当前位置:文档之家› 氧化铝陶瓷与金属连接的研究现状

氧化铝陶瓷与金属连接的研究现状

氧化铝陶瓷与金属连接的研究现状
氧化铝陶瓷与金属连接的研究现状

 万方数据

 万方数据

 万方数据

 万方数据

周健等Ⅲo对A1203一A1203以及A1203和HAP(羟基磷灰石)生物陶瓷进行了焊接,并借助电镜、电子探针分析了界面结合情况。前者在2MPa、1300℃、保温15min时结合强度达到基体强度。后者在2.5MPa、1200℃、保温15min左右将两类材料焊接在一起。.

蔡杰等¨引采用1’E103型谐振腔分别在1300和1400℃对A1203一A1203进行焊接,认为在1300℃焊接时,虽经长时间保温,焊接效果不理想,在1400℃、保温20min,焊缝消失。如上所述,氧化铝陶瓷一般采用直接焊接,对于高纯度氧化铝陶瓷一般采用低纯氧化铝或玻璃做中间层,目前也有人用溶胶凝胶方法制备的氧化铝做中间层。

目前微波焊接腔体的微波场的均匀区域还不大,改进微波场的分布,提高加热均匀区域,可以提高材料的焊接尺寸。同时增加焊接材料的种类。

7激光焊接

激光焊接陶瓷是近年来发展的新技术,Mittweida公司开发了双束激光焊接陶瓷方法,其原理见图9。

图9双束激光焊接示意图¨引

Fig.9Skd【chofdoublelaserweldiIlg

采用高能束激光焊方法,可快速加热和冷却,配以氮气筛的冷却和温度场调节,诱导和改善复合材料增强相和基体界面反应,而提高接头强度。采用脉冲输入方式,可抑制界面反应,细化组织,减少缺陷,获得良好接头,在操作时对激光功率控制非常重要啪J。用该法焊接的Al:O,陶瓷试样,激光焊接区细晶粒均匀,在电子显微镜下,可以看到晶粒呈片瓦结构,防止了裂纹的产生和扩展。经100次反复加热和冷却后,试样的弯曲强度无明显下降。

8结语

随着Al,O,陶瓷的广泛应用,其连接技术已成为世界各国集中研究的重点,其中钎焊与扩散连接是最常用的连接方法,但都有其局限性。例如:用钎焊方法形成的陶瓷接头的高温性能和抗氧化性能较差;钎焊的界面反应机理现在还处于试验阶段,缺乏系统性和理论性。扩散连接虽然可以减小界面缺陷,并适合大尺寸构件的接合,但易发生试件的变形和损伤等。近来新发展的微波连接能很好地实现接头处均匀连接,避免了开裂的发生,而且由于升温速度极快,陶瓷内部的晶粒不会剧烈长大。而sHs焊接和激光焊接还处于起步阶段,有待于发展。

参考文献

1王颖.AJ:0,陶瓷与Kover合金钎焊工艺研究.哈尔滨工业大学硕士论文,2006:l一50

2Ham咖dJP,DB“dSA,SameUaMLB阳zingo既帅icox-id船tom吨IlsatlowteⅡ聊舶hlr酷.WeldJ,1992;(5):145—1493赵永清.利用化学镀实现A120,陶瓷与金属的连接.焊接技术,1999;(2):16—17

4顾小龙,王大勇,王颖.Al:0,陶瓷/AgCuT∥可伐合金钎焊接头力学性能.材料科学与艺,2007;15(3):366—3695吴铭方.反应层厚度对他03/AgCu7n/n一6m一4V接头强度的影响.稀有金属材料与工程,2000;19(26):419—4226王洪潇.氧化铝陶瓷与金属活性封接技术研究.大连交通大学硕士论文,2006:1—50

7刘军红.复相Al:0,基陶瓷/钢大气中直接钎焊连接界面的微观组织结构.焊接学报,2003;24(6):26—28

8张玮.镍离子注入灿203/1crl8Ni9Ti的钎焊界面成分分析.包头钢铁学院学报,2000;19(3):219—22l

9王大勇,冯吉才,刘会杰.灿:O,/Cu/Al扩散连接工艺参数的优化.材料科学与工艺,2003;11(1):73~76

10陈铮,赵其章,方芳等.陶瓷/陶瓷(金属)部分瞬间液相连接.硅酸盐学报,1999;27(2):186~188

1lMerzh锄ovAG.InterSymposium∞coIIIbus阴dpl嬲一眦syn.ofhigll—te呷.Mater.s明Fr锄cisco,cA,988

12余圣甫等.Al:0,陶瓷/不锈钢自蔓延高温原位合成连接.焊接学报,2004;25(2)119一122

13周健,章桥新,刘桂珍等.微波焊接陶瓷辊棒.武汉工业大学学报,1999;21(3):1~2

14MeekTT,BlalceRD.Ceramic?ce硼icsealsbymicro-w盯ehe砒ing.J.Mat.Sci.L肚.,1986;(5):270~274

15Fukushi眦H。YamanakaT,Ma协uiM.Micmwaveheat—ingof

ce姗icsandi协applic砒i叩tojoining.JMat.R∞.,1990;5(2):397—405

16Bi衄erJGP,F唧ieJA,WhitakerPAeta1.Thee妇fect0fcompositi∞ontlIeIIlicn)wavebondirIg0falulIli啪ce捌【nics.JMat.sci.,1998;33(12):3017~3029

17zlI伽Ji蛐,Zh衄gQia喇n,MEIBingchueta1.Mic胁wavejoiIlingof

aluIIli腿c廿枷candh”Iroxyl印atitebioce枷c.JWuh粕Univ.ofTech.Mater.Sci.,1999;14(2):46~4918ChenXinm伽,ⅡuW嘶.HigllFrequencyHeatillgDie.1ectricTechnology.BeijiIlg:scie眦ePr鹤s,1979:l一30

19C蛐G,K0caI【M.h咿ssinjoiniIlgofadv锄cedmate—rials.htematioIlalMaterialsRevie啪,1998;43(1):卜4420广赖明夫.金属基复合材料。结合.溶接会志,1996;65(4):l692一l698

(编辑吴坚)

宇航材料工艺2008年第4期 万方数据

氧化铝陶瓷与金属连接的研究现状

作者:李卓然, Fan Jianxin, 冯吉才, Li Zhuoran, Fan Jianxin, Feng Jicai

作者单位:哈尔滨工业大学现代焊接生产技术国家重点实验室,哈尔滨,150001

刊名:

宇航材料工艺

英文刊名:AEROSPACE MATERIALS & TECHNOLOGY

年,卷(期):2008,38(4)

被引用次数:3次

参考文献(20条)

1.王颖Al2O3陶瓷与Kover合金钎焊工艺研究 2006

2.Hammond J P;David SA;Santella M L Brazing ceramic oxides to metals at low tempemmres 1992(05)

3.赵永清利用化学镀实现Al2O3陶瓷与金属的连接 1999(02)

4.顾小龙;王大勇;王颖Al2O3陶瓷/AgCuTi/可伐合金钎焊接头力学性能[期刊论文]-材料科学与工艺 2007(03)

5.吴铭方反应层厚度对Al2O3/AgCuTi/Ti-6Al-4V接头强度的影响[期刊论文]-稀有金属材料与工程 2000(26)

6.王洪潇氧化铝陶瓷与金属活性封接技术研究 2006

7.刘军红复相Al2O3基陶瓷/钢大气中直接钎焊连接界面的微观组织结构[期刊论文]-焊接学报 2003(06)

