当前位置:文档之家› 碳纳米管的分散及表面改性

碳纳米管的分散及表面改性

碳纳米管的分散及表面改性
碳纳米管的分散及表面改性

碳纳米管聚合物复合材料

碳纳米管/聚合物复合材料的制备及应用现状 *** (***大学,材料科学与工程学院,安徽,***) 摘要:本文综述了三类碳纳米管—聚合物复合材料的制备方法,碳纳米管/复合材料的力学、光、电化学等性质,以及当前研究的焦点和存在的问题,侧重讨论碳纳米管与聚合物相互作用的机理,并展望两类复合材料的应用前景。 关键词:碳纳米管聚合物复合材料 Carbon Nanotube/Polymer Composites and Applications *** (School of Materials Science and Engineering,*** , ***,Anhui,China) Abstract: A review on the fabrication and the properties of three types of carbon nanotube-polymer composites,such as the mechanical properties,nonlinear optical properties and conductibility is given in this paper. The study focus,as well as the defects about the composites have been mentioned. The interaction mechanism of carbon nanotubes-polymers is discussed and the application prospect of two types of composites is envisaged. Key words: carbon nanotubes;polymers;composites 复合材料,根据国际标准化组织所下的定义,由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料,但复合材料的性质却不是各个组分性能的简单加和,而是在保持各个组分材料的某些特点的基础上,具有组分间协同作用所产生的综合性能纳米级复合材料是指两种或两种以上的固相组成,其中至少有一相物质在一维方向处于纳米级范围,即接近分子水平的微粒。因纳米复合材料分散相尺寸介于宏观与微观之间,将给材料的物理化学性质带来特殊的变化。碳纳米管复合材料是纳米复合材料的一种,目前研究的CNTs复合材料主要有:金属或陶瓷基CNTs复合材料、金属或金属氧化物填充CNTs复合材料、储氢CNTs复合材料、聚合物基CNTs复合材料等f301。CNTs因其具有超强的力学性能、高的导电性和导热性、大的比表面积和优异的吸附性能以及显著的

碳纳米管的应用领域—陶瓷

引言 纳米材料是纳米技术的基础,而碳纳米管又可称为纳米材料之王。碳纳米材料在纳米材料技术开发中举足轻重,它将影响到国民经济的各个领域。碳纳米管的发现是碳团簇领域的又一重大科研成果。在1991年日本NEC公司基础研究实验室的电子显微镜专家饭岛(Iijima)在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon nanotube”,即碳纳米管,又名巴基管。由于碳纳米管具有独特的金属或半导体导电特性、非常好的力学性能、极高的机械强度、吸附能力、场致电子发射性能和宽带电磁波吸收特性等,碳纳米管被发现之后立即受到物理、化学和材料科学界以及高新技术产业部门的极大重视。碳纳米管被认为是一种性能优异的新型功能材料和结构材料,在信息技术、生命科学、环境科学、自动化技术、航空航天技术及能源技术等方面具有广阔的 应用前景。可以预见,碳纳米管将在诸多领域形成新的产业,产生重大的经济效益和社会效益。 原子形成的石墨烯片卷成的无缝、中空的管体。碳纳米管因其独特的结构而具有许多独特的性能,除了在半导体器件、储氢、传感器、吸附材料、电池电极、催化剂载体等领域具有非常广阔和诱人的应用前景外,碳纳米管在制备结构、功能以及结构/功能一体化复合材料方面也将大有作为。CNTs陶瓷复合材料的研究才刚起步, 目前仍处于尝试阶段。虽然CNTs的增强和功能(导电和导热) 效果已有初步体现,但效果并不理想,相对于微米级增强相的优势还不明显,离理论预测的效果还有很大差距,还有许多工作要做。

1、CNTs陶瓷复合材料着重的研究工作: 1.1 CNTs在基体中的均匀分散技术 只有CNTs均匀地分散到基体中去,才能最大程度地发挥CNTs的增强作用以及功能特性。可以说,均匀分散是制备高性能CNTs陶瓷复合材料的前提。CNTs直径小且纵横比大,表面积大且易团聚,这一方面导致均匀分散的难度非常大,另一方面也导致制备高体积含量CNTs陶瓷复合材料的难度也非常大, 而足够的 CNTs体积分数对于增强效果和功能特性是很重要的。球磨混合、超声混合、使用表面活性剂、原位合成是目前报道的提高分散均匀性的方法。其中,原位合成可以制备出分散均匀且体积含量高的CNTs陶瓷复合材料,值得深入研究; 1.2 CNTs陶瓷复合材料的致密化技术。 足够的致密度是获得高力学性能CNTs陶瓷复合材料的前提,目前报道的致密化技术大都是高温高压烧结技术,它不仅会破坏CNTs的结构,减少CNTs的数量,而且当CNTs体积含量较高,分散均匀性较差时,高温高压烧结技术很难获得高致密度,从而严重削弱CNTs的增强效果和功能特性。虽然已有利用SPS技术制备出高致密度CNTs陶瓷复合材料的报道,但开发低温无压致密化技术的需求依然迫切; 1.3 CNTs基体界面结构设计与控制。 CNTs是一种纳米尺度的增强相,具有独特的表面特性和非常大的比表面积,这就决定了CNTs与基体的接触面积很大,界面结构也与众不同。因此,界面结构对CNTs陶瓷复合材料性能有着非常大的影响,当CNTs体积含量较高时,这种影响程度就更大了。从这个意义上说,从原子尺度上研究CNTs与基体之间的界面结构及其对复合材料性能的影响,以及通过CNTs表面处理等手段进行界面结构设计与控制将是今后工作的重点; 1.4 CNTs陶瓷复合材料微观结构研究。 从目前研究情况看,往往只单纯考虑CNTs含量与复合材料性能的关系,而没有从CNTs和基体相互协同的角度考虑问题,忽略了基体结构以及CNTs结构对性能的影响,从而引起一些错误结论。今后应注意研究CNTs 结构在制备过程中的变化以及由于CNTs引入而引起的基体结构的变化;

