当前位置:文档之家› 第数值微积分

第数值微积分

第数值微积分
第数值微积分

第五章 数值微积分

一、内容分析与教学建议

本章内容是数值微积分。数值微分包括:用插值多项式求数值微分、用三次样条函数求数值微分和用Richardson 外推法求数值微分。数值积分包括:常见的Newton-Cotes 求积公式,如:梯形公式、Simpson 公式和Cotes 公式;复化求积公式;Romberg 求积公式和Gauss 型求积公式等内容。

(一) 数值微分

1、利用Taylor 展开式建立数值微分公式,实际上是利用导数的离散化,即用差商近似代替导数,在由Taylor 公式的余项估计误差;由于当步长h 很小时,回出现两个非常接近的数相减,因此,在实际运用中往往采用事后估计的方法来估计误差。

2、用插值多项式求数值微分,主要是求插值节点处的导数的近似值。借助第二章的Lagrange 插值公式及其余项公式,确定插值节点处的导数的近似值及其误差。常用的有三点公式和五点公式。

3、阐明用三次样条函数()s x 求数值微分的优点:由第三章的三次样条函数()s x 的性质知:只要()f x 的4阶导数连续,则当步长0h →时,()s x 收敛到()f x ,()s x '收敛到()f x ',()s x ''收敛到()f x ''. 因此,用三次样条函数()s x 求数值微分,效果是很好的。指出其缺点是:需要解方程组,当h 很小时,计算量较大。

4、讲解用Richardson 外推法求数值微分时,首先阐明方法的理论基础是导数的离散化,即用差商近似代替导数;然后重点讲解外推法的思想和推导过程,因为这种方法和思路在后面的数值积分和微分方程数值解中还要用到。

(二)数值积分的一般概念

1、由定积分的几何意义引入数值积分的思想,介绍求积公式、求积节点、求积系数、余项等基本概念。

2、重点介绍代数精度以及如何求一个判定积公式的代数精度,并举例说明。

3、介绍插值型求积公式以及插值型求积公式的代数精度的特点。

(三)等距节点的求积公式

1、简单介绍一般的等距节点的插值型求积公式——Newton-Cotes公式以及Cotes系数。

2、重点介绍几种常用的Newton-Cotes公式:梯形公式、Simpson公式和Cotes公式。要求学生掌握上述三种求积公式的表达式,并了解三种求积公式各自的余项。

3、以Simpson公式为例,求出它的代数精度是3;并要求学生课后自己求出梯形公式和Cotes公式的代数精度。

(四)复化求积公式

1、结合分段插值的思想阐明复化求积公式的思想。

2、重点介绍复化梯形公式、复化Simpson公式和复化Cotes公式以及它们各自的余项,并举一、两个例子加以说明。

3、简介事后估计和自适应Simpson方法。

(五)R omberg求积法

1、Romberg求积法是一种逐步分半加速法,它是以复化梯形公式为基础构造高精度求积公式的方法,是一种快速、有效的求积法。

2、阐明Romberg公式的建立过程:利用事后估计的思想,从复化梯形公式建立一整套递推算法,进而得到Romberg公式,整个过程实际上是一个加速的过程。

3、可通过例子验证Romberg求积法的加速效果。

(六)G auss型求积公式

1、Gauss型求积公式也是一种高精度的插值型求积公式,但它的节点不是等距的,因而Gauss型求积公式不属于Newton-Cotes公式的范畴。

2、阐明Gauss型求积公式的代数精度是插值型求积公式的最大值,介绍Gauss点的概念,并说明Gauss点实际上是某个正交多项式的零点。

3、讲清楚Gauss型求积公式的求积系数的特殊构造,并由此证明Gauss型求积公式是稳定的,以及Gauss型求积公式的收敛性。

4、介绍几种Gauss型求积公式:古典Gauss公式、Gauss-Tchebyshev公式、Gauss-Laguerre公式和Gauss-Hermite公式。让学生了解上述四中Gauss型求积公式的表达式、表达式中的权函数、定积分的上、下限以及求积系数,并通过2—3个例子具体阐述上述Gauss型求积公式是如何求数值积分的,并和以前的方法比较它们的精度。

本章结束时,建议安排一次上机实习,让学生自己动手,根据书中的算法,编程计算各种数值积分的例子,加深和巩固学生对本章内容和方法的了解和掌握。

二、补充例题

例1 用三点公式求2

1

()(1)f x x =+在 1.0,1.1,1.2x =处的导数值,并估计误差,()f x 的函数值由下表给出:

1.0 1.1 1.2

()0.2500000.2267570.206612

i i x f x .

解 三点求导公式为

取上表中0121.0, 1.1, 1.2x x x ===,再分别将有关数值代入上式,即可得导数的近似值。因为55

1.0 1.2

1.0 1.2

4!4!

