当前位置:文档之家› 应力与应变(试题学习)

应力与应变(试题学习)

应力与应变(试题学习)
应力与应变(试题学习)

第三章 应力与强度计算

一.内容提要

本章介绍了杆件发生基本变形时的应力计算,材料的力学性能,以及基本变形的强度计算。

1.拉伸与压缩变形

1.1 拉(压)杆的应力

1.1.1拉(压)杆横截面上的正应力

拉压杆件横截面上只有正应力σ,且为平均分布,其计算公式

N F A

σ= (3-1) 式中N F 为该横截面的轴力,A 为横截面面积。

正负号规定 拉应力为正,压应力为负。

公式(3-1)的适用条件:

(1) 杆端外力的合力作用线与杆轴线重合,即只适于轴向拉(压)杆件;如果是偏

心受压或受拉的轻质杆件,那么必然存在靠近轴力的一侧受压,远离轴力的一侧受拉,应力肯定不同,方向相反。并存在中和轴。(即应力在中和轴处为0)

(2)适用于离杆件受力区域稍远处的横截面;(大于截面宽度的长度范围内——圣维南)

(3)杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀(即应力集中);

(4)截面连续变化的直杆,杆件两侧棱边的夹角0

20α≤时,可应用式(3-1)计算,所得结果的误差约为3%。

1.1.2拉(压)杆斜截面上的应力(如图3-1)

图3-1

拉压杆件任意斜截面(a 图)上的应力为平均分布,其计算公式为

全应力 cos p ασα= (3-2)

正应力 2cos ασσα=(3-3)

切应力1sin 22

ατσα= (3-4) 式中σ为横截面上的应力。

正负号规定:

α 由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负。

ασ 拉应力为正,压应力为负。

ατ 对脱离体内一点产生顺时针力矩的ατ为正,反之为负。

两点结论:

(1)当00α=时,即横截面上,ασ达到最大值,即()max ασσ=。当α=0

90时,即纵截面上,ασ=090=0。

(2)当045α=时,即与杆轴成045的斜截面上,ατ达到最大值,即max ()2αα

τ=。

1.2 拉(压)杆的应变和胡克定律

(1)变形及应变

杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长。如图3-2。

图3-2

轴向变形 1l l l ?=-

轴向线应变 l l

ε?= 横向变形 1b b b ?=-

横向线应变 b b

ε?'= 正负号规定 伸长为正,缩短为负。

(2)胡克定律

当应力不超过材料的比例极限时,应力与应变成正比。即

E σε= (3-5)

或用轴力及杆件的变形量表示为

N F l l EA

?= (3-6) 式中EA 称为杆件的抗拉(压)刚度,是表征杆件抵抗拉压弹性变形能力的量。

公式(3-6)的适用条件:

(a)材料在线弹性范围内工作,即p σσ?;

(b)在计算l ?时,l 长度内其N 、E 、A 均应为常量。如杆件上各段不同,则应分段计算,求其代数和得总变形。即

我所认识的应力应变关系

我所认识的应力应变关系 应力应变都是物体受到外界载荷产生的响应。物体由于受到外界载荷后,在物体内部各部分之间要产生互相之间的力的作用,由于受到力的作用就会产生相应的变形;或者由于变形引起相应的力的作用。则一定材料的物体其产生的应力和应变也必然存在一定的关系。 一 应力-应变关系 影响本构关系的因素有很多,例如材料、环境、加载类型(载荷、温度)、加载速度(动载荷、静载荷)等,当然,本构关系有很多类型,包括弹性、塑性、粘弹性、粘塑性、各向同性、各向异性本构关系,那么首先来叙述一下简单情况本构关系,所谓简单情况就是六个应力分量x y xy yz zx σσστττ、、z 、、、只有一个不为零, 六个应变分量x y xy yz zx εεεγγγ、、z 、、、只有一个自由变化,应力应变关系图1-1。 图1-1 应力应变关系图 图中OA 为线弹性阶段,AB 为非线弹性阶段,故OB 为初始弹性阶段,C 点位初始屈服点,()s σ+为初始屈服应力,CBA 为弹性阶段卸载,这一阶段中E σε=, 初始弹性阶段结束之后,应力继续增大,进入塑性阶段,CDE 为强化阶段,应变强化硬化,EF 为颈缩阶段,应变弱化软化。如果在进入塑性阶段卸载后再加载,

例如在D 点卸载至零,应力应变关系自D 点沿'DO 到达'O 点,且'DO ∥OA ,其中'O O 为塑性应变p ε,DG 为弹性应变e ε,总应变为它们之和。此后再继续加载,应力应变关系沿ODEF 变化,D 点为后继屈服点,OD 为后继弹性阶段,()'s σ+为后继屈服应力,值得一提的是初始屈服点只有一个,而后继屈服点有无数个(由加载历史决定)。若在卸除全部载荷后反向加载,弹性阶段'COC ,()()s s σσ+-=,而在强化阶段'DOD ,()()s s σσ+->,称为Bauschinger 效应。 从上述分析得出材料弹塑性行为有一定的特殊性,主要表现在:弹性应力应变关系是线性,且是单值对应关系,而塑性应力应变关系是非线性的非单值对应。 因为通常情况下物体不仅仅处于简单应力状态,那么复杂应力状态下应力应变关系又如何呢?如果我们将材料性质理想化即假设材料是连续的、均匀的、各向同性的,忽略T 、t 的影响,忽略净水压力对塑性变形的影响,可以将应力应变关系归结为不同的类型,包括理想线弹性模型、理想刚塑性模型、线性强化刚塑性模型、理想弹塑性模型、线性强化弹塑性模型、幂强化模型、等向强化模型、随动强化模型。各种材料的应力应变关系图如下图所示: 理想线弹性模型 理想刚塑性模型