碳纳米管作为一维纳米材料

碳纳米管作为一维纳米材料,重量轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能……碳纳米管具有典型的层状中空结构特征,构成碳纳米管的层片之间存在一定的夹角碳纳米管的管身是准圆管结构,并且大多数由五边形截面所组成。管身由六边形碳环微结构单元组成, 端帽部分由含五边形的碳环组成的多边形结构,或者称为多边锥形多壁结构。是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料 由于碳纳米管中碳原子采取SP2杂化,相比SP3杂化,SP2杂化中S轨道成分比较大,使碳纳米管具有高模量、高强度。 碳纳米管具有良好的力学性能,CNTs抗拉强度达到50~200GPa,是钢的100倍,密度却只有钢的1/6,至少比常规石墨纤维高一个数量级;它的弹性模量可达1TPa,与金刚石的弹性模量相当,约为钢的5倍。对于具有理想结构的单层壁的碳纳米管,其抗拉强度约800GPa。碳纳米管的结构虽然与高分子材料的结构相似,但其结构却比高分子材料稳定得多。碳纳米管是目前可制备出的具有最高比强度的材料。若将以其他工程材料为基体与碳纳米管制成复合材料, 可使复合材料表现出良好的强度、弹性、抗疲劳性及各向同性,给复合材料的性能带来极大的改善。 碳纳米管上碳原子的P电子形成大范围的离域π键,由于共轭效应显著,碳纳米管具有一些特殊的电学性质。 碳纳米管具有良好的导电性能,由于碳纳米管的结构与石墨的片层结构相同,所以具有很好的电学性能。理论预测其导电性能取决于其管径和管壁的螺旋角。当CNTs的管径大于6nm时,导电性能下降;当管径小于6nm时,CNTs可以被看成具有良好导电性能的一维量子导线。有报道说Huang通过计算认为直径为0.7nm的碳纳米管具有超导性,尽管其超导转变温度只有1.5×10-4K,但是预示着碳纳米管在超导领域的应用前景。 碳纳米管具有良好的传热性能,CNTs具有非常大的长径比,因而其沿着长度方向的热交换性能很高,相对的其垂直方向的热交换性能较低,通过合适的取向,碳纳米管可以合成高各向异性的热传导材料。另外,碳纳米管有着较高的热导率,只要在复合材料中掺杂微量的碳纳米管,该复合材料的热导率将会可能得到很大的改善 ( 氢气被很多人视为未来的清洁能源。但是氢气本身密度低,压缩成液体储存又十分不方便。碳纳米管自身重量轻,具有中空的结构,可以作为储存氢气的优良容器,储存的氢气密度甚至比液态或固态氢气的密度还高。适当加热,氢气就可以慢慢释放出来。研究人员正在试图用碳纳米管制作轻便的可携带式的储氢容器。 在碳纳米管的内部可以填充金属、氧化物等物质,这样碳纳米管可以作为模具,首先用金属等物质灌满碳纳米管,再把碳层腐蚀掉,就可以制备出最细的纳米尺度的导线,或者全新的一维材料,在未来的分子电子学器件或纳米电子学器件中得到应用。有些碳纳米管本身还可以作为纳米尺度的导线。这样利用碳纳米管或者相关技术制备的微型导线可以置于硅芯片上,用来生产更加复杂的电路。 利用碳纳米管的性质可以制作出很多性能优异的复合材料。例如用碳纳米管材料增强的塑料力学性能优良、导电性好、耐腐蚀、屏蔽无线电波。