()max ()max 0.75(1)2i x x f f x x ξ≤≤≤≤''''''≤=-

==+,所以可得误差估计及导数值如下表: 例2 从地面发射一枚火箭,在最初80秒内,记录其加速度如下表。试求火箭在第80秒时的速度。

分析:速度对时间t 的导数等于加速度,因此已知加速度求速度,只需把速度看作是加速度的原函数即可。若设速度为()v t ,则0()(0)()t

v t v a t dt =+?,于是80

0(80)(0)()v v a t dt =+?.这样就把问题转化为求积分的问题。

解 应用复化Simpson 求积公式计算。此题中积分区间的长度是80,有9个节点,故

4,80420n h ===.由于火箭从地面向上发射,因此(0)0v =. 于是火箭在第80秒时的速度

为 8080

00(80)(0)()()v v a t dt a t dt =+=??

例3 计算椭圆2

214

x y +=的周长,使结果具有5位有效数字。

分析:这是一个求周长的问题,因此要用到线积分中的弧长公式。在估计误差时,由于弧长公式中含有根式,其高阶导数较复杂,故可用事后误差估计的方法来做;另外还必

须把误差与有效数字结合起来使用。

解 由于在直角坐标系下求弧长表达式较复杂,因此采用极坐标来求解。

令2cos ,sin x y θθ==,则椭圆弧长为

444l d d d θθθ=?=?=?,

因为

22

2

I d π

π

θπ<=

=,

所以I 有一位整数。故若要求结果有5位有效数字,则必须使截断误差41102

-≤?. 列表计算如下:

故可取8 2.4221I T ≈=可使I 有5位有效数字,从而49.6884l I =?≈.

例4 用反证法证明:不存在,(0,1,2,,)k k A x k n =L ,使得求积公式

的代数精度超过21n +次。

分析:只要能找到一个22n +次的多项式,使求积公式两边不相等即可。而具有21n +次

代数精度的求积公式的节点是[,]a b 上带权()x ρ的正交多项式的零点(0,1,2,,)k x k n =L ,可考察22n +次的多项式221

0()()n

n i i x x x ω+==-∏.

解 构造多项式221

()()()n

n i i K x x x x ω+===-∏,并令()()f x K x =,代入上述求积公式,则左

端有()()()()0b b

a a x f x dx x K x dx ρρ=>??;右端有0

()()0n n

k k k k k k A f x A K x ====∑∑; 即左端≠右端。这

说明:不存在具有22n +次代数精度的求积公式。故Gauss 型求积公式是具有最高次代数精度的求积公式。

例5 设5000()[2,2],0,,(),0,1,2k k k f x C x h x h h x x kh f f x k ∈-+>=+==±±,求证:(1)

4021121

()(88)()12f x f f f f O h h

--'=

-+-+; (2) 2010121

()(2)()f x f f f O h h

-''=

-++. 证 本题用Taylor 公式来证。

(1) 因为 230000011

(2)()2()(2)()(2)()2!3!

f x h f x h f x h f x h f x ''''''±=±?+

??±?? 4(4)501

(2)()()4!

h f x O h +

??+, 4(4)501

()()4!

h f x O h +

??+, 所以500000(2)()8()(2)12()()f x h f x h f x h f x h h f x O h '---++-+=?+,

即 4021121

()(88)()12f x f f f f O h h

--'=

-+-+. (2) 利用(1)中0()f x h ±的展开式,得

2010121

()(2)()f x f f f O h h

-''=

-++.

例6 确定常数,,,A B C D (均用分数精确表示),使求积公式()()I

f I f ≈%,其中 23()()()d ,()[()()][()()]b

a I f x a f x x I f h Af a Bf

b h Cf a Df b ''=-=+++?%具有尽可能高的代数精确

度,并指出代数精确度是多少?其中h b a =-.

解 设该求积公式对23()1,,(),()f x x a x a x a =---精确成立,得

2231

()[11][00]2

b a x a h A B h C D -=?+?+?+?, 3231

()[0][11]3

b a x a h A B h h C D -=?+?+?+?, 42231

()[0][02]4

b a x a h A B h h C D h -=?+?+?+?, 523321

()[0][03]5

b a x a h A B h h C D h -=?+?+?+?, 化简得

解得3711

,,,.20203020

A B C D =

===- 例7

寻找合适的数值求积公式,计算出积分3

1x ?的准确值。 解

因为3

1

21-12

1(2)2

x t x

t t t =++=

+???令

221

1121

111(2)()d 222t t t f t t ?

?=++==???

?

???, 其中2()(2)f t t t =+

,权函数()x ρ=

Gauss-Tchebyshev 求积公式

1

1

()d ()n

k k k f t t A f x =≈∑?,其中,1,2,,k A k n n

π

=

=L . ()*

又因为2()(2)f t t t =+是3次多项式,且()*具有21n -次代数精度,所以取2n =,可计算出积

分3

111()d 2x f t t =

??的准确值。此时

121213,,cos cos 2

244A A x x π

π

ππ=

=

====

2

21112

2222()(2)2()(2)2f x x x f x x x ?=+=+=?????=+=+=????

122

2

ππ?=+=

??

.