8.张玮镍离子注入Al2O3/1Cr18Ni9Ti的钎焊界面成分分析[期刊论文]-包头钢铁学院学报 2000(03)

9.王大勇;冯吉才;刘会杰Al2O3/Cu/A1扩散连接工艺参数的优化[期刊论文]-材料科学与工艺 2003(01)

10.陈铮;赵其章;方芳陶瓷/陶瓷(金属)部分瞬间液相连接[期刊论文]-硅酸盐学报 1999(02)

11.Merzhanov A G Inter Symposium on combus and plasma syn.of higb-tcmp 1988

12.余圣甫Al2O3陶瓷/不锈钢自蔓延高温原位合成连接[期刊论文]-焊接学报 2004(02)

13.周健;章桥新;刘桂珍微波焊接陶瓷辊棒[期刊论文]-武汉工业大学学报 1999(03)

14.Meek T T;Blake R D Ceramic-ceramic seals by microwave heming 1986(05)

15.Fukushima H;Yamanaka T;Matsui M Microwave heating of ceramics and its application tojoining

1990(02)

16.Binner J G P;Femie J A;Whitaker P A The effect of composition on the microwave bonding of alumina ceramics[外文期刊] 1998(12)

17.Zhou Jian;Zhang Qiaoxin;MEI Bingehu Microwave joinlng of alumina ceramic and hydroxylapatite bioceramic[期刊论文]-Journal of Wuhan University of Technology-Mater Science 1999(02)

18.Chen Xinmou;Liu Wuri HighFrequency Heating Dielectric Technology 1979

19.Cam G;Koeak M Progreas in joining of advanced materials[外文期刊] 1998(01)

20.广赖明夫金属基复合材料の结合 1996(04)

本文读者也读过(10条)

1.陶瓷与金属连接的研究现状[会议论文]-2007

2.李卓然.顾伟.冯吉才.Li Zhuoran.Gu Wei.Feng Jicai陶瓷与金属连接的研究现状[期刊论文]-焊接2008(3)

3.王申.李淑华.谭惠民陶瓷-金属的连接技术[期刊论文]-飞航导弹2002(6)

4.王新阳.李炎.魏世忠.马向东.WANG Xinyang.LI Yan.WEI Shizhong.MA Xiangdong陶瓷与金属连接技术的研究进展[期刊论文]-热加工工艺2009,38(13)

5.王颖.曹健.张丽霞.冯吉才氧化铝陶瓷与金属活性钎焊研究进展[期刊论文]-焊接2009(2)

6.邢世凯陶瓷-金属连接工艺研究现状及进展[期刊论文]-材料保护2004,37(5)

7.王颖.曹健.张丽霞.冯吉才氧化铝陶瓷与金属活性钎焊研究进展[会议论文]-2008

8.张巨先.荀燕红.陈丽梅.鲁燕萍高纯氧化铝陶瓷材料的焊接性能研究[会议论文]-2006

9.何柏林.熊光耀.缪燕平.HE Bo-lin.XIONG Guang-yao.MIAO Yan-ping金属间化合物/Al2O3陶瓷基复合材料的研究进展[期刊论文]-粉末冶金工业2008,18(3)

10.钟长荣.毕松.苏勋家.侯根良.ZHONG Chang-rong.BI Song.SU Xun-jia.HOU Gen-liang Al2O3陶瓷自增韧研究进展[期刊论文]-粉末冶金材料科学与工程2007,12(4)

引证文献(4条)

1.郑兰兰.王文先.崔泽琴.刘旭A12O3陶瓷表面激光铜合金化层微观形貌及物相分析[期刊论文]-应用激光 2010(2)

2.张雷.陈孜.李志友.周科朝.李超NiFe2O4/Cu金属陶瓷与金属的磷酸盐黏接特性[期刊论文]-中南大学学报(自然科学版) 2010(6)

3.张雷.陈孜.李志友.周科朝.李超NiFe2O4/Cu金属陶瓷与金属的磷酸盐黏接特性[期刊论文]-中南大学学报(自然科学版) 2010(6)

4.李超.张雷.周科朝.李志友.陈孜磷酸盐连接NiFe2O4基金属陶瓷的界面形貌和连接机理[期刊论文]-中国有色金属学报 2011(5)

本文链接:https://www.doczj.com/doc/3d1647229.html,/Periodical_yhclgy200804002.aspx

氧化铝陶瓷的制备与应用

论文题目:氧化铝陶瓷的制备与应用 学院:材料科学与工程学院 专业班级:材料化学2班 学号:20090488 姓名:王杰 日期:2011-10-19

氧化铝陶瓷的制备与应用 摘要:氧化铝陶瓷是用途最广泛的陶瓷材料中的一种,它可用作机器及设备制造中的耐腐蚀材料、化工专业中的抗腐蚀材料、电工及电子技术中的绝缘材料、热工技术中的耐高温材料以及航空、国防等领域中的某些特种材料。 Abstract: the alumina ceramics is the most widely use of one of the ceramic material, it can be used as the machine and equipment manufacture of corrosion resistant material, chemical corrosion materials in the professional, electrical and electronic technology of thermal insulation materials, high temperature resistant materials and technologies in the aerospace, defense, etc to some of the special material. 关键词:氧化铝陶瓷耐磨性机械强度耐化学腐蚀 Keywords: alumina ceramics Wear resistance Mechanical strength Chemical corrosion-resistant 氧化铝陶瓷是一种用途广泛的陶瓷。因为其优越的性能,在现代社会的应用已经越来越广泛,满足于日用和特殊性能的需要。[1] 1.硬度大经中科院上海硅酸盐研究所测定,其洛氏硬度为HRA80-90,硬度仅次于金刚石,远远超过耐磨钢和不锈钢的耐磨性能。 2.耐磨性能极好经中南大学粉末冶金研究所测定,其耐磨性相当于锰钢的266倍,高铬铸铁的171.5倍。根据我们十几年来的客户跟踪调查,在同等工况下,可至少延长设备使用寿命十倍以上。