碳纳米管增强塑料仍面临技术挑战

51 中国粉体工业 2010年第1期 行业资讯 纳米复合材料工程项目落户化隆加合 工业园区 日前,青海中圣新材料有限公司纳米复合材料工程项目落户化隆回族自治县加合工业园区,这个项目总投资1.98亿元,由山西康宝集团投资,中国科学院提供专利技术,建设集高纯复合材料产品——新型纳米复合材料,公司用等离子体法生产纳米复合材料产品将填补国内行业空白。 近年来,化隆县根据省委提出“四区、两带、一线”的发展战略和海东“园区引领、产业集中、培育主体、县域有别、提效增量”的总体要求,提出规划建设加合工业园区的设想,主要利用化隆县丰富的电力、矿产等资源优势,集中发展新型硅材料工业。纳米复合材料工程项目分三期建设,其中一期整体项目建成后可实现年产优质新型复合材料6万吨、太阳能单晶硅等切割粉体2万吨,航天、航海军工等科技领域使用的纳米复合材料1000吨,可实现综合产值10亿多元,安置就业岗位600多个,一年可创利税超亿元。(作者:吕锦武 李玉峰) 聚丙烯纳米助剂性能优异 南京淳达科技发展有限公司研制开发的CD-YZPP-22聚丙烯纳米多功能复合助剂日前通过南京市科技局组织的科技成果鉴定。 新产品采用的纳米全硫化粉末丁苯橡胶及其它改性材料优化配方设计,使改性后的聚丙烯专用料冲击强度、低温冲击强度、负荷变形温度、洛氏硬度、断裂应变率、拉伸屈服应力等性能大幅度提高,黄色指数明显下降。科研人员攻克了纳米橡胶弹性粒子不易分散的难题,使产品实现了纳米效应。该产品将多种具有改性功能和性能补充功能的材料同时添加混配,使单一的母料助剂同时具有多种改性功能。各种材料混配及添加至树脂中相容性好。 纳米改性塑料应用范围广 从上个世纪90年代初开始,就有运用将尼龙12与碳纳米管做成内部阻隔层,应用在汽车燃油管组件例如快速连接器和过滤器中。 Hyperion Catalysis 现在则瞄准于将纳米管引入到别的树脂材料中应用到汽车的燃料系统中,比如改性尼龙和一些含氟聚合物。这种新型含氟聚合物/纳米管复合材料可以用来制造车用燃油连接器的O 形圈。 在电子工业上,聚碳酸酯和聚醚酰亚胺(GE 的Ultem)材质的计算机硬件,经由纳米管的增强,可以有更好的传导性,表面更加光滑。 在过去的三年中,欧洲一家非常大的汽车OEM 公司添加碳纳米管到GE 的Noryl GTX 尼龙/PPO 合金中,铸模成型外部挡泥板。这种导电纳米复合物材料可以用静电法上漆。 密歇根大学(MSU)复合物材料与结构中心新近开发出了一种表面处理过的石墨纳米板。石墨的模量是粘土的好几倍,并且具有更佳的电学和热学方面的性能,它与一个环氧树基接合以后,与一般碳光纤和纳米碳黑相比,会有更佳的力学性能以及更高的电导率。MSU 预见到它在回声探测仪(ESD)的保护与电磁干扰(EMI)屏蔽方面具有很大的发展潜能。这种塑料纳米石墨复合物被预计将会卖到每磅五美金,比纳米管或蒸汽生成的碳光纤要来的便宜得多。 碳纳米管能改变的远不只是传导率。美国国家标准与技术研究院(NIST)研究发现碳纳米管添加到PP 里面,不只改善材料的强度及性能,而且可以改变熔融聚合物的流动状况,切实去除模口膨胀。 碳纳米管增强塑料仍面临技术挑战 以色列魏茨曼(Weizmann )科学研究所的研究人员发现,将碳纳米管添加到塑料中,可以大大加强塑料的强度。这些研究人员 目前正在研究如何将碳纳米管注入塑料或其他材料中,从而帮助提高复合材料的性能。 塑料(聚甲基丙烯酸甲酯)常常用来替代玻璃,是一种不易碎的材料,比如,树脂玻璃和透明合成树脂。研究人员用单壁和多壁碳纳米管增强聚甲基丙烯酸甲酯纤维后发现,尽管这两种类型都可有效增强塑料的强度,但多壁纳米管的韧性更强,相当于几个单壁纳米管嵌套在一起。 纳米结构的增强复合材料是未来研究的方向,目前已经逐渐开始取代微型分子复合材料。碳纳米管是一种自然的选择,因为它们异常坚韧,尤其是多壁碳纳米管可嵌套多达50个碳纳米管。虽然碳纳米管在显著提高材料强度上取得了不菲的成就,但目前在利用上还存在技术瓶颈。因为很难避免类似纳米集群的问题---一些碳纳米管随机聚合,而不是平均分布。这样一来,甚至可能降低材料的强度。 项目负责人DanielWagner 解释说:“尽管我们已经投入了大量精力,但是研究结果仍然存在矛盾之处---碳纳米管 虽能作为增强剂,但怎样使碳纳米管(多壁和单壁)有序的分布的问题并没有解决。这已经成为目前发展纳米复合材料的主要挑战。静电纺丝技术是目前最为简单有效的制备有序纳米纤维的手段。”静电纺丝技术通过静电力作为牵引力来制备超细纤维。在静电纺丝工艺过程中,将聚合物熔体或溶液加上高压静电,最终形成无纺布状的纳米纤维。 Wagner 和他的同事SuiXiaomeng 用静电分别提取了单纯

碳纳米管的表面改性 [兼容模式]

碳纳米管的表面改性

1、碳纳米管的简单介绍 碳纳米管是由碳六边形的石墨烯片同轴排列、两端被像富勒烯结构的端帽封口而形成一个微小的管,直径从几个埃到十几个纳米,长度可以到达几个厘米。碳纳米管有单壁碳纳米管和多壁碳纳米管两种主要类型 单壁碳纳米管多壁碳纳米管

CNT的优良性能 ?独特的分子结构:具有显著的电子特性,是构建下一代电子器件和网络颇具吸引力的材料 ?非凡的抗张强度:可用于制造CNT加强纤维和用作聚合物添加剂 ?在分析化学领域的应用包括制作各种特定用途的生物/化学传感器及纳米探针(例如,用作原子力显微镜探针尖,在体检测的生物探针等) 高的比表面积和极强的吸附性碳纳米管作为储?高的比表面积和极强的吸附性:碳纳米管作为储氢、储能材料

CNT 的局限性 ?在电子线路的微型化方面,因为CNT 是极端疏水的,并形成不溶的集合体,很难组装成有用的结构 ?由于CNT 的化学惰性,连接纳米簇之前要首先对其表面进行活化和分散。 ?制备、处理或操作这种纳米工程组分或共聚物时 制备、处理或操作这种纳米程组分或共聚物时,需要先分散和溶解CNT,但CNT 在一般有机溶剂和水中是不溶的。? CNT 的许多潜在应用都需要了解它的光激发态的性能,但CNT 在溶剂中的不溶性限制了对其的定量研究。

2、碳纳米管的表面改性 ?共价功能化:一般采用的手段是用浓酸氧化开口,截成短管,使末端或(和)侧壁的缺陷位 点带上羧基,然后再进行修饰 1)端口功能化 Chen等[1]利用氧化开口的SWNT与SOCl2反应,再与十八胺反应,将长的脂肪链连接到CNT上,实现了CNT在有机溶剂中的溶解。溶解的CNT与卡宾试剂进行溶液反应,实现了管壁卡宾功能化,开辟了碳管管壁的液相化学 Liu等[2]同样是利用氧化开口的SWNT,通过酰化胺化反应将NH2(CH2)11SH接到碳管的端口,进一步实现了金纳米颗粒的固定; 进步实现了金纳米颗粒的固定 Nguyen等[ 3 ]构置垂直排列的CNT阵列纳米电极平台,采用在CNT间隙填充旋压玻璃( spin on glass, SOG)的方法,进行端口选择性氧化、继而采用碳化二亚胺辅助活(spin on glass SOG)进行端口选择性氧化继而采用碳化二亚胺辅助活 化法,实现了CNT阵列的端口核酸功能化