关于应力应变状态问题

关于应力应变状态问题(含组合变形) 2009年10月29日星期四 应力应变状态重点公式: 基本公式:ατασσσσσα2sin 2cos 22 xy y x y x --+ += ατασσσσσα2sin 2cos 2 2 90xy y x y x +-- += +ο ατασστα2cos 2sin 2 xy y x +-= y x xy σστα-- =22tan ()2 2 max 4212 xy y x y x τσσσσσ+-++= ()22 min 42 12 xy y x y x τσσ σσσ+-- += 应力圆的绘制及其应用:①、强调单元体的面与应力圆上的点一一对应关系。即:点面 对应,转向相同,转角两倍。②、确定任意斜截面上的应力;②、确定主应力的大小和方向;③、三向应力圆的绘制及其应用。 广义胡可定律及其公式: (){}z y x x E σσμσε+-=1 G xy xy τγ= (){}x z y y E σσμσε+-=1 G yz yz τγ= (){}y x z z E σσμσε+-= 1 G zx zx τγ= (){}32111 σσμσε+-= E ;(){}13221σσμσε+-=E ;(){}21331σσμσε+-=E 习题:P255 7.7、7.9、7.10、7.12、7.14、7.19、7.26、7.27、7.28、7.37、

四种常用强度理论: 最大拉应力理论(第一强度理论)[]σσ≤1 最大伸长线应变理论(第二强度理论)()[]σσσμσ≤+-321 最大切应力理论(第三强度理论)[]σσσ≤-31 畸变能密度理论(第四强度理论) ()()()[] []σσσσσσσ≤-+-+-2132322212 1 01、十、图示为一平面应力状态下的单元体。试证明任意互相垂直截面上的正应力之和为常数。即:ο90++=+αασσσσy x 或min max σσσσ+=+y x 。(7分)(2009吉大) 02、4、已知平面应力状态如图(应力单位MPa ),试计算主应力大小及方位,在图上标出主应力方位。(15分)(2009北工大) 题二.4图 03、5、已知铸铁构件上危险点的应力状态如图3-5所示。若铸铁拉伸许用应力[σ]+= 30MPa ,试校核该点处的强度。(15分)(2008华南理工)

应力-应变曲线

混凝土是一种复合建筑材料,内部组成结构非常复杂。它是由二相体所组成,即粗细骨料被水泥浆所包裹,靠水泥浆的粘接力,使骨料相互粘接成为整体。如果考虑到带气泡和毛细孔隙的存在,混凝土实际是一种三相体的混合物,不能认为是连续的整体。[2] 1. 普通高强度混凝土只能测出压应力-应变曲线的上升段,因为混凝土一旦出现出裂缝,承力系统在加压过程中积累的大量弹性能突然急剧释放,使得裂缝迅速扩展,试件即刻发生破坏,无法测得应力-应变曲线的下降段。[1] 2. 拟合本文的高强混凝土和纤维与混杂纤维增强高强混凝土的受压本构方程的参数结果 图3和图4为掺杂了纤维与混杂纤维的纤维增强高强混凝土的压缩应力一应变全曲线,由曲线可以看出,纤维与混杂纤维增强高强混凝土则能够准确地测出

完整的压应力.应变曲线.纤维增强高强混凝土和混杂纤维增强高强混凝土的这两种曲线具有相同的形状啪,都由三段组成:线性上升阶段、初裂点以后的非线性上升阶段、峰值点以后的缓慢下降阶段.[2] 3.[3]再生混凝土设计强度等级为C20,C25,C30,C40,再生骨料取代率100%。标准棱柱体试件150mm*150mm*300mm,28天强度测试结果。

“等应力循环加卸载试验方法”测定再生混凝土的应力-应变全曲线,即每次加载至预定应力后再卸载至零,再次进行加载,多次循环后达不到预定应力而自动转向包络线时,进行下一级预定应力的加载。 再生粗骨料来源的地域性和差异性使再生骨料及再生混凝土的力学性能有较大差别。 4.通过对普通混凝土和高强混凝土在单轴收压时的应力应变分析发现,混凝土的弹性模量随混凝土的强度的提高而提高,混凝土弹性段的范围随混凝土强度的提高而增大,混凝土应力应变曲线的下降段,随混凝土强度的提高而越来越陡,混凝土的峰值应变与混凝土的抗压强 度无正比关系。

高分子材料应力-应变曲线的测定

化学化工学院材料化学专业实验报告 实验名称:高分子材料应力-应变曲线的测定 年级: 10级材料化学 日期: 2012-10-25 姓名: 学号: 同组人: 一、 预习部分 聚合物材料在拉力作用下的应力-应变测试是一种广泛使用的最基础的力学试验。聚合物的应力-应变曲线提供力学行为的许多重要线索及表征参数(杨氏模量、屈服应力、屈服伸长率、破坏应力、极限伸长率、断裂能等)以评价材料抵抗载荷,抵抗变形和吸收能量的性质优劣;从宽广的试验温度和试验速度范围内测得的应力-应变曲线有助于判断聚合物材料的强弱、软硬、韧脆和粗略估算聚合物所处的状况与拉伸取向、结晶过程,并为设计和应用部门选用最佳材料提供科学依据。 1、应力—应变曲线 拉伸实验是最常用的一种力学实验,由实验测定的应力应变曲线,可以得出评价材料性能的屈服强度,断裂强度和断裂伸长率等表征参数,不同的高聚物、不同的测定条件,测得的应力—应变曲线是不同的。 应力与应变之间的关系,即:P bd σ= 00100%t I I I ε-= ? E ε σ = 式中 σ——应力,MPa ; ε——应变,%; E ——弹性模量,MPa ; A 为屈服点,A 点所对应力叫屈服应力或屈服强度。 的为断裂点,D 点所对应力角断裂应力或断裂强度 聚合物在温度小于Tg(非晶态) 下拉伸时,典型的应力-应变曲线(冷拉曲线)如下图

