当前位置:文档之家› 碳纳米管改性方法及其在复合材料制备中的应用

碳纳米管改性方法及其在复合材料制备中的应用

碳纳米管改性方法及其在复合材料制备中的应用
碳纳米管改性方法及其在复合材料制备中的应用

碳纳米管改性方法及其在复合材料制备中的应用

摘要:综述了近几年关于碳纳米管改性方法的研究进展,并针对每种方法介绍了相应的复合材料制备实例。讨论了各种改性方法的作用原理,并对其优点和缺点进行了比较。最后对碳纳米管增强聚合物纳米复合材料的发展前景做了展望。

关键词:改性方法碳纳米管复合材料研究进展

中图分类号:tb383 文献标识码:a 文章编号:1007-3973(2012)005-118-03

1 前言

自从1991年碳纳米管被iijima发现以来,其凭借出众的力学、电学、热学、化学性能、极高的长径比(100—1000)以及纳米尺寸上独特的准一维管状分子结构,表现出运用在未来科技领域里所具有的巨大潜在价值,迅速成为物理、化学、材料科学领域里的研究热点。碳纳米管是由很多碳原子组合在一起形成的石墨片层卷成的中空管体,根据其石墨片层数的不同,可分为单壁碳纳米管(swnts)和多壁碳纳米管(mwnts)。由于碳纳米管主要由碳元素组成,与聚合物的成分相似,所以可以使用cnt来增强聚合物纳米复合材料。随着的生产cnt方法越来越简便,其价格也越来越便宜,这种方法相对于在聚合物中添加含碳填料来改善聚合物性能等传

统方法,改性效果更好,市场需求更广,经济前景更乐观。可以预见,在不久的将来cnt将会成为制备聚合物基复合材料的主要原料。

复合材料的界面改性

界面及界面改性方法 界面结合强度低,则增强纤维与基体很容易分离,在材料的断面可观察到脱粘、纤维拔出、纤维应力松弛等现象,起不到增强作用;但界面结合强度太高,则增强纤维与基体之间应力无法松弛,形成脆性断裂。 在研究和设计界面时,不应只追求界面粘结而应考虑到最优化和最佳综合性能。 1、聚合物基复合材料界面 界面结合有机械粘接与润湿吸附、化学键结合等。 大多数界面为物理粘结,结合强度较低,结合力主要来自如色散力、偶极力、氢键等物理粘结力。 偶联剂与纤维的结合(化学反应或氢键)也不稳定,可能被环境(水、化学介质等)破坏。一般在较低温度下使用,其界面可保持相对稳定。增强剂本身一般不与基体材料反应。 聚合物基复合材料界面改性原则: 1)在聚合物基复合材料的设计中,首先应考虑如何改善增强材料与基体间的浸润性。一般可采取延长浸渍时间,增大体系压力、降低熔体粘度以及改变增强体织物结构等措施。2)适度的界面结合强度 3)减少复合材料中产生的残余应力 4)调节界面内应力和减缓应力集中 聚合物基体复合材料改性方法 1、颗粒增强体在热塑性聚合物基体加入两性相溶剂(增容剂),则能使液晶微纤与基体间形成结合良好的界面 2、纤维增强体复合材料界面改善 a)纤维表面偶联剂 b)涂覆界面层 c)增强体表面改性 2、金属基复合材料界面 金属基体在高温下容易与增强体发生不同程度的界面反应,金属基体多为合金材料,在冷却凝固热处理过程中还会发生元素偏聚、扩散、固溶、相变等。 金属基复合材料界面结合方式有化学结合、物理结合、扩散结合、机械结合。总的来讲,金属基体复合材料界面以化学结合为主,有时也会出现几种界面结合方式共存。 金属基体复合材料的界面有3种类型:第一类界面平整、组分纯净,无中间相。第二类界面不平直,由原始组分构成的凸凹的溶解扩散型界面。第三类界面中含有尺寸在亚微米级的界面反应物。多数金属基复合材料在制备过程中发生不同程度的界面反应。 金属基复合材料的界面控制研究方法: 1)对增强材料进行表面涂层处理在增强材料组元上预先涂层以改善增强材料与基体的浸润性,同时涂层还应起到防止发生反应的阻挡层作用。 2)选择金属元素改变基体的合金成分,造成某一元素在界面上富集形成阻挡层来控制界面反应。尽量避免选择易参与界面反应生成脆硬界面相、造成强界面结合的合金元素 3)优化制备工艺和参数金属基体复合材料界面反应程度主要取决于制备方法和工艺参数,因此优化制备工艺和严格控制工艺参数是优化界面结构和控制界面反应的有效途径。 3、陶瓷基复合材料的界面 陶瓷基体复合材料指基体为陶瓷材料的复合材料。增强体包括金属和陶瓷材料。界面结合方式与金属基体复合材料基本相同,有化学结合、物理结合、机械结合和扩散结合,其中以化学结合为主,有时几种结合方式同时存在。 陶瓷基体复合材料界面控制方法

