叠氮钠) (见附录一) ·透析袋 ·超速离心机 · pH计 ·磁力搅拌器 实验步骤 以腹水或组织培养上清液为例来介绍抗体的硫酸铵沉淀。各种不同的免疫球蛋白盐析所需硫酸铵的饱和度也不完全相同。通常用来分离抗体的硫酸铵饱和度为33%—50%。 一、配制饱和硫酸铵溶液(SAS) 将767g(NH4)2SO4 边搅拌边慢慢加到1升蒸馏水中。用氨水或硫酸调到pH7.0。此即饱和度为100%的硫酸铵溶液(4.1 mol/L, 25°C); 其它不同饱和度硫酸铵溶液的配制见表1;

二、沉淀 1、样品(如腹水)20 000′g 离心30 min,除去细胞碎片; 2、保留上清液并测量体积; 3、边搅拌边慢慢加入等体积的SAS到上清液中,终浓度为1:1(v/v); 4、将溶液放在磁力搅拌器上搅拌6小时或搅拌过夜(4°C),使蛋白质充分沉淀。 三、透析 1、蛋白质溶液10 000′g 离心30 min(4°C)。弃上清保留沉淀; 2、将沉淀溶于少量(10-20ml)PBS-0.2g/L叠氮钠中。沉淀溶解后放入透析袋对PBS-0.2g/L 叠氮钠透析24-48小时(4°C),每隔3-6 小时换透析缓冲液一次,以彻底除去硫酸氨; 3、透析液离心,测定上清液中蛋白质含量。 应用提示 一、先用较低浓度的硫酸氨预沉淀,除去样品中的杂蛋白。 1、边搅拌边慢慢加SAS到样品溶液中,使浓度为0.5:1 (v/v); 2、将溶液放在磁力搅拌器上搅拌6小时或过夜(4°C); 3、3000′g 离心30 min(4°C),保留上清液; 4、上清液再加SAS到0.5:1 (v/v),再次离心得到沉淀。将沉淀溶于PBS,同前透析,除去硫酸氨; 5、杂蛋白与欲纯化蛋白在硫酸氨溶液中溶解度差别很大时,用预沉淀除杂蛋白是非常有效的; 二、为避免体积过大,可用固体硫酸氨进行盐析(硫酸氨用量参考表1); 三、硫酸氨沉淀法与层析技术结合使用,可得到更进一步纯化的抗体。 参考文献 1、Burd, R.S., Raymond, C.S., Ratz, C. A and Dunn, D.L (1993) A rapid procedure for purifying IgM monoclonal antibodies from murine ascites using a DEAE – disk. Hybridoma

抗体的制备方法与原理

抗体的制备方法与原理 一、抗血清的制备 有了质量好的抗原,还必须选择适当的免疫途径,才能产生质量好(特异性强和效价高)的抗体。 (一)用于免疫的动物 作免疫用的动物有哺乳类和禽类,主要为羊、马、家兔、猴、猪、豚鼠、鸡等,实验室常用者为家兔、山羊和豚鼠等。动物种类的选择主要根据抗原的生物学特性和所要获得抗血清数量,如一般制备抗r-免疫球蛋白抗血清,多用家兔和山羊,因动物反应良好,而且能够提供足够数量的血清,用于免疫的动物应适龄,健壮,无感染性疾患,最好为///雄性,此外还需十分注意动物的饲养,以消除动物的个体差异以及在免疫过程中死亡的影响。若用兔,最好用纯种新西兰兔,一组三只,兔的体重以2~3kg为宜。 (二)免疫途径 免疫途径有多种多样,如静脉、腹腔、肌肉、皮、皮下、淋巴结注射等,一般常用皮下或背部多点皮注射,每点注射0.1ml左右。途径的选择决定于抗原的生物学特性和理化特性,如激素、酶、毒素等生物学活性抗原,一般不宜采用静脉注射。 (三)佐剂 由于不同个体对同一抗原的反应性不同,而且不同抗原产生免疫反应的能力也有强有弱,因此常常在注射抗原的同时,加入能增强抗原的抗原性物质,以刺激机体产生较强的免疫反应,这种物质称为免疫佐剂。 佐剂除了延长抗原在体的存留时间,增加抗原刺激作用外,更主要的是,它能刺激网状皮系统,使参与免疫反应的免疫活性细胞增多,促进T细胞与B细胞的相互作用,从而增强机体对抗原的细胞免疫和抗体的产生。 常用的佐剂是福氏佐剂(Freund adjuvant),其成分通常是羊毛脂1份、石腊油5份,羊毛脂与石腊油的比例,视需要可调整为1:2~9(V/V),这是不完全福氏佐剂,在每毫升不完全佐剂加入1~20mg 卡介苗就成为完全佐剂。 配制方法:按比例将羊毛脂与石蜡油置容器,用超声波使之混匀,高压灭菌,置4℃下保存备用。免疫前取等容积完全或不完全佐剂与免疫原溶液混合,用振荡器混匀成乳状,也可以在免疫前取需要量佐剂置乳钵中研磨,均匀后再边磨边滴加入等容积抗原液(其中加卡介苗3~4mg/ml或不加),加完后再继续研磨成乳剂,滴于冰水上5~10min完全不扩散为止。为避免损失抗原,亦可用一注射器装抗原液,另