多孔氧化铝陶瓷的研究进展

多孔氧化铝陶瓷的研究进展 李环亭1 孙晓红1 陈志伟1,2 (1国家陶瓷与耐火材料产品质量监督检验国家质检中心 山东淄博 255063) (2山东理工大学分析测试中心 山东淄博 255049) 摘 要 综合论述了国内外多孔氧化铝陶瓷的制备方法及性能的研究进展,并对目前存在的问题及将来的研究方向进行了展望。 关键词 多孔氧化铝陶瓷 制备方法 性能 Research Progress of Porous A lumina Ceramics Li Huanting1,Sun Xiaohon g1,Chen Zhiwei1,2(1National Quality Supervision and Inspection Center for Ceramics and Refractories,Shan dong,Zibo,255063)(2Analysis and Testing Center of Shandong Uni versity of Technology,Shandong,Zibo,255049) Abstract:The paper reviewed the research progress of porous alumina ceramics home and broad.The preparation methods and the proer ties were summaried.Finally,the research direction in the future is given on the porous alumina ceramics. Key words:Porous alu mina ceramics;Preparation methods;Properties 前言 多孔氧化铝陶瓷是指以氧化铝为骨料,通过在材料成形与高温烧结过程中,内部形成大量彼此相通或闭合的微孔或孔洞。较高的孔隙率的特性,使其对液体和气体介质具有有选择的透过性,较低的热传导性能,再加上陶瓷材料固有的耐高温、抗腐蚀、高的化学稳定性的特点,使其在气体和液体过滤、净化分离、化工催化载体、生物植入材料、吸声减震和传感器材料等众多领域有着广泛的应用前景。多孔氧化铝陶瓷上述优异的性能和低廉的制造成本,引起了科学界的高度关注。笔者就目前国内外多孔氧化铝陶瓷的制备方法、性能的研究进展进行综述。 1 多孔氧化铝陶瓷的制备方法 多孔氧化铝陶瓷的制备工艺主要包括孔结构的形成,坯体的成形和坯体的烧结3个方面。关于孔结构形成的方法既有传统的通过机械挤出成孔法、颗粒堆积形成气孔法、添加造孔剂成孔法、发泡工艺成孔法、有机泡沫浸渍成孔法[1],也有新型的铝板阳极氧化法、溶胶-凝胶法等。关于坯体成形工艺主要有模压成形法[2]、凝胶注模成形法[3]、固体粒子烧结法[4]、挤压成形法[5]等。如何得到高的气孔率,且能较好地控制孔径及其分布、形状、三维排列等,则需要选择合适的方法和工艺。下面介绍几种氧化铝多孔陶瓷常用的制备方法。 1.1 造孔剂成孔+凝胶注模法+高温烧结法 造孔剂成孔法是将一定量的造孔剂添加到陶瓷坯料中,造孔剂在坯体中会占据一定的空间,经过低温烧结后,造孔剂离开基体形成气孔得到多孔陶瓷。造孔剂的种类分为有无机和有机两大类。无机造孔剂有碳酸铵、碳酸氢铵、氯化铵等高温可分解的盐类,以及煤粉、碳粉等;有机造孔剂主要是天然纤维、高分子聚合物[6]和有机酸等,如淀粉、尼龙纤维等。目前应用较多的是加入有机造孔剂,且效果较好。由于造孔剂颗粒的大小及形状决定最终成孔的大小和形状,且造孔剂 基金项目:山东省科技攻关项目(耐火材料快速分析方法研究及应用,项目编号:2006GG1108097-06;陶瓷原料综合评价方法建立及应用研究,项目编号2007GG10003047)

浅析先进陶瓷材料的研究现状及发展趋势

龙源期刊网 https://www.doczj.com/doc/3d1647229.html, 浅析先进陶瓷材料的研究现状及发展趋势 作者:孙彬 来源:《科技资讯》2017年第27期 摘要:随着现阶段各种高新技术日新月异的发展,先进陶瓷材料已经成为了新材料领域 中的翘楚,也是很多技术创新领域需要用到的关键材料,受到了很多发达国家和工业化企业的极大关注,先进材料的发展以及应用也在很大程度上对于工业的发展和进步产生一定的影响。本文旨在探讨先进陶瓷材料的研究现状及发展趋势。 关键词:工业陶瓷材料先进研究环保发达国家 中图分类号:TQ174.7 文献标识码:A 文章编号:1672-3791(2017)09(c)-0217-02 随着先进陶瓷的各种优势越来越明显,很多自动化控制、人工智能、电子智能技术领域都需要先进陶瓷的入驻,可以说,先进陶瓷的市场产量和覆盖范围已经发展到了一个不可忽视的阶段。 1 先进陶瓷的具体应用以及性能优势对比 先进陶瓷,根据各自的优点以及应用范围,大体可以分为两大类,也就是功能陶瓷和结构陶瓷,具体的应用范围以及性能优势,如表1所示。 2 国内外对于先进陶瓷材料的研究现状 2.1 国外对于先进陶瓷材料的研究现状 现阶段,全球各个国家对于先进陶瓷材料进行研究应用的趋势越来越明显。 举例来说,以美国和日本为代表,在对于先进陶瓷材料的研究和应用方面远远领先于其他国家。美国的宇航局和航空局大规模的应用了先进陶瓷。比如说在航空发动机上用陶瓷来替代其他材料;提出了关于先进陶瓷的多个计划,在每年对于先进材料的研究和应用上,投入多达35亿美元。这些都是为了提高他们在国际上的综合竞争能力。而日本也提出了对于先进陶瓷 研究和开发的一项计划,名曰“月光计划”,另外,欧盟各国尤其是以工业闻名的德国,都对先进陶瓷进行了研究和开发,法国也紧随其后,主要集中在对新能源材料进行重点的研究和突破。 综合来说,这些发达国家,比如美国、日本、欧盟,它们在先进陶瓷领域每年的平均增长率高达12%,其中欧盟较为领先,多达15%~18%,美国则是9.29%,日本是7.2%。现阶 段,全球先进陶瓷的最大市场集中在美国和日本,其次就是欧盟国家,甚至可以说,先进陶瓷在发达国家更加受到重视和人们的欢迎。

在连接金属与陶瓷方面的进步

在连接金属与陶瓷方面的进步 张勇封迪何志勇陈喜春 (中国,北京100081,高温材料研究所,中心钢铁研究所) 摘要:连接陶瓷和金属的方法的研究和发展,特别是铜焊、扩散连接和局部过渡液相扩散焊,做了简要的介绍,提出了一些看法。对于新的复合材料的出现,发展新的结合方法尤其是在高温技术领域结合陶瓷形成超合金是很必要的。 关键词:陶瓷、金属、连接、发展。 陶瓷因其低密度、高强度和优良的耐高温性能,广泛适用于航空、冶金领域。特别是在高温技术方面,陶瓷和陶瓷基复合材料比金属拥有更多的优点。但陶瓷具有低韧性,并且制造复杂的部分很困难。因此,为达到要求【1,2】,生产金属陶瓷复合材料零件是合理的。在下文中,讨论的是集中连接方法的发展,尤其是将碳化硅、硅、氮加入到金属中。 1、金属和陶瓷的主要连接方法 迄今为止,已经开发出几种连接金属和陶瓷的方法【3】,比如机械机械连接、粘着剂结合、摩擦焊【4】、高能束焊接【5】、微波焊接、超声波焊接【6】、爆炸焊接【7】、反应连接、燃烧反应连接【8】、场辅助粘结【9】、铜焊、扩散连接【10】、瞬间液相扩散焊(TLPB)和局部瞬间液相扩散焊(PTLPB)等。每种技术都有其特点,并且机械加入、钎焊和扩散连接是主要方法。具有钎焊和扩散连接优点的PTLPB,是一种很有前途的技术。

1.1机械加入 机械加入常用于往金属中加入陶瓷,树脂基复合材料、陶瓷基复合材料(cmc)或炭/炭复合材料,它有两种基本类型:螺栓连接和热覆盖。机械加入对于SiC的提升是一种很重要的方法。最近,通过机械加入的方法制造出许多应用在高温条件下的碳化硅复合材料零件,并且一些其他的连接方法也几乎可以使用。但机械加入也有其缺点,比如低气密性和高加工成本。由于热应力的存在,导致热覆盖的应用仅局限在低温下使用的零件。 同样,由于应力集中、孔的位置、连接部件在高温下的性能以及它们同基体材料的匹配性的原因,通过机械加入加入陶瓷基复合材料方法的应用,特别是往金属中加入纤维增强复合材料 ( C,/SiC,SiCf/SiC),受到了限制。打破陶瓷基复合材料的限制是很困难的,并且加工过程中常常出现错误,从而使复合材料降级。 因此,为使金属陶瓷或是陶瓷基金属复合材料高温复合零件应用更好,发展更好的连接技术是很必要的。 1.2钎焊 所谓钎焊,就是将填充金属熔化并推动液体填充物填充到隙中形成一个结头。与其他连接技术相比,钎焊因温度低因而具有对连接材料低影响的优点,所以它能连接精密、复杂部件和其他材料,但是填充材料的熔点限制了复合材料部件的使用温度。目前,钎焊是最适合加入复合材料的方法之一。为通过使用钎焊连接陶瓷和金属,提高填充材料和陶