碳纳米管纳米材料的应用要点

碳纳米管及其复合材料在储能电池中的应用 摘要碳纳米管具有良好的机械性能和导电性、高化学稳定性、大表面积以及独特的一维结构,选择合适的方法制备出碳纳米管复合材料,可以使其各种物理化学性能得到增强, 因而在很多领域有着极大的应用前景,尤其是在储能电池中的应用。本文分析了碳纳米管及其复合材料的特点,总结了碳纳米管的储锂机理,对其发展趋势作了展望。 关键词碳纳米管复合材料储能电池应用 Abstract carbon nanotubes(CNTs) are nanometer-sized carbon materials with the characteristics of unique one-dimensional geometric structure,large surface area,high electrical conductivity,elevated mechanical strength and strong chemical inertness. Selecting appropriate methods to prepare carbon nanotube composites can enhance physical and chemical properties , and these composites have a great future in many areas,especially in energy storage batteries . In this paper, based on the analysis and comparison of the advantages and disadvantages of carbon nanotube composites,the enhancement mechanisms of the CNTs catalysts are introduced. Afterward,the lithium ion storage properties are summarized according to the preparation methods of composite materials. Finally, the prospects and challenge for these composite materials are also discussed. Keywords carbon nanotube; composite; energy storage batteries; application 1 引言 碳纳米管(CNTs)在2004 年被人们发现,是一种具有特殊结构的一维量子材料, 它的径向尺寸可达到纳米级, 轴向尺寸为微米级, 管的两端一般都封口, 因此它有很大的强度, 同时巨大的长径比有望使其制作成韧性极好的碳纤维。碳纳米管由于其独特的一维纳米形貌被作为锂离子电池负极材料广泛研究,通过对碳纳米管进行剪切,官能化及掺杂等方法进行改性处理,能有效的减少碳纳米管的首次不可逆容量,增加可逆的储锂比容量。此外,碳纳米管的中空结构也成为抑制高容量金属及金属氧化物体积膨胀理想复合基体。本文中,我们研究了碳纳米管的储锂性能,考察了碳纳米管作为锡类复合材料基体,其内部限域空间对高容量金属及金属氧化物的储锂性能促进的具体原因。该研究结果为碳纳米管以及其他具有限域空间的结构在锂离子电池中的应用提供了参考。 2 碳纳米管的储锂机理和应用 相比广泛应用的石墨类材料,碳纳米管在锂离子电池负极材料中有其独特的应用优势。首先,碳纳米管的尺寸在纳米级,管内及间隙空间也都处于纳米尺寸级,因而具有纳米材料的小尺寸效应,能有效的增加锂离子在化学电源中的反应活性空间;其次,碳纳米管的比表面积较大,能增加锂离子的反应活性位,并且随着

碳纳米管的性质与应用

碳纳米管的性质与应用 【摘要】 本文主要介绍了碳纳米管的结构特点,制备方法,特殊性质,由于碳纳米管独特性质而产生的广泛应用,并对其前景进行展望。 【关键词】 碳纳米管场发射复合材料优良性能 【前言】 自日本NEC科学家Lijima发现碳纳米管以来,碳纳米管研究一直是国际新材料领域研究的热点。由于碳纳米管具有特殊的导电性能、力学性质及物理化学性质等,故其在许多领域具有其广阔的应用前景,自问世以来即引起广泛关注。目前,国内外有许多科学家对碳纳米管进行研究,科研成果颇丰,尤其是碳纳米管在复合材料、储氢及催化等领域的应用。 【正文】 一、碳纳米管的结构 碳纳米管中碳原子以sp2杂化为主,同时六角型网格结构存在一定程度的弯曲,形成空间拓扑结构,其中可形成一定的sp3杂化键,即形成的化学键同时具有sp2和sp3混合杂化状态,而这些p 轨道彼此交叠在碳纳米管石墨烯片层外形成高度离域化的大π 键,碳纳米管外表面的大π 键是碳纳米管与一些具有共轭性能的大分子以非共价键复合的化学基础[1]。 对多壁碳纳米管的光电子能谱研究结果表明,不论单壁碳纳米管还是多壁碳纳米管,其表面都结合有一定的官能基团,而且不同制备方法获得的碳纳米管由于制备方法各异,后处理过程不同而具有不同的表面结构。一般来讲,单壁碳纳米管具有较高的化学惰性,其表面要纯净一些,而多壁碳纳米管表面要活泼得多,结合有大量的表面基团,如羧基等。以变角X 光电子能谱对碳纳米管的表面检测结果表明,单壁碳纳米管表面具有化学惰性,化学结构比较简单,而且随着碳纳米管管壁层数的增加,缺陷和化学反应性增强,表面化学结构趋向复杂化。内层碳原子的化学结构比较单一,外层碳原子的化学组成比较复杂,而且外层碳原子上往往沉积有大量的无定形碳。由于具有物理结构和化学结构的不均匀性,碳