微积分英文专业词汇

微积分词汇 第一章函数与极限 Chapter1Function and Limit 集合set 元素element 子集subset 空集empty set 并集union 交集intersection 差集difference of set 基本集basic set 补集complement set 直积direct product 笛卡儿积Cartesian product 开区间open interval 闭区间closed interval 半开区间half open interval 有限区间finite interval 区间的长度length of an interval 无限区间infinite interval 领域neighborhood 领域的中心centre of a neighborhood 领域的半径radius of a neighborhood 左领域left neighborhood 右领域right neighborhood 映射mapping X到Y的映射mapping of X ontoY 满射surjection 单射injection 一一映射one-to-one mapping 双射bijection 算子operator 变化transformation 函数function 逆映射inverse mapping 复合映射composite mapping 自变量independent variable 因变量dependent variable 定义域domain 函数值value of function 函数关系function relation 值域range 自然定义域natural domain 单值函数single valued function 多值函数multiple valued function 单值分支one-valued branch 函数图形graph of a function 绝对值函数absolute value 符号函数sigh function 整数部分integral part 阶梯曲线step curve 当且仅当if and only if(iff) 分段函数piecewise function 上界upper bound 下界lower bound 有界boundedness 无界unbounded 函数的单调性monotonicity of a function 单调增加的increasing 单调减少的decreasing 单调函数monotone function 函数的奇偶性parity(odevity)of a function 对称symmetry 偶函数even function 奇函数odd function 函数的周期性periodicity of a function 周期period 反函数inverse function 直接函数direct function 复合函数composite function 中间变量intermediate variable 函数的运算operation of function 基本初等函数basic elementary function 初等函数elementary function 幂函数power function 指数函数exponential function 对数函数logarithmic function 三角函数trigonometric function 反三角函数inverse trigonometric function 常数函数constant function 双曲函数hyperbolic function 双曲正弦hyperbolic sine 双曲余弦hyperbolic cosine 双曲正切hyperbolic tangent 反双曲正弦inverse hyperbolic sine 反双曲余弦inverse hyperbolic cosine 反双曲正切inverse hyperbolic tangent

matlab数值微积分与方程数值求解

电子一班王申江 实验九数值微积分与方程数值求解 一、实验目的 1、掌握求数值导数和数值积分的方法 2、掌握代数方程数值求解的方法 3、掌握常微分方程数值求解的方法 二、实验内容 1、求函数在指定点的数值导数。 () 23 2 123,1,2,3 026 x x x f x x x x x == >>syms x >>f=[x x^2 x^3;1 2*x 3*x^2;0 2 6*x]; >>F=det(f) F=2*x^3 >>h=0.1 >>x=[0:h:4]; >>f=2*x^3; >>[dy,dx]=diff_ctr(f,h,1); >>y1=dy(dx==1) y1=6.0000 >>y2=dy(dx==2)

y2=24.0000 >>y3=dy(dx==3) y3=54.0000 2、用数值方法求定积分。 (1) 210I π =?的近似值 a=inline('sqrt(cos(t.^2)+4*sin((2*t).^2)+1)'); I=quadl(a,0,2*pi) I = 6.7992 + 3.1526i (2)()1 202ln 11x I dx x +=+? b=inline('log(1+x)./(1+x.^2)'); I=quadl(b,0,1) I = 0.2722 3、分别用3种不同的数值方法解线性方程组。 6525494133422139211 x y z u x y z u x y z u x y u +-+=-??-+-=??++-=??-+=? A=[6,5,-2,5;9,-1,4,-1;3,4,2,-2;3,-9,0,2]; b=[-4,13,1,11]'; x=A\b

大学高等数学第四章 不定积分答案

第四章 不定积分 习 题 4-1 1.求下列不定积分: (1)解:C x x x x x x x x x +-=-= -??- 25 232 122d )5(d )51( (2)解:?+x x x d )32(2 C x x x ++ ?+ =3 ln 29 6 ln 6 22 ln 24 (3)略. (4) 解:? ??-+ -= +-x x x x x x x d )1(csc d 1 1d )cot 1 1( 2 2 2 2 =C x x x +--cot arcsin (5) 解:?x x x d 2103 C x x x x x x += ==??80 ln 80 d 80 d 810 (6) 解:x x d 2 sin 2 ?=C x x x x ++= -= ?sin 2 12 1d )cos 1(2 1 (7)? +x x x x d sin cos 2cos C x x x x x x x x x x +--=-= +-= ?? cos sin d )sin (cos d sin cos sin cos 2 2 (8) 解:? x x x x d sin cos 2cos 2 2 ?? - = -= x x x x x x x x d )cos 1sin 1( d sin cos sin cos 2 2 2 2 2 2 C x x +--=tan cot (9) 解: ???-=-x x x x x x x x x d tan sec d sec d )tan (sec sec 2 =C x x +-sec tan (10) 解:},,1max{)(x x f =设?? ? ??>≤≤--<-=1,11,11,)(x x x x x x f 则. 上连续在),()(+∞-∞x f , )(x F 则必存在原函数,???? ???>+≤≤-+-<+-=1,2 1 11, 1,21)(32212 x C x x C x x C x x F 须处处连续,有又)(x F )2 1(lim )(lim 12 1 21 C x C x x x +- =+-+-→-→ ,,2 1112C C +- =+-即