氧化铝陶瓷制作工艺

氧化铝陶瓷介绍 来自:中国特种陶瓷网发布时间:2005-8-3 11:51:15 氧化铝陶瓷制作工艺简介 氧化铝陶瓷目前分为高纯型与普通型两种。高纯型氧化铝陶瓷系Al2O3含量在99.9%以上的陶瓷材料,由于其烧结温度高达1650—1990℃,透射波长为1~6μm,一般制成熔融玻璃以取代铂坩埚:利用其透光性及可耐碱金属腐蚀性用作钠灯管;在电子工业中可用作集成电路基板与高频绝缘材料。普通型氧化铝陶瓷系按Al2O3含量不同分为99瓷、95瓷、90瓷、85瓷等品种,有时Al2O3含量在80%或75%者也划为普通氧化铝陶瓷系列。其中99氧化铝瓷材料用于制作高温坩埚、耐火炉管及特殊耐磨材料,如陶瓷轴承、陶瓷密封件及水阀片等;95氧化铝瓷主要用作耐腐蚀、耐磨部件;85瓷中由于常掺入部分滑石,提高了电性能与机械强度,可与钼、铌、钽等金属封接,有的用作电真空装置器件。其制作工艺如下: 一粉体制备: 郑州玉发集团是中国最大的白刚玉生产商,和中科院上海硅酸盐研究所成立玉发新材料研究中心研究生产多品种α氧化铝。专注白刚玉和煅烧α氧化铝近30年,因为专注所以专业,联系QQ2596686490,电话156390七七八八一。 将入厂的氧化铝粉按照不同的产品要求与不同成型工艺制备成粉体材料。粉体粒度在1μm?微米?以下,若制造高纯氧化铝陶瓷制品除氧化铝纯度在99.99%外,还需超细粉碎且使其粒径分布均匀。采用挤压成型或注射成型时,粉料中需引入粘结剂与可塑剂,?一般为重量比在10—30%的热塑性塑胶或树脂?有机粘结剂应与氧化铝粉体在150—200℃温度下均匀混合,以利于成型操作。采用热压工艺成型的粉体原料则不需加入粘结剂。若采用半自动或全自动干压成型,对粉体有特别的工艺要求,需要采用喷雾造粒法对粉体进行处理、使其呈现圆球状,以利于提高粉体流动性便于成型中自动充填模壁。此外,为减少粉料与模壁的摩擦,还需添加1~2%的润滑剂?如硬脂酸?及粘结剂PVA。 欲干压成型时需对粉体喷雾造粒,其中引入聚乙烯醇作为粘结剂。近年来上海某研究所开发一种水溶性石蜡用作Al2O3喷雾造粒的粘结剂,在加热情况下有很好的流动性。喷雾造粒后的粉体必须具备流动性好、密度松散,流动角摩擦温度小于30℃。颗粒级配比理想等条件,以获得较大素坯密度。 二成型方法: 氧化铝陶瓷制品成型方法有干压、注浆、挤压、冷等静压、注射、流延、热压与热等静压成型等多种方法。近几年来国内外又开发出压滤成型、直接凝固注模成型、凝胶注成型、离心注浆成型与固体自由成型等成型技术方法。不同的产品形状、尺寸、复杂造型与精度的产品需要不同的成型方法。摘其常用成型介绍: 1干压成型:氧化铝陶瓷干压成型技术仅限于形状单纯且内壁厚度超过1mm,长

氧化铝陶瓷的制备与显微结构

氧化铝陶瓷的制备与显微结构 张全贺 051002131 摘要:a—A1:O3中加入复合添加剂,在1 500℃,2 h条件下无压烧结,制备出原位生长片状晶增韧的氧化铝陶瓷。烧结行为和显微结构研究表明:在1 500℃下烧结时,获得板片状晶粒。加入CaF2和CaF2复合添加剂时,生长的晶粒呈现片状,大小均匀,断裂韧性达到4.3 M Pa/m ;加入CaF2和高岭土复合添加剂时,由片状晶粒形成Al203陶瓷基体中,弥散分布着粗大的板块状晶粒,有效的提高了Al2 03陶瓷的致密度,相对密度达到96.8 g/cm 。 关键词:氧化铝;片状晶;原位生长;添加剂 1 引言 氧化铝陶瓷具有硬度高、耐高温、耐磨、电绝缘、抗氧化、力学性能良好、原料蕴藏丰富、价格低廉等许多优点,是应用最早、最广泛的精细陶瓷。氧化铝显微组织通常为等轴状晶粒,断裂韧性较低,通常只有3 M Pa/m 。材料的显徽结构和性能之间具有内在联系,如果把显微结构控制在理想的状态,就能使材料具备所希望的性能,Evans预言,如果A12O3,基体中按体积含有大于lO%的柱状晶或含有2O%的板状晶,陶瓷材料的韧性将得到大大的提高. 2 试验方法 2.1 试验材料:将工业A12O3粉经过预烧转变为A12O3后,放人玛瑙罐内进行球磨,玛瑙球、氧化铝和无水乙醇的体积比为3:1:8,球磨时间为48 h,然后在8o℃下于燥。将A12O3和高岭土分别湿磨,放人100 ml烧杯,进行低温干燥后,过200目筛待用。按照配料表1,将物料配好后倒人塑料瓶内,按玛瑙球、氧化铝和无水乙醇的体积比为2:1:4进行湿混后,取出干燥。采用120 M Pa于压成型后放人高温梯度炉内,烧结温度为1 500℃,保温2h。