曲线分以下几个部分: OA:应力与应变基本成正比(虎克弹性)。--弹性形变 屈服点B:应力极大值的转折点,即屈服应力(sy);屈服应力是结构材料使用的最大应力。--屈服成颈 BC:出现屈服点之后,应力下降阶段--应变软化 CD:细颈的发展,应力不变,应变保持一定的伸长--发展大形变 DE:试样均匀拉伸,应力增大,直到材料断裂。断裂时的应力称断裂强度( sb ),相应的应变称为断裂伸长率(eb) --应变硬化 通常把屈服后产生的形变称为屈服形变,该形变在断裂前移去外力,无法复原。但如果将试样温度升到其Tg附近,形变又可完全复原,因此它在本质上仍属高弹形变,并非粘流形变,是由高分子的链段运动所引起的。 根据材料的力学性能及其应力-应变曲线特征,可将应力-应变曲线大致分为六类:(a)材料硬而脆:在较大应力作用下,材料仅发生较小的应变,在屈服点之前发生断裂,有高模量和抗张强度,但受力呈脆性断裂,冲击强度较差。 (b)材料硬而强:在较大应力作用下,材料发生较小的应变,在屈服点附近断裂,具高模量和抗张强度。 (c)材料强而韧:具高模量和抗张强度,断裂伸长率较大,材料受力时,属韧性断裂。 (d)材料软而韧:模量低,屈服强度低,断裂伸长率大,断裂强度较高,可用于要求形变较大的材料。 (e)材料软而弱:模量低,屈服强度低,中等断裂伸长率。如未硫化的天然橡胶。 (f)材料弱而脆:一般为低聚物,不能直接用做材料。 注意:材料的强与弱从σb比较;硬与软从E(σ/e)比较;脆与韧则主要从断裂伸长率比较。

应力与应变关系

一、应力与应变 1、应力 在连续介质力学里,应力定义为单位面积所承受的作用力。 通常的术语“应力”实际上是一个叫做“应力张量” (stress tensor)的二阶张量。 概略地说,应力描述了连续介质内部之间通过力(而且是通过近距离接触作用力)进行相互作用的强度。 具体说,如果我们把连续介质用一张假想的光滑曲面把它一分为二,那么被分开的这两部分就会透过这张曲面相互施加作用力。 很显然,即使在保持连续介质的物理状态不变的前提下,这种作用力也会因为假想曲面的不同而不同,所以,必须用一个不依赖于假想曲面的物理量来描述连续介质内部的相互作用的状态。 对于连续介质来说,担当此任的就是应力张量,简称为应力。 2、应变 应变在力学中定义为一微小材料元素承受应力时所产生的单位长度变形量。因此是一个无量纲的物理量。 在直杆模型中,除了长度方向由长度改变量除以原长而得“线形变”,另外,还定义了压缩时以截面边长(或直径)改变量除以原边长(或直径)而得的“横向应变”。 对大多数材料,横向应变的绝对值约为线应变的绝对值的三分之一至四分之一,二者之比的绝对值称作“泊松系数”。 3、本构关系 应力与应变的关系我们叫本构关系(物理方程)。E σε=(应力=弹性模量*应变) 4、许用应力(allowable stress ) 机械设计或工程结构设计中允许零件或构件承受的最大应力值。要判定零件或构件受载后的工作应力过高或过低,需要预先确定一个衡量的标准,这个标准就是许用应力。 凡是零件或构件中的工作应力不超过许用应力时,这个零件或构件在运转中是安全的,否则就是不安全的。 许用应力等于考虑各种影响因素后经适当修正的材料的失效应力除以安全系数。 失效应力为:静强度设计中用屈服极限(yield limit )或强度极限(strength limit );疲劳强度设计中用疲劳极限(fatigue limit )。 5、许用应力、失效应力及安全系数之间关系 塑性材料(大多数结构钢和铝合金)以屈服极限为基准,除以安全系数后得许用应力,即[]()/ 1.5~2.5s n n σσ==。(许用应力=屈服极限/安全系数) 脆性材料(铸铁和高强钢)以强度极限为基准,除以安全系数后得许用应力, 即[]()/2~5b n n σσ==。(许用应力=强度极限/安全系数) 表3机床静力学分析结果总结

弹性力学 第四章 应力和应变关系

第四章应力和应变关系知识点 应变能原理 应力应变关系的一般表达式完全各向异性弹性体 正交各向异性弹性体本构关系弹性常数 各向同性弹性体应变能格林公式 广义胡克定理 一个弹性对称面的弹性体本构关系各向同性弹性体的应力和应变关系应变表示的各向同性本构关系 一、内容介绍 前两章分别从静力学和运动学的角度推导了静力平衡方程,几何方程和变形协调方程。由于弹性体的静力平衡和几何变形是通过具体物体的材料性质相联系的,因此,必须建立了材料的应力和应变的内在联系。应力和应变是相辅相成的,有应力就有应变;反之,有应变则必有应力。对于每一种材料,在一定的温度下,应力和应变之间有着完全确定的关系。这是材料的固有特性,因此称为物理方程或者本构关系。 对于复杂应力状态,应力应变关系的实验测试是有困难的,因此本章首先通过能量法讨论本构关系的一般形式。分别讨论广义胡克定理;具有一个和两个弹性对称面的本构关系一般表达式;各向同性材料的本构关系等。 本章的任务就是建立弹性变形阶段的应力应变关系。 二、重点 1、应变能函数和格林公式; 2、广义胡克定律的一般表达式; 3、具 有一个和两个弹性对称面的本构关系;4、各向同性材料的本构关系; 5、材料的弹性常数。 §4.1 弹性体的应变能原理 学习思路: 弹性体在外力作用下产生变形,因此外力在变形过程中作功。同时,弹性体内部的能量也要相应的发生变化。借助于能量关系,可以使得弹性力学问题的求