(完整版)第7章多元函数微积分测试题讲义

第7章 多元函数微积分 测试题 一、单项选择题。 1.设23)12(++=y x z ,则 =??y z ( D )。 A .13)12)(23(+++y x y B .13)12)(23(2+++y x y C .)12ln()12(23+++x x y D .)12ln()12(323+++x x y 2.设)ln(y x z +=,则=) 0,1(d z ( B ) 。 A .y x d d +- B .y x d d + C .y x d d - D .y x d d -- 3.下列说法正确的是( A )。 A .可微函数),(y x f 在),(00y x 处达到极值,则必有),(00y x f x 0),(00==y x f y ; B .函数),(y x f 在),(00y x 处达到极值,则必有),(00y x f x 0),(00==y x f y ; C .若),(00y x f x 0),(00==y x f y ,则函数),(y x f 在点),(00y x 处达到极值。 D .若),(00y x f x 或),(00y x f y 有一个不存在,则函数),(y x f 在点),(00y x 处一定没有极值。 4.设uv z =,v u x +=,v u y -=,若把z 看作y x ,的函数,则 =??x z ( A ) 。 A .x 21 B .)(21 y x - C .x 2 D .x 5.下列各点中( B )不是函数x y x y x z 9332233-++-=的驻点。 A .)0,1( B .)1,0( C .)2,1( D .)0,3(- 6.二元函数?????=≠+=)0,0(),( 0)0,0(),( ),(2 2y x y x y x xy y x f 在点)0,0(处( C )。 A .连续,偏导数存在 B .连续,偏导数不存在 C .不连续,偏导数存在 D .不连续,偏导数不存在 7.函数xy y x z ++=22的极值点为( A )。 A .)0,0( B .)1,0( C .)0,1( D .不存在

(完整版)微积分术语中英文对照

微积分术语中英文对照 A、B: Absolute convergence :绝对收敛 Absolute extreme values :绝对极值 Absolute maximum and minimum :绝对极大与极小Absolute value :绝对值 Absolute value function :绝对值函数Acceleration :加速度 Antiderivative :原函数,反导数 Approximate integration :近似积分(法) Approximation :逼近法 by differentials :用微分逼近 linear :线性逼近法 by Simpson’s Rule :Simpson法则逼近法 by the Trapezoidal Rule :梯形法则逼近法Arbitrary constant :任意常数 Arc length :弧长 Area :面积 under a curve :曲线下方之面积 between curves :曲线间之面积 in polar coordinates :极坐标表示之面积 of a sector of a circle :扇形之面积 of a surface of a revolution :旋转曲面之面积Asymptote :渐近线 horizontal :水平渐近线 slant :斜渐近线 vertical :垂直渐近线 Average speed :平均速率 Average velocity :平均速度 Axes, coordinate :坐标轴 Axes of ellipse :椭圆之对称轴 Binomial series :二项式级数 Binomial theorem:二项式定理 C: Calculus :微积分 differential :微分学 integral :积分学 Cartesian coordinates :笛卡儿坐标一般指直角坐标Cartesian coordinates system :笛卡儿坐标系Cauch’s Mean Value Theorem :柯西中值定理Chain Rule :链式法则 Circle :圆 Circular cylinder :圆柱体,圆筒 Closed interval :闭区间 Coefficient :系数 Composition of function :复合函数 Compound interest :复利 Concavity :凹性 Conchoid :蚌线 Conditionally convergent:条件收敛 Cone :圆锥 Constant function :常数函数 Constant of integration :积分常数 Continuity :连续性 at a point :在一点处之连续性 of a function :函数之连续性 on an interval :在区间之连续性 from the left :左连续 from the right :右连续 Continuous function :连续函数 Convergence :收敛 interval of :收敛区间 radius of :收敛半径 Convergent sequence :收敛数列 series :收敛级数 Coordinates:坐标 Cartesian :笛卡儿坐标 cylindrical :柱面坐标 polar :极坐标 rectangular :直角坐标 spherical :球面坐标 Coordinate axes :坐标轴 Coordinate planes :坐标平面 Cosine function :余弦函数 Critical point :临界点 Cubic function :三次函数 Curve :曲线 Cylinder:圆筒, 圆柱体, 柱面 Cylindrical Coordinates :圆柱坐标 D: Decreasing function :递减函数 Decreasing sequence :递减数列 Definite integral :定积分 Degree of a polynomial :多项式之次数 Density :密度 Derivative :导数 of a composite function :复合函数之导数 of a constant function :常数函数之导数directional :方向导数 domain of :导数之定义域 of exponential function :指数函数之导数higher :高阶导数 partial :偏导数 of a power function :幂函数之导数 of a power series :羃级数之导数 of a product :积之导数 of a quotient :商之导数 as a rate of change :导数当作变化率 right-hand :右导数 second :二阶导数 as the slope of a tangent :导数看成切线之斜率Determinant :行列式 Differentiable function :可导函数 Differential :微分 Differential equation :微分方程 partial :偏微分方程 Differentiation :求导法 implicit :隐求导法 partial :偏微分法 term by term :逐项求导法 Directional derivatives :方向导数Discontinuity :不连续性