氧化铝陶瓷与金属连接的研究现状

万方数据

万方数据

万方数据

万方数据

周健等Ⅲo对A1203一A1203以及A1203和HAP(羟基磷灰石)生物陶瓷进行了焊接,并借助电镜、电子探针分析了界面结合情况。前者在2MPa、1300℃、保温15min时结合强度达到基体强度。后者在2.5MPa、1200℃、保温15min左右将两类材料焊接在一起。. 蔡杰等¨引采用1’E103型谐振腔分别在1300和1400℃对A1203一A1203进行焊接,认为在1300℃焊接时,虽经长时间保温,焊接效果不理想,在1400℃、保温20min,焊缝消失。如上所述,氧化铝陶瓷一般采用直接焊接,对于高纯度氧化铝陶瓷一般采用低纯氧化铝或玻璃做中间层,目前也有人用溶胶凝胶方法制备的氧化铝做中间层。 目前微波焊接腔体的微波场的均匀区域还不大,改进微波场的分布,提高加热均匀区域,可以提高材料的焊接尺寸。同时增加焊接材料的种类。 7激光焊接 激光焊接陶瓷是近年来发展的新技术,Mittweida公司开发了双束激光焊接陶瓷方法,其原理见图9。 图9双束激光焊接示意图¨引 Fig.9Skd【chofdoublelaserweldiIlg 采用高能束激光焊方法,可快速加热和冷却,配以氮气筛的冷却和温度场调节,诱导和改善复合材料增强相和基体界面反应,而提高接头强度。采用脉冲输入方式,可抑制界面反应,细化组织,减少缺陷,获得良好接头,在操作时对激光功率控制非常重要啪J。用该法焊接的Al:O,陶瓷试样,激光焊接区细晶粒均匀,在电子显微镜下,可以看到晶粒呈片瓦结构,防止了裂纹的产生和扩展。经100次反复加热和冷却后,试样的弯曲强度无明显下降。 8结语 随着Al,O,陶瓷的广泛应用,其连接技术已成为世界各国集中研究的重点,其中钎焊与扩散连接是最常用的连接方法,但都有其局限性。例如:用钎焊方法形成的陶瓷接头的高温性能和抗氧化性能较差;钎焊的界面反应机理现在还处于试验阶段,缺乏系统性和理论性。扩散连接虽然可以减小界面缺陷,并适合大尺寸构件的接合,但易发生试件的变形和损伤等。近来新发展的微波连接能很好地实现接头处均匀连接,避免了开裂的发生,而且由于升温速度极快,陶瓷内部的晶粒不会剧烈长大。而sHs焊接和激光焊接还处于起步阶段,有待于发展。 参考文献 1王颖.AJ:0,陶瓷与Kover合金钎焊工艺研究.哈尔滨工业大学硕士论文,2006:l一50 2Ham咖dJP,DB“dSA,SameUaMLB阳zingo既帅icox-id船tom吨IlsatlowteⅡ聊舶hlr酷.WeldJ,1992;(5):145—1493赵永清.利用化学镀实现A120,陶瓷与金属的连接.焊接技术,1999;(2):16—17 4顾小龙,王大勇,王颖.Al:0,陶瓷/AgCuT∥可伐合金钎焊接头力学性能.材料科学与艺,2007;15(3):366—3695吴铭方.反应层厚度对他03/AgCu7n/n一6m一4V接头强度的影响.稀有金属材料与工程,2000;19(26):419—4226王洪潇.氧化铝陶瓷与金属活性封接技术研究.大连交通大学硕士论文,2006:1—50 7刘军红.复相Al:0,基陶瓷/钢大气中直接钎焊连接界面的微观组织结构.焊接学报,2003;24(6):26—28 8张玮.镍离子注入灿203/1crl8Ni9Ti的钎焊界面成分分析.包头钢铁学院学报,2000;19(3):219—22l 9王大勇,冯吉才,刘会杰.灿:O,/Cu/Al扩散连接工艺参数的优化.材料科学与工艺,2003;11(1):73~76 10陈铮,赵其章,方芳等.陶瓷/陶瓷(金属)部分瞬间液相连接.硅酸盐学报,1999;27(2):186~188 1lMerzh锄ovAG.InterSymposium∞coIIIbus阴dpl嬲一眦syn.ofhigll—te呷.Mater.s明Fr锄cisco,cA,988 12余圣甫等.Al:0,陶瓷/不锈钢自蔓延高温原位合成连接.焊接学报,2004;25(2)119一122 13周健,章桥新,刘桂珍等.微波焊接陶瓷辊棒.武汉工业大学学报,1999;21(3):1~2 14MeekTT,BlalceRD.Ceramic?ce硼icsealsbymicro-w盯ehe砒ing.J.Mat.Sci.L肚.,1986;(5):270~274 15Fukushi眦H。YamanakaT,Ma协uiM.Micmwaveheat—ingof ce姗icsandi协applic砒i叩tojoining.JMat.R∞.,1990;5(2):397—405 16Bi衄erJGP,F唧ieJA,WhitakerPAeta1.Thee妇fect0fcompositi∞ontlIeIIlicn)wavebondirIg0falulIli啪ce捌【nics.JMat.sci.,1998;33(12):3017~3029 17zlI伽Ji蛐,Zh衄gQia喇n,MEIBingchueta1.Mic胁wavejoiIlingof aluIIli腿c廿枷candh”Iroxyl印atitebioce枷c.JWuh粕Univ.ofTech.Mater.Sci.,1999;14(2):46~4918ChenXinm伽,ⅡuW嘶.HigllFrequencyHeatillgDie.1ectricTechnology.BeijiIlg:scie眦ePr鹤s,1979:l一30 19C蛐G,K0caI【M.h咿ssinjoiniIlgofadv锄cedmate—rials.htematioIlalMaterialsRevie啪,1998;43(1):卜4420广赖明夫.金属基复合材料。结合.溶接会志,1996;65(4):l692一l698 (编辑吴坚) 宇航材料工艺2008年第4期 万方数据

陶瓷与金属焊接技术

陶瓷与金属焊接技术 陶瓷与金属焊接技术 Ti(C,N)基金属陶瓷是一种颗粒型复合材料,是在TiC基金属陶瓷的基础上发展起来的新型金属陶瓷。Ti(C,N)基金属陶瓷具有高硬度、耐磨、耐氧化、耐腐蚀等一系列优良综合性能,在加工中显示出较高的红硬性和强度,它在相同硬度时耐磨性高于WCCo硬质合金,而其密度却只有硬质合金的1/2。因此,Ti(C,N)基金属陶瓷刀具在许多加工场合下可成功地取代WC基硬质合金而被广泛用作工具材料,填补了WC基硬质合金和Al2O3陶瓷刀具材料之间的空白。我国金属钴资源较为贫乏,而作为一种战略性贵重金属,近年来钴的价格持续上扬,因此,Ti(C,N)基金属陶瓷刀具材料的研制开发和广泛应用,不仅可推动我国硬质合金材料的升级换代,而且在提高国家资源保障程度方面也具有重要的意义。 我们研制的是添加TiN的Ti(C,N)基金属陶瓷。由于TiC比WC具有更高的硬度和耐磨性,TiN的加入可起到细化晶粒的作用,故Ti(C,N)基金属陶瓷可表现出比WC基或TiC基硬质合金更为优越的综合性能。这种新型金属陶瓷刀具材料的广泛应用是以其成功的连接技术为前提的,国内外对陶瓷与金属的连接开展了不少的研究,但对于金属陶瓷与金属连接的技术研究较少,以致于限制了Ti(C,N)基金属陶瓷材料在工业生产中的广泛应用。常用的连接陶瓷与金属的焊接方法有真空电子束焊、激光焊、真空扩散焊和钎焊等。在这些连接方法中,钎焊、扩散焊连接方法比较成熟、应用较广泛,过渡液相连接等新的连接方法和工艺正在研究开发中。本文在总结各种陶瓷与金属焊接方法的基础上,对金属陶瓷与金属的焊接技术进行初步探讨,在介绍各种适用于金属陶瓷与金属焊接技术方法的同时,指出其优缺点和有待研究解决的问题,以期推动金属陶瓷与金属焊接技术的研究,进而推广这种先进工具材料在工业领域的应用。 Ti(C,N)基金属陶瓷性能特点及应用现状 Ti(C,N)基金属陶瓷是在TiC基金属陶瓷基础上发展起来的一类新型工模具材料。按其组成和性能不同可分为:①成分为TiCNiMo的TiC基合金;②添加其它碳化物(如WC、TaC等)和金属(如Co)的强韧TiC基合金;③添加TiN的TiC TiN(或TiCN)基合金;④以TiN为主要成分的TiN基合金。 Ti(C,N)基金属陶瓷的性能特点如下: (1)高硬度,一般可达HRA91~93.5,有些可达HRA94~95,即达到非金属陶瓷刀具硬度水平。 (2)有很高的耐磨性和理想的抗月牙洼磨损能力,在高速切削钢料时磨损率极低,其耐磨性可比WC基硬质合金高3~4倍。 (3)有较高的抗氧化能力,一般硬质合金月牙洼磨损开始产生温度为850~900℃,而Ti(C,N)基金属陶瓷为1100~1200℃,高出200~300℃。TiC氧化形成的TiO2有润滑作用,所以氧化程度较WC基合金低约10%。 (4)有较高的耐热性,Ti(C,N)基金属陶瓷的高温硬度、高温强度与高温耐磨性都比较好,在1100~1300℃高温下尚能进行切削。一般切削速度可比WC基硬质合金高2~3倍,可达200~400m/min。 (5)化学稳定好,Ti(C,N)基金属陶瓷刀具切削时,在刀具与切屑、工件接触面上会形成Mo2O3、镍钼酸盐和氧化钛薄膜,它们都可以作为干润滑剂来减少摩擦。Ti(C,N)基合金与钢不易产生粘结,在700~900℃时也未发现粘结情况,即不易产生积屑瘤,加工表面粗糙度值较低。 Ti(C,N)基金属陶瓷在具有良好综合性能的同时还可以节约普通硬质合金所必需的