木塑复合材料界面改性

木塑复合材料界面改性 摘要:介绍了聚丙烯、聚乙烯、聚氯乙烯、聚苯乙烯制备的木塑复合材料界面改性的研究进展,阐述了界面改性对木塑复合材料性能的影响,并对木塑复合材料的应用前景进行了展望。 木塑复合材料是近年来兴起的环保型复合材料,由聚合物基体和木纤维(木粉、竹粉、稻壳、秸秆等)按一定比例加工而成。制备木塑复合材料的聚合物基体有热固性聚合物和热塑性聚合物,而热塑性聚合物可回收利用、连续生产,是制备木塑复合材料的主要聚合物基体。常用的热塑性聚合物有聚丙烯(PP)、聚乙烯(PE)、聚氯乙烯(PVC)、聚苯乙烯(PS)等。由于热塑性木塑复合材料中木纤维的填充量较高,聚合物基体与木纤维之间的界面相容性较差,影响了木塑复合材料的力学性能;此外,氢键的作用也导致木纤维之间的作用力增强,从而影响木纤维在聚合物基体中的分散。因此如何改善聚合物基体与木纤维之间的界面相容性是制备性能优良的木塑复合材料的关键。木塑复合材料的界面改性主要通过改性木纤维或添加界面改性剂的方法进行。木纤维的改性包括物理改性和化学改性。物理改性(如干燥、交联)的主要作用是增强纤维素表面与聚合物基体的啮合;化学改性主要是将纤维素表面的羟基反应掉,形成化学键,如将木纤维表面的羟基进行乙酰化以降低木纤维的表面活化能,或利用相容剂的羧基或酰基与纤维素中的羟基发生酯化反应[1],如马来酸酐接枝PP(PP-g-MAH)、异氰酸酯、氯化苯甲酰等。从改性效果来看,化学改性方法明显优于物理改性方法。添加界面改性剂改善木塑复合材料界面相容性是使用较多的方法。界面改性剂通常一端含有极性基团,另一端含有非极性基团。极性基团能与木纤维的极性部分亲和,而非极性基团则和极性较弱的聚合物基体亲和。界面改性剂主要是起桥梁的作用,通过降低两相间的界面能,促进木纤维在树脂相中的分散,降低木纤维之间的凝聚力,提高聚合物基体的分散能力;并且加强了高分子链与木纤维间的机械缠结以增强两者的界面亲和力,从而提高复合材料的力学性能。常用的界面改性剂有马来酸酐接枝聚烯烃、硅烷偶联剂、钛酸酯、铝酸酯等[2]。木塑复合材料的界面改性方法多种多样。木纤维的改性或界面改性剂的合成可以在加工木塑复合材料之前独立进行,也可以在加工过程中原位进行,从工业化生产的角度来看,越简单的界面改性方法越有利于降低成本和推广应用。 1热塑性木塑复合材料界面改性的研究进展 1.1PP基木塑复合材料的界面改性 PP是常用的制备木塑复合材料的聚合物之一,但它是非极性聚合物,与木纤维的界面相容性较差。PP-g-MAH是常见的PP基木塑复合材料的界面改性剂[3-5],因为马来酸酐价格便宜,界面改性效果良好,而且PP-g-MAH可采用反应性挤出,生产效率高。PP-g-MAH能降低木纤维的表面自由能并降低纤维之间的吸附力,增强聚合物基体的渗透能力,改善纤维的分散和取向,通过机械啮合提高界面黏合力。PP-g-MAH与木纤维表面的羟基在碱性催化剂作用下能发生酯化反应,在聚合物与木纤维之间形成桥梁,从而提高界面黏合力[6]。此外,采用马来酸酐对木纤维进行接枝改性也是改善木塑复合材料界面相容性的重要方法。Nenkova等[7]在含有10%马来酸酐的丙酮溶液中采用过氧化二苯甲酰(BPO)和过氧化二异丙苯(DCP)引发马来酸酐对木纤维进行表面改性,木纤维和马来酸酐发生化学反应,增加了界面黏合力,制得的PP基木塑复合材料的力学性能有了较大的提高。Demir等[8]分别采用3-氨基丙基三乙氧基硅烷(AS)、三甲氧基甲硅烷基丙硫醇(MS)和PP-g-MAH作为PP/丝瓜纤维复合材料的界面改性剂,改善了聚合物与丝瓜纤维的相容性,提高了其力学性能和抗吸湿性。AS和MS改性后的复合材料界面黏合力增强,其中MS改性的复合材料力学性能较高。近年来也有研究者采用固相接枝法[9]或熔融接枝法[10]开发出多种单体的PP接枝共聚物,其具有接枝率高、界面改性效果好等优点,是木塑复合材料优良的界面改性剂。

改性酚醛树脂复合材料的研究进展及应用

改性酚醛树脂复合材料的研究进展及应用 综述了改性酚醛树脂复合材料的研究进展,重点介绍了我国改性酚醛树脂复合材料的研究进展及应用,最后指出了我国改性酚醛树脂复合材料今后的发展方向。 标签:酚醛树脂;改性;复合材料 酚醛树脂(PF)由酚类(苯酚、甲酚、二甲酚和间苯二酚等)和醛类(甲醛、乙醛和糠醛等)在酸性或碱性催化剂作用下缩聚而成,是最早合成的热固性树脂。普通酚醛树脂由于受分子结构的限制,热稳定性和残炭率较低,限制了其应用。为了克服传统酚醛树脂脆性较大、交联度低、耐热性不佳、释放游离甲基和游离酚等缺陷,对酚醛树脂进行复合改性是常用的方法,以此获得性能优越的酚醛树脂复合材料,广泛应用于清漆、胶粘剂、涂料、模塑料、层压材料、泡沫材料、耐烧蚀材料等方面。 1.酚醛树脂的结构 酚醛树脂的结构主要有线型酚醛树脂和甲阶酚醛树脂。线型酚醛树脂在加热过程中逐渐软化,温度降至常温后又变硬,即在重复加热、冷却过程中重复塑化、硬化,表现出热塑性,而不具有热硬性。甲阶酚醛树脂含有水分,为聚合度不大的线型分子混合物,溶于水、乙醇、丙酮等溶剂中,具有高温固化性,属可溶性热固性酚醛树脂。 2.复合材料制备研究进展 酚醛树脂反应活性低,固化反应放出缩合水,且必须在高温条件下才能进行固化,制约了其在复合材料领域的应用。为弥补这一缺陷与不足,进一步提高其综合性能,在其分子链极性节点周围形成连接界面,使分子链间的键能增强,通常在酚醛树脂中引入高耐热性纳米材料,可提高其在高温下的质量保持率,降低其高温炭化率,从而使材料在高温下的基本性能得以提高。酚醛树脂的耐热性和增韧改性主要是通过共混或化学反应来实现。 2.1化学改性制备 酚醛树脂的化学改性是指应用化学反应改变苯酚甲醛树脂分子结构的一类改性方法,途径主要有:羟基醚化或环氧化、控制分子链交联状态的不均匀性及引进钼、硼、磷、有机硅等组分,可以提高树脂的耐热性尤其是瞬时耐高温的特性。环氧综合性能良好,能兼顾热固性酚醛树脂和双酚的优势,提高材料的粘接性与耐热性,改善树脂脆性;有机硅的耐热性和耐潮性良好,与酚羟基发生化学反应,可增强酚醛树脂的耐热性与耐水性;硼元素能显著改善酚醛树脂的耐热性、耐瞬间高温性、耐烧蚀性,增强其力学性能。