高等数学第四章 不定积分教案

第四章 不定积分 知识结构图: ???????? ???????????????????????分部积分法第二换元积分法 第一换元积分法直接积分法求不定积分基本公式性质 几何意义定义不定积分原函数 教学目的要求: 1.理解原函数与不定积分的概念,理解两者的关系,理解不定积分与导数的关系;掌握不 定积分的几何意义与基本性质。 2.理解与掌握积分的基本公式,掌握不定积分的基本运算,会熟练地用直接积分法、第一 类换元积分法、第二换元积分法(代数换元)、分部积分法求不定积分。 3.了解不定积分在经济问题中的应用。 教学重点: 1.原函数与不定积分的概念 2.不定积分的性质与基本积分公式 3.直接积分法 4.换元积分法 5.分部积分法 教学难点: 1.不定积分的几何意义 2.凑微分法、分部积分法求不定积分 第一节 不定积分的概念与基本公式 【教学内容】原函数与不定积分的概念、不定积分的几何意义、不定积分的基本性质、不定积分的基本公式。直接积分法求函数的不定积分。 【教学目的】理解原函数与不定积分的概念,理解不定积分的几何意义;理解并掌握不定积分的基本性质;熟练掌握用直接积分法计算一些简单函数的不定积分。 【教学重点】1.原函的概念;2.不定积分的概念;3.不定积分的几何意义;4.不定积分的基本性质;5.不定积分的基本公式;6.直接积分法计算不定积分。 【教学难点】1.理解不定积分的几何意义;2.记忆不定积分公式。 【教学时数】2学时 【教学进程】

一、原函数与不定积分的概念 (一)原函数的概念 前面我们所学的知识是:已知一个函数,求这个函数的导数;在现实生活中往往有:已知一个函数的导数,求原来这个函数的问题, 如:①已知曲线上任意一点p(x,y)处的切线斜率为x k 2=,求此曲线的方程。 ②已知某产品的边际成本MC ,要求该产品总成本的变化规律()C C q =. 1.原函数定义 定义4.1 设)(x f 是定义在区间I 内的已知函数.如果存在可导函数)(x F ,使对于任意的I x ∈,都有 )()(x f x F ='或dx x f x dF )()(= 则称函数)(x F 是函数)(x f 的一个原函数。 例1 指出下列函数的原函数: ①x x f cos )(= ②23)(x x f = ③x a x f =)( ④x x f 1)(= 教师将举例分析:如(cos )sin x x '-=,则cos x -是sin x 在R 上的一个原函数。 2()2x x '=,则 2x 是2x 的一个原函数。 教师再问:(1)是否所有的函数都有原函数?什么样的函数才有原函数存在呢?在此, 我们不作讨论.我们只给出一个重要的结论. 结论:如果函数()f x 在某区间上连续,则其原函数一定存在 (2)25x +是不是2 x 在R 上的一个原函数呢?学生回答:是 (3)提出一个函数若存在原函数,则有几个呢?引入 2.原函数个数 定理4.1 如果函数()F x 是()f x 的一个原函数,则()F x C +也是()f x 的原函数,且()f x 的所有原函数都具有()F x C +的形式(C 为任意常数). (二)不定积分的概念 教师指出:在以上的分析中我们看到一个函数()f x 有原函数存在,则有无数多个,它们都可以表示为()F x C +的形式,我们把它叫做()f x 的不定积分。 1.不定积分定义 定义4.2 如果函数()F x 是()f x 的一个原函数,则称()f x 的全体原函数()F x C +(C 为任意常数)为()f x 的不定积分,记作 C x F dx x f +=?)()(

高等数学习题详解-第7章 多元函数微分学

1. 指出下列各点所在的坐标轴、坐标面或卦限: A (2,1,-6), B (0,2,0), C (-3,0,5), D (1,-1,-7). 解:A 在V 卦限,B 在y 轴上,C 在xOz 平面上,D 在VIII 卦限。 2. 已知点M (-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标面的对称点的坐标. 解:设所求对称点的坐标为(x ,y ,z ),则 (1) 由x -1=0,y +2=0,z +3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3). (2) 由x =-1,y +2=0,z +3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3). 同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3). (3)由x =-1,y =2,z +3=0,得到点M 关于xOy 面的对称点的坐标为:(-1, 2,-3). 同理,M 关于yOz 面的对称点的坐标为:(1, 2,3);M 关于zOx 面的对称点的坐标为:(-1,-2,3). 3. 在z 轴上求与两点A (-4,1,7)和B (3,5,-2)等距离的点. 解: 设所求的点为M (0,0,z ),依题意有|MA |2=|MB |2,即 (-4-0)2+(1-0)2+(7-z)2=(3-0)2+(5-0)2+(-2-z)2. 解之得z =11,故所求的点为M (0,0, 149 ). 4. 证明以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 解:由两点距离公式可得2 12 14M M =,2 2 13236,6M M M M == 所以以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 5. 设平面在坐标轴上的截距分别为a =2,b =-3,c =5,求这个平面的方程. 解:所求平面方程为1y x z ++=。 6. 求通过x 轴和点(4,-3,-1)的平面方程. 解:因所求平面经过x 轴,故可设其方程为 Ay +Bz =0. 又点(4,-3,-1)在平面上,所以-3A -B =0.即B=-3 A 代入并化简可得 y -3z =0. 7. 求平行于y 轴且过M 1(1,0,0),M 2(0,0,1)两点的平面方程. 解:因所求平面平行于y 轴,故可设其方程为 Ax +Cz +D =0. 又点M 1和M 2都在平面上,于是 0A D C D +=?? +=? 可得关系式:A =C =-D ,代入方程得:-Dx -Dz +D =0. 显然D ≠0,消去D 并整理可得所求的平面方程为x +z -1=0. 8. 方程x 2+y 2+z 2-2x +4y =0表示怎样的曲面? 解:表示以点(1,-2,0 9. 指出下列方程在平面解析几何与空间解析几何中分别表示什么几何图形? (1) x -2y =1; (2) x 2+y 2=1; (3) 2x 2+3y 2=1; (4) y =x 2. 解:(1)表示直线、平面。(2)表示圆、圆柱面。(3)表示椭圆、椭圆柱面。 (4)表示抛物线、抛物柱面。

