当前位置:文档之家› 变频器过流与过载原因的分析

变频器过流与过载原因的分析

变频器过流与过载原因的分析
变频器过流与过载原因的分析

电动机知识

变频器过流和过载原因的分析

一、引言

变频器具有显著节能效果 ,已在煤炭企业推广和应用。但是在实际生产中 ,因为变频器过流过载造成跳闸的现象经常发生 ,又由于一线的机电技术操作人员对其了解不深,维修不及时 ,影响到

煤炭生产的正常进行。所以 ,对其进行理论综合分析并提出解决方案 ,对提高煤炭生产能力 ,降低事故率具有实际意义。

二、过电流跳闸及原因分析变频器的过电流跳闸又分短路故障、运行过程中跳闸和升、降速过程中跳闸等情况。

1、短路故障

、故障特点

、第一次跳闸有可能在运行过程中发生 ,但如复位后再起动 ,则往往一升速就跳闸

、具有很大的冲击电流 ,但大多数变频器已经能够进行保护跳闸 , 而不会损坏。由于保护跳闸十分迅速 ,难以观察其电流的大小。、判断与处理

、判断是否短路。为了便于判断 ,在复位后再起动前 ,可在输入侧接入一个电压表。重新起动时 ,电位器从零开始缓慢旋动 ,同时 , 注意观察电压表。如果变频器的输出频率刚上升就立即跳闸 , 且电压表的指针有瞬间回“ 零”的迹象 ,则说明变频器的输出端已经短路或接地、要判断是在变频器内部短路 ,还是在外部短路。应将变频器输出端的接线脱开 ,再旋动电位器 ,使频率上升 ,如仍跳闸 ,说明变频器内部短路;如不再跳闸 ,则说明是变频器外部短路 ,应检查从变频器到电动机之间的线路 ,以及电动机本身。

2、轻载过电流

负载很轻 ,却又过电流跳闸 ,这是变频调速所特有的现象。在V/

F 控制模式下 ,存在着一个十分突出的问题 :即在运行过程中 , 电动机磁路系统的不稳定。其基本原因在于 :低频运行时 ,为了能带动较重的负载 ,常常需要进行转矩补偿(即提高 U/ f 比 ,也叫转矩提升)。导致电动机磁路的饱和程度随负载的轻重而变化。这种由电动机磁路饱和引起的过电流跳闸,主要发生在低频、轻载的情况下。解决方法 :反复调整 U/ f 比。

3、重载过电流

、故障现象 :有些生产机械在运行过程中负荷突然加重,甚至“卡住” ,电动机的转速因带不动而大幅下降,电流急剧增加 ,过载保

护来不及动作 ,导致过电流跳闸。

、解决方法

、首先了解机械本身是否有故障 ,如果有故障 ,则修理机器 ; 、如果这种过载属于生产过程中经常出现的现象,则首先考虑能

否加大电动机和负载之间的传动比。适当加大传动比 ,可减轻电动机轴上的阻转矩 ,避免出现带不动的情况。如无法加大传动比 , 则应考虑增大电动机和变频器的容量。

4、升速或降速中过电流这种现象是由于升速或降速过快引起的,可采取如下措施 :

、延长升(降)速时间 :首先了解生产工艺要求是否允许延长升(降)速时间 ,如允许 ,则可延长升(降)速时间 ; 变频器技术网,、准确预置升(降)速自处理(防失速)功能 :变频器对于升、降速过程中的过电流 ,设置了自处理(防失速)功能。当升(降)电流超过预置的上限电流时 ,将暂停升(降)速,待电流降至设定值以下时,再继续升(降)速。

三、过载跳闸及原因分析

电动机能够旋转 ,但运行电流超过了额定值 ,称为过载。过载的基本特征是 :电流虽然超过了额定值 ,但超过的幅度不大 ,一般也不形成

较大的冲击电流。

1、过载的主要原因

、机械负荷过重 ,其主要特征是电动机发热 ,可从显示屏上读取运行电流来发现 ;

Domain 直流减速电机More:2saffa 、三相电压不平衡 ,引起某相的运行电流过大 ,导致过载跳闸 ,其特点是电动机发热不均衡 ,从显示屏上读取运行电流时不一定能发现(因显示屏只显示一相电流) ;

、误动作 ,变频器内部的电流检测部分发生故障 ,检测出的电流信号偏大 ,导致跳闸。

2、检查方法

、检查电动机是否发热 ,如果电动机的温升不高 ,则首先应检查变频器的电子热保护功能预置得是否合理,如变频器尚有余量 ,则

应放宽电子热保护功能的预置值。

如果电动机的温升过高 ,而所出现的过载又属于正常过载,则说

明是电动机的负荷过重。这时 ,应考虑能否适当加大传动比 ,以减轻电动机轴上的负荷。如能够加大 ,则加大传动比。如果传动比无法加大 ,则应加大电动机的容量。

、检查电动机侧三相电压是否平衡 ,如果电动机侧的三相电压不平

衡 ,则应再检查变频器输出端的三相电压是否平衡,如也不平衡,则问题在变频器内部。如变频器输出端的电压平衡 ,则问题在从变频器到电动机之间的线路上,应检查所有接线端的螺钉是

否都已拧紧 ,如果在变频器和电动机之间有接触器或其它电器,则还应检查有关电器的接线端是否都已拧紧,以及触点的接触

状况是否良好等。

如果电动机侧三相电压平衡 ,则应了解跳闸时的工作频率 :如工作频率较低 ,又未用矢量控制(或无矢量控制) ,则首先降低 U/ f 比 ,

如果降低后仍能带动负载 ,则说明原来预置的 U/ f 比过高 , 励磁电流的峰值偏大 ,可通过降低 U/ f 比来减小电流 ;如果降低后带不动负载了 ,则应考虑加大变频器的容量 ;如果变频器具有矢量控制功

能 ,则应采用矢量控制方式。

四、结论由于煤矿生产环境相对于其它行业较为恶劣,湿度大 ,有淋水 ,灰

尘多 ,并且安装条件狭窄 ,操作人员应认真仔细操作 ,制定专门的《变频器操作规程》予以指导 ,才会从根本上杜绝或减少变频器发生事故。

·无刷自控电机在抽油机上的应用·漫谈变频器现场调试·变频调速传动的特点及变频器工作原理·变频器调整必须知道的几个参数·交流接触器的使用类别及注意事项·高压风机电机烧毁现象及原因·PLC 在电动机综合保护上的应用·选用永磁无刷直流电动机的一般原则·变频电动执行机构在火电厂上的应用·小规模三项异步电动机的使用技巧·真空自吸泵的工作应用原理解析·变频器过电压故障原因分析及对策——细·浅谈变频器的维护与维修·齿轮泵常见故障及维修方法运行维护·艾默生变频器、 PLC 在桥式起重机自动控·变频器在电梯系统中的应用

·变频器维修过程

·电机基本知识和怎样正确选择电动机·同步磁阻电动机研究·变频器常见故障及其处理方法·上海离心泵常见故障和排除方法·变频器运行中五大问题的预防措施·水泵分类与故障解决方法·变频器对电动机的四种控制方式·汽车结构之电动后视镜·鹅卵石制砂机安装调试时要注意细节问题·变频器在恒压供水方面的应用·变频器在恒压供水方面的应用分析·塑机变频器的故障维修方法简介·直接驱动旋转电动机匿名

随着起重机的不断发展,传统控制技术难以满足起重机越来越高

的调速和控制要求。在电子技术飞速发展的今天,起重机与电子技术的结合越来越紧密,如采用 PLC 取代继电器进行逻辑控制,交流变频调速装置取代传统的电动机转子串电阻的调速方式等。在选型对比基础上,本项目电动机调速装置采用了先进的变频调速方案,变频器最终选型为 ABB 变频器 ACS800,电动机选用专用鼠笼变频电动机。在众多交流变频调速装置中, ABB 变频器以其性能的稳定性,选件扩展功能的丰富性,编程环境的灵活性,力矩特性的优良性和在不同场合使用的适应性,使其在变频器高端市场中占有相当重要的地位。

ACC800 变频器是 ACS800系列中具有提升机应用程序的重要一员,它在全功率范围内统一使用了相同的控制技术,例如起动向导,自定义编程, DTC 控制等,非常适合作为起重机主起升变频器使用。本文结合南京梅山冶金发展有限公司设备分公司所负责维修管理的宝钢集团梅钢冷轧厂 27 台桥式起重机变频调速控制系统,详细介绍 ACC800 变频器在起重机主起升中的应用。