多壁碳纳米管的表面修饰及其在溶剂中的分散性

第37卷第6期2009年6月化 工 新 型 材 料N EW CH EMICAL MA TERIAL S Vol 137No 16 ?61? 基金项目:江西省自然科学基金(24064001)和江西省教育厅科技重点项目(20072126)资助作者简介:周小平(1983-),男,在读硕士研究生,主要研究方向:碳纳米管及其复合材料。联系人:侯豪情。 多壁碳纳米管的表面修饰及其在溶剂中的分散性 周小平 余腊妹 郭乔辉 周政平 侯豪情3 (江西师范大学化学化工学院,南昌330022) 摘 要 利用高温催化裂解生长多壁碳纳米管,用硝酸氧化使其表面羧酸化,并经酰氯化后与十二烷基胺反应形成表面酰胺化,通过红外、核磁、微量热天平等方法进行表征。结果表明:硝酸氧化后的碳纳米管在水等强极性溶剂中有良好的分散性;酰胺化后,十二烷基脂肪链使碳纳米管表面极性大为降低,因此在氯仿等弱极性溶剂中有良好的分散性。 关键词 碳纳米管,表面修饰,分散性,十二烷基酰胺 Surface modif ication of multiw alled carbon nanotubes and their dispersion in solvents Zhou Xiaoping Yu Lamei Guo Qiaohui Zhou Zhengping Hou Haoqing (Instit ute of Chemist ry and Chemical Engineering ,Jiangxi Normal University ,Nanchang 330022)Abstract Multiwalled carbon nanotubes ,formed by catalysis pyrolysis ,were dealt with concentrated nitric acid to produce the surface 2carboxylated carbon nanotubes.The later was treated with thionyl chloride and dodecyl amine to form the surface 2amidated carbon nanotubes.Characterized using IR 、NMR 、T GA.The carbon nanotubes ,treated with nitric acid had a good dispersion in strong 2polar solvent i.e.water due to the strong polarity on their surface ;The surface 2amid 2ated ,had a low polarity ,which made them a good dispersion in low 2polar solvent i.e.chloroform. K ey w ords carbon nanotube ,surface modification ,dispersion ,dodecyl amide 碳纳米管(CN Ts )自发现以来因其优良的力学、电学和热学性能受到广泛关注[1]。随着碳纳米管的合成技术和纯化研究的不断完善[2],人们的研究兴趣主要集中在碳纳米管的应用领域。但碳纳米管是既不溶于水也不溶于有机溶剂,而悬浮液又易团聚的物质,这种难于分散的性质限制了其在许多领域的应用。对碳纳米管进行表面化学修饰,改善其表面性能是解决碳纳米管分散性和溶解性的有效途径[3]。化学修饰法是使碳纳米管与改性剂[4]之间进行化学反应,改变碳纳米管的表面结构和状态,达到改性目的。常用的是强酸或混酸使碳纳米管表面的缺陷氧化成羧基,然后利用醇类或胺类化合物与之作用形成酯或酰胺[5],而改善碳纳米管的溶解性和分散性。 Liu Jie 等[6]用浓硫酸和浓硝酸的混合物氧化碳纳米管, 将之裁剪成端头上带羧基的150~180nm 的“短管”。在此基础上,Chen Jian 等[7]通过羧基和氨基的反应,在碳纳米管的端头连接上了十八胺和42十四烷基苯胺。这些经修饰的碳纳米管可溶于氯仿、二氯甲烷及芳香族溶剂等。此法在引入羧基的同时,碳纳米管的尺寸被截断得较短,降低了其长径比,也破坏了碳纳米管的部分管壁结构。Shi Zujin 等[8]成功制备出了碳纳米管的水溶胶并测定了它的三阶光学非线性,证明碳纳米管在光信息过程中有潜在应用价值。这些工作为研究碳纳米管的表面修饰和化学改性开辟了新途径。 本实验以甲苯为碳源,二茂铁为催化剂制备碳纳米管,用浓HNO 3将其羧酸化,并将羧基酰氯化后与十二胺反应,形成脂肪族烷基酰胺修饰的碳纳米管。这样修饰的碳纳米管在三氯甲烷等有机溶剂中具有良好的溶解性和分散性,为制备高性能的聚合物/碳纳米管复合材料,如电纺聚酰亚胺/碳纳米管复合纳米纤维,奠定了基础。 1 实验部分 111 仪器及试剂 红外光谱分析仪(FTIR ):WQ F 2410型(Bruker );热失重 分析仪(T GA ):XM T 21型(上海祖发实业有限公司);旋转蒸发仪:RE 252AA (上海亚荣生化仪器厂);核磁共振仪:AV400,400M Hz (Bruker 公司);高温反应炉(上海电炉厂),配有110cm 长,45cm 内径的钢质管式反应器。 碳纳米管(CN Ts ):自制;二茂铁(AR ),广东省汕头市西陇化工厂;甲苯(AR ),天津市福晨化学试剂厂;十二胺(98%,AR ),阿法埃莎化学有限公司;氯化亚砜(SOCl 2,AR ),北京化学试剂厂;浓硝酸,南昌市鑫光化学试剂厂;N ,N 2二甲基甲酰胺(DMF ,AR ),天津市福晨化学试剂厂;H 2(99199%),华东特种气体有限公司;氩气(99199%),华东特种气体有限公司。 112 碳纳米管的合成及表面修饰 11211 碳纳米管的合成