抗体纯化常见问题回答

用 户园地Q & A 30 鉴于亲和层析技术的发展,抗原抗体之间的特异性相 互作用,使得抗体的纯化相对来说比较简单,一步亲和层析 即可达到90%以上的纯度, 这为科研和实验室使用的抗体 纯化提供很好的解决方案。然而要得到高质量高纯度的抗 体,需要我们从样品处理,纯化介质的选择以及纯化方法 上悉心考虑,这里我们就这些大家常见的问题来讨论。 1,对于血清、腹水或细胞悬浮物来源的抗体样品, 有哪些样品处理的方法? 在纯化前,合适的样品处理不仅可以帮助我们得到高 纯度高质量的抗体,还有助于保护亲和层析柱,延长使用寿 命。对于血清、腹水或细胞悬浮物来源的样品经常含有脂 蛋白,酚红,小分子污染物等等。 腹水中经常含有高浓度的脂蛋白,这些脂蛋白和脂 类物质会堵塞层析柱,最好能在纯化之前去除。方法一是 在二价离子存在的情况下,硫酸右旋葡糖酐能够沉淀脂蛋 白,沉淀可以通过离心除去;方法二PVP能产生一个pH值 依赖的沉淀效应,PVP在pH=7.0时能够沉淀b-脂蛋白和球 蛋白。很多时候,可以考虑进样前用亲和结合缓冲液稀释 腹水,不仅保证样品的结合pH,还有利于降低黏度。 酚红是一种在实验室细胞培养中的pH指示剂,虽然 并不直接的影响纯化,但是酚红可能结合到某些纯化介质 上,应该尽可能早的被除去,可以使用脱盐柱除去酚红。 对于一些低分子污染物可以使用分级沉淀法去除,如 硫酸铵沉淀,羊脂酸沉淀的方法。 最后利用脱盐柱来更换缓冲液并除盐,把样品换到 合适的缓冲液中(PH和盐浓度),并除去没有用处的小分 子。更多详细的方法可以参考《抗体纯化手册》。 2,实验室需要纯化小鼠的IgG1,我是选择ProteinG 还是ProteinA? 首先我们要根据不同的种属亚型参考“相对结合强 度”表(图1)来获取选择哪种配基的指导,针对小鼠的 IgG1, ProteinA结合相对弱,可以选择ProteinG配基的介 质。但由于Protein G结合力较强,因此有时需要pH低于2.0 才能有效洗脱,容易导致某些对酸敏感的抗体聚集沉淀。 此时可以考虑结合力相对较弱的protein A填料,结合缓冲 液中需要加入0.5~3M 的氯化钠以增加结合能力,目标抗体 在pH4.5左右就可以被温和的洗脱。 若实验室有AKTA系统,那么Hitrap ProteinG HP是高分 辨率方便快捷的首选。 若没有AKTA系统,MabTrap抗体纯化试剂盒可以给你 带来最大的快捷和便利,试剂盒含有一个Hitrap ProteinG HP1ml的预装柱,结合,洗脱和中和的缓冲液,一个具有 接头的注射器、以及经过优化的纯化操作规程。 Ab Spin Trap是预装了100ulProteinGHP填料的离心 柱,和标准的小离心机一起使用,仅用20分钟就可以完成 一次小规模的抗体纯化。 ProteinG HP MultiTrap96孔板适用于高通量的筛选。 3,面对ProteinA如此多的配基形式,它们有何区别 和应用? 蛋白A (Protein A) 来源于金黄色葡萄球菌的一个株 系,它含有5个可以和抗体IgG分子的Fc段特异性结合的结 构域,可以特异性的和样品中的抗体分子结合,而使其他 杂蛋白流穿,具有极高的选择性,通常一步亲和层析就可 达到超过95%的纯度。 ProteinA sepharoseCL-4B,是将从金黄色葡萄球菌表 达纯化出蛋白A通过CNBr的方法偶联在sepharose CL-4B的 介质上,可以纯化体液或细胞培养液中的免疫球蛋白。 nproteinA sepharose4FF,nprteinA即为天然 (Native Protein A),表示其在生产过程中没有引入任何动物来源的组分。 rproteinA sepharose4FF,重组的蛋白A (rProtein A), 经基因工程改造后含有一个C末端半胱氨酸,可以单一位 点定向偶联于琼脂糖骨架上,有效降低空间位阻,增加了 与IgG 的结合能力。同时配基在发酵和纯化过程中没有引 用人源的IgG,避免了人源IgG的污染风险。 rmpProteinA,多位点附着的技术,保证更低的配体 的脱落。一步高度纯化单抗和多抗。 2005年我们推出了新一代的MabSelect ,是第一个使 用高流速琼脂糖凝胶 ( High ?ow Agarose) 作为骨架的新型 蛋白A层析介质,专为大规模抗体纯化而设计。相比传统 抗体纯化常见问题回答