解方法和思路简化,因此能量原理是一个有效的分析工具。 本节根据热力学概念推导弹性体的应变能函数表达式,并且建立应变能函数表达的材料本构方程。 根据能量关系,容易得到由于变形而存储于物体内的单位体积的弹性势能,即应变能函数。 探讨应变能的全微分,可以得到格林公式,格林公式是以能量形式表达的本构关系。 如果材料的应力应变关系是线性弹性的,则单位体积的应变能必为应变分量的齐二次函数。因此由齐次函数的欧拉定理,可以得到用应变或者应力表示的应变能函数。 学习要点:1、应变能;2、格林公式;3、应变能原理。 1、应变能 弹性体发生变形时,外力将要做功,内部的能量也要相应的发生变化。本节通过热力学的观点,分析弹性体的功能变化规律。 根据热力学的观点,外力在变形过程中所做的功,一部分将转化为内能,一部分将转化为动能;另外变形过程中,弹性体的温度将发生变化,它必须向外界吸收或释放热量。设弹性体变形时,外力所做的功为d W,则 d W=d W1+d W2 其中,d W1为表面力F s所做的功,d W2为体积力F b所做的功。变形过程中,由外界输入热量为d Q,弹性体的内能增量为d E,根据热力学第一定律, d W1+d W2=d E - d Q 因为 将上式代入功能关系公式,则

应力-应变曲线

应力-应变曲线 MA 02139,剑桥 麻省理工学院 材料科学与工程系 David Roylance 2001年8月23日 引言 应力-应变曲线是描述材料力学性能的极其重要的图形。所有学习材料力学的学生将经 常接触这些曲线。这些曲线也有某些细微的差别,特别对试验时会产生显著的几何变形的塑 性材料。在本模块中,将对表明应力-应变曲线特征的几个点作简略讨论,使读者对材料力 学性能的某些方面有初步的总体了解。本模块中不准备纵述“现代工程材料的应力-应变曲 线”这一广阔的领域,相关内容可参阅参考文献中列出的博依(Boyer )编的图集。这里提 到的几个专题——特别是屈服和断裂——将在随后的模块中更详尽地叙述。 “工程”应力-应变曲线 在确定材料力学响应的各种试验中,最重要的恐怕就是拉伸试验1 了。进行拉伸试验时, 杆状或线状试样的一端被加载装置夹紧,另一端的位移δ是可以控制的,参见图1。传感器 与试样相串联,能显示与位移对应的载荷)(δP 的电子读数。若采用现代的伺服控制试验机, 则允许选择载荷而不是位移为控制变量,此时位移)(P δ是作为载荷的函数而被监控的。 图1 拉伸试验 在本模块中,应力和应变的工程测量值分别记作e σ和e ε, 它们由测得的载荷和位移值,及试样的原始横截面面积和原始长度按下式确定 0A 0L 1 应力-应变试验及材料力学中几乎所有的试验方法都由制定标准的组织,特别是美国试验和材料学会 (ASTM)作详尽的规定。金属材料的拉伸试验由ASTM 试验E8规定;塑料的拉伸试验由ASTM D638规定; 复合材料的拉伸试验由ASTM D3039规定。

我所认识的应力应变关系

我所认识的应力应变关系 应力应变都是物体受到外界载荷产生的响应。物体由于受到外界载荷后,在物体内部各部分之间要产生互相之间的力的作用,由于受到力的作用就会产生相应的变形;或者由于变形引起相应的力的作用。则一定材料的物体其产生的应力和应变也必然存在一定的关系。 在力学上由于平衡方程仅建立了力学参数(应力分量与外力分量)之间的关系,而几何方程也仅建立了运动学参数(位移分量与应变分量)之间的连系。所以平衡方程与几何方程是两类完全相互独立的方程,它们之间还缺乏必要的联系,这种联系即应力和应变之间的关系。有了可变形材料应力和应变之间关系和力学参数及运动学参数即可分析具体的力学问题。由平衡方程和几何方程加上一组反映材料应力和应变之间关系的方程就可求解具体的力学问题。这样的一组方程即所谓的本构方程。讨论应力和应变之间的关系即可变为一定的材料建立合适的本构方程。 一.典型应力-应变关系 图1-1 典型应力-应变曲线

1) 弹性阶段(OC 段) 该弹性阶段为初始弹性阶段OC (严格讲应该为CA ’),包括:线性弹性分阶段OA 段,非线性弹性阶段AB 段和初始屈服阶段BC 段。该阶段应力和应变满足线性关系,比例常数即弹性模量或杨氏模量,记作:εσE =,即在应力-应变曲线的初始部分(小应变阶段),许多材料都服从全量型胡克定律。 2)塑性阶段(CDEF 段) CDE 段为强化阶段,在此阶段如图1中所示,应力超过屈服极限,应变超过比例极限后,要使应变再增加,所需的应力必须在超出比例极限后继续增加,这一现象称为应变硬化。CDE 段的强化阶段在E 点达到应力的最高点,荷载达到最大值,相应的应力值称为材料的强度极限 (ultimate strength ),并用σb 表示。超过强度极限后应变变大应力却下降,直到最后试件断裂。这一阶段试件截面积的减小不是在整个试件长度范围发生,而是试件的一个局部区域截面积急剧减小。这一现象称为“颈缩”(necking )。此时,由于颈缩现象的出现,在E 点以后荷载开始下降,直至在颈缩部位试件断裂破坏。这种应力降低而应变增加的现象称为应变软化(简称为软化)。 该阶段应力和应变的关系:)(ε?σ=。 3)卸载规律 如果应力没有超过屈服应力,即在弹性阶段OC 上卸载,应力和应变遵循原来的加载规律,沿CBO 卸载。在应力超过屈服应力后,如果在曲线上任一点D 处卸载,应力与应变之间将不再遵循原有的加载曲线规律,而是沿一条接近平行于OA 的直线DO ′变化,直到应力下降为零,这时应变并不为零,即有塑性应变产生。如果用 OD ′表示总应变ε,O ′D ′表示可以恢复的弹性应变εe ,OO ′表示不能恢复的塑性应变εp ,则有 p e εεε+= (1-1) 即总应变等于弹性应变加上塑性应变。 该阶段应力和应变的关系满足εσ?=?E 。 4)卸载后重新加载

ch8 应力应变状态分析(3rd)