1DTC 控制技术

DTC(直接转矩控制, DirectTorqueControl )技术是 ACS800 变频器的核心技术,是交流传动系统的高性能控制方法之一,它具有控制算法简单,易于数字化实现和鲁棒性强的特点。其实质是利用空间矢量坐标的概念,在定子坐标系下建立异步电动机空间矢量数学模型,通过测量三相定子电压和电流(或中间直流电压)直接计算电动机转矩和磁链的实际值,并与给定转矩和磁链进行比较,开关逻辑单元根据磁链比较器和转矩比较器的输出选择合适的逆变器电压矢量(开关状态)。定子给定磁链和对应的电磁转矩的实际值,可以用定子电压和电流测量值直接计算得到。在计算中,只需要一个电动机参数―――定子电阻,这一点和几乎需要全部电动机参数的直接转子磁链定向控制(矢量控制)形成了鲜明对比,极大地减轻了微处理器的计算负担,提高了运算速度

。直接转矩控制结构较为简单,可以实现快速的转矩响应(不大于 5ms)。

2 防止溜钩控制作为起重用变频系统,其控制重点之一是在电动机处于回馈制动状态下系统的可靠性( "回馈 "是指电动机处于发电状态时通过逆变桥向变频器中间直流回路注入电能),尤其需要引起注意的是主起升机构的防止溜钩控制。溜钩是指在电磁制动器抱住之前和松开之后的瞬间,极易发生重物由停止状态出现下

滑的现象。

电磁制动器从通电到断电(或从断电到通电)需要的时间大约为016s(视起重机型号和起重量大小而定),变频器如过早停止输出,将容易出现溜钩,因此变频器必须避免在电磁制动器抱闸的情况下输出较高频率,以免发生 " 过流 "而跳闸的误动作。

防止溜钩现象的方法是利用变频器零速全转矩功能和直流制动励磁功能。零速全转矩功能,即变频器可以在速度为零的状态下,保持电动机有足够大的转矩,从而保证起重设备在速度为零时,电动机能够使重物在空中停止,直到电磁制动器将轴抱住为止,以防止溜钩的发生。直流制动励磁功能,即变频器在起动之前自动进行直流强励磁,使电动机有足够大的起动转矩,维持重物在空中的停止状态,以保证电磁制动器在释放过程中不会发生溜钩。

3 系统硬件配置

梅钢冷轧桥式起重机上应用的 ACS800 变频器调速系统由电控柜,大小车变频控制柜,起升变频控制柜,联动控制台等组成。主起升采用 1台 ACC800变频器驱动 1台起升专用电动机,并在电动机轴尾安装 1 台速度编码器,做速度反馈用。

该速度编码器用来提高低速状态下电动机模型的速度和转矩计算精度,保证转矩验证,开闭闸等功能。主起升采用斩波器加制动电阻实现制动功能,斩波器与制动电阻串联后接入变频器整桥与逆变桥之

间的直流回路中,并由变频器根据中间直流回路电压高低控制斩波器接通与否(即控制制动电阻的投切)。变频器配有 RPBA201接口卡件,提供标准的 Profibus2DP 现场总线接口,用于与 PLC 通信控制,并接收 PLC 发来的开,停车命令和速度设定值等控制参数。

4 起升变频器功能参数设置

ABB 变频器在出厂时,所有功能码都已设置。

但是,起重机变频调速系统的要求与工厂设定值不尽相同,所以, ACC800 中一些重要的功能参数需要重新设定。

( 1)起动数据(参数组 99)

参数 99102(用于提升类传动,但不包括主 / 从总线通信功能):CRANE ;参数 99104(电动机控制模式):DTC (直接转矩控制);参数 99105~ 99109(电动机常规铭牌参数):按照电动机的铭牌参数输入。

( 2)数字输入(参数组 10)

参数 10101~ 10113(数字输入接口预置参数):按照变频器

外围接口定义进行设置,限于篇幅,不再赘述。

( 3)限幅(参数组 20)

参数 20101(运行范围的最小速度):-1000 r/min (根据实

际电动机参数进行设定);参数 20102(运行范围的最大速度):1000r/min (根据实际电动机参数进行设定);参数 20103(最大输出电流): 120%;参数 20104(最大正输出转矩):150%;参数20104(最大负输出转矩): -150%;参数 20106(直流过压控制器参数):OFF(本例中 ACC800 变频器使用了动力制动方式,此参数设为 OFF 后,制动斩波器才能投入运行)。

( 4)脉冲编码器(参数组 50)

参数 50101(脉冲编码器每转脉冲数): 1024;参数 50103 (编码器故障): FAULT (如果监测到编码器故障或编码器通信失

败时, ACC800 变频器显示故障并停机)。

( 5)提升机(参数组 64)

参数 64101(独立运行选择): FALSE;64103(高速值 1):98%; 64106(给定曲线形状):0(直线);参数 64110(控制类

型选择):FBJOYSTICK. (6)逻辑处理器(参数组 65)

参数 65101(电动机停止后是否保持电动机磁场选择):TRUE (在电动机停止后保持电动机磁场为 "ON" );参数 65102 (ON 脉冲延时时间):5s.( 7)转矩验证(参数组 66)

参数 66101(转矩验证选择):TRUE (转矩验证有效,要求有脉冲编码器)。

( 8)机械制动控制(参数组 67)参数 67106(相对零速

值):3%;参数 67109(起动转矩选择器):AUTOTQMEM (自动转矩记忆)。

( 9)给定处理器(参数组 69)

参数 69101(对应 100%给定设置电动机速度): 980r/min

(根据实际电动机参数进行设定);参数 6910(2 正向加速时

间): 3s;参数 69103(反向加速时间):3s;参数 69104(正向减速时间):3s;参数 69105(反向减速时间):3s.( 10)可选模块(参数组 98)

参数 98101(脉冲编码器模块选择):RTAC2 SLOT2 (脉冲编

码器模块类型为 RTAC ,连接接口为传动控制单元的选件插槽 2);参数 98102(通信模块选择): FIELDBUS (激活外部串行通信并选择外部串行通信接口)。

5 试运行变频调速系统的功能参数设定完后,就可进行系统试

运行。

应先在变频器操作盘上进行速度给定,手动起动变频器,让起升电动机空载运转一段时间,并且这种试运行可以在5, 10,

15,20,25,35,50Hz 等几个频率点进行,注意观察电动机的运转方向是否正确,转速是否平稳,显示数据是否正确,温升是否正常,加减速是否平滑等

。单台变频器试运行正确后,再接入脉冲编码器模块进行

速度闭环调试,试运行起升机构变频调速系统。

起升变频器手动运行无误后,就可接入 PLC 控制系统,进行整机联调。整机联调中,关键要注意观察变频器起动与停止时,主起升机械制动器的开闭反应是否快速,钩头是否存在溜钩现象等。

其次还要注意观察钩头在下降过程中,制动单元和制动电阻投运后,其温升是否正常。在重物下放过程中,重物的势能会释放出来,此时电动机将工作在反向发电状态。在钩头下降过程中,电动机通过逆变桥向变频器中间直流回路充电,当直流回路的电压高于变频器系统设定值时,变频器控制斩波器接通,进而使制动电阻投入工作,以消耗变频器中间直流回路多余的电能,确保变频器中间直流回路电压稳定在一个特定电压范围内。

随着起重机的不断发展,传统控制技术难以满足起重机越来越高的调速和控制要求。在电子技术飞速发展的今天,起重机与电子技术的结合越来越紧密,如采用 PLC 取代继电器进行逻辑控制,交流变频调速装置取代传统的电动机转子串电阻的调速方式等。在选型对比基础上,本项目电动机调速装置采用了先进的变频调速方案,变频器最终选型为 ABB 变频器 ACS800,电动机选用专用鼠笼变频电动机。在众多交流变频调速装置中, ABB 变频器以其性能的稳定性,选件扩展功能的丰富性,编程环境的灵活性,力矩特性的优良性和在不同场合使用的适应性,使其在变频器高端市场中占有相当重要的地位。

ACC800 变频器是 ACS800系列中具有提升机应用程序的重要一员,它在全功率范围内统一使用了相同的控制技术,例如起动向导,自定义编程, DTC 控制等,非常适合作为起重机主起升变频器使用。

本文结合南京梅山冶金发展有限公司设备分公司所负责维修管理的宝钢集团梅钢冷轧厂 27 台桥式起重机变频调速控制系统,详细介绍ACC800 变频器在起重机主起升中的应用。

1DTC 控制技术

DTC(直接转矩控制, DirectTorqueControl )技术是 ACS800 变频器的核心技术,是交流传动系统的高性能控制方法之一,它具有控制算法简单,易于数字化实现和鲁棒性强的特点。其实质是利用空间矢量坐标的概念,在定子坐标系下建立异步电动机空间矢量数学模型,通过测量三相定子电压和电流(或中间直流电压)直接计算电动机转矩和磁链的实际值,并与给定转矩和磁链进行比较,开关逻辑单元根据磁链比较器和转矩比较器的输出选择合适的逆变器电压矢量(开关状态)。定子给定磁链和对应的电磁转矩的实际值,可以用定子电压和电流测量值直接计算得到。在计算中,只需要一个电动机参数―――定子电阻,这一点和几乎需要全部电动机参数的直接转子磁链定向控制(矢量控制)形成了鲜明对比,极大地减轻了微处理器的计算负担,提高了运算速度