碳纳米管的制备

常用的碳纳米管制备方法主要有:电弧放电法、激光烧蚀法、化学气相沉积法(碳氢气体热解法)、固相热解法、辉光放电法、气体燃烧法以及聚合反应合成法等。 电弧放电法 碳纳米管制备 电弧放电法是生产碳纳米管的主要方法。1991年日本物理学家饭岛澄男就是从电弧放电 法生产的碳纤维中首次发现碳纳米管的。电弧放电法的具体过程是:将石墨电极置于充满氦气或氩气的反应容器中,在两极之间激发出电弧,此时温度可以达到4000度左右。在 这种条件下,石墨会蒸发,生成的产物有富勒烯(C60)、无定型碳和单壁或多壁的碳纳 米管。通过控制催化剂和容器中的氢气含量,可以调节几种产物的相对产量。使用这一方法制备碳纳米管技术上比较简单,但是生成的碳纳米管与C60等产物混杂在一起,很难 得到纯度较高的碳纳米管,并且得到的往往都是多层碳纳米管,而实际研究中人们往往需要的是单层的碳纳米管。此外该方法反应消耗能量太大。有些研究人员发现,如果采用熔融的氯化锂作为阳极,可以有效地降低反应中消耗的能量,产物纯化也比较容易。 发展出了化学气相沉积法,或称为碳氢气体热解法,在一定程度上克服了电弧放电法的缺陷。这种方法是让气态烃通过附着有催化剂微粒的模板,在800~1200度的条件下,气态 烃可以分解生成碳纳米管。这种方法突出的优点是残余反应物为气体,可以离开反应体系,得到纯度比较高的碳纳米管,同时温度亦不需要很高,相对而言节省了能量。但是制得 的碳纳米管管径不整齐,形状不规则,并且在制备过程中必须要用到催化剂。这种方法的主要研究方向是希望通过控制模板上催化剂的排列方式来控制生成的碳纳米管的结构,已经取得了一定进展。 激光烧蚀法 激光烧蚀法的具体过程是:在一长条石英管中间放置一根金属催化剂/石墨混合的石墨靶,该管则置于一加热炉内。当炉温升至一定温度时,将惰性气体冲入管内,并将一束激光聚焦于石墨靶上。在激光照射下生成气态碳,这些气态碳和催化剂粒子被气流从高温区带向低温区时,在催化剂的作用下生长成CNTs。 固相热解法

聚合物基复合材料的界面研究进展

大学研究生课程论文 题目聚合物基复合材料的界面研究进展成绩 专业材料工程 课程名称、代码1512011080405 年级 姓名学号 时间年月 任课教师

聚合物基复合材料的界面研究进展 【摘要】界面的好坏是直接影响复合材料性能的关键因素之一。当复合材料受到外力作用时,除增强材料和基体受力外,界面亦起着极其重要的作用。本文主要综述无机刚性粒子增强复合材料、无机纳米粒子增强复合材料、纤维增强复合材料、原位复合材料的界面特性及其改性方法,并简要介绍了各种复合材料的增强机理,界面相容性。 【关键词】聚合物;复合材料;综述;增强 1 前言 界面是复合材料极为重要的微观结构,它作为增强体与基体连接的“桥梁”,对复合材料的物理机械性能有至关重要的影响。复合材料一般是由增强相、基体相和它们的中间相(界面相)组成,它们各自都有其独特的结构、性能与作用,增强相主要起承载作用,基体相主要起连接增强相和传载作用,界面是增强相和基体相连接的桥梁,同时是应力的传递者[1]。目前对增强相和基体相的研究已取得了许多成果,但对作为复合材料三大微观结构之一的界面问题的研究却不够深入,其原因是测试界面的精细方法运用起来较困难,描述的理论尚不完整,尤其从力学的角度研究界面的性质、作用及其对复合材料力学性能的影响和破坏机理等方面的工作正在开展。界面的性质直接影响着复合材料的各项力学性能[2],尤其是层间剪切、断裂、抗冲击等性能,因此随着复合材料科学和应用的发展,复合材料界面及其力学行为将越来越受到重视。 复合材料的强度、刚性及韧性是代表其物理机械性能的重要指标,对复合材料进行界面改性使两相界面具有合适的粘附力,形成一个相互作用匹配且能顺利传递应力的中间模量层,以提高聚合物基复合材料的力学性能一直是高分子材料科学的重要研究领域[3]。 2 无机刚性粒子增强聚合物基复合材料及其界面 无机刚性粒子增强聚合物是近年来研究的热点,它克服了以往用弹性体、热塑性树脂增韧聚合物时在韧性提高的同时刚性下降的缺点。常用的无机刚性粒子[4]有CaCO3、SiC、BaSO4、滑石、硅石灰、蒙脱土以及煤灰等。欧玉春[5]等提出刚性粒子增强增韧聚合物的界面结构模型,即在均匀分散的刚性粒子周围嵌入具有良好界面结合和一定厚度的柔性界面相,以便在材料经受破坏时能引发银纹,终止裂缝的扩展。在一定形态结构下它还可引发基体剪切屈服,从而消耗大量冲击能,又能较好地传递所承受的外应力,达到既增强又增韧的目的。 在PP/CaCO3复合体系中用酯酸类偶联剂在刚性粒子表面引入柔性或弹性界面层,降低