第八章 应力、应变状态分析 8-2 已知应力状态如图所示(应力单位为MPa ),试用解析法计算图中指定截面的正 应力与切应力。 题8-2图 (a)解:由题图所示应力状态可知, 45MPa 20MPa 10MPa 30=-===αηζζx y x ,,, 将上列数据代入平面应力状态斜截面应力公式,得 MPa 0.10)MPa 90sin 2 1030( MPa 0.40)MPa 90sin 202 10 30( =-==++= ααηζ (b)解:由题图所示应力状态可知, 5.22MPa 20MPa 10MPa 30===-=αηζζx y x ,,, 由此可得指定斜截面上的正应力和切应力分别为 )MPa cos4520sin452 1030( MPa 3.38)MPa sin4520cos452 10 3021030( =+--=-=---++-= ααηζ (c)解:由题图所示应力状态可知, 60MPa 15MPa 20MPa 10-==-==αηζζx y x ,,, 由此可得指定斜截面上的正应力和切应力分别为 MPa 5.20)]MPa 120cos(15)120sin(2 2010[ MPa 490.0)]MPa 120sin(15)120cos(2 20 1022010[ -=-+-+==---++-= ααηζ 8-3 试用图解法(应力圆)解题8-1。 解:题8-1图所示应力状态的应力圆如图8-3所示。

图8-3 由图a 可以量得指定截面上的正应力和切应力分别为 MPa 0.15MPa 0.104545=== ηηζζαα,= 由图b 可以量得指定截面上的正应力和切应力分别为 MPa 3.7MPa 3.473030-===-- ηηζζαα,= 8-6 图示双向拉伸应力状态,应力σσσ ==y x 。试证明任意斜截面上的正应力均等 于σ,而切应力则为零。 题8-6图 证明:由题设条件可知, 0===x y x ηζζζ, 将上述数据代入平面应力状态斜截面应力公式,则有 02sin 2 02cos 2 2=+-==--++= αζ ζηζαζ ζζζζαα 由于式中α为任意值,故原命题得证。 8-7 已知某点A 处截面AB 与AC 的应力如图所示(应力单位为MPa ),试用图解法 求主应力的大小及所在截面的方位。

应力与应变(试题学习)

第三章 应力与强度计算 一.内容提要 本章介绍了杆件发生基本变形时的应力计算,材料的力学性能,以及基本变形的强度计算。 1.拉伸与压缩变形 1.1 拉(压)杆的应力 1.1.1拉(压)杆横截面上的正应力 拉压杆件横截面上只有正应力σ,且为平均分布,其计算公式 N F A σ= (3-1) 式中N F 为该横截面的轴力,A 为横截面面积。 正负号规定 拉应力为正,压应力为负。 公式(3-1)的适用条件: (1) 杆端外力的合力作用线与杆轴线重合,即只适于轴向拉(压)杆件;如果是偏 心受压或受拉的轻质杆件,那么必然存在靠近轴力的一侧受压,远离轴力的一侧受拉,应力肯定不同,方向相反。并存在中和轴。(即应力在中和轴处为0) (2)适用于离杆件受力区域稍远处的横截面;(大于截面宽度的长度范围内——圣维南) (3)杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀(即应力集中); (4)截面连续变化的直杆,杆件两侧棱边的夹角0 20α≤时,可应用式(3-1)计算,所得结果的误差约为3%。 1.1.2拉(压)杆斜截面上的应力(如图3-1) 图3-1 拉压杆件任意斜截面(a 图)上的应力为平均分布,其计算公式为 全应力 cos p ασα= (3-2) 正应力 2cos ασσα=(3-3) 切应力1sin 22 ατσα= (3-4) 式中σ为横截面上的应力。

正负号规定: α 由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负。 ασ 拉应力为正,压应力为负。 ατ 对脱离体内一点产生顺时针力矩的ατ为正,反之为负。 两点结论: (1)当00α=时,即横截面上,ασ达到最大值,即()max ασσ=。当α=0 90时,即纵截面上,ασ=090=0。 (2)当045α=时,即与杆轴成045的斜截面上,ατ达到最大值,即max ()2αα τ=。 1.2 拉(压)杆的应变和胡克定律 (1)变形及应变 杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长。如图3-2。 图3-2 轴向变形 1l l l ?=- 轴向线应变 l l ε?= 横向变形 1b b b ?=- 横向线应变 b b ε?'= 正负号规定 伸长为正,缩短为负。 (2)胡克定律 当应力不超过材料的比例极限时,应力与应变成正比。即 E σε= (3-5) 或用轴力及杆件的变形量表示为 N F l l EA ?= (3-6) 式中EA 称为杆件的抗拉(压)刚度,是表征杆件抵抗拉压弹性变形能力的量。 公式(3-6)的适用条件: (a)材料在线弹性范围内工作,即p σσ?; (b)在计算l ?时,l 长度内其N 、E 、A 均应为常量。如杆件上各段不同,则应分段计算,求其代数和得总变形。即

如何用Origin画应力应变曲线

如何用Origin画应力应变曲线 edited by: jsphnee,2011-11-22 本文是作者从小白开始一步一步学着用excel和origin作应力应变曲线的经验分享,只适于初学者,有不对的地方还请高手多多指教。在此也一并感谢网上提供origin及excel相关技巧解答的同志们。 一、数据导出 1.用Access打开数据库,并将OriginalData导出到excel中(97-03版,否则ori打不 开); 2.打开导出的OriginalData.xls文件和试验报告文件(实验结果中另一个以日期命名的 excel文件,Tip:为方便统一打开与存放,可将试验报告文件复制到OriginalData的新工作表sheet中,可命名为report); 3.保存,并更改文件名,(Tip:每次更改后都点一下保存,以免程序卡死时丢失数 据。) 4.新建以试样编号命名的sheet,有几组试样就建几个sheet;

二、数据处理 1.筛选各个试样的拉伸数据 在OriginalData中,选中TestNo列,再点数据工具栏中的筛选。 点击列标题旁的下拉箭头,出现下面左图中的对话框。 取消全选,依次选中一个TestNo后确定,便能筛选出各次拉伸试验的数据,如上图中右边的对话框所示。(一个试样对应一个TestNo)