高等数学 第四章不定积分课后习题详解

第4章不定积分 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!

★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C --==-+? ★(2) dx ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422 22 3311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:422 32233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

第7章 多元函数微分学

§7.1 空间解析几何基本知识 教学内容提要 1. 空间直角坐标系; 2. 空间两点间的距离公式与两点连线的中点坐标公式; 3. 简单的曲面方程。 教学目的与要求 1. 了解空间直角坐标系和空间两点间的距离公式及两点连线的中点公式; 2. 了解常用二次曲面的方程及其图形。 教学重点与难点 常用二次曲面的方程及其图形的简单描绘. 教学时数 4 教学过程: 一、空间直角坐标系 1.空间直角坐标系的建立 过空间定点0,作三条互相垂直的数轴,他们都以0为原点 且一般具有相同的长度单位。这三条轴分别称为x 轴,y 轴, z 轴,统称坐标轴。通常把x 轴和y 轴配置在水平面上,z 轴 z 在铅垂方向,他们的指向符合右手法则. 2、空间两点间的距离公式 空间任意两点),,(1111z y x M 和),,(2222z y x M 21221221221)()()(z z y y x x M M -+-+-= 特殊地,点),,(z y x M 与坐标原点)0,0,0(O 的距离为222z y x OM ++= 。 例1 在z 轴求与两点)7,1,4(-A 和)25,3(-B 等距离的点的坐标。 二、曲面及其方程的概念 1.曲面方程 在空间解析几何中,任何曲面都可以看作满足一定条件的点的几何轨迹 ,如果曲面S 上任一点的坐标都满足方程0),,(=z y x F ,不在曲面S 上的点的坐标都不满足该方程,则称此方程0),,(=z y x F 为曲面的方程,而曲面S 就叫做方程的图形。 例2 动点),,(z y x P 与两定点)1,3,2(),0,2,1(21-P P 的距离相等,求此动点P 的轨迹。 三、几种常见的曲面及其方程 1、平面的一般方程 任一平面都可以用三元一次方程来表示 .任一三元一次方程Ax +By +Cz +D =0的图形总是一个平面. 例3 求通过x 轴和点(4, -3, -1)的平面的方程. 解 平面通过x 轴, 一方面表明它的法线向量垂直于x 轴, 即A =0; 另一方面表明 它必通过原点, 即D =0. 因此可设这平面的方程为

多元函数微积分复习题

多元函数微积分复习题 一、单项选择题 1.函数()y x f ,在点()00,y x 处连续是函数在该点可微分的 ( B ) (A) 充分而不必要条件; (B) 必要而不充分条件; (C) 必要而且充分条件; (D) 既不必要也不充分条件. 2.设函数()y x f ,在点()00,y x 处连续是函数在该点可偏导的 ( D ) (A) 充分而不必要条件; (B) 必要而不充分条件; (C) 必要而且充分条件; (D) 既不必要也不充分条件. 3.函数()y x f ,在点()00,y x 处偏导数存在是函数在该点可微分的 ( B ). (A) 充分而不必要条件; (B) 必要而不充分条件; (C) 必要而且充分条件; (D) 既不必要也不充分条件. 4.对于二元函数(,)z f x y =, 下列结论正确的是 ( ). C A. 若0 lim x x y y A →→=, 则必有0lim (,)x x f x y A →=且有0 lim (,)y y f x y A →=; B. 若在00(,)x y 处 z x ??和z y ??都存在, 则在点00(,)x y 处(,)z f x y =可微; C. 若在00(,)x y 处 z x ??和z y ??存在且连续, 则在点00(,)x y 处(,)z f x y =可微; D. 若22z x ??和22z y ??都存在, 则. 22z x ??=22 z y ??. 5.二元函数(,)z f x y =在点00(,)x y 处满足关系( ). C A. 可微(指全微分存在)?可导(指偏导数存在)?连续; B. 可微?可导?连续; C. 可微?可导, 或可微?连续, 但可导不一定连续; D. 可导?连续, 但可导不一定可微. 6.向量()()3,1,2,1,2,1a b =--=-,则a b = ( A ) (A) 3 (B) 3- (C) 2- (D) 2