碳纳米管的结构_制备_物性和应用

第14卷 第2期邵阳高等专科学校学报Vol.14.No.2 2001年6月Journal of Shaoyang College J un.2001文章编号:1009-2439(2001)02-0081-10 碳纳米管的结构、制备、物性和应用 唐东升1 唐成名2 刘朝晖3 解思深1 (①中国科学院物理研究所与凝聚态中心,北京 100080) (② 邵阳高等专科学校,湖南邵阳 422004) (③ 南华大学现代教育技术中心,湖南衡阳 430000) 摘要:综述了碳纳米管的研究进展,简单地介绍了单层碳纳米管和多层碳纳米管的基本形貌、结构及其表征,列举了几种主要的制备方法以及特点,介绍了碳纳米管优异的物理化学性质,以及在各个领域中潜在的应用前景. 关键词:碳纳米管;结构;制备;应用;透射电子显微镜;扫描电子显微镜 中图分类号:O469 文献标识码:A 碳是自然界中性质最为独特的一种元素,它通过不同的成键方式所形成结构和性质迥异的同素异形体(石墨和金刚石),在很久以前就被人类所认识:当碳原子与四个近邻原子以共价键结合(sp3杂化)时,形成各向同性坚硬的金刚石,而当碳原子在同一平面内与三个近邻原子以共价键结合而第四个价电子成为共有化电子(sp2杂化)时,形成各向异性柔软的石墨.以sp2杂化模式成键的石墨具有六角网格的层状结构,层内是通过强共价键相互作用,而层与层之间是通过弱范德瓦耳斯键相互作用.在常压下石墨一直到很高的温度仍是碳的热力学稳定的体相(金刚石仅仅是动力学稳定的体相).然而随着人类对物质世界的认识深入到介观层次(~100nm)时,这种古老的元素呈现出全新的结构和物性,比如当石墨微晶的尺寸很小(比如纳米量级)时,情况就和体相很不一样了,因为此时每个石墨微晶中只有有限数目的碳原子,具有悬挂键的碳原子的密度会很大,这时石墨的层状结构就会弯曲封闭,以至边缘的具有悬挂键的碳原子相互结合成键使得系统的能量最低.这种由石墨原于层弯曲构成的闭合的壳层结构就是我们所要讨论的富勒烯和碳纳米管. 1984年爱克森(Exxon)石油公司一个小组在研究碳团簇时得到了如下结论[1]对于1≤n≤30奇数与偶数的C n都是存在的;(2)对于20≤n≤90只有C2n形式存在.他们认为碳原子链可以达到24个原子.遗憾的是他们并没有对较大的团簇做进一步的研究.一年之后英国Sussex大学的克罗托教授到美国Rice大学与柯尔(R.F.Curl)和斯莫利(R.E.Smalley)进行合作研究.他们认为宇宙空间存在的反常红外吸收可能与空间存在的碳团簇有关.于是他们利用一台激光蒸发团簇束的实验设备来制备长链碳分子.在对合成的所谓长链碳分子进行测量时,出人意料的结果出现了,在碳原子簇的质谱图上质量数为720的地方存在一个强峰,其强度为其它峰强度的30倍[3].在对实验结果的反复论证和分析后,他们提出了由60个碳原子组成的具有类似于足球形状的截角二十面体的完美对称性结构.在这个结构中60个碳原子位于此截面体的60个顶点上.而32个面分别由20个六面体及12个五面体组成,五面体各不相邻.在此笼状结构中碳原子没有悬键,因而能量低结构稳定.各个原子成键情况完全相同.随后的一系列实验证实了这些设想.这样,在碳的家族中,又增加了新的一员-C60[2~5],三位教授因此获得了1996年诺贝尔化学奖. 此后两项工作引起了世界范围内研究富勒烯(C60)的热潮:(1)1990年,德国马普研究所的克莱希墨(W. Kratschmer)教授和美国亚历桑那大学的霍夫曼(D.R.Huffman)教授从石墨棒电弧放电产生的烟灰中分离出毫克级的C60,并得到了C60单晶[6].这一重大进展为进一步研究C60的性质和应用打下了坚实的基础.(2)海顿(R. C.Haddon)教授等人发现碱金属掺杂后形成的M3C60具有较高的超导转变温度(T c~33K)[7].于是大家纷纷用与克莱希墨类似的方法从放电烟灰中制备C60[8~12],并进行掺杂研究,但很少有人对放电过程中阴极上形成的沉积物产生兴趣.碳的管状物虽然早有报道,但由于管径较大没有受到人们的重视[13,14].日本NEC公司的饭岛(S.Iijima)教授是一名杰出的电镜专家,在对碳材料的研究方面具有相当丰富的经验[15].他第一个对石墨棒放电所形成的阴极沉积物仔细地进行了电镜研究,他发现有一种针状物,这种针状物的直径为4~30nm,长度约为 收稿日期:2001-01-15