碳纳米管的改性

1. 碳纳米管进行酸处理后,碳纳米管表面产生大量的官能团;再将其在sn和Pd溶液中进行敏化活化 处理,使碳纳米管表面形成密集的活化点。结果表明:通过化学沉积方法,金属镍可在活化点沉积并形成包覆层;碳纳米管的改性,高密度的活化点及较低的沉积速率是得到连续包覆层的关键;热处理使得包覆层更加光滑致密。 实验步骤为:1)将碳纳米管在HNO和Hz()按体积比]:2配制的溶液中搅拌、超声波分散,加热煮沸90min,清洗,再在HCI和Ho ()按体积比4:3配制的溶液中进行同样的处理后,即得到纯化的碳纳米管;2)将纯化 过的碳纳米管在10 g / i o SnCl: ? 2Ho O十40 g /1,Hcl溶液中进行敏化处理40 min ; 3)用敏化后的碳纳米管在0,5 g /i,PdC[z+0. 25 mI。HC溶液中活化处理们min。每一步骤后均用去离子水充分洗涤。 2. 碳纳米管因其优异的力学、物理性能, 是一种理想的复合材料增强体,但其与基体金属的润湿性较差. 通 过对镀钴前碳纳米管的微波、氧化、敏化和活化处理, 改善了碳纳米管的表面性能并在碳纳米管表面增加了活化点, 成功地在碳纳米管表面镀上一层较为连续的金属钴,以改善碳纳米管与金属基体的润湿性,增强与金属基体的界面结合力.并用XRD TEM寸镀钻后的碳纳米管进行了表征. 3. 采用微波对碳纳米管进行热处理,消除非晶碳改善碳纳米管结晶度。然后将微波处理过的碳纳米管分别 用4mol/L的NaOl溶液、浓HCI和浓HNO<,3进一步提纯和氧化处理,除去其中的Si、Fe、Al等杂质,进一步 提高碳纳米管的纯度。浓HNO<,3处理碳纳米管时在碳纳米管表面可接枝羰基(>C=O)、羟基(—OH)羧基(一COOH等有机官能团,改善其表面性能,这些有机官能团有利于对碳纳米管进行敏化和活化处理。 4. 通过硝酸和盐酸的纯化,得到了纯度较高的碳纳米管,并使碳纳米管表面产生大量的官能团 5. 通过浓硝酸回流处理以及聚乙烯醇氧化的方法改善碳纳米管的分散性,碳纳米管的顶端被打开,随着时间的增加,弯曲的碳纳米管断裂成较短的碳纳米管,较好的解决了碳纳米管的团聚问题。 5. 首先对碳纳米管的纯化处理进行了研究。采用浓硝酸回流与混合酸(H<,2>SO<,4>/HNO<,3>=5/2)超声处 理相结合的方法对碳纳米管进行纯化处理。由扫描电镜结果可知,碳纳米管表面的非晶碳,催化剂等杂质 都已去除,纯度得到了明显的改善。混酸超声处理使碳纳米管进一步开口,短切,有效地提 高了碳纳米管的芬散性。将纯化处理后的碳纳米管在SnCI<,2>和胶体Pd溶液中进行敏化活化处理 6. 实验中,对碳纳米管、活性炭的纯化处理、氧化处理及敏化、活化处理进行了大量的实验,从而找出了 一种比较理想的预处理方法:即先对碳纳米管进行研磨,接着在NaOl溶液中进行纯化,在浓硝酸溶液、Fenton 试剂中进行氧化,最后采用敏化活化一步法完成化学镀前的预处理。 7. 通过对多壁碳纳米管的改牲研究,寻找提高碳纳米管分散性的途径。采用NaOl对碳纳米管进 行预处理,通过SEM DSC分析表明,该处理过程对去除多壁碳纳米管中杂质和提高其分散性有积极效 果。通过H2S04和HN03勺混酸处理法与HN0馳理法的对比,知前者对碳纳米管的损失要大于后者,且通过对HIR的对比分析,后者对碳纳米管的改性效果好于前者。TG TEM分析表明,聚乙烯醇均匀 包覆在碳纳采管表面,碳纳米管分散幔较酸处理的有所改进。 8. 1.羧基化多壁碳纳米管的制备多壁碳纳米管(MWNT)值径I0nm或40nm)置于1:3混合的HNO3/H2SC溶液 中,60 C下超声3h o倒入大量去离子水中,得到良好分散的黑色溶液。将此溶液用0.22卩m聚碳酸酯微孔滤 膜过滤,用去离子水充分洗涤至滤液pH值为7.0。将滤膜上的碳管真空干燥24h获得羧基化的 多壁碳纳米管(MWNT-COO粉末,产物用傅立叶变换红外光谱(FTIR)检测分析。 9. 利用浓硫酸和浓硝酸组成的混合体系(1:1,v/V) 对全长的碳纳米管进行了表面氧化切割处理,使碳纳米管表面产生一定数量的官能基团,得到具有一定长径比的、两端开口的改性碳纳米管。二、利用改性碳纳米管表面上产生的羟基作为接枝反应点,与丙烯酰氯单体反应,并将所得丙烯酸酯化 的碳纳米管与苯乙烯单体进行原位共聚。实现了碳纳米管在聚苯乙烯中的均匀分散。 10.. 三、同样以碳纳米管表面的羟基为起点,与聚丙烯酰氯发生酯化,将后者共价地接枝到碳纳米管的表面。由于碳纳米管表面上的羟基基团远少于聚丙烯酰氯上的酰氯基,酯化反应后在接枝的聚丙烯酰氯上仍保持大量的酰氯侧基,通过进一步的反应制备了如下碳纳米管与聚合物的复合材料:(1) 将剩余的酰氯基团水解制得了聚丙烯酸接枝的碳纳米管,这种碳纳米管在水中具有很好的分散性能;(2) 将酰氯基团与乙二胺进行酰胺化反应,制得了表面多胺基官能化的碳纳米管,这种碳纳米管能作为环氧树脂的共固化剂来使用; (3) 将酰氯基团与聚乙二醇进行酯化反应,得到了聚乙二醇接枝的碳纳米管,在有机溶剂中具有很好的分散性能;