。直接转矩控制结构较为简单,可以实现快速的转矩响应(不大于 5ms)。

2 防止溜钩控制作为起重用变频系统,其控制重点之一是在电动机处于回馈制动状态下系统的可靠性( "回馈 "是指电动机处于发电状态时通过逆变桥向变频器中间直流回路注入电能),尤其需要引起注意的是主起升机构的防止溜钩控制。溜钩是指在电磁制动器抱住之前和松开之后的瞬间,极易发生重物由停止状态出现下滑的现象。

电磁制动器从通电到断电(或从断电到通电)

需要的时间大约为 016s(视起重机型号和起重量大小而定),变频器如过早停止输出,将容易出现溜钩,因此变频器必须避免在电磁制动器抱闸的情况下输出较高频率,以免发生 " 过流 "而跳闸的

误动作。

防止溜钩现象的方法是利用变频器零速全转矩功能和直流制动励磁功能。零速全转矩功能,即变频器可以在速度为零的状态下,保持电动机有足够大的转矩,从而保证起重设备在速度为零时,电动机能够使重物在空中停止,直到电磁制动器将轴抱住为止,以防止溜钩的发生。直流制动励磁功能,即变频器在起动之前自动进行直流强励磁,使电动机有足够大的起动转矩,维持重物在空中的停止状态,以保证电磁制动器在释放过程中不会发生溜钩。

3 系统硬件配置

梅钢冷轧桥式起重机上应用的 ACS800 变频器调速系统由电控柜,大小车变频控制柜,起升变频控制柜,联动控制台等组成。主起升采用 1 台 ACC800 变频器驱动 1 台起升专用电动机,并在电动机轴尾安装 1 台速度编码器,做速度反馈用。

该速度编码器用来提高低速状态下电动机模型的速度和转矩计算精度,保证转矩验证,开闭闸等功能。主起升采用斩波器加制动电阻实现制动功能,斩波器与制动电阻串联后接入变频器整桥与逆变桥之间的直流回路中,并由变频器根据中间直流回路电压高低控制斩波器接通与否(即控制制动电阻的投切)。变频器配有 RPBA201 接口卡件,提供标准的 Profibus2DP 现场总线接口,用于与 PLC 通信控制,并接收 PLC 发来的开,停车命令和速度设定值等控制参数。

4 起升变频器功能参数设置

ABB 变频器在出厂时,所有功能码都已设置。但是,起重机变频调速系统的要求与工厂设定值不尽相同,所以,ACC800 中一些重要的功能参数需要重新设定。

( 1)起动数据(参数组 99)

参数 99102(用于提升类传动,但不包括主 / 从总线通信功能):CRANE ;参数 99104(电动机控制模式):DTC (直接转矩控

制);参数 99105~ 99109(电动机常规铭牌参数):按照电动机的铭牌参数输入。

( 2)数字输入(参数组 10)

参数 10101~ 10113(数字输入接口预置参数):按照变频器

外围接口定义进行设置,限于篇幅,不再赘述。

( 3)限幅(参数组 20)

参数 20101(运行范围的最小速度):-1000 r/min (根据实

际电动机参数进行设定);参数 20102(运行范围的最大速度):1000r/min (根据实际电动机参数进行设定);参数 20103(最大输出电流): 120%;参数 20104(最大正输出转矩):150%;参数20104(最大负输出转矩): -150%;参数 20106(直流过压控制器参数):OFF(本例中 ACC800 变频器使用了动力制动方式,此参数设为 OFF 后,制动斩波器才能投入运行)。

( 4)脉冲编码器(参数组 50)

参数 50101(脉冲编码器每转脉冲数): 1024;参数 50103 (编码器故障): FAULT (如果监测到编码器故障或编码器通信失败时, ACC800 变频器显示故障并停机)。

( 5)提升机(参数组 64)

参数 64101(独立运行选择): FALSE;64103(高速值 1):98%; 64106(给定曲线形状):0(直线);参数 64110(控制类型选择):FBJOYSTICK. (6)逻辑处理器(参数组 65)

参数 65101(电动机停止后是否保持电动机磁场选择):TRUE (在电动机停止后保持电动机磁场为 "ON" );参数 65102 (ON 脉冲延时时间):5s.( 7)转矩验证(参数组 66)

参数 66101(转矩验证选择):TRUE (转矩验证有效,要求有脉冲编码器)。

( 8)机械制动控制(参数组 67)

参数 67106(相对零速值):3%;参数 67109(起动转矩选择器):AUTOTQMEM (自动转矩记忆)。

( 9)给定处理器(参数组 69)

参数 69101(对应 100%给定设置电动机速度): 980r/min (根据实际电动机参数进行设定);参数 6910(2 正向加速时间): 3s;参数 69103(反向加速时间):3s;参数 69104(正向减速时间):3s;参数 69105(反向减速时间):3s.( 10)可选模块(参数组 98)

参数 98101(脉冲编码器模块选择):RTAC2 SLOT2 (脉冲编码器模块类型为 RTAC ,连接接口为传动控制单元的选件插槽 2);参数 98102(通信模块选择): FIELDBUS (激活外部串行通信并选择外部串行通信接口)。

5 试运行

变频调速系统的功能参数设定完后,就可进行系统试运行。应先在变频器操作盘上进行速度给定,手动起动变频器,让起升电动机空载运转一段时间,并且这种试运行可以在5, 10,15,20,25,35,50Hz 等几个频率点进行,注意观察电动机的运转方向是否正确,转速是否平稳,显示数据是否正确,温升是否正常,加减速是否平滑等

。单台变频器试运行正确后,再接入脉冲编码器模块进行速度闭环调试,试运行起升机构变频调速系统。

起升变频器手动运行无误后,就可接入 PLC 控制系统,进行整机联调。整机联调中,关键要注意观察变频器起动与停止时,主起升机械制动器的开闭反应是否快速,钩头是否存在溜钩现象等。

其次还要注意观察钩头在下降过程中,制动单元和制动电阻投运后,其温升是否正常。在重物下放过程中,重物的势能会释放出来,此时电动机将工作在反向发电状态。在钩头下降过程中,电动机

通过逆变桥向变频器中间直流回路充电,当直流回路的电压高于变频器系统设定值时,变频器控制斩波器接通,进而使制动电阻投入工作,以消耗变频器中间直流回路多余的电能,确保变频器中间直流回路电压稳定在一个特定电压范围内。

浅谈变频器过压、欠压、过热、过载故障原因及处理张军

浅谈变频器过压、欠压、过热、过载故障原因及处理 张军 现代社会,各行业都提倡节能,采用变频器,则可以大大降低能源的消耗。变频器的安全运行就成为了很关键的环节,掌握一点变频器故障和分析故障原因方面的知识,能够第一时间察觉到变频器的运行状况,是刻不容缓的。现将我公司生产线设备几种常见变频器出现过压欠压过热过载故障进行简单归纳与分析。 故障现象一:过压(OU):过电压报警一般是出现在停机的时候。 1、故障主要原因:是减速时间太短或制动电阻损坏。 2、实例:一台台安N2系列3.7kW变频器在停机时跳“OU”。分析与维修:在修这台机器之前,首先要搞清楚“OU”报警的原因何在,这是因为变频器在减速时,电动机转子绕组切割旋转磁场的速度加快,转子的电动势和电流增大,使电机处于发电状态,回馈的能量通过逆变环节中与大功率开关管并联的二极管流向直流环节,使直流母线电压升高所致, 3、故障处理:所以我们应该着重检查制动回路,测量放电电阻没有问题,在测量制动管(ET191)时发现已击穿,更换后上电运行,且快速停车都没有问题。阀门进口泵工业洗衣机 故障现象二:欠压(Uu):也是我们在使用中经常碰到的问题。 1、故障主要原因:是因为主回路电压太低(220V系列低于200V,380V系列低于400V),整流桥某一路损坏或可控硅三路中有工作不正常的都有可能导致欠压故障的出现,其次主回路接触器损坏,导致直流母线电压损耗在充电电阻上面有可能导致欠压.还有就是电压检测电路发生故障而出现欠压问题。 2、实例:一台DANFOSSVLT5004变频器,上电显示正常,但是加负载后跳“DCLINKUNDERVOLT”(直流回路电压低)。分析与维修:这台变频器从现象上看比较特别,但是你如果仔细分析一下问题也就不是那么复杂,该变频器同样也是通过充电回路,接触器来完成充电过程的,上电时没有发现任何异常现象,估计是