空心玻璃微珠在复合材料中的应用研究

空心玻璃微珠在复合材料中的应用研究 空心玻璃微珠(ES)是由经特殊工艺制成的薄壁封闭的微小球形颗粒,具有中空、质轻、耐高低温、隔热保温、电绝缘强度高、耐磨、耐腐蚀、防辐射、隔音、吸水率低、化学性能稳定等优点,近年来作为复合材料填充剂,已广泛应用于建材、塑料、橡胶、涂料、航海和航天等领域。 1 空心玻璃微珠在建材中的应用 空心玻璃微珠密度低且不易吸水,可作添加剂制备低密度、低黏度、低渗透性及结合力强的轻质注浆水泥。用腔内全部填有水泥浆的空心微珠制成的轻质水泥(σc28值在27~33 MPa 之间),优于传统膨胀珍珠岩轻质水泥(σc28=1~5.5 MPa)和膨润土轻质水泥(σc28=17~40 MPa),且其隔热性能随微珠粒度的减小而提高。当微珠的腔内没有水泥浆时,样品的隔热性能得到最大改善。在美国,空心玻璃微珠已用于人造大理石生产,填充适当的空心玻璃微珠,可改善人造大理石纹理布局及颜色的连续性,降低固化时间,改善冲击强度,提高抗龟裂能力,降低破损率,同时改善机械加工性,减小后处理工具的磨损,且便于搬运及安装。人们开始将空心玻璃微珠用于涂料研究,以提高涂料的隔热、隔音性能。采用化学镀方法在玻璃微珠表面镀银并用于涂料中,结果表明,在控制反应温度和浓度的条件下,可使镀银玻璃微珠的红外辐射率由原来的1.02降为0.70,将其应用于涂料后,涂层的红外辐射率为0.80。 2 空心玻璃微珠在塑料、橡胶中的应用 近年来,空心玻璃微珠作为新型无机粉末填料用于工程塑料和橡胶的填充,使其具有优异的流变加工和抗冲击性能等优点。目前,研究较多的是对聚氯乙烯、聚乙烯、聚丙烯、聚酰胺、聚碳酸酯、有机硅树脂等的填充改性。用一步法和二步法两种混合工艺,研究了经过表面预处理的玻璃微珠填充PP的力学性能。结果表明,经过适当表面处理的玻璃微珠可以通过熔融共混均匀分散在PP中,粒子与基体界面结合良好。填充体系随着玻璃微珠含量的增加,拉伸强度增大,冲击强度下降。流动性随着玻璃微珠含量的增加而增大,然后随之下降。采用不同粒径的中空玻璃微珠填充聚丙烯,在较低的弯曲载荷下,随着HGB体积分数的增加,试样热变形温度(t d)明显增大;而在较高的弯曲载荷下,试样的t d增加缓慢,甚至有所下降。当载荷及微珠含量一定时,t d随着HGB粒径的增加而呈非线性函数形式增大。尼龙6是一种具有较好力学性能和热性能的工程塑料,通常是使用玻璃纤维进行改性来提高性能和拓展使用领域。但同时产生流动性差、玻纤外露、收缩率高、后翘曲严重、加工困难等不足。空心微珠是尺寸小,表面光滑坚硬,有极好的流动性、分散性,吸油率低,耐高温,用于填充尼龙可以改善浮纤外露,提高制品表面光洁度,改善流动性能,加工方便、降低收缩变形率,克服制品后翘曲现象,提高制品的耐热温度及耐磨、耐划伤性,且可以大大降低生产成本。研究人员以空心玻璃微珠为填料制备了玻璃微珠填充改性含油铸型尼龙复合材料,研究了复合材料的摩擦学性能和热性能。结果表明:加入玻璃微珠的复合材料的摩擦因数降低,耐磨性提高,其磨损行为主要是粘着磨损和磨粒磨损;该复合材料的热变形温度有所降低,但线膨胀系数减小。用硅烷偶联剂对空心玻璃微珠进行表面处理后填充MC尼龙,改善了MC尼龙和空心玻璃微珠的相容性,使复合材拉伸强度、弯曲强度和断裂伸长率比不经偶联剂处理的分别提高了约15.7%、12.2%和246%;同时耐热性提高,而吸水率和收缩率降低。夏英[11 ]在80%ABS树脂中加入20%的粒径为5 μm经表面处理的空心玻璃微珠,制得了综合性能较佳的空心玻璃微珠改性复合材料,其缺口冲击强度、拉伸强度、弯曲强度、弯曲弹性模量、熔体流动速率及氧指数分别为7.7 kJ/m2、47 MPa、69 MPa、2.75GPa、5g/10min和22.4%。邓聪[12]用空心玻璃微珠填充改性聚甲醛(POM),结果表明,影响复合体系性能的主导因素是

碳纳米管的制备方法

碳纳米管的制备方法 摘要:本文简单介绍了碳纳米管的结构性能,主要介绍碳纳米管的制备方 法, 包括石墨电弧法、催化裂解法,激光蒸发法等方法,也对各种制备方法的优缺 点进行 了阐述。 关键词:碳纳米管制备方法 Preparation of carbon nanotubes Abstract: The structure and performance of carbon nanotubes are briefly introduced, and some synthesis methods, including graphite arc discharge method, catalytic cracking method, laser evaporation method and so on, are reviewed. And the advantages and disadvantages of various preparation methods are also described. Key words:carbon nanotubes methods of preparation 纳米材料被誉为是21世纪最重要材料,是构成未来智能社会的四大支柱之一 ,而碳纳米管是纳米材料中最富有代表性,并且是性能最优异的材料。碳纳米管是碳 的一种同素异形体,它包涵了大多数物质的性质,甚至是两种相对立的性质,如从高 硬度到高韧性,从全吸光到全透光、从绝热到良导热、绝缘体/半导体/高导体和高临界温度的超导体等。正是由于碳纳米材料具有这些奇异的特性,被发现的短短十几年