碳纳米管综述

碳纳米管综述 摘要:本文主要介绍碳纳米管的发现及发展过程,并说明碳纳米管的制备方法及其制备技术。同时也叙述碳纳米管的各种性能与应用。 引言:在1991年日本NEC公司基础研究实验室的电子显微镜专家饭岛在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon nanotube”,即碳纳米管,又名巴基管。 正文: 碳纳米管的制备: 碳纳米管的合成技术主要有:电弧法、激光烧蚀(蒸发)法、催化裂解或催化化学气相沉积法(CCVD,以及在各种合成技术基础上产生的定向控制生长法等。电弧法 利用石墨电极放电获得碳纳米管是各种合成技术中研究得最早的一种。研究者在优化电弧放电法制取碳纳米管方面做了大量的工作。 T. W. Ebbeseo[2]在He保护介质中石墨电弧放电,首次使碳纳米管的合成达到了克量级。为减少相互缠绕的碳纳米管在阴极上的烧结,D.T.Collbert[3]将石墨阴极与水冷铜阴极座连接,大大减少了碳纳米管缺陷。C. Journet[4]等在阳极中填人石墨粉末和铱的混合物,实现了SWNTs的大量制备。研究发现,铁组金属、一些稀土金属和铂族元素或以单个金属或以二金属混合物均能催化SWNTs 合成。 近年来,人们除通过调节电流、电压,改变气压及流速,改变电极组成,改进电极进给方式等优化电弧放电工艺外,还通过改变打弧介质,简化电弧装置。 综上所述,电弧法在制备碳纳米管的过程中通过改变电弧放电条件、催化剂、电极尺寸、进料方式、极间距离以及原料种类等手段而日渐成熟。电弧法得到的碳纳米管形直,壁簿(多壁甚至单壁).但产率偏低,电弧放电过程难以控制,制备成本偏高其工业化规模生产还需探索。 催化裂解法或催化化学气相沉积法(CCVD) 催化裂解法是目前应用较为广泛的一种制备碳纳米管的方法。该方法主要采用过渡金属作催化剂,适于碳纳米管的大规模制备,产物中的碳纳米管含量较高,但碳纳米管的缺陷较多。 催化裂解法制备碳纳米管所需的设备和工艺都比较简单,关键是催化剂的制备和分散。目前用催化裂解法制备碳纳米管的研究主要集中在以下两个方面:大规模制备无序的、非定向的碳纳米管;制备离散分布、定向排列的碳纳米管列阵。一般选用Fe, Co、Ni及其合金作催化剂,粘土、二氧化硅、硅藻土、氧化铝及氧化镁等作载体,乙炔、丙烯及甲烷等作碳源,氢气、氮气、氦气、氩气或氨气作稀释气,在530℃~1130℃范围内,碳氢化合物裂解产生的自由碳离子在催化剂作用下可生成单壁或多壁碳纳米管。1993年Yacaman等人[5]采用此方法,用Fe催化裂解乙炔,在770℃下合成了多壁碳纳米管,后来分别采用乙烯、聚乙烯、丙烯和甲烷等作为碳源,也都取得了成功。为使碳离子均匀分布,科研人员还用等离子加强或微波催化裂解气相沉积法制备碳纳米管。 激光蒸发法

碳纳米管分散综述

碳纳米管的研究 摘要:综述了碳纳米管/聚合物复合材料制备过程中碳纳米管预先分散所使用的方法。为实现碳纳米管在聚合物中的分散,首先要求加入的碳纳米管本身具备足够的分散度。碳纳米管的分散方法主要有:表面化学修饰、分散剂分散、超声分散、机械分散、溶剂分散。 引言:自从1991年日本电镜专家Iijima首先在高分辨透射电子显微镜(HRTEM)下发现碳纳米管以来,碳纳米管优异的各项性能已经激起了众多研究人员对其结构、性能、应用的研究,并已取得了显著进展。纳米材料由于其尺寸处在原子簇和宏观物体交界的过渡区域,具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等特性,展现出许多独特的物理化学性质。20世纪80年代初期纳米材料这一概念形成以后,世界各国都给予了极大关注。它所具有的独特性质,给物理、化学、材料、生物、医药等领域的研究带米新的机遇。近年来,新型纳米材料和纳米技术在涂料工业中获得了大量应用,为提高涂料性能和赋予其特殊功能开辟了一条新途径。作为一种极具发展潜力的新型纳米材料,碳纳米管(CarbonNanotubes,CNTs)具有金属或半导体的导电性、极高的机械强度、储氢能力、吸附能力和较强的微波吸收能力等特性,将其应用于涂料领域,可使传统涂层的性能得到提升并赋予其新的功能。 1、碳纳米管的合成制备 1.1、碳纳米管主要制备法方法有电弧法、热解法和激光刻蚀法。其中电弧法(与Wolfgang-Kratschmer 法制备富勒烯类似)为在惰性气体气氛中,两根石墨电极直流放电,阴极上产生碳纳米管。热解法就是采用过渡金属作催化剂,700-1600K 的条件下,通过碳氢化合物的分解得到碳纳米管。激光刻蚀法采用激光刻蚀高温炉中的石墨靶子,碳纳米管就存在于惰性气体夹带的石墨蒸发产物中。碳纳米管的形成过程游离态的碳原子或者碳原子团,发生重新排布的过程。制备SWNT 时,必须添加一定数量的催化剂,如过渡元素(Ni、Co、Fe 等),或者镧系元素(Ld、Nd、La、Y 等),或者它们的混合物。催化剂在SWNTs 的生长过程中,能够降低弯曲应力,促进碳原子排列整齐并且阻止SWNTs 两端的富勒烯分子的形成。得到的碳纳米管的直径和直径分布主要取决于制备方法、催化剂的种类、生长温度等反应条件。 1.2、碳纳米管的进一步加工--- CNTs 的功能化(以SWNTs 为例): 目的:提高CNT 的溶解度,有助于纯化,并引入新的性能。 方式(与图中对照): ·共价功能化: A:端口功能化B:侧壁功能化 ·非共价功能化: C:表面活化剂功能化D:聚合物功能化E:内腔功能化