变频器过电压故障原因分析及对策

变频器过电压故障原因分析及对策 变频器过电压故障保护是变频器中间直流电压达到危险程度后采取的保护措施,这是变频器设计上的一大缺陷,在变频器实际运行中引起此故障的原因较多,可以采取的措施也较多,在处理此类故障时要分析清 楚故障原因,有针对性的采取相应的措施去处理。 2 变频器过电压的危害 变频器过电压主要是指其中间直流回路过电压,中间直流回路过电压主要危害在于: (1) 引起电动机磁路饱和。对于电动机来说,电压主过高必然使电机铁芯磁通增加,可能导致磁路饱和, 励磁电流过大,从面引起电机温升过高; (2) 损害电动机绝缘。中间直流回路电压升高后,变频器输出电压的脉冲幅度过大,对电机绝缘寿命有很 大的影响; (3) 对中间直流回路滤波电容器寿命有直接影响,严重时会引起电容器爆裂。因而变频器厂家一般将中间 直流回路过电压值限定在DC800V左右,一旦其电压超过限定值,变频器将按限定要求跳闸保护。 3 产生变频器过电压的原因 3.1 过电压的原因 一般能引起中间直流回路过电压的原因主要来自以下两个方面: (1) 来自电源输入侧的过电压 常情况下的电源电压为380V,允许误差为-5%~+10%,经三相桥式全波整流后中间直流的峰值为591 V,个别情况下电源线电压达到450V,其峰值电压也只有636V,并不算很高,一般电源电压不会使变频器因过电压跳闸。电源输入侧的过电压主要是指电源侧的冲击过电压,如雷电引起的过电压、补偿电容在合闸或断开时形成的过电压等,主要特点是电压变化率dv/dt和幅值都很大。 (2) 来自负载侧的过电压 主要是指由于某种原因使电动机处于再生发电状态时,即电机处于实际转速比变频频率决定的同步转速高的状态,负载的传动系统中所储存的机械能经电动机转换成电能,通过逆变器的6个续流二极管回馈到变频器的中间直流回路中。此时的逆变器处于整流状态,如果变频器中没采取消耗这些能量的措施,这些能量将会导致中间直流回路的电容器的电压上升。达到限值即行跳闸。 3.2 从变频器负载侧可能引起过电压的情况及主要原因 从变频器负载侧可能引起过电压的情况及主要原因如下: (1) 变频器减速时间参数设定相对较小及未使用变频器减速过电压自处理功能。 当变频器拖动大惯性负载时,其减速时间设定的比较小,在减速过程中,变频器输出频率下降的速度比较快,而负载惯性比较大,靠本身阻力减速比较慢,使负载拖动电动机的转速比变频器输出的频率所对应的转速还要高,电动机处于发电状态,而变频器没有能量处理单元或其作用有限,因而导致变频器中间直流回路电压升高,超出保护值,就会出现过电压跳闸故障。 大多数变频器为了避免跳闸,专门设置了减速过电压的自处理功能,如果在减速过程中,直流电压超过了设定的电压上限值,变频器的输出频率将不再下降,暂缓减速,待直流电压下降到设定值以下后再继续减速。如果减速时间设定不合适,又没有利用减速过电压的自处理功能,就可能出现此类故障。 (2) 工艺要求在限定时间内减速至规定频率或停止运行 工艺流程限定了负载的减速时间,合理设定相关参数也不能减缓这一故障,系统也没有采取处理多余能量 的措施,必然会引发过压跳闸故障。 (3) 当电动机所传动的位能负载下放时,电动机将处于再生发电制动状态 位能负载下降过快,过多回馈能量超过中间直流回路及其能量处理单元的承受能力,过电压故障也会发生。 (4) 变频器负载突降 变频器负载突降会使负载的转速明显上升,使负载电机进入再生发电状态,从负载侧向变频器中间直流回路回馈能量,短时间内能量的集中回馈,可能会中间直流回路及其能量处理单元的承受能力引发过电压故

变频器过流故障的原因及处理方法

变频器中过电流保护的对象主要指带有突变性质的、电流的峰值超过了过电流检测值(约额定电流的200%),变频器显示OC表示过电流,由于逆变器件的过载能力较差,所以变频器的过电流保护是至关重要的一环。 变频器过流故障的原因分析 过电流故障可分为加速、减速、恒速过电流。其可能是由于变频器的加减速时间太短、负载发生突变、负荷分配不均,输出短路等原因引起的。这时一般可通过延长加减速时间、减少负荷的突变、外加能耗制动元件、进行负荷分配设计、对线路进行检查等来解决。如果断开负载变频器还是过流故障,说明变频器逆变电路已坏,需要更换变频器。根据变频器显示,可从以下几方面寻找原因: (1)工作中过电流,即拖动系统在工作过程中出现过电流。其原因大致有以下几方面: l 一是电动机遇到冲击负载或传动机结构出现“卡住”现象,引起电动机电流的突然增加; l 二是变频器输出侧发生短路,如输出端到电动机之间的连接线发生相互短路,或电动机内部发生短路等、接地(电机烧毁、绝缘劣化、电缆破损而引起的接触、接地等) l 三是变频器自身工作不正常,如逆变桥中同一桥臂的两个逆变器件在不断交替的工作过程中出现异常。如环境温度过高,或逆变器元器件本身老化等原因,使逆变器的参数发生变化,导致在交替过程中,一个器件已经导通,而另一个器件却还未来得及关断,引起同一个桥臂的上、下两个器件的“直通”,使直流电压的正、负极间处于短路状态。 (2)升速、降速时过电流:当负载的惯性较大,而升速时间或降速时间又设定得太短时,也会引起过电流。在升速过程中,变频器工作频率上升太快,电动机的同步转速迅速上升,而电动机转子的转速因负载惯性较大而跟不上去,结果是升速电流太大;在降速过程中,降速时间太短,同步转速迅速下降,而电动机转子因负载的惯性大,仍维持较高的转速,这时同样可以使转子绕组切割磁力线的速度太大而产生过电流。 变频器过流故障的处理方法 (1)起动时一升速就跳闸,这是过电流十分严重的现象,主要检查: l 工作机械有没有卡住;

变频器过压故障分析及处理

变频器是现代电力拖动系统的核心设备,可实现电机的各种调速功能与控制要求,在日常工作中,为保障系统安全稳定运作,变频器会不断监视各项运行指标确保设备正常,包括电压,电流,温度,频率等各项数据;现针对变频器电压检测方面的过压类故障进行简单分析。 变频器过压,通常是指直流母线电压超过一定范围,影响到变频器本身元器件的安全工作,而采取的一种停机保护机制;正常情况下,变频器的直流电压为三相全波整流滤波后的平均值,以380V计算,直流母线电压Ud=380 x 1.414=537V,而在发生过压时,直流母线端的主电容则会充电储能,母线电压不断升高,当电压上升至主电容额定电压800V 左右时,变频器就会进行过压保护停机,否则将影响变频器性能甚至导致其损坏;对于变频器来说,常见的过压因素有两类:电源因素和负载因素。 一、输入交流电源电压过高,超过规定的正常范围,比如电网电压升高或者线路出现问题,或者一些工厂的变压器出现问题,以及使用的柴油发电机输出电压过高等,都会导致过压产生;此时,最好断开电源,检查处理,待输入电压正常之后再启动运行变频器。 二、变频器负载反发电导致,这种情况常见于一些大惯量负载,主要是电机的同步转速高于变频器输出的实际转速,电机处于发电状态,将电能反馈回变频器,导致直流母线电压超过安全范围产生过压故障;这种情况可从以下几个方面进行处理: 1、可适当延长减速时间,大惯量负载的过压主要是因为减速时间设定较短,在实际减速过程中,负载的惯性会带着电机旋转,导致电机的同步转速高于变频器的输出转速,此时电机会反发电到变频器,形成过压;延长减速时间的目的,是让变频器的输出转速下降率变慢,使电机的同步转速低于变频器的输出转速;防止电机反发电。 2、使用过压失速抑制功能,因过压是变频器频率下降率太快导致,过压抑制时会检测直流母线电压,若电压升高到一定值,变频器减缓频率下降率,使输出转速高于电机同步转速,防止电机发电。 3、采取能耗制动,启用能耗制动功能,将电机反馈到直流母线段多余的电量通过能耗元件(制动电阻)消耗掉,使直流母线电压在安全范围。 4、其他方面,加装能量回馈单元将多余电量反馈回电网,或者采取共直流母线的方式,将2台或者多台变频器的直流母线电压并联,多余的能量通过并联母线被处在电动状态的电机吸收,以此保持发电状态设备的母线电压稳定。 变频器对于电压的反应是比较敏感的,因为会涉及到设备的安全运行。同时变频技术的发展将会出现更多更有效的故障处理办法,使变频器的运行更加稳定可靠。