来,已经广泛影响了物理、化学、材料等众多科学领域并显示出巨大的潜在应用前景。 碳纳米管又名巴基管,即管状的纳米级石墨晶体。它具有典型的层状中空结构, 构成碳纳米管的层片之间存在一定夹角,管身是准圆筒结构,并且大多数由五边形截 面组成,端帽部分由含五边形的碳环组成的多边形结构。是一种具有特殊结构(径向 尺寸为纳米量级、轴向尺寸为微米两级,管子两端基本上都封口)的一维纳米材料。 碳纳米管存在多壁碳纳米管(MWNTS)和单壁碳纳米管(SWNTS)两种形式。单层碳纳米管结构模型如图1所示。理想的多层碳纳米管可看成多个直径不等的单层管同轴套构而成,层数可以从二层到几十层,层与层之间保持固定距离约为0.34nm,直径一般为2~20nm.但实际制备的碳纳米管并不完全是直的或直径均匀的,而是局部 1 区域出现凸凹弯曲现象,有时会出现各种形状如L、T、Y形管等。研究认为所有这 些形状的出现是由于碳六边形网络中引入五边形和七边形缺陷所致。五边形的引入引 起正弯曲,七边形的引入引起负弯曲。

复合材料的性能和应用

摘要:近年来,各种复合材料制备技术日益更新,从陶瓷基复合材料、金属基复合材料到聚合物基复合材料,各种制备技术都得到了很大改善,使得复合材料的性能和应用得到了显著提高。本文综述陶瓷基复合材料、金属基复合材料、聚合物基复合材料等几种重要的研究方法以及应用。 关键词:先进,复合材料,制造技术。 正文:一·陶瓷基复合材料 工程陶瓷的开发是目前国内外甚为重视的新型材料研究领域。纯陶瓷材料因其脆性,不能满足苛刻条件下的使用要求。因此,目前广泛采取增韧技术来提高陶瓷的使用性能。纤维和晶须增韧陶瓷是一类有效的方法。用纤维来增韧陶瓷的技术是十年代以后开始的,最初是用碳纤维增强陶瓷,八十年代以来又开发了用陶瓷纤维和晶须增韧陶瓷,增韧效果不断取得进展,增韧技术也不断有所创新。连续纤维增强陶瓷基复合材料是最有前途的高温结构材料之一,以其优异的高韧性、高强度得到世界各国的高度重视。 连续纤维补强陶瓷基复合料(Continuous Fiber Reinforced Ceramic Matrix Composites,简称CFCC)是将耐高温的纤维植入陶瓷基体中形成的一种高性能复合材料。由于其具有高强度和高韧性,特别是具有与普通陶瓷不同的非失效性断裂方式,使其受到世界各国的极大关注。连续纤维增强陶瓷基复合材料已经开始在航天航空、国防等领域得到广泛应用.20世纪70年代初,科学家在连续纤维增强聚合物基复合材料和纤维增强金属基复合材料研究基础上,首次提出纤维增强陶瓷基复合材料的概念,为高性能陶瓷材料的研究与开发开辟了一个方向。随着纤维制备技术和其它相关技术的进步,人们逐步开发出制备这类材料的有效方法,使得纤维增强陶瓷基复合材料的制备技术日渐成熟。 由于纤维增强陶瓷基复合材料有着优异的高温性能、高韧性、高比强、高比模以及热稳定性好等优点,能有效地克服对裂纹和热震的敏感性[5-6],因此,在重复使用的热防护领域有着重要的应用和广泛的市场。连续纤维增韧陶瓷基复合材料具有类似金属的断裂行为,对裂纹不敏感,不会发生灾难性破坏。其耐高温和低密度特性,使其成为发展先进航空发动机、火箭发动机和空天飞行器防热结构的关键材料。 二·金属基复合材料 金属基复合材料具有比强度高,比刚度高,耐热,耐磨,导热,导电,尺寸稳定等优点,是一种很有发展前途的新材料,金属基复合材料广泛应用于制造航空抗天零部件,也用于制造各种民用产品。 按基体分,金属基复合材料分为:铝基、镁基、钛基、锌基、铁基、铜基等金属基复合材料;按增强材料分,可分为:纤维增强金属基复合材料;其纤维有C、SiC、Si3N4、B4C、Al2O3等纤维;粒子增强金属基复合材料,增强粒子有:Al2O3、TiC、SiC、Si3N4、BN、SiC、MgO等。 纤维增强金属基复合材料的制造方法: (1)叠层加压法:工艺过程是:将金属(合金)箔片或纤维增强金属片按要求剪裁,并一层一层的进行叠层,然后加热加压进行成型和连接,一般是在真空或气体中进行。适于这种方法的材料有铝、钛、铜、高温合金,其增强纤维随需要而定。为了改善连接性能,有事在两片之间加入中间金属或在待连接表面涂覆或沉积一层中间金属。 (2)辊轧成型连接法:其主要的基材是铝、钛箔片,增强纤维主要是B、C、SiC、Si3N4等,有时在基材表面要涂覆一层低熔点的中间金属,增强纤维表面要预先浸沾铝或经物理气相沉积(PVI)、化学气相沉积(CVI)处理。 (3)钎焊法:在增强纤维与基材之间加入箔状、粉末状或膏状的钎料,经真空钎焊或保护钎焊而成。钎焊法可以制造管材、型材、叶片等。 (4)热等静压法:如图2所示,其工艺过程是:将纤维与基材进行叠层并装入一模具中,