碳纳米管的改性

1.碳纳米管进行酸处理后,碳纳米管表面产生大量的官能团;再将其在sn和Pd溶液中进行敏化活化 处理,使碳纳米管表面形成密集的活化点。结果表明:通过化学沉积方法,金属镍可在活化点沉积并形成包覆层; 碳纳米管的改性,高密度的活化点及较低的沉积速率是得到连续包覆层的关键;热处理使得包覆层更加光滑致密。 实验步骤为:1)将碳纳米管在HNO。和Hz()按体积比]:2配制的溶液中搅拌、超声波分散,加热煮沸90min,清洗,再在HCI和H。()按体积比4:3配制的溶液中进行同样的处理后,即得到纯化的碳纳米管;2)将纯化过的碳纳米管在10 g/i。SnCl:·2H。O十40 g/I,Hcl溶液中进行敏化处理40 min;3)用敏化后的碳纳米管在0,5 g/i,PdC[z+0.25 mI。HCI溶液中活化处理们min。每一步骤后均用去离子水充分洗涤。 2.碳纳米管因其优异的力学、物理性能,是一种理想的复合材料增强体,但其与基体金属的润湿性较差.通过对镀钴前碳纳米管的微波、氧化、敏化和活化处理,改善了碳纳米管的表面性能并在碳纳米管表面增加了活化点,成功地在碳纳米管表面镀上一层较为连续的金属钴,以改善碳纳米管与金属基体的润湿性,增强与 金属基体的界面结合力.并用XRD、TEM对镀钴后的碳纳米管进行了表征. 3. 采用微波对碳纳米管进行热处理,消除非晶碳改善碳纳米管结晶度。然后将微波处理过的碳纳米管分别用4mol/L的NaOH溶液、浓HCl和浓HNO<,3>进一步提纯和氧化处理,除去其中的Si、Fe、Al等杂质,进一步提高碳纳米管的纯度。浓HNO<,3>处理碳纳米管时在碳纳米管表面可接枝羰基(>C=O)、羟基(—OH)、羧基(—COOH)等有机官能团,改善其表面性能,这些有机官能团有利于对碳纳米管进行敏化和活化处理。 4. 通过硝酸和盐酸的纯化,得到了纯度较高的碳纳米管,并使碳纳米管表面产生大量的官能团 5. 通过浓硝酸回流处理以及聚乙烯醇氧化的方法改善碳纳米管的分散性,碳纳米管的顶端被打开,随着时间的增加,弯曲的碳纳米管断裂成较短的碳纳米管,较好的解决了碳纳米管的团聚问题。 5. 首先对碳纳米管的纯化处理进行了研究。采用浓硝酸回流与混合酸(H<,2>SO<,4>/HNO<,3>=5/2)超声处理相结合的方法对碳纳米管进行纯化处理。由扫描电镜结果可知,碳纳米管表面的非晶碳,催化剂等杂质都已去除,纯度得到了明显的改善。混酸超声处理使碳纳米管进一步开口,短切,有效地提 高了碳纳米管的芬散性。将纯化处理后的碳纳米管在SnCl<,2>和胶体Pd溶液中进行敏化活化处理 6. 实验中,对碳纳米管、活性炭的纯化处理、氧化处理及敏化、活化处理进行了大量的实验,从而找出了一种比较理想的预处理方法:即先对碳纳米管进行研磨,接着在NaOH溶液中进行纯化,在浓硝酸溶液、Fenton 试剂中进行氧化,最后采用敏化活化一步法完成化学镀前的预处理。 7.通过对多壁碳纳米管的改牲研究,寻找提高碳纳米管分散性的途径。采用NaOH对碳纳米管进 行预处理,通过SEM、DSC分析表明,该处理过程对去除多壁碳纳米管中杂质和提高其分散性有积极效 果。通过H2S04和HN03的混酸处理法与HN03处理法的对比,知前者对碳纳米管的损失要大于后者,且通过对HlR的对比分析,后者对碳纳米管的改性效果好于前者。TG、TEM分析表明,聚乙烯醇均匀 包覆在碳纳采管表面,碳纳米管分散幔较酸处理的有所改进。 8. 1.羧基化多壁碳纳米管的制备多壁碳纳米管(MWNT) (直径l0nm或40nm)置于1:3混合的HNO3/H2SO4溶液中,60℃下超声3h。倒入大量去离子水中,得到良好分散的黑色溶液。将此溶液用0.22μm聚碳酸酯微孔滤膜过滤,用去离子水充分洗涤至滤液pH值为7.0。将滤膜上的碳管真空干燥24h获得羧基化的 多壁碳纳米管(MWNT-COOH)粉末,产物用傅立叶变换红外光谱(FTIR)检测分析。 9. 利用浓硫酸和浓硝酸组成的混合体系(1:1,v/V)对全长的碳纳米管进行了表面氧化切割处理,使碳纳米管表面产生一定数量的官能基团,得到具有一定长径比的、两端开口的改性碳纳米管。二、利用改性碳纳米管表面上产生的羟基作为接枝反应点,与丙烯酰氯单体反应,并将所得丙烯酸酯化 的碳纳米管与苯乙烯单体进行原位共聚。实现了碳纳米管在聚苯乙烯中的均匀分散。 10.. 三、同样以碳纳米管表面的羟基为起点,与聚丙烯酰氯发生酯化,将后者共价地接枝到碳纳米管的表面。由于碳纳米管表面上的羟基基团远少于聚丙烯酰氯上的酰氯基,酯化反应后在接枝的聚丙烯酰氯上仍保持大量的酰氯侧基,通过进一步的反应制备了如下碳纳米管与聚合物的复合材料:(1)将剩余的酰氯基团水解制得了聚丙烯酸接枝的碳纳米管,这种碳纳米管在水中具有很好的分散性能;(2)将酰氯基团与乙二胺