(虽然一组试样对应多个TestNo,但为后续处理的方便,个人认为此处还是一个一个筛选比较好。) 2、复制LoadValue及ExtendValue值 选中LoadValue及ExtendValue列,并将其复制到相应试验组的sheet中。 然后按照相同的步骤依次筛选该组的各个拉伸试样的数据拷贝到该sheet中。如下图:

几个基本常数弹性模量-泊松比-应力应变曲线

全应力-应变曲线 测量岩石的应力应变曲线一般可以有两中试验机:一种是,柔性试验机,使用这种试验机测量时,容易发发生“岩爆”现象,导致试验中不能得到峰值以后的应力应变信息。另种是,刚性试验机,这种试验机刚度比较高,有“让压”的特点,就不会有“岩爆”现象发生,可以得到全应力-应变曲线用以研究岩石破裂的性质。 刚度矩阵的物理意义: 单元刚度矩阵的物理意义,一句话概括说来就是各个节点在广义力的作用下节点的位移变化量。 强度是零件的抗应力程度,反映的是什么时候断裂,破损等 刚度反映的是变形大小,就是零件受力后的变形。 刚度矩阵和柔度矩阵的物理意义: 一般将刚度矩阵记为[D],柔度矩阵为[C],二者互为逆矩阵。 [C]矩阵中任一元素Cij的物理意义为:当微小单元体上仅作用有j方向的单位应力增加,而其他方向无应力增量时,i方向的应变增量分量就等于Cij。 [D]矩阵中任一元素Dij的物理意义为:要使微小单元体只在j方向发生单位应变,而其他方向不允许发生应变,则必须造成某种应力组合,在这种应力组合中,i方向应力分量为Dij。 对于各向异性材料,[D]和[C]都是非对称矩阵,从机理上来说是合理的,然而它给数学模型带来复杂性,也增加了有限元计算的困难。从工程实用的角度来考虑,往往忽略这种非对称性,而处理为对称矩阵。 物理概念:杨氏模量和泊松比 在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E,也叫杨氏模量。而横向应变与纵向应变之比值称为泊松比μ,也叫横向变性系数,它是反映材料横向变形的弹性常数。 杨氏模量(Young's modulus)是表征在弹性限度内物质材料抗拉或抗压的物

混凝土受压应力-应变全曲线方程(描述)

混凝土受压应力-应变 全曲线方程

混凝土受压应力-应变全曲线方程 混凝土的应力-应变关系是钢筋混凝土构件强度计算、超静定结构力分析、结构延性计算和钢筋混凝土有限元分析的基础,几十年来,人们作了广泛的努力,研究混凝土受压应力-应变关系的非线性性质,探讨应力与应变之间合理的数学表达式,1942年,Whitney 通过混凝土圆柱体轴压试验,提出了混凝土受压完整的应力应变全曲线数学表达式,得出了混凝土脆性破坏主要是由于试验机刚度不足造成的重要结论,这一结论于1948年由Ramaley 和Mchenry 的试验研究再次证实,1962年,Barnard 在专门设计的具有较好刚性且能控制应变速度的试验机上,试验了一批棱柱体试件以及试件两靖被放大的圆柱体试件,试验再次证明,混凝土的突然破坏并非混凝土固有特性,而是试验条件的结果,即混凝土的脆性破坏可用刚性试验机予以防止,后来由很多学者(如M.Sagin ,P.T.Wang ,过镇海等)所进行的试验,都证明混凝土受压应力-应变曲线确实有下降段存在,那么混凝土受压应力与应变间的数学关系在下降段也必然存在,研究这一数学关系的工作一刻也没有停止。 钢筋混凝土结构是目前使用最为广泛的一种结构形式。但是,对钢筋混凝土的力学性能还不能说已经有了全面的掌握。近年来,随着有限元数值方法的发展和计算机技术的进步,人们已经可以利用钢筋混凝土有限元分析方法对混凝土结构作比较精确的分析了。由于混凝土材料性质的复杂性,对混凝土结构进行有限元分析还存在不少困难,其中符合实际的混凝土应力应变全曲线的确定就是一个重要的方面。 1、混凝土单轴受压全曲线的几何特点 经过对混凝土单轴受压变形的大量试验大家一致公认混凝土单轴受压变过程的应力应变全曲线的形状有一定的特征。典型的曲线如图1所示,图中采用无量纲坐标。 s c c E E N f y x 0,,=== σ εε 式中,c f 为混凝土抗压强度;c ε为与c f 对应的峰值应变;0E 为混凝土的初始弹性模量;s E 为峰值应力处的割线模量。 此典型曲线的几何特

应力应变关系

应力应变关系 我所认识的应力应变关系 一在前面两章的分别学习了关于应力与应变的学习,第三章的本构关系讲述了应力与应变的关系从而构成了弹塑性力学的本构关系。 在单向应力状态下,理想的弹塑性材料的应力应变关系及其简单满足胡克定律即 ,E ,,XX 在三维应力状态下需要9个分量,即应力应变需要9个分量,于是可以把单向应力应变关系推广到三维应力状态,及推广到广义的胡克定律 本式应该是91个应变分量单由于切应力互等定理,此时后面的三个应力与式中的切应力想等即现在剩余36个应变分量。 (1)具有一个弹性对称面的线弹性体的应力应变公式如下

(2)正交各向异性弹性体的弹塑性体公式如下 (3)各向同性弹性体的本构方程 各向同性弹性体在弹性状态下,主应力方向与主应变方向重合容易证明。在主应变空间里,由于应变主轴与应力主轴重合,各向同性弹性体体内任意一点的应力和应变之间满足: ,,,,,,,CCCxxyz111213 ,,,,,,,CCCyxyz212223 ,,,,,,,CCCzxyz313233 (2-3) ,,,,,,yyxzxz对的影响与对以及对的影响是相同的,即有 ,CCC==,CC=CC=,y112233x12132123z;和对的影响相同,即,同理有和CC=3132等,则可统一写为: CCCa==,112233 CCCCCCb=====,122113312332 (2-4) 所以在主应变空间里,各向同性弹性体独立的弹性常数只有2个。在任意的坐标系中,同样可以证明弹性体独立的弹性参数只有2个。 广义胡可定律如下式 ,,xy1,,,,,,,,,,,[()]xy,xxyz,2GE,,,,1,yz, ,,,[()],,,,,,,,yzyyxz 2GE,,