抗体纯化大全教学资料

抗体纯化大全

抗体的纯化 第一节硫酸铵沉淀法 基本原理 硫酸铵沉淀法可用于从大量粗制剂中浓缩和部分纯化蛋白质。用此方法可以将主要的免疫球蛋白从样品中分离,是免疫球蛋白分离的常用方法。高浓度的盐离子在蛋白质溶液中可与蛋白质竞争水分子,从而破坏蛋白质表面的水化膜,降低其溶解度,使之从溶液中沉淀出来。各种蛋白质的溶解度不同,因而可利用不同浓度的盐溶液来沉淀不同的蛋白质。这种方法称之为盐析。盐浓度通常用饱和度来表示。硫酸铵因其溶解度大,温度系数小和不易使蛋白质变性而应用最广。 试剂及仪器 ·组织培养上清液、血清样品或腹水等 ·硫酸铵(NH4)SO4 ·饱和硫酸铵溶液(SAS) ·蒸馏水 · PBS(含0.2g/L叠氮钠) (见附录一) ·透析袋 ·超速离心机 · pH计 ·磁力搅拌器 实验步骤 以腹水或组织培养上清液为例来介绍抗体的硫酸铵沉淀。各种不同的免疫球蛋白盐析所需硫酸铵的饱和度也不完全相同。通常用来分离抗体的硫酸铵饱和度为33%—50%。 一、配制饱和硫酸铵溶液(SAS) 将767g(NH4)2SO4 边搅拌边慢慢加到1升蒸馏水中。用氨水或硫酸调到pH7.0。此即饱和度为100%的硫酸铵溶液(4.1 mol/L, 25°C); 其它不同饱和度硫酸铵溶液的配制见表1;

二、沉淀 1、样品(如腹水)20 000′g 离心30 min,除去细胞碎片; 2、保留上清液并测量体积; 3、边搅拌边慢慢加入等体积的SAS到上清液中,终浓度为1:1(v/v); 4、将溶液放在磁力搅拌器上搅拌6小时或搅拌过夜(4°C),使蛋白质充分沉淀。 三、透析 1、蛋白质溶液10 000′g 离心30 min(4°C)。弃上清保留沉淀; 2、将沉淀溶于少量(10-20ml)PBS-0.2g/L叠氮钠中。沉淀溶解后放入透析袋对PBS-0.2g/L 叠氮钠透析24-48小时(4°C),每隔3-6 小时换透析缓冲液一次,以彻底除去硫酸氨; 3、透析液离心,测定上清液中蛋白质含量。 应用提示 一、先用较低浓度的硫酸氨预沉淀,除去样品中的杂蛋白。 1、边搅拌边慢慢加SAS到样品溶液中,使浓度为0.5:1 (v/v); 2、将溶液放在磁力搅拌器上搅拌6小时或过夜(4°C); 3、3000′g 离心30 min(4°C),保留上清液; 4、上清液再加SAS到0.5:1 (v/v),再次离心得到沉淀。将沉淀溶于PBS,同前透析,除去硫酸氨; 5、杂蛋白与欲纯化蛋白在硫酸氨溶液中溶解度差别很大时,用预沉淀除杂蛋白是非常有效的; 二、为避免体积过大,可用固体硫酸氨进行盐析(硫酸氨用量参考表1); 三、硫酸氨沉淀法与层析技术结合使用,可得到更进一步纯化的抗体。 参考文献

相关主题
文本预览
相关文档 最新文档