变频器最常见的十大故障

变频器最常见的十大故障 一、过流(0C) 过流是变频器报警最为频繁的现象。 1.1现象 (1)重新启动时,一升速就跳闸。这是过电流十分严重的现象。主要原因有:负载短路,机械部位有卡住;逆变模块损坏;电动机的转矩过小等现象引起。 (2)上电就跳,这种现象一般不能复位,主要原因有:模块坏、驱动电路坏、电流检 测电路坏。重新启动时并不立即跳闸而是在加速时,主要原因有:加速时间设置太短、电流 上限设置太小、转矩补偿(V/F )设定较高。 1.2实例 (1)一台LG-IS3-43.7kW变频器一启动就跳“ 0C” 分析与维修:首先打开机盖没有发现任何烧坏的迹象,在线测量IGBT(7MBR25NF-120)基本判断没有问题,为进一步判断问题,把IGBT拆下后测量7个单元的大功率晶体管开通与关闭都很好。在测量上半桥的驱动电路时发现有一路与其他两路有明显区别,经仔细检查发现一只光耦A3120输出脚与电源负极短路,更换后三路基本一样。模块装上上电运行一切良好。 (2)一台BELTR0-VERT2kW 变频通电就跳“ 0C ”且不能复位。 分析与维修:首先检查逆变模块没有发现问题。其次检查驱动电路也没有异常现象,估计问题不在这一块,可能出在过流信号处理这一部位,再次将其电路传感器拆掉后上电,显示一切正常,故认为传感器已坏,找一新品换上后带负载实验一切正常。 二、过压(0U ) 过电压报警一般是出现在停机的时候,其主要原因是减速时间太短或制动电阻及制动单 元有问题。 (1)实例 一台台安N2系列3.kW变频器在停机时跳“ 0U”。

分析与维修:首先要搞清楚“ 0U ”报警的原因何在,这是因为变频器在减速时,电动机转子绕组切割旋转磁场的速度加快,转子的电动势和电流增大,使电机处于发电状态,回馈的能量通过逆变环节中与大功率开关管并联二极管流向直流环节,使直流母线电压升高所致,所以我们应该着重检查制动回路,测量放电电阻没有问题,在测量制动管(ET191 )时发现已击穿,更换后上电运行,且快速停车都没有问题。 三、欠压(Uu) 欠压也是我们在使用中经常碰到的问题。主要是因为主回路电压太低(220V系列低于200V,380V系列低于400V),主要原因:整流桥某一路损坏或可控硅三路中有工作不正常的都有可能导致欠压故障的出现,其次主回路接触器损坏,导致直流母线电压损耗在充电 电阻上面有可能导致欠压。还有就是电压检测电路发生故障而出现欠压问题。 3.1举例 (1)变频器上电跳“ Uu” 分析与维修:经检查这台变频器的整流桥充电电阻都是好的,但是上电后没有听到接触 器动作,因为这台变频器的充电回路不是利用可控硅而是靠接触器的吸合来完成充电过程的,因此认为故障可能出在接触器或控制回路以及电源部分,拆掉接触器单独加24V直流电接触器工作正常。继而检查24V直流电源,经仔细检查该电压是经过LM7824稳压管稳 压后输出的,测量该稳压管已损坏,找一新品更换后上电工作正常。 (2)一台DANFOSSVLT5004 变频器,上电显示正常,但是加负载后跳 “ DCLINKUNDERVOLT ” (直流回路电压低)。 分析与维修:这台变频器从现象上看比较特别,但是你如果仔细分析一下问题也就不是 那么复杂,该变频器同样也是通过充电回路,接触器来完成充电过程的,上电时没有发现任 何异常现象,估计是加负载时直流回路的电压下降所引起,而直流回路的电压又是通过整流 桥全波整流,然后由电容平波后提供的,所以应着重检查整流桥,经测量发现该整流桥有一 路桥臂开路,更换新品后问题解决。 四、过热(OH )。 过热也是一种比较常见的故障,主要原因:周围温度过高,风机堵转,温度传感器性能不良,马达过热。 举例:一台ABBACS50022kW 变频器客户反映在运行半小时左右跳“OH ”。 分析与维修:因为是在运行一段时间后才有故障,所以温度传感器坏的可能性不大,可能变频器的温度确实太高,通电后发现风机转动缓慢,防护罩里面堵满了很多棉絮(因该变频器是用在纺织行业),经打扫后开机风机运行良好,运行数小时后没有再跳此故障。 五、输出不平衡

变频器过流与过载的原因分析

变频器过流与过载的原因分析 变频器过流与过载的原因分析 1、过电流跳闸及原因分析 变频器的过电流跳闸又分短路故障、运行过程中跳闸和升、降速过程中跳闸等情况。 1.1 短路故障 (1 )故障特点 a )第一次跳闸有可能在运行过程中发生,但如复位后再起动,则往往一升速就跳闸。 b )具有很大的冲击电流,但大多数变频器已经能够进行保护跳闸,而不会损坏。由于保护跳闸十分迅速,难以观察其电流的大小。 (2 )判断与处理 第一步,首选要判断是否短路。为了便于判断,在复位后再起动前,可在输入侧接入一个电压表,重新启动时,电位器从零开始缓慢旋动,同时,注意观察电压表。如果变频器的输出频率刚上升就立即跳闸,且电压表的指针有瞬间回“ 0 ”的迹象,则说明变频器的输出端已经短路或接地。 第二步,要判断是在变频器内部短路,还是在外部短路。这时,应将变频器输出端的接线脱开,再旋动电位器,使频率上升,如仍跳闸,说明变频器内部短路;如不再跳闸,则说明是变频器外部短路,应检查从变频器到电动机之间的线路,以及电动机本身。 1.2、轻载过电流负载很轻,却又过电流跳闸。 这是变频调速所特有的现象。在V/F 控制模式下,存在着一个十分突出的问题:就是在运行过程中,电动机磁路系统的不稳定。其基本原因在于: 低频运行时,为了能带动较重的负载,常常需要进行转矩补偿(即提高U/f 比,也叫转矩提升)。导致电动机磁路的饱和程度随负载的轻重而变化。这种由电动机磁路饱和引起的过电流跳闸,主要发生在低频、轻载的情况下。解决方法:反复调整U/f 比。 1.3 重载过电流 (1)故障现象 有些生产机械在运行过程中负荷突然加重,甚至“卡住”,电动机的转速因带不动而大幅下降,电流急剧增加,过载保护来不及动作,导致过电流跳闸。 (2)解决方法 a)首先了解机械本身是否有故障,如果有故障,则修理机器。 b)如果这种过载属于生产过程中经常可能出现的现象,则首先考虑能否加大电动机和负载之间的传动比?适当加大传动比,可减轻电动机轴上的阻转矩,避免出现带不动的情况。如无法加大传动比,则只有考虑增大电动机和变频器的容量了。

变频器过压故障分析及如何维修

变频器过压故障分析及如何维修 变频器过电压(OU)故障分析及如何维修 1、过电压的危害 变频器过电压主要是指其中间直流回路过电压,中间直流回路过电压主要危害在于: (1) 引起电动机磁路饱和。对于电动机来说,电压主过高必然使电机铁芯磁通增加,可能导致磁路饱和,励磁电流过大,从面引起电机温升过高; (2) 损害电动机绝缘。中间直流回路电压升高后,变频器输出电压的脉冲幅度过大,对电机绝缘寿命有很大的影响; (3) 对中间直流回路滤波电容器寿命有直接影响,严重时会引起电容器爆裂。因而变频器厂家一般将中间直流回路过电压值限定在DC800V左右,一旦其电压超过限定值,变频器将按限定要求跳闸保护。 2、过电压的原因 一般能引起中间直流回路过电压的原因主要来自以下两个方面: (1) 来自电源输入侧的过电压 正常情况下的电源电压为380V,允许误差为-5%~+10%,经三相桥式全波整流后中间直流的峰值为591V,一般电源电压不会使变频器因过电压跳闸。电源 输入侧的过电压主要是指电源侧的冲击过电压,如雷电引起的过电压、补偿电容在合闸或断开时形成的过电压等,主要特点是电压变化率dv/dt和幅值都很大。 (2) 制动或减速时间过短或制动电阻损坏。 当变频器拖动大惯性负载时,其减速时间设定的比较小,在减速过程中,变频器输出频率下降的速度比较快,而负载惯性比较大,靠本身阻力减速比较慢,使负载拖动电动机的转速比变频器输出的频率所对应的转速还要高,电动机处于发电状态,从负载侧向变频器中间直流回路回馈能量,短时间内能量的集中回馈,可能会中间直流回路及其能量处理单元的承受能力引发过电压故障。若变频器没有能量处理单元或其作用有限,因而导致变频器中间直流回路电压升高,超出保护值,就会出现过电压跳闸故障。 现场调试过程中有一组辊道电机的变频器出现速度反馈值大于速度设定值,经仔细观察发现: a) 在轧钢过程中不存在这种情况,当钢离开辊道后,才出现这种情况;