弹塑性力学 应力和应变之间的关系

我所认识的应力和应变之间的关系 在单向应力状态下,理想弹性材料的应力和应变之间的关系是满足胡克定律的一一对应的关系。在三维应力状态下描述一点处的应力状态需要9个分量,相应的应变状态也要用9个应变分量来表示。对于一个具体的理想弹性体来讲,如果在三维应力状态下,应力与应变之间仍然有线性一一对应关系存在,则称这类弹性体为线性弹性体。 所谓各向弹性体,从力学意义上讲,就是弹性体内的每一点沿各个方向的力学性质都完全相同的。这类线性弹性体独立的唐兴常数只有两个。 各向同性体本构关系特点:1.主应力与主应变方向重合。2.体积应力与体积应变成比例。 3.应力强度与应变强度成比例。 4.应力偏量与应变偏量成比例。工程应用中,常把各向同性弹性体的本构方程写下成11()11()11()x y z xy xy y x z yz yz z y x xz xz E G E G E G εσμσσγτεσμσσγτεσμσσγτ???=-+=???????=-+=???????=-+=???? ,式中分别为弹性模量、泊松比和剪切模量。在E G μ、、这三个参数之间,实际上独立的常量只有两个,它们之间存在关系为() 21E G μ=+。 屈服条件:弹性和塑性的最主要区别在于变形是可以恢复。习惯上,根据破坏时变形的大小把工程材料分为脆性材料和塑性材料两类。对于加载过程如图1 OA: 比例阶段;线性弹性阶段 AB: 非弹性变形阶段 BC : 初始屈服阶段 s σσ≤ CDE :强化阶段;应变强化硬化阶段 EF : 颈缩阶段;应变弱化,软化阶段 s σσ≥ C 点为初始屈服点具有唯一性。在应力超过屈服应力后,如果在曲线上任意一点D 处卸 载,应力和应变之间将不再遵循原有的加载曲线规 律,而是沿一条接近平行于OA 的直线DO ’变化,直到应力下降为零,这时应变并不为零,即有塑性应变产生。如果用OD ’表示总应变ε,O ’D ’表示可以恢复的弹性应变e ε,OO ’表示不能恢复的塑性应变p ε,则有e p εεε=+,即总应变等于弹性应变加上塑性应变。若在卸载后重新加载,则曲线基本上仍沿直线O ’D 变化,直至超过D 点的应力之后,才会产生新的塑性变形。由此看来,在经过前次塑性变形后,屈服应力提高了,这种现象称为应变强化现象。为了与初始屈服相区别,我们把机箱发生新的塑性变形时的材料的再次屈服称为后

我所认识的应力和应变

我所认识的应力和应变 应力和应变这两个概念对我来说并不算陌生,在之前材料力学中学习了平面应力状态以及平面应力状态下的应变分析,而这学期的弹塑性力学则主要研究空间应力应变状态。 一. 应力 1. 应力的定义 应力表示内力在截面上某一点的分布集度,它是一个矢量,不仅有大小和方向,而且和点的位置以及通过该点截面的方向有关。应力的国际单位为N /㎡,简写为Pa 。 2. 一点的应力状态 由于一点的应力矢量与该点的位置以及通过该点截面的方向有关,所以只是描述应力,应同时指明它是对物体内的哪个点,并过该点的哪一个微分面,物体内同一点各微分面上的应力状况,即一点的应力状态。 过物体内某一点M 分别截取三个互相垂直的微分面,并使这三个微分面的外法线方向分别与三个坐标轴的方向一致,不失一般性地假设为与三个坐标轴的正方向一致。则三个微分面上的应力矢量可分别表示为: x x xy xz P i j k σττ=++ y y x y y z P i j k τστ=++ z z x x y z P i j k ττσ=++ 上式中出现了9个应力分量,这9个应力分量作为一个整体组成了一个所谓的二阶张量,而上式中的9个应力分量组成了一个33?的矩阵 ??????????=z zy zx yz y yx xz xy x ij στττστττσσ 称为应力张量。在三维空间中,9个元素组成的张量称为二阶张量。三个应力张量的不变量均可由三个主应力表示。由于该点各个截面的应力情况确定了,主应力也就确定了,并且主应力是不随坐标改变的,从而应力张量不变量也唯一确定了。应力张量是一个二阶张量,应力张量的各个分量在坐标变换时,服从二阶张量的坐标变换规律。 3. 应力满足条件 应力是一个二阶对称张量。处于平衡状态的物体的物体内部个点需要满足平

我所认识的弹塑性力学知识交流

我所认识的弹塑性力学 弹塑性力学作为固体力学的一门分支学科已有很长的发展历史,其理论与方法的体系基本完善,并在建筑工程、机械工程、水利工程、航空航天工程等诸多技术领域得到了成功的应用。 一绪论 1、弹塑性力学的概念和研究对象 弹塑性力学是研究物体在载荷(包括外力、温度变化或外界约束变动等)作用下产生的应力、变形和承载能力,包括弹性力学和塑性力学,分别用来研究弹性变形和塑性变形的力学问题。弹性变形指卸载后可以恢复和消失的变形,塑性变形时指卸载后不能恢复而残留下的变形。弹塑性力学的研究对象可以是各种固体,特别是各种结构,包括建筑结构、车身骨架、飞机机身、船舶结构等,也研究量的弯曲、住的扭转等问题。其基本任务在于针对实际问题构建力学模型和微分方程并设法求解它们,以获得结构在载荷作用下产生的变形,应力分布及结构强度等。 2、弹塑性简化模型及基本假定 在弹性理论中,实际固体的简化模型为理想弹性体,它的特征是:一定温度下,应力应变之间存在一一对应关系,而与加载过程以及时间无关。在塑性理论中,常用的简化模型为:理想塑性模型和强化模型。理想塑性模型又分为理想弹塑性模型和理想刚塑性模型;强化模型包括线性强化弹塑性模型、线性强化刚塑性模型和幂次强化模型。弹塑性力学有五个最基本的力学假定,分别为:连续性假定、均匀性