添加碳纳米管聚酯母粒的制备及性能

第26卷第3期2005年6月纺 织 学 报Journal of Textile Research Vol.26,No.3Jun.,2005 添加碳纳米管聚酯母粒的制备及性能 钱建华,凌荣根,黄志超,程贞娟 (浙江理工大学材料与纺织学院,浙江杭州 310033) 摘 要 采用扫描电镜及X 射线衍射仪对碳纳米管进行了表征。经表面改性后,与聚酯粉体共混造粒、挤出。应用近代测试方法对母粒的结构和性能进行了测试分析,给出了碳纳米管的含量与导电性能及可纺性之间的关系。关键词 碳纳米管;聚酯;导电性;可纺性 中图分类号:TQ 340.42 文献标识码:A 文章编号:0253-9721(2005)03-0021-03 Preparation and property of carbon -nanotubes P PET QI AN Jian -hua,LING Rong -gen,HUANG Zh-i chao,CHENG Zhen -juan (Colle ge o f Material an d Textile ,Zhejian g Unive rsity o f Science an d T echnology ,H angzhou ,Zhe j iang 310033,China )Abstract T he microstructure of carbon -nanotubes was charaterized by SEM and X diffration.After the surface modi fication,CNTs was mi xed with polyester powder and then been extruded and https://www.doczj.com/doc/3d10016546.html,Ts P polyester property and the structure were tested with DSC,conductibility and viscometer.The relation between CNTs content in PE T and conductibility,spinnability was g i ven.Key words carbon -nanotubes;polyester;conductibility;spinnabili ty 基金项目:浙江省教育厅资助项目(0301079-F) 作者简介:钱建华(1973-),男,讲师,硕士。主要从事化纤新材料的研究与开发。 碳纳米管(CNTs)是1991年日本NEC 公司的Iijima 教授用电弧法制备C60时在阴极沉淀物中发现的,这种中空管状物的直径只有017~30nm,被称作碳纳米管。它具有优良的电学和力学性能,其导电性能优于铜,它的模量是钢的100倍[1] 。同时,碳纳米管还具有微波吸收性能,在工程材料的纳米增强相、半导体材料、超导电性、微波吸收性能等方面得到广泛的应用研究 [2] 。碳纳米管作为超导电性材 料,具有优异的导电性,能显著地提高聚合物的抗静电能力并强化抗静电载体周围的电场。有实验表明,将少量的碳纳米管加入到其它材料中,可明显地提高导电性。在高分子材料中加入约3%的碳纳米管,可使其导电性能提高3~5个数量级。随着碳纳米管制备技术的成熟和大批量生产(成本逐步下降),其应用研究引起了人们的兴趣。因碳纳米管有一维尺寸小于100nm,极易发生团聚,故碳纳米管的分散技术和含碳纳米管聚合物的结构和性能研究是碳纳米管应用基础研究的一个重要领域。 聚酯纤维具有弹性好、耐磨损、不怕虫蛀、挺括等优点,但吸湿性差及静电现象都严重地影响了聚酯纤维的穿着舒适性。本文采用与CNTs 共混的方 法研制成导电性及可纺性优良的聚酯母粒。 1 实验部分 1.1 原 料 C NTs:清华大学化工系生产,直径30~40nm, 长度2~3L m;PET:上海金山石化生产,G 为0167dL P g;钛酸丁酯偶联剂:化学纯,上海试剂三厂生产;硬脂酸钙、抗氧剂1010、PE 蜡:市售;C T -828偶联剂:南京曙光化工总厂生产;无水乙醇、苯酚、四氯乙烷等其它试剂均为实验室常用。 112 主要测试及实验仪器 JSM -5610扫描电镜;Thormo ARL X .TRA 多晶粉末衍射仪,铜靶衍射波波长为01155nm;Perkin -Elmer DSC 7型差示扫描量热仪;RL -1113熔体流动速率仪,上海思雨仪器有限公司;SFM -350型塑料粉碎机,浙江丰利粉碎设备有限公司;SHR -10A 型高速混合机(可加热),张家港亿利机械厂;SJSH -30型双螺杆挤出机,南京橡塑机械厂。113 实验过程 将C NTs 放入浓H 2SO 4和HNO 3的混合液(V (H 2SO 4)B V (HNO 3)=3B 1)中浸泡24h,过滤后再

碳纳米管增强聚合物复合材料的合成及应用进展

Advances in Material Chemistry 材料化学前沿, 2017, 5(3), 70-79 Published Online July 2017 in Hans. https://www.doczj.com/doc/3d10016546.html,/journal/amc https://https://www.doczj.com/doc/3d10016546.html,/10.12677/amc.2017.53009 The Research Advances on Carbon Nanotubes/Polymer Nanocomposites Nannan Chao, Rao Fu, Changmei Sun*, Rongjun Qu*, Ying Zhang School of chemistry material science, Ludong University, Yantai Shandong Received: May 13th, 2017; accepted: May 30th, 2017; published: Jun. 2nd, 2017 Abstract Carbon nanotubes are ideal reinforcing materials due to their large aspect ratio and specific sur-face area. The research advances on carbon nanotubes/polymer nanocomposites in recent years have been reviewed in this paper. The reinforced polymers mainly included polyvinyl chloride, polyvinyl alcohol, polysulfone and polymethyl methacrylate. The preparation methods, applica-tions and mechanical properties, thermal stability and electrical conductivity of the composites were summarized. Keywords Carbon Nanotubes, Polymer, Nanocomposites, Mechanical Property 碳纳米管增强聚合物复合材料的合成及应用进展 晁楠楠,付饶,孙昌梅*,曲荣君*,张盈 鲁东大学化学与材料科学学院,山东烟台 收稿日期:2017年5月13日;录用日期:2017年5月30日;发布日期:2017年6月2日 摘要 碳纳米管由于具有很大的长径比和比表面积,是理想的增强材料。本文主要综述了近年来碳纳米管增强聚合物复合材料的研究进展,所增强的聚合物主要包括聚氯乙烯、聚乙烯醇、聚砜和聚甲基丙烯酸甲酯。 *通讯作者。 文章引用: 晁楠楠, 付饶, 孙昌梅, 曲荣君, 张盈. 碳纳米管增强聚合物复合材料的合成及应用进展[J]. 材料化学前

相关主题
文本预览
相关文档 最新文档