微积分常用英文词汇 分章

英汉微积分词汇 English-Chinese Calculus Vocabulary 第一章函数与极限 Chapter 1 Function and Limit 高等数学higher mathematics 集合set 元素element 子集subset 空集empty set 并集union 交集intersection 差集difference of set 基本集basic set 补集complement set 直积direct product 笛卡儿积Cartesian product 象限quadrant 原点origin 坐标coordinate 轴axis x 轴x-axis 整数integer 有理数rational number 实数real number 开区间open interval 闭区间closed interval 半开区间half open interval 有限区间finite interval 区间的长度length of an interval 无限区间infinite interval 领域neighborhood 领域的中心center of a neighborhood 领域的半径radius of a neighborhood 左领域left neighborhood 右领域right neighborhood 映射mapping X到Y的映射mapping of X onto Y 满射surjection 单射injection 一一映射one-to-one mapping 双射bijection

算子operator 变化transformation 函数function 逆映射inverse mapping 复合映射composite mapping 自变量independent variable 因变量dependent variable 定义域domain 函数值value of function 函数关系function relation 值域range 自然定义域natural domain 单值函数single valued function 多值函数multiple valued function 单值分支one-valued branch 函数图形graph of a function 绝对值absolute value 绝对值函数absolute value function 符号函数sigh function 整数部分integral part 阶梯曲线step curve 当且仅当if and only if (iff) 分段函数piecewise function 上界upper bound 下界lower bound 有界boundedness 最小上界least upper bound 无界unbounded 函数的单调性monotonicity of a function 单调增加的increasing 单调减少的decreasing 严格递减strictly decreasing 严格递增strictly increasing 单调函数monotone function 函数的奇偶性parity (odevity) of a function 对称symmetry 偶函数even function 奇函数odd function 函数的周期性periodicity of a function 周期period 周期函数periodic function 反函数inverse function 直接函数direct function 函数的复合composition of function

MATLAB数值微积分

4.1数值微积分 4.1.1近似数值极限及导数 Matlab 数值计算中,没有求极限指令,也没有求导指令,而是利用差分指令: 用一个简单矩阵表现diff和gradient指令计算方式。 差分: Dx=diff(X) 对向量: Dx=X(2:n)-X(1:n-1) 对矩阵: DX=X(2:n,:)-X(1:n-1,:) 长度小1. DIFF(X), for a vector X, is [X(2)-X(1) X(3)-X(2) ... X(n)-X(n-1)]. DIFF(X), for a matrix X, is the matrix of row differences, (结果缺少一行) [X(2:n,:) - X(1:n-1,:)]. DIFF(X,N,DIM) is the Nth difference function along dimension DIM. If N >= size(X,DIM), DIFF returns an empty array (N阶差分)

梯度: FX=gradient(F) Fx(1)=Fx(2)-Fx(1); F=[1,2,3;4,5,6;7,8,9] Dx=diff(F) (按行) Dx_2=diff(F,1,2) (按列) [FX,FY]=gradient(F) Fx(1)=Fx(2)-Fx(1), Fx(end)=F(end)-F(end-1) FX与F维数相同。 [FX_2,FY_2]=gradient(F,0.5) %采样间隔0.5 即: Fx(1)=(Fx(2)-Fx(1))/2 F = 1 2 3 4 5 6 7 8 9 Dx = 3 3 3 3 3 3 Dx_2 = 1 1 1 1 1 1 FX = 1 1 1

第数值微积分

第五章数值微积分 一、内容分析与教学建议 本意内容是数值微积分。数值微分包括:用插值多项式求数值微分、用三次样条函数求数值微分和用Richardson外推法求数值微分。数值积分包括:常见的Newton-Cotes求积公式,如:梯形公式、Simpson公式和Cotes公式;复化求积公式;Romberg求积公式和Gauss型求积公式等内容。 (一)数值微分 1、利用Taylor展开式建立数值微分公式,实际上是利用导数的离散化,即用差商近似代替导数,在由Taylor公式的余项估计误差;由于当步长h很小时,回出现两个非常接近的数相减,因此,在实际运用中往往采用事后估计的方法来估计误差。 2、用插值多项式求数值微分,主要是求插值节点处的导数的近似值。借助第二章的Lagrange插值公式及其余项公式,确定插值节点处的导数的近似值及其误差。常用的有三点公式和五点公式。 3、阐明用三次样条函数s(x)求数值微分的优点:由第三章的三次样条函数s(x)的性质知:只要f(x)的4阶导数连续,则当步长h 0时,s(x)收敛到f (x) , s(x)收敛到f (x) , s (x) 收敛到f (x).因此,用三次样条函数s(x)求数值微分,效果是很好的。指出其缺点是:需要解方程组,当h很小时,计算量较大。 4、讲解用Richardson外推法求数值微分时,首先阐明方法的理论基础是导数的离散化,即用差商近似代替导数;然后重点讲解外推法的思想和推导过程,因为这种方法和思路在后面的数值积分和微分方程数值解中还要用到。