变频器过流与过载原因的分析

电动机知识 变频器过流和过载原因的分析 一、引言 变频器具有显著节能效果 ,已在煤炭企业推广和应用。但是在实际生产中 ,因为变频器过流过载造成跳闸的现象经常发生 ,又由于一线的机电技术操作人员对其了解不深,维修不及时 ,影响到 煤炭生产的正常进行。所以 ,对其进行理论综合分析并提出解决方案 ,对提高煤炭生产能力 ,降低事故率具有实际意义。 二、过电流跳闸及原因分析变频器的过电流跳闸又分短路故障、运行过程中跳闸和升、降速过程中跳闸等情况。 1、短路故障 、故障特点 、第一次跳闸有可能在运行过程中发生 ,但如复位后再起动 ,则往往一升速就跳闸 、具有很大的冲击电流 ,但大多数变频器已经能够进行保护跳闸 , 而不会损坏。由于保护跳闸十分迅速 ,难以观察其电流的大小。、判断与处理 、判断是否短路。为了便于判断 ,在复位后再起动前 ,可在输入侧接入一个电压表。重新起动时 ,电位器从零开始缓慢旋动 ,同时 , 注意观察电压表。如果变频器的输出频率刚上升就立即跳闸 , 且电压表的指针有瞬间回“ 零”的迹象 ,则说明变频器的输出端已经短路或接地、要判断是在变频器内部短路 ,还是在外部短路。应将变频器输出端的接线脱开 ,再旋动电位器 ,使频率上升 ,如仍跳闸 ,说明变频器内部短路;如不再跳闸 ,则说明是变频器外部短路 ,应检查从变频器到电动机之间的线路 ,以及电动机本身。 2、轻载过电流 负载很轻 ,却又过电流跳闸 ,这是变频调速所特有的现象。在V/

F 控制模式下 ,存在着一个十分突出的问题 :即在运行过程中 , 电动机磁路系统的不稳定。其基本原因在于 :低频运行时 ,为了能带动较重的负载 ,常常需要进行转矩补偿(即提高 U/ f 比 ,也叫转矩提升)。导致电动机磁路的饱和程度随负载的轻重而变化。这种由电动机磁路饱和引起的过电流跳闸,主要发生在低频、轻载的情况下。解决方法 :反复调整 U/ f 比。 3、重载过电流 、故障现象 :有些生产机械在运行过程中负荷突然加重,甚至“卡住” ,电动机的转速因带不动而大幅下降,电流急剧增加 ,过载保 护来不及动作 ,导致过电流跳闸。 、解决方法 、首先了解机械本身是否有故障 ,如果有故障 ,则修理机器 ; 、如果这种过载属于生产过程中经常出现的现象,则首先考虑能 否加大电动机和负载之间的传动比。适当加大传动比 ,可减轻电动机轴上的阻转矩 ,避免出现带不动的情况。如无法加大传动比 , 则应考虑增大电动机和变频器的容量。 4、升速或降速中过电流这种现象是由于升速或降速过快引起的,可采取如下措施 : 、延长升(降)速时间 :首先了解生产工艺要求是否允许延长升(降)速时间 ,如允许 ,则可延长升(降)速时间 ; 变频器技术网,、准确预置升(降)速自处理(防失速)功能 :变频器对于升、降速过程中的过电流 ,设置了自处理(防失速)功能。当升(降)电流超过预置的上限电流时 ,将暂停升(降)速,待电流降至设定值以下时,再继续升(降)速。 三、过载跳闸及原因分析 电动机能够旋转 ,但运行电流超过了额定值 ,称为过载。过载的基本特征是 :电流虽然超过了额定值 ,但超过的幅度不大 ,一般也不形成

变频器过压原因分析

变频器故障分析与处理 变频调速系统以其优越于直流传动的特点,在很多场合中都被作为首选的传动方案,现代变频调速基本都采用16位或32位单片机作为控制核心,从而实现全数字化控制,调速性能与直流调速基本相近,但使用变频器时,其维护工作要比直流复杂,一旦发生故障,企业的普通电气人员就很难处理,这里就变频器常见的故障分析一下故障产生的原因及处理方法。 一、参数设置类故障 常用变频器在使用中,是否能满足传动系统的要求,变频器的参数设置非常重要,如果参数设置不正确,会导致变频器不能正常工作。 1、参数设置 常用变频器,一般出厂时,厂家对每一个参数都有一个默认值,这些参数叫工厂值。在这些参数值的情况下,用户能以面板操作方式正常运行的,但以面板操作并不满足大多数传动系统的要求。所以,用户在正确使用变频器之前,要对变频器参数时从以下几个方面进行: (1)确认电机参数,变频器在参数中设定电机的功率、电流、电压、转速、最大频率,这些参数可以从电机铭牌中直接得到。 (2)变频器采取的控制方式,即速度控制、转距控制、PID控制或其他方式。采取控制方式后,一般要根据控制精度,需要进行静态或动态辨识。 (3)设定变频器的启动方式,一般变频器在出厂时设定从面板启动,用户可以根据实际情况选择启动方式,可以用面板、外部端子、通讯方式等几种。 (4)给定信号的选择,一般变频器的频率给定也可以有多种方式,面板给定、外部给定、外部电压或电流给定、通讯方式给定,当然对于变频器的频率给定也可以是这几种方式的一种或几种方式之和。正确设置以上参数之后,变频器基本上能正常工作,如要获得更好的控制效果则只能根据实际情况修改相关参数。 2、参数设置类故障的处理 一旦发生了参数设置类故障后,变频器都不能正常运行,一般可根据说明书进行修改参数。如果以上不行,最好是能够把所有参数恢复出厂值,然后按上述步骤重新设置,对于每一个公司的变频器其参数恢复方式也不相同。 二、过压类故障 变频器的过电压集中表现在直流母线的支流电压上。正常情况下,变频器直流电为三相全波整流后的平均值。若以380V线电压计算,则平均直流电压Ud= 1.35 U线=513V。在过电压发生时,直流母线的储能电容将被充电,当电压上至760V左右时,变频器过电压保护动作。因此,变频器来说,都有一个正常的工作电压范围,当电压超过这个范围时很可能损坏变频器,常见的过电压有两类。 1、输入交流电源过压 这种情况是指输入电压超过正常范围,一般发生在节假日负载较轻,电压升高或降低而线路出现故障,此时最好断开电源,检查、处理。 2、发电类过电压 这种情况出现的概率较高,主要是电机的同步转速比实际转速还高,使电动机处于发电状态,而变频器又没有安装制动单元,有两起情况可以引起这一故障。 (1)当变频器拖动大惯性负载时,其减速时间设的比较小,在减速过程中,变频器输出的速度比较快,而负载靠本身阻力减速比较慢,使负载拖动电动机的转速比变频器输出的频率所对应的转速还要高,电动机处于发电状态,而变频器没有能量回馈单元,因而变频器支流直流回路电压升高,超出保护值,出现过压报警现象,而纸机中经常发生在干燥部分,处理这种故障可以增加再生制动单元,或者修改变频器参数,把变频器减速时间设的长一些。增加再生制动单元功能包括能量消耗型,并联直流母线吸收型、能量回馈型。能量消耗型在变频器直流回路中并联一个制动电阻,通过检测直流母线电压来控制功率管的通

变频器过载的原因分析

变频器过载的原因分析 一、过电流跳闸及原因分析 变频器的过电流跳闸又分短路故障、运行过程中跳闸和升、降速过程中跳闸等情况。 1、短路故障 1.1、故障特点 1.1.1、第一次跳闸有可能在运行过程中发生,但如复位后再起动,则往往一升速就跳闸。 1.1.2、具有很大的冲击电流,但大多数变频器已经能够进行保护跳闸,而不会损坏。由于保护跳闸十分迅速,难以观察其电流的大小。 1.2、判断与处理 1.2.1、首选要判断是否短路。为了便于判断,在复位后再起动前,可在输入侧接入一个电压表,重新启动时,电位器从零开始缓慢旋动,同时,注意观察电压表。如果变频器的输出频率刚上升就立即跳闸,且电压表的指针有瞬间回“0”的迹象,则说明变频器的输出端已经短路或接地。 1.2.2、要判断是在变频器内部短路,还是在外部短路。这时,应将变频器输出端的接线脱开,再旋动电位器,使频率上升,如仍跳闸,说明变频器内部短路;如不再跳闸,则说明是变频器外部短路,应检查从变频器到电动机之间的线路,以及电动机本身。 2、轻载过电流负载很轻,却又过电流跳闸。 这是变频调速所特有的现象。在V/F控制模式下,存在着一个十分突出的问题:就是在运行过程中,电动机磁路系统的不稳定。其基本原因在于:

低频运行时,为了能带动较重的负载,常常需要进行转矩补偿(即提高U/f比,也叫转矩提升)。导致电动机磁路的饱和程度随负载的轻重而变化。这种由电动机磁路饱和引起的过电流跳闸,主要发生在低频、轻载的情况下。解决方法:反复调整U/f比。 3、重载过电流 3.1、故障现象 有些生产机械在运行过程中负荷突然加重,甚至“卡住”,电动机的转速因带不动而大幅下降,电流急剧增加,过载保护来不及动作,导致过电流跳闸。 3.2解决方法 3.2.1、首先了解机械本身是否有故障,如果有故障,则修理机器。 3.2.2、如果这种过载属于生产过程中经常可能出现的现象,则首先考虑能否加大电动机和负载之间的传动比?适当加大传动比,可减轻电动机轴上的阻转矩,避免出现带不动的情况。如无法加大传动比,则只有考虑增大电动机和变频器的容量了。 4、升速或降速中过电流 这是由于升速或降速过快引起的,可采取的措施有如下: 4.1、延长升(降)速时间 首先了解根据生产工艺要求是否允许延长升速或降速时间,如允许,则可延长升(降)速时间。 4.2、准确预置升(降)速自处理(防失速)功能 变频器对于升、降速过程中的过电流,设置了自处理(防失速)功能。当升(降)电流超过预置的上限电流时,将暂停升(降)速,待电流降至设定值以下时,再继续升(降)速。

变频器过载跳闸的原因及处理方法

1 过载的主要原因 (1)机械负荷过重,负荷过重的主要特征是电动机发热,并可从显示屏上读取运行电流来发现。 (2)三相电压不平衡,引起某相的运行电流过大,导致过载跳闸,其特点是电动机发热不均衡,从显示屏上读取运行电流时不一定能发现(因显示屏只显示一相电流)。 (3)误动作,变频器“》变频器内部的电流检测部分发生故障,检测出的电流信号偏大,导致跳闸。 2 检查方法 (1)检查电动机是否发热,如果电动机的温升不高,则首先应检查.asp?keyword=变频器”》变频器的电子热保护功能预置得是否合理,如变频器“》变频器尚有余量,则应放宽电子热保护功能的预置值。 如果电动机的温升过高,而所出现的过载又属于正常过载,则说明是电动机的负荷过重。这时,首先应能否适当加大传动比,以减轻电动机轴上的负荷。如能够加大,则加大传动比。如果传动比无法加大,则应加大电动机的容量。 (2)检查电动机侧三相电压是否平衡,如果电动机侧的三相电压不平衡,则应再检查变频器”》变频器输出端的三相电压是否平衡,如也不平衡,则问题在变频器“》变频器内部。 如变频器”》变频器输出端的电压平衡,则问题在从变频器“》变频器到电动机之间的线路上,应检查所有接线端的螺钉是否都已拧紧,如果在变频器”》变频器和电动机之间有接触器或其他电器,则还应检查有关电器的接线端是否都已拧紧,以及触点的接触状况是否良好等。 如果电动机侧三相电压平衡,则应了解跳闸时的工作频率: 如工作频率较低,又未用矢量控制(或无矢量控制),则首先降低U/f 比,如果降低后仍能带动负载,则说明原来预置的U/f 比过高,励磁电流的峰值偏大,可通过降低U/f 比来减小电流;如果降低后带不动负载了,则应考虑加大变频器“》变频器的容量;如果tShop/ShowClass.asp?ClassID=10101” class=“a-blue” target=“_blank”》变频器“》变频器具有矢量控制功能,则应采用矢量控制方式。

变频器过压原因

变频器过压有以下原因: 1.电网电压不稳定 2.变频器减速时间过快 3.机械故障使电机瞬间堵转,使变频器电压突变 检查P200和P201的参数是否相同。触发板有没有换过,如果换了要刷功率的否则就会开机报F002.如果是硬件损坏则很可能是控制板的问题 第一,你的问题是上电,没有运行的情况下报故障;还是运行的状态时候报故障呢? 如果是前者,检查直流母线电压r0026(看BOP面板),再拿万用表表笔检测下装置上C,D端直流电压看是否偏差太大。一般多为控制板检测出现故障,更换硬件。 后者的话,检查下电机电缆绝缘情况。斜坡时间是否设置合适,是否停车要求高需要加制动电阻 楼上回答的不错,F0002为过压,电压检测实际检测的是直流母线电压,正常在540V左右。得具体看什么时候报警的:

一、如果停机时,有可能是惯性过大回馈引起的,把下降时间加长或者加制动电阻即可。 二、如果在待机状态下报警: 1、机器电压检测回路故障。你可以通过参数r0026查看检测值,并拿万用表测量直流电压是否一致,如果相差过大,说明是机器电压检测回路故障。 2、电网电压过高。一般直流母线电压不要超过600V。 过流f0001 昨天,客户打电话咨询西门子MM440变频器报F0001故障,负载是水泵,复位后,运行5-6个小时又报F0001故障。今天上午,该客户又打电话来,反映变频器一启动就报F0023,检查电机电缆,发现电机的一相电缆烧坏。更换电缆后,故障解决。 根据凌坤电气的资深变频器维修工程师的经验,遇到有故障的变频器,首先要排除“接触不良”的可能性。除非是变频器上电无法复位的F0001报警故障,一般F0001故障都应该从外部找原因,电缆的绝缘不好,也可能会报F0001故障。 以前也有客户遇到这种情况,几台新的西门子MM430变频器,一上电就报F0001故障,按Fn无法复位,断电后再上电也是F0001故障,即使是做参数复位工厂设置,也不能解决这个问题。最后判断变频器有问题,让客户发过来维修。工程师收到机器后再上电,又正常了,不报F0001故障。这种情况就是接触问题。如果是硬件坏了,是不可能又恢复正常的。 因为西门子MM4变频器接插件设计上的原因,再加上运输、使用过程中的震动、灰尘、腐蚀等外部因素,导致变频器接触不良的情况比较多见。

变频器常见故障代码及处理实例

一、过流(OC) 过流是变频器报警最为频繁的现象。 1.1现象 (1) 重新启动时,一升速就跳闸。这是过电流十分严重的现象。主要原因有:负载短路,机械部位有卡住;逆变模块损坏;电动机的转矩过小等现象引起。 (2) 上电就跳,这种现象一般不能复位,主要原因有:模块坏、驱动电路坏、电流检测电路坏。 (3) 重新启动时并不立即跳闸而是在加速时,主要原因有:加速时间设置太短、电流上限设置太小、转矩补偿(V/F)设定较高。 1.2 实例 (1) 一台LG-IS3-4 3.7kW变频器一启动就跳“OC” 分析与维修:打开机盖没有发现任何烧坏的迹象,在线测量IGBT(7MBR25NF-120)基本判断没有问题,为进一步判断问题,把IGBT拆下后测量7个单元的大功率晶体管开通与关闭都很好。在测量上半桥的驱动电路时发现有一路与其他两路有明显区别,经仔细检查发现一只光耦A3120输出脚与电源负极短路,更换后三路基本一样。模块装上上电运行一切良好。 (2) 一台BELTRO-VERT 2.2kW变频通电就跳“OC”且不能复位。 分析与维修:首先检查逆变模块没有发现问题。其次检查驱动电路也没有异常现象,估计问题不在这一块,可能出在过流信号处理这一部位,将其电路传感器拆掉后上电,显示一切正常,故认为传感器已坏,找一新品换上后带负载实验一切正常。 二、过压(OU) 过电压报警一般是出现在停机的时候,其主要原因是减速时间太短或制动电阻及制动单元有问题。 2.1 实例 一台台安N2系列3.7kW变频器在停机时跳“OU”。 分析与维修:在修这台机器之前,首先要搞清楚“OU”报警的原因何在,这是因为变频器在减速时,电动机转子绕组切割旋转磁场的速度加快,转子的电动势和电流增大,使电机处于发电状态,回馈的能量通过逆变环节中与大功率开关管并联的二极管流向直流环节,使直流母线电压升高所致,所以我们应该着重检查制动回路,测量放电电阻没有问题,在测量制动管(ET191)时发现已击穿,更换后上电运行,且快速停车都没有问题。 三、欠压(Uu) 欠压也是我们在使用中经常碰到的问题。主要是因为主回路电压太低(220V系列低于200V,380V系列低于400V),主要原因:整流桥某一路损坏或可控硅三路中有工作不正常的都有可能导致欠压故障的出现,其次主回路接触器损坏,导致直流母线电压损耗在充电电阻上面有可能导致欠压.还有就是电压检测电路发生故障而出现欠压问题。 3.1 举例 (1) 一台CT 18.5kW变频器上电跳“Uu”。 分析与维修:经检查这台变频器的整流桥充电电阻都是好的,但是上电后没有听到接触

变频器过电压的原因及解决方法

变频器过电压的原因及解决方法 过电压产生后,变频器为了防止内部电路损坏,其过电压保护功能将动作,使变频器停止运行,导致设备无法正常工作。 变频器在调试与使用过程中经常会遇到各种各样的问题,其中过 电压现象最为常见。 过电压产生后,变频器为了防止内部电路损坏,其过电压保护功能将动作,使变频器停止运行,导致设备无法正常工作。因此必须采取措施消除过电压,防止故障的发生。由于变频器与电机的应用场合不同,产生过电压的原因也不相同,所以应根据具体情况采取相应的 对策。 过电压的产生与再生制动 所谓变频器的过电压,是指由于种种原因造成的变频器电压超过额定电压,集中表现在变频器直流母线的直流电压上。正常工作时,变频器直流部电压为三相全波整流后的平均值。若以380V线电压计算,则平均直流电压Ud=1.35U线=513V。 在过电压发生时,直流母线上的储能电容将被充电,当电压上升至700V左右时,(因机型而异)变频器过电压保护动作。造成过电压的原因主要有两种:电源过电压和再生过电压。电源过电压是指因电