假定、各向同性假定、小变形假定和无初应力假定。 3、研究方法及其与初等力学理论的联系和区别 一般来说,弹塑性力学的求解方法有:经典方法、数值方法、试验方法和实验与数值分析相结合的方法。经典方法是采用数学分析方法求解,一般采用近似解法,例如,基于能量原理的Ritz法和伽辽金法;数值法常用的有差分法、有限元法及边界条件法;实验法是采用机电方法、光学方法、声学方法等来测定应力应变分布规律,如光弹性法和云纹法。 弹塑性力学与初等理论力学既有联系又有区别,如下表所示:表1、弹塑性力学与初等力学理论的联系和区别

我所认识的应力与应变

机械与动力工程学院动力工程专业南京工业大学我所认识的应力与应变机械与动力工程学院动力工程专业学号602430107013 杨栋君一点的应力应变应力与应变材料应力应变是材料力学与弹塑性力学两门课程中两个非常重要的基本概念,力学主要讨论平面应力状态以及平面应力状态下的应变分析,而弹塑性力学则研究空间应力状态与应变状态。我最先接触应力与应变是在材料力学的绪论中,材料力学中的应力首先是由研究构件(组成机械的零件或结构物的构件统称为构件,如建筑物的梁和柱,机床的轴等)截面处某一点的强弱程度而逐渐引入的。应力定义为“单位面积上所承受的附加内力”。材料力学中物体因受外力作用而变形,其内部各部分之间因相对位置改变而引起的相互作用称为内力在内力,内力截面m ? m 上,围绕c 点取微小面积?A ,?A 上分布内力内力的合力为?p (?p 的方向和大小内力与 c 点的位置和?A 的大小有关),平均应力pm = ?p ,代表在?A 范围内,单位面积上内?A 力的平均集度。通过引入数学的极限法,随着?A 的逐渐缩小,当?A 趋于零时,平均应力?p ,称p 为c 点的应力应力。应力应力?A p 是一个矢量,一般既不与截面m ? m 垂直,也不与截面m ? m 相切。lim lim pm 的大小和方向都趋向于一定极限,即p = ?A→0 pm = ?A→0 在弹塑性力学中,针对应力应力首先引入了体力(作用在物体微粒体积上的力)和面力(沿应力着物体表面的分布力)的概念。可变形固体在外力等因素的作用下,其内部各部分之间就要产生相互的作用,内力内力指物体内的一部分与其相邻的另一部分之间相互作用的力。应力应力就是内力应力载荷引起的物体内单位面积上的内力,内力,内力在截面上某一点的分布集度。这点与材料力内力表示内力内力学中的应力的定义基本一致。但弹塑性力学中更细化的从空间(取平行于坐标面的3 个两两垂直的微元平面)研究一点c 处的应力状态,当微元面趋于零时,上面作用的应力就代表过c 点任何截面上的应力,由爱因斯坦的求和约定引入了应力张量。每一行为过 c 点的一个面上的 3 个应力分量,便构?σx τxy τxz ? ?σ 11 σ 12 σ 13 ? ? ? ? ? 成应力张量。σ ij = ?τ yx σ y τ yz ? 或者σ ij = σ21 σ22 σ23 (应力张量的9 个分量必? ? ?τzx τzy σz ? ?σ31 σ32 σ33 ? ? ? ? ? 须满足正交坐标系中二阶张量的变换公式)。由此可以看出应力不是一个简单的矢量,它是对某点内力的精确描述。与材料力学中的不同,在弹塑性力学中应力是一个依赖于另一个矢量的矢量,它是一个二阶张量,而且是一个二阶对称张量,既与所研究的点的位置有关,也机械与动力工程学院动力工程专业南京工业大学与面元的位置有关。根据x, y , z 三个方向内力的平衡方程,运用高等数学展开为级数并略去高阶微量,便得平衡方程(即平衡微分方程),它所描述的是内部应力与外部应力之前的关系,这点与材料力学中描述物体内部各部分之间相互作用的应力有所区别的。根据通过微元体中心且平行于x, y , z 轴的线为取力矩的轴,列力矩平衡条件,则可得:τ xy = τ yx ,τ yz = τ zy ,τ zx = τ xz 。这个公式表明的就是剪应力互等定理,与材料力学中剪应力互等定理描述的正应力和切应力略有不同:弹塑性力学和材料力学正应力方向相同,切应力符号不同。针对12 个力的空间力系,可以表述成6 个方程(3 个力的平衡方程,3 个力矩平衡方程)。一点的应力状态是为任意点处各个方向上的应力状况。针对内部微元体的平衡则采用应力平衡方程(即纳维方程)σ ij , j + Fi = 0 ;边界微元体的平衡采用应力边界条件,,{l , l , l }---边界外法线的方向余弦,? p , p , p ? ---边界上已知的面力分量,? ? →→→ x y z ? x y z ? ?σ xx σ yx ? ?σ xy σ yy ?σ xz σ yz ? ?→? σ zx ? ? p x ? ?σxx σ yx σ zx ? ?l x ? → ? ? ? σ zy ? ---边界各点应力,应力的边界条件:? p y ? = ?σ xy σ yy σ zy ? ?l y ? ? ? ?→? σ zz ? ? p ? ?σ xz σ yz σ zz ? ?l z ? ? ?? ? ? ? z? ? ? 针对应变应变,材料力学中是这样定义的:物体在外力作用下,发生变形,同时引起应力,应变物体内部各点处变形程度一般并不相同。用以描述一点处变形的程度的力学量是该点的应变(描述线变形的称为线应变;描述角变形的为切应变),描述应变也运用了高等数学

相关主题
文本预览
相关文档 最新文档