(二)数值积分的一般概念 1、由定积分的几何意义引入数值积分的思想,介绍求积公式、求积节点、求积系数、余项等基本概念。 2、重点介绍代数精度以及如何求一个判定积公式的代数精度,并举例说明。 3、介绍插值型求积公式以及插值型求积公式的代数精度的特点。 (三)等距节点的求积公式 1、简单介绍一般的等距节点的插值型求积公式--- Newton-Cotes公式以及Cotes系数。 2、重点介绍几种常用的Newton-Cotes公式:梯形公式、Simpson公式和Cotes公式。要求学生掌握上述三种求积公式的表达式,并了解三种求积公式各自的余项。 3、以Simpson公式为例,求出它的代数精度是3;并要求学生课后自己求出梯形公式和Cotes公式的代数精度。 (四)复化求积公式 1、结合分段插值的思想阐明复化求积公式的思想。 2、重点介绍复化梯形公式、复化Simpson公式和复化Cotes公式以及它们各自的余项,并举一、两个例子加以说明。 3、简介事后估计和自适应Simpson方法。 (五)Romberg求积法 1、Romberg求积法是一种逐步分半加速法,它是以复化梯形公式为基础构造高精度求

高等数学第四章不定积分课后习题详解

高等数学第四章不定 积分课后习题详解 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第4章不定积分 内容概要 课后习题全解 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1)

思路: 被积函数52 x -=,由积分表中的公式(2)可解。 解:5 322 23x dx x C --==-+? ★(2)dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 3332223()2 4dx x x dx x dx x dx x x C ---=-=-=-+???? ★(3)22x x dx +?() 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:22 32122ln 23x x x x dx dx x dx x C +=+=++???() ★(4)3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:3153 222223)325x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +?

思路:注意到22222 1111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积 分。 解:2221arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ?34134(-+-)2 思路:分项积分。 解:3411342x dx xdx dx x dx x dx x x x x --=-+-?????34134(-+-)2 223134ln ||.423 x x x x C --=--++ ★ (8)23(1dx x -+? 思路:分项积分。 解 :2231(323arctan 2arcsin .11dx dx x x C x x =-=-+++?? ★★ (9) 思路 = 11172488x x ++==,直接积分。 解 :715888.15x dx x C ==+? ★★(10)221(1)dx x x +? 思路:裂项分项积分。 解:222222111111()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++???? ★(11)211 x x e dx e --?

高等数学 第四章不定积分课后习题详解

第4章不定积分 内容概要 课后习题全解 习题41 1、求下列不定积分: 知识点:直接积分法得练习——求不定积分得基本方法。 思路分析:利用不定积分得运算性质与基本积分公式,直接求出不定积分!★(1) 思路: 被积函数 ,由积分表中得公式(2)可解。 解: ★(2)

思路:根据不定积分得线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - -=-=-=-+???? ★(3) 思路:根据不定积分得线性性质,将被积函数分为两项,分别积分。 解: ★(4) 思路:根据不定积分得线性性质,将被积函数分为两项,分别积分。 解: ★★(5) 思路:观察到后,根据不定积分得线性性质,将被积函数分项,分别积分。 解:4223 2233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6) 思路:注意到,根据不定积分得线性性质,将被积函数分项,分别积分。 解: 注:容易瞧出(5)(6)两题得解题思路就是一致得。一般地,如果被积函数为一个有理得假分式,通常先将其分解 为一个整式加上或减去一个真分式得形式,再分项积分。 ★(7) 思路:分项积分。 解:3411342x dx xdx dx x dx x dx x x x x --=-+-? ????34134(- +-)2 ★(8) 思路:分项积分。 解: 2231( 323arctan 2arcsin .11dx dx x x C x x -=-=-+++? ? ★★(9) 思路:?瞧到,直接积分。

《微积分(下)》第7章 多元函数微积分学--练习题

第七章 多元函数微积分学 第一部分:多元函数微分学 一、二元函数的极限专题练习: 1.求下列二元函数的极限: (1) ()2 1 1(,)2,2lim 2;y xy x y xy +? ? →- ? ? ?+ (2) () ()2222 (,),3 lim sin ;x y x y x y →∞∞++ (3) ()(,)0,1sin lim ;x y xy x → (4) ( (,)0,0lim x y → 2.证明:当()(,)0,0x y →时,() 44 3 4 4(,)x y f x y x y =+的极限不存在。 二、填空题 3. 若22),(y x y y x f -=+,则=),(y x f ; 4. 函数22(,)ln(1)f x y x y =+-的定义域是D = ; 5. 已知2 (,)x y f x y e = ,则 '(,)x f x y = ; 6. 当23(,)5f x y x y =,则 '(0,1)x f = ; 7. 若2yx e z xy +=,则=??y z ; 8. 设)2ln(),(x y x y x f + =,则'(1,0)y f =; 9. 二元函数xy xe z =的全微分=dz ;

10.arctan()Z xy =设,则dz= . 三、选择题 11.设函数 ln()Z xy =,则 Z x ?=? ( ) A 1y B x y C 1x D y x 12.设2sin(),Z xy = 则 Z x ?=? ( ) A 2cos()xy xy B 2cos()xy xy - C 22cos()y xy - D 22cos()y xy 13.设 3xy Z =,则 Z x ?=? ( ) A 3xy y B 3ln 3xy C 13xy xy - D 3ln 3xy y

相关主题
文本预览
相关文档 最新文档