氧化铝陶瓷

氧化铝陶瓷 氧化铝陶瓷(alumina ceramics)是一种以α- Al2O3为主晶的陶瓷材料。其Al2O3含量一般在75~99.99%之间。通常习惯以配料中Al2O3的含量来分类。Al2O3含量在75%左右的为“75瓷“,含量在85%左右的为“85瓷“,含量在95%左右的为“95瓷“,含量在99%左右的为“99瓷“。 工业Al2O3是由铝钒土(Al2O3·3H2O)和硬水铝石制备的,对于纯度要求不高的,一般通过化学方法来制备。电熔刚玉即是用上述原料加碳在电弧炉内于2000~2400C熔融制得,也称人造刚玉。 Al2O3有许多同质异晶体。根据研究报道过的变体有十多种,但主要有三种,即γ- Al2O3,β- Al2O3,α- Al2O3。Al2O3的晶体转化关系如下图,其结构不同,因此其性质也不同,在1300度以上的高温几乎完全转变为α- Al2O3。郑州玉发集团是中国最大的白刚玉生产商,和中科院上海硅酸盐研究所成立玉发新材料研究中心研究生产多品种α氧化铝。专注白刚玉和煅烧α氧化铝近30年,因为专注所以专业,联系QQ2596686490,电话156390七七八八一。 γ- Al2O3,属尖晶石型(立方)结构,氧原子形呈立方密堆积,铝原子填充在间隙中。它的密度小。且高温下不稳定,机电性能差,在自然界中不存在。由于是松散结构,因此可利用它来制造多孔特殊用途材料。 β- Al2O3是一种Al2O3含量很高的多铝酸盐矿物。它的化学组成可以近似地用RO·6 Al2O3和R2O·11 Al2O3来表示(RO指碱土

金属氧化物,R2O指碱金属氧化物),其结构由碱金属或碱土金属离子如[NaO]ˉ层和[Al11O12]+类型尖晶石单元交叠堆积而成,氧离子排列成立方密堆积,Na+完全包含在垂直于C轴的松散堆积平面内,在这个平面内可以很快扩散,呈现离子型导电。 α- Al2O3,属三方晶系,单位晶胞是一个尖的菱面体,在自然办只存在α- Al2O3,如天然刚玉、红宝石、蓝宝石等矿物。α- Al2O3结构最紧密、活性低、高温稳定。它是三种形态中最稳定的晶型,电学性质最好,具有优良的机电性能。 Al2O3中的化学键是离子键,离子键也称“电价键”,它是由金属原子失去外层电子形成正离子,非金属原子取得电子形成负离子,互相结合形成的。离子键是依靠正负离子间静电引力所产生的化学键,它没有方向性也没有饱和性。A Al2O3陶瓷属于氧化物晶体结构,氧化物结构的结合键以离子键为主,它的分子式通常以AmXn 表示。A(或者B)表示与氧结合的正离子,n为离子数,x表示氧离子,n表示它的数量。大多数氧化物中的氧离子半径大于正离子的半径。所以它们的结构是以大直径的氧离子密堆排列的骨架,组成六方或面心立方点阵,小直径的正离子嵌入骨架的间隙处。这种陶瓷材料具有高的硬度和熔点。 陶瓷体的相组成中,晶相相对含量波动范围很大,通常特种陶瓷中晶相体相对含量较高。晶相对陶瓷材料性质有很大的影响。表中列出了一般陶瓷到特种陶瓷中的刚玉相(α- Al2O3)含量的变化及表现出的性能差异。

陶瓷与金属焊接

陶瓷与金属焊接技术:金属陶瓷材料发展应用 的关键 (Jul 31 2007 03:37PM ) Ti(C,N)基金属陶瓷是一种颗粒型复合 材料,是在TiC基金属陶瓷的基础上发展起来的新型金属陶瓷。Ti(C,N)基金属 陶瓷具有高硬度、耐磨、耐氧化、耐腐蚀等一系列优良综合性能,在加工中显示出较高的红硬性和强度,它在相同硬度时耐磨性高于WCCo硬质合金,而其密度却只有硬质合金的1/2。因此,Ti(C,N)基金属陶瓷刀具在许多加工场合下可成功地取代WC基硬质合金而被广泛用作工具材料,填补了WC基硬质合金和Al2O3陶瓷刀具材料之间的空白。我国金属钴资源较为贫乏,而作为一种战略性贵重金属,近年来钴的价格持续上扬,因此,Ti(C,N)基金属陶瓷刀具 材料的研制开发和广泛应用,不仅可推动我国硬质合金材料的升级换代,而且在提高国家资源保障程度方面也具有重要的意义。

我们研制的是添加TiN的Ti(C,N)基金属陶瓷。由于TiC比WC具有更高的硬度和耐磨性,TiN的加入可起到细化晶粒的作用,故Ti(C,N)基金属陶瓷可表现出比WC基或TiC基硬质合金更为优越的综合性能。这种新型金属陶瓷刀具材料的广泛应用是以其成功的连接技术为前提的,国内外对陶瓷与金属的连接开展了不少的研究,但对于金属陶瓷与金属连接的技术研究较少,以致于限制了Ti(C,N)基金属陶瓷材料在工业生产中的广泛应用。常用的连接陶瓷与金属的焊接方法有真空电子束焊、激光焊、真空扩散焊和钎焊等。在这些连接方法中,钎焊、扩散焊连接方法比较成熟、应用较广泛,过渡液相连接等新的连接方法和工艺正在研究开发中。本文在总结各种陶瓷与金属焊接方法的基础上,对金属陶瓷与金属的焊接技术进行初步探讨,在介绍各种适用于金属陶瓷与金属焊接技术方法的同时,指出其优缺点和有待研究解决的问题,

氧化铝陶瓷基复合材料概述

概述了氧化铝陶瓷基复合材料,并且对其一般的生产工艺金属间、氧化铝陶瓷基复合材料以及其应用领域作了介绍, 前言 氧化铝(Al2O3) 陶瓷材料具有耐高温、硬度大、强度高、耐腐蚀、电绝缘、气密性好等优良性能, 是目前氧化物陶瓷中用途最广、产量最大的陶瓷新材料。但是与其他陶瓷材料一样,该陶瓷具有脆性这一固有的致命弱点,使得目前Al2O3 陶瓷材料的使用范围及其寿命受到了相当大的限制。近年来, 在氧化铝陶瓷中引入金属铝塑性相的Al/Al2O3 陶瓷基复合材料是一个非常活跃的研究领域。 概述 金属间化合物的结构与组成它的两组元不同, 具有序的超点阵结构, 各组元原子占据点阵的固定位置, 最大程度地形成异类原子之间结合。由于其原子的长程有序排列以及金属键和共价健的共存性, 有可能同时兼顾金属的较好塑性和陶瓷的高温强度。在力学性能上, 有序金属间化合物填补了陶瓷和金属之间的材料空白区域。有序金属间化合物中, Ti - Al、Ni - Al、Fe - Al 和Nb-Al系等几个系列的多种铝化物更是特别受到重视。这些铝化物具有优异的抗氧化性、抗硫化腐蚀性和较高的高温强度, 密度较小, 比强度较高。 由于在空气中铝粉极易氧化而在表面形成Al2O3 钝化膜,使Al 粉和Al2O3 颗粒之间表现出很差的润湿性,导致烧结法制备Al/Al2O3 陶瓷材料烧结困难, 影响复合材料的机械性能[5]。挤压铸造和气压浸渍工艺浸渍速度快, 但是预制体中的细小空隙很难进一步填充[ 6], 而后发展的无压渗透工艺操作复杂,助渗剂的选择随意, 且作用机理复杂, 反而增加了工艺控制难度[7]。20世纪80年代初, 美国Lanxide公司提出了一种制备陶瓷基复合材料的新工艺定向金属氧化技术( DirectedMetal Ox-idation, 简称DMOX)。该工艺是在高温下利用一定阻生剂限制金属熔体在其他5个方向的生长, 使金属熔体与氧化剂反应并只单向生长即定向氧化。采用该方法制备的Al/ Al2O3 陶瓷材料在显微结构上表现为由立体连通的-Al2O3 基体与三维网状连通的残余金属和不连续的金属组成, 由于Al2O3 晶间纯净, 骨架强度高于烧结、浸渍等工艺制得的同类材料的强度[ 9]同时, 三维连通的金属铝具有良好的塑性, 从而使该复合材料具有更为良好的综合机械性能。