源电压过高而使直流母线电压超过额定值。而现在大部分变频器的输入电压最高可达460V,因此,电源引起的过电压极为少见。 本文主要讨论的问题是再生过电压。产生再生过电压主要有以下原因:当大GD2(飞轮力矩)负载减速时变频器减速时间设定过短;电机受外力影响(风机、牵伸机)或位能负载(电梯、起重机)下放。由于这些原因,使电机实际转速高于变频器的指令转速,也就是说,电机转子转速超过了同步转速,这时电机的转差率为负,转子绕组切割旋转磁场的方向与电动机状态时相反,其产生的电磁转矩为阻碍旋转方向的制动转矩。所以电动机实际上处于发电状态,负载的动能被“再生” 成为电能。 再生能量经逆变部续流二极管对变频器直流储能电容器充电,使直流母线电压上升,这就是再生过电压。因再生过电压的过程中产生的转矩与原转矩相反,为制动转矩,因此再生过电压的过程也就是再生制动的过程。换句话说,消除了再生能量,也就提高了制动转矩。如果再生能量不大,因变频器与电机本身具有20%的再生制动能力,这部分电能将被变频器及电机消耗掉。若这部分能量超过了变频器与电机的消耗能力,直流回路的电容将被过充电,变频器的过电压保护功能动作,使运行停止。为避免这种情况的发生,必须将这部分能量及时的处理掉,同时也提高了制动转矩,这就是再生制动的目的。 过电压的防止措施

变频器运行中过电流保护原因分析

变频器运行中过电流保护的对象主要指带有突变性质的、电流的峰值超过了变频器的容许值的情形。由于逆变器件的过载能力较差,所以变频器的过电流保护是至关重要的一环。现在以变频器在运行中过电流来分析故障原因: 1、升速时过电流当负载的惯性较大,而升速时间又设定得太短时,意味着在升速过程中,变频器的工作效率上升太快,电动机的同步转速迅速上升,而电动机转子的转速因负载惯性较大而跟不上去,结果是升速电流太大。 2、降速中的过电流当负载的惯性较大,而降速时间设定得太短时,也会引起过电流。因为,降速时间太短,同步转速迅速下降,而电动机转子因负载的惯性大,仍维持较高的转速,这时同样可以是转子绕组切割磁力线的速度太大而产生过电流。 3.工作中过电流即拖动系统在工作过程中出现过电流。其原因大致来自以下几方面: ①电动机遇到冲击负载,或传动机构出现“卡住”现象,引起电动机电流的突然增加。 ②变频器的输出侧短路,如输出端到电动机之间的连接线发生相互短路,或电动机内部发生短路等。 ③变频器自身工作的不正常,如逆变桥中同一桥臂的两个逆变器件在不断交替的工作过程中出现异常。例如由于环境温度过高,或逆变器件本身老化等原因,使逆变器件的参数发生变化,导致在交替过程中,一个器件已经导通、而另一个器件却还未来得及关断,引起同一个桥臂的上、下两个器件的“直通”,使直流电压的正、负极间处于短路状态。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解台达变频器、三菱变频器、西门子变频器、安川变频器、艾默生变频器的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城。 https://www.doczj.com/doc/3e13762.html,/

变频器过压类故障的处理方法

变频器的过电压集中表现在直流母线的支流电压上。正常情况下,变频器直流电为三相全波整流后的平均值。若以380V线电压计算,则平均直流电压 Ud=1.35U线=513V。在过电压发生时,直流母线的储能电容将被充电,当电压上至760V左右时,变频器过电压保护动作。因此,变频器来说,都有一个正常的工作电压范围,当电压超过这个范围时很可能损坏变频器,常见的过电压有两类。 1、输入交流电源过压这种情况是指输入电压超过正常范围,一般发生在节假日负载较轻,电压升高或降低而线路出现故障,此时最好断开电源,检查、处理。 2、发电类过电压 这种情况出现的概率较高,主要是电机的同步转速比实际转速还高,使电动机处于发电状态,而变频器又没有安装制动单元,有两起情况可以引起这一故障。 (1)当变频器拖动大惯性负载时,其减速时间设的比较小,在减速过程中,变频器输出的速度比较快,而负载靠本身阻力减速比较慢,使负载拖动电动机的转速比变频器输出的频率所对应的转速还要高,电动机处于发电状态,而变频器没有能量回馈单元,因而变频器支流直流回路电压升高,超出保护值,出现故障,而纸机中经常发生在干燥部分,处理这种故障可以增加再生制动单元,或者修改变频器参数,把变频器减速时间设的长一些。 增加再生制动单元功能包括能量消耗型,并联直流母线吸收型、能量回馈型。能量消耗型在变频器直流回路中并联一个制动电阻,通过检测直流母线电压来控制功率管的通断。并联直流母线吸收型使用在多电机传动系统,这种系统往往有一台或几台电机经常工作于发电状态,产生再生能量,这些能量通过并联母线被处于电动状态的电机吸收。能量回馈型的变频器网侧变流器是可逆的,当有再生能量产生时可逆变流器就将再生能量回馈给电网。 (2)多个电动施动同一个负载时,也可能出现这一故障,主要由于没有负荷分配引起的。以两台电动机拖动一个负载为例,当一台电动机的实际转速大于另一台电动机的同步转速时,则转速高的电动机相当于原动机,转速低的处于发电状态,引起故障。在纸机经常发生在榨部及网部,处理时需加负荷分配控制。可以把处于纸机传动速度链分支的变频器特性调节软一些。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路

变频器过电流跳闸和过载跳闸的原因分析

变频器过电流跳闸和过载跳闸的原因分析 1、过电流跳闸和过载跳闸的区别过载也一定过电流,变频器为什么要把过电流和过载分开呢?主要有2个区别: (1) 保护对象不同过电流主要用于保护变频器,而过载主要用于保护电动机。因为变频器的容量有时需要比电动机的容量加大一档甚或两档,在这种情况下,电动机过载时,变频器不一定过电流。过载保护由变频器内部的电子热保护功能进行,在预置电子热保护功能时,应该准确地预置“电流取用比”,即电动机额定电流和变频器额定电流之比的百分数:IM%=IMN*100%I/IM式中,IM%—电流取用比; IMN—电动机的额定电流,A; IN—变频器的额定电流,A。(2) 电流的变化率不同过载保护发生在生产机械的工作过程中,电流的变化率di/dt通常较小;除了过载以外的其他过电流,常常带有突发性,电流的变化率di/dt往往较大。(3) 过载保护具有反时限特性过载保护主要是防止电动机过热,故具有类似于热继电器的“反时限”特点。就是说,如果与额定电流相比,超过得不多,则允许运行的时间可以长一些,但如果超过得较多的话,允许运行的时间将缩短,如图1所示。此外,由于在频率下降时,电动机的散热状况变差。所以,在同样过载50%的情况下,频率越低则允许运行的时间越短。 2、过电流跳闸及原因分析

变频器的过电流跳闸又分短路故障、运行过程中跳闸和升、降速过程中跳闸等情况,分述如下:图1过载保的“反时限” 特性2.1 短路故障短路故障是最危险的故障之一,应注意观察和分析, 如图2所示。图2 变频器输出侧短路(1) 故障特点a) 第一次跳闸有可能在运行过程中发生,但如复位后再起动,则往往一升速就跳闸。b) 具有很大的冲击电流,但大多数变频器已经能够进行保护跳闸,而不会损坏。由于保护跳闸十分迅速,难以观察其电流的大小。 (2) 判断与处理第一步,首先要判断是否短路。为了便于 判断,在复位后再起动前,应在输入侧接入一个电压表,如图2所示。重新启动时,电位器从零开始缓慢旋动,同时,注意观察电压表。如果变频器的输出频率刚上升就立即跳闸,且电压表的指针有瞬间回“0”的迹象,则说明变频器的输出端已经短路或接地。第二步,要判断是在变频器内部短路,还是在外部短路。这时,应将变频器输出端的接线脱开,再旋动电位器,使频率上升,如仍跳闸,说明变频器内部短路;如不再跳闸,则说明是变频器外部短路,应检查从变频器到电动机之间的线路,以及电动机本身。2.2 轻载过电流负载很轻,却又过电流跳闸,这是变频调速所特有的现象。(1) 变频调速系统的特殊问题在V/F控制模式下,存在着一个十分突出的问题:就是在运行过程中,电动机磁路系统的不稳定。其基本原因在于:低频运行(fX下降)时,由于电压

相关主题
文本预览
相关文档 最新文档