透明氧化铝陶瓷制备的研究进展

透明氧化铝陶瓷制备的研究进展 关键词:透明氧化铝,透光率,烧结助剂,烧结工艺 1引言 透明氧化铝陶瓷最早是由美国Coble博士发明的,他通过在Al2O3中添加0.25wt% MgO,于1700~1800℃氢气气氛下烧结出呈半透明的氧化铝陶瓷,从此开创了透明氧化铝陶瓷研究和应用的新篇章[1]。经过半个世纪的不懈努力和研究,科研工作者发现,通过提高氧化铝的纯度、致密度以及合理的调控显

微结构,可以显著提高氧化铝陶瓷的透光性。 随着研究的不断开展,制备氧化铝陶瓷的烧结助剂得到了极大地扩展,除了MgO,一些稀土氧化物(如Y2O3、La2O3、ZrO2等)同样可以作为氧化铝陶瓷的烧结助剂,并且采用复合添加剂的效果优于单独使用MgO。关于添加剂的引入方式,谢志鹏等[2]提出了化学沉淀包覆工艺,在1800℃氢气气氛下烧结,制备了透明氧化铝陶瓷。与传统的球磨工艺相比,该方法能够实现添加剂在氧化铝基体中的均匀分布,从而大大提高了陶瓷的透光性。 关于透明氧化铝陶瓷的烧结技术,最近的研究工作表明,采用热等静压(HIP)、放电等离子(SPS)等特种烧结工艺可以制备出亚微米晶的高性能透明氧化铝陶瓷。例如,Jin等[3]采用SPS工艺,于1250~1350℃,80MPa压力下烧结,制备了晶粒尺寸小于1μm,直线透光率为53%的透明陶瓷。由于晶粒细小,其机械强度也非常优异。 此外,Mao等[4]就氧化铝晶粒光轴取向对透光性的影响进行了研究,他们通过在强磁场条件下进行透明Al2O3陶瓷浆料的注浆成型,使烧结后的Al2O3陶瓷晶粒光轴趋于一致,从而减少六方晶系Al2O3陶瓷因双折射率不同带来的光损失,显著提高透明Al2O3陶瓷的透过率。下面就影响氧化铝陶瓷透光性的各种因素,以及氧化铝粉体选择、烧结助剂及作用、烧结工艺及透明氧化铝陶瓷的应用进行综述。 2影响氧化铝陶瓷透明性的因素 2.1.1气孔 对透明陶瓷透光性能影响最大的因素是气孔率,又包括气孔尺寸、数量、种类。普通陶瓷即使具有高的密度,往往也不是透明的,这是因为其中有很多封闭气孔,并且当陶瓷内部的气孔率大于1%时,陶瓷就基本不再透明。有实验

氧化铝陶瓷综述

***********(所属单位)材料科学进展课程设计 学号:******** 专业:******** 学生姓名:*** 任课教师:*** 2011年10月

***********(所属单位)材料科学进展 (小论文) 学号:******* 专业:******* 学生姓名:*** 任课教师:*** 2011年10月

氧化铝陶瓷综述 ***(姓名) *********(所属单位) 摘要:本文简述了氧化铝陶瓷的功能及在各行业的应用,详细论述了氧化铝陶瓷的制备、成型及烧结方法。 关键词:氧化铝陶瓷制备成型烧结应用 以氧化铝(Al2O3)为主要成分的陶瓷称为氧化铝陶瓷。它属于无机非金属材料,具有特殊用途,新的性能,故也称特种陶瓷、高性能陶瓷。氧化铝陶瓷是氧化物陶瓷中应用最广、用途最宽、产销量最大的陶瓷新材料。 1氧化铝的同质多晶变体及其性能简介 根据研究报道,Al2O3有12种同质多晶变体[1],但应用较多的主要有3种,即α-Al2O3、β-Al2O3和γ-Al2O3,这3种晶体的结构不同,故它们的性质具有 很大的差异[2]。 (1)α-Al2O3是三方晶系,单位晶包是一个尖的菱面体,密度为 3.96~4.01g/cm3,其结构最紧密、化学活性低、高温稳定性好、电学性能优良并且机械性能也最佳,在一定条件下可以由其它的两种晶体转换而来。 (2)β-Al2O3是一种Al2O3含量很高的多铝酸盐矿物,密度为 3.30~3.63g/cm3,它的化学组成中含有一定量的碱土金属氧化物和碱金属氧化物,并且还可以呈现离子型导电。 (3)γ-Al2O3是尖晶石型立方结构,在950~1200℃范围内转化为α-Al2O3,密度为3.42~3.47g/cm3。它的氧原子呈立方紧密堆积,铝原子填充在间隙中,这就决定了它在高温下不稳定、力学和电学性能差的缺陷,在科学应用中很少单独制成材料使用。但它有较高的比表面积和较强的化学活性,经过技术改进可以作为吸附材料使用。 由于β-Al2O3和γ-Al2O3在高温(950~1200℃)下易转化为α-Al2O3,而陶瓷的制备又须经高温烧结,所以氧化铝陶瓷是一种以α-Al2O3为主晶相的陶瓷材料。 2氧化铝陶瓷的功能简介 氧化铝陶瓷具有热稳定和化学稳定性,电绝缘性、压电性、耐腐蚀性、化学吸附性、生物适应性、吸声性和透光性等多种有实用价值的性能和功能,见表1。

陶瓷与金属的连接方法

陶瓷与金属的连接方法 陶瓷与金属的连接方法主要有:粘合剂粘接、机械连接、熔化焊、钎焊、固相扩散连接、自蔓延高温合成连接、瞬时液相连接等连接方法。将陶瓷与金属连接起来制成复合构件,可充分发挥两种材料的性能优点,对于改善结构件内部应力分布状态、降低制造成本、拓宽陶瓷材料的应用范围具有特别重要的意义。1、粘合剂粘接:是利用胶粘剂将陶瓷与金属连接在一起,主要应用于飞机的应急修理、炮弹与导弹的辅助件连接、涡轮和压缩机转子的修复等处。尽管粘接连接可以一定程度缓解陶瓷与金属间的热应力且工 艺简单、效率高,但接头强度通常小于100MPa,使用温度一般低于200℃,大多用于静载荷和超低静载荷零件。2、机械连接:机械连接是一种借助结构设计的连接方法,有螺栓连接和热套连接两种。机械连接由于方便已经在部分增压转子与金属的连接中应用。热套连接获得的接头具有一定的气密性,但仅限于低温使用,且这种接头具有较大的残余应力。3、钎焊连接:钎焊是最常用的连接陶瓷与金属的方法之一,它是以熔点比母材低的材料做钎料,加热到略高于钎料熔点的温度,利用熔化的液态钎料润湿被连接材料表面,从而填充接头间隙,通过母材与钎料间元素的互扩散实现连接。包括直接钎焊和间接钎焊。4、固相扩散连接:

是将被连接材料置于真空或惰性气氛中,使其在高温和压力作用下局部发生塑性变形,通过原子间的互扩散或化学反应形成反应层,实现可靠连接。按连接方式,可分为直接扩散连接和间接扩散连接。固相扩散连接适用于各种陶瓷与金属的连接,相对于钎焊连接,其具有连接强度高,接头质量稳定、耐腐蚀性能好,可实现大面积连接,且接头不存在低熔点钎料金属或合金,能够获得耐高温接头等优点。5、熔化焊:采用高能束具有加热和冷却速度快的优点,能在陶瓷不熔化的条件下使金属熔化,形成连接。熔化焊连接陶瓷和金属主要包括激光焊和电子束焊接。此法能获得高温下稳定的接头,但是需要对被连接材料进行预热和缓冷,而且陶瓷与金属组配相对困难,连接工艺参数难以控制,设备造价昂贵。6、瞬时液相连接:简称为TLP 连接或液相扩散焊,是在真空条件下,施加较小或不施加压力,当温度达到中间层熔点或中间层与母材元素通过互扩散形成低熔共晶 产物时,在中间层与母材之间形成液相薄膜,通过中间层降熔元素向母材扩散及母材中高熔点元素向液相中溶解,使液相层熔点不断升高,并在等温条件下凝固,最后经过均匀化形成致密接头。瞬时液相连接综合了钎焊和固相扩散焊的优点,已经成功应用在金属间化合物、先进陶瓷、耐热耐蚀超合金、单晶合金等多种先进材料的连接。7、自蔓延高温合成(SHS)连接:是在陶瓷和金属之间预置高温焊料,

浅谈添加剂在氧化铝陶瓷中的应用分析

浅谈添加剂在氧化铝陶瓷中的应用分析 2007-12-03 11:24:04| 分类:个人日记|举报|字号订阅 浅谈添加剂在氧化铝陶瓷中的应用分析 摘要:阐述了添加剂对A12O3陶瓷的性能影响的原理及机制,综述近年来A12O3陶瓷的添加剂应用研究现状。并详细论述了不同添加剂对A12O3晶粒异向生长及其性能的影响,分析了不同条件下A12O3晶粒的显微结构及其异向生长机理。最后对下一步的研究方向进行了展望。 关键词:添加剂氧化铝陶瓷进展 1,引言: 在工业日益发展的今天氧化铝陶瓷具有高硬度、耐高温、耐磨、抗氧化、强度良好等特点,已广泛应用于机械、冶金、化工、医疗等各个领域,是应用最广泛的结构陶瓷. 但因韧性差,强度有待提高,而影响了它的使用寿命和更广泛的应用,,然而由于Al2O3 自身阳离子电荷多, 半径小, 离子键强的特点,导致其晶格能较大, 扩散系数低, 烧结温度高. 一般纯氧化铝陶瓷的烧结温度在1 700 ℃以上, 这样高的烧结温度在工业上较难普遍实现, 而且不利于降低成本; 同时结构上也会存在较多的缺陷, 对材料力学性能不利. 为了促进氧化铝陶瓷致密化, 降低烧结 温度, 一般在原料里引入添加剂,从而添加剂对其性能的改善也日见重要!. 添加剂通过2 种作用方式促进氧化铝陶瓷的烧结: 1 与氧化铝基体形成固溶体,通过增加氧化铝的晶格畸变,使扩散速率变大,从而促进烧结; 2:添加剂本身或者添加剂与氧化铝基体之间形成液相。 氧化铝陶瓷常见种类有:刚玉瓷,高铝瓷,陶瓷刚玉磨料,氧化铝涂层,透明氧化铝陶瓷,多孔陶瓷等等.. .. 氧化铝瓷的常见晶型有a-Al2O3 β-Al2O3 γ-Al2O3等添加剂的引入可使其晶型转变从而提高其化学物理性能。 本文将从添加剂使氧化铝陶瓷晶型转变和烧结等方面的改变,进行阐述和分析。

介绍陶瓷材料能与金属快速连接的方法

介绍陶瓷材料能与金属快速连接的方法 介绍这种方法的目的是:为克服锂离子电池固体电解质与电极材料之间接触电阻较大的可参考的加工方法之一,当然并不是说就是推荐采纳这一方案。 采用健合工艺,来解决离子导电材料ZrO2与金属铝的快速连接问题。阳极健合工艺是作为陶瓷/金属在静电场中固相扩散连接的一种特殊方法,具有低温、快速和简便的工艺特点,适用于微型仪表、传感器、燃料电池及其它微电子机械系统。功能陶瓷与金属的快速连接,对于性能相异的材料组合及微电子器件的制备有着重要的意义。 ZrO2是氧离子型离子导电陶瓷,优点是具有耐高温和导电率高等优点,是燃料电池和化学传感器的理想材料。但是缺点是容易在高温下由单斜晶形转变为四方晶体,因此而产生裂纹。 一般通过在原料中加入与Zr4+有相似半径元素的氧化物,形成置换固溶体以避免开裂。因为ZrO2具有耐高温化学稳定性,经过高温真空烧结成的ZrO2材料表面致密度大,不利于电场条件下扩散条件的连接,这里的加工方法有利于研究了陶瓷/金属的结合原理及连接工艺。 方法: 使用Y2O3稳定的ZrO2。用Y2O3增韧的ZrO2改善了陶瓷原有的韧性差和抗热震性能差的缺点。这时使用的ZrO2材料采用真空烧结法制备,热膨胀系数为5.1×10-6/K。 配方组成:(重量比) ZrO2 90%,Y2O3 3-5%,MgO 3-5%

表面活化采用真空磁控濺射薄膜工艺,然后把ZrO2表面抛光后采用JGP560V型高真空磁控溅射机溅镀SiO2薄膜。溅射用靶材为石英玻璃,磁场频率为13.56Hz,Ar分压3×10-5Pa,工作真空度6×10-6Pa,健合时间为10min。让ZrO2表面形成1.5~2μm厚度的SiO2薄膜。表面粗糙度Re=0.1μm。 工作方法: 把材料切成20mm×20mm的方形,连接表面采用金刚砂进行研磨和机械抛光,表面粗糙度Re≤0.1μm。焊接之前用丙酮清洗。所用铝箔材料为:厚度0.02mm,纯度为99.997%的产品。将陶瓷ZrO2与金属铝片的研磨面相对迭放,并且夹持在专用的焊接加热炉的平台,金属铝接正极。 连接工艺参数为:健合温度450~600℃,电场电压100~300V,夹持压力0.5MPa,健合时间5~15min。连接完成后工件随炉冷却,降温速度4℃/min。 工艺参数对连接过程的影响 ZrO2具有十分优势的离子导电性。在健合温度500℃,电场电压200V的静电场建立数秒钟内,工件界面两端的电流密度达到较大值(高于7ma),然后缓慢下降,几分钟之后达到一定值(约1~3ma),电场电压和健合温度的增大都使极化电流Ip值显著提高,表明连接区域的离子密度受温度的场强的影响明显。

相关主题
文本预览
相关文档 最新文档