碳纳米管及其应用新领域

碳纳米管及其应用新领域摘要:综述了碳纳米管材料独特性能及其应用潜力,详细说明了碳纳米管材料在各种应用领域中的巨大应用前景,包括高强度复合材料、微机械、信息存储、纳米电子器件等。关键词:碳纳米管的性能,碳纳米管的应用新领域,储氮材料,复合材料,信息存储,碳纳米电子学 前言:碳纳米管具有典型的层状中空结构特征,构成碳纳米管的层片之间存在一定的夹角碳纳米管的管身是准圆管结构,并且大多数由五边形截面所组成。管身由六边形碳环微结构单元组成, 端帽部分由含五边形的碳环组成的多边形结构,或者称为多边锥形多壁结构。是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料。由于其独特的结构,碳纳米管的研究具有重大的理论意义和潜在的应用价值。 一、碳纳米管的性能 碳纳米管作为一维纳米材料,重量轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能。近些年随着碳纳米管及纳米材料研究的深入其广阔的应用前景也不断地展现出来。力学性能 由于碳纳米管中碳原子采取SP2杂化,相比SP3杂化,SP2杂化中S轨道成分比较大,使碳纳米管具有高模量、高强度。 碳纳米管具有良好的力学性能,碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸。碳纳米管的结构虽然与高分子材料的结构相似,但其结构却比高分子材料稳定得多。碳纳米管是目前可制备出的具有最高比强度的材料。若将以其他工程材料为基体与碳纳米管制成复合材料,可使复合材料表现出良好的强度、弹性、抗疲劳性及各向同性,给复合材料的性能带来极大的改善。 导电性能 碳纳米管上碳原子的P电子形成大范围的离域n键,由于共轭效应显著,碳纳米管具有一些特殊的电学性质。 碳纳米管具有良好的导电性能,由于碳纳米管的结构与石墨的片层结构相同,所以具有很好的电学性能。对于一个给定的纳米管,在某个方向上表现出金属性,是良好的导体,否则表现为半导体。对于这个的方向,碳纳米管表现出良好的导电性,电导率通常可达铜的1 万倍。传热性能 碳纳米管具有良好的传热性能,CNTs 具有非常大的长径比,因而其沿着长度方向的热交换性能很高,相对的其垂直方向的热交换性能较低,通过合适的取向,碳纳米管可以合成高各向异性的热传导材料。另外,碳纳米管有着较高的热导率,只要在复合材料中掺杂微量的碳纳米管,该复合材料的热导率将会可能得到很大的改善。 二、碳纳米管电子学的应用 碳纳米电子管(eNTs是一种具有显著电子、机械和化学特性的独特材料。其导电能力不同于普通的导体。性能方面的区别取决于应用,也许是优点,也许是缺点,也许是机会。在一理想纳米碳管内,电传导以低温漂轨道传播的,如果电子管能无缝交接,低温漂是计算机芯片的优点。诸如电连接等的混乱极大地修改了这—行为。对十较慢的模拟信号的处理速度,四周环绕着平向球分子的碳纳米管充当传播者已被实验让实。在后门将有碳的纳米管穿过两根金导线证明了场效应分子晶体管,近来证实逻辑电路的难题 遇到了静电掺杂碳纳米管。碳纳米管的掺杂质可使用化学方法来完成。CMOS类型变极器有 n型和p型掺杂两种。这项工作用达到10A5的开关比率且具有高增益的晶体管电阻逻辑以实验证明了变极器和或非电路的性能。显然,通过适当地排列碳纳米管晶体管顺序可实现与、

碳纳米管制备及其应用

碳纳米管的制备及其应用进展 10710030133 周健波 摘要:本文通过对新型化工材料碳纳米管的结构以及制备方法的介绍,并说明了制备纳米管方法有石墨电弧法、激光蒸发法、催化热解法等技术。同时也叙述了碳纳米管在力学性能、光学性能、电磁学性能等性能的研究及其应用。 关键词:碳纳米管制备结构石墨电弧法应用 1.引言 1991年日本科学家IIJI MA发现了碳纳米管(Carbon nanotube , CNT), 开辟了碳科学发展的新空间. 碳纳米管具有机械强度高、比表面大、电导率高、界面效应强等特点,以及特殊的机械、物理、化学性能,在工程材料、催化、吸附分离、储能器件电极材料等诸多领域得到了广泛应用。 2.碳纳米管的结构 碳纳米管中碳原子以sp2杂化为主, 与相邻的3个碳原子相连,形成六角形网格结构,但此六角形网格结构会产生一定的弯曲, 可形成一定的sp3杂化键。 单壁碳纳米管( SW CNT )的直径在零点几纳米到几纳米之间,长度可达几十微米;多壁碳纳米管(MW CNT)的直径在几纳米到几十纳米之间长度可达几毫米,层与层之间保持固定的间距,与石墨的层间距相当,约为0 . 134 nm。碳纳米管同一层的碳管内原子间有很强的键合力和极高的同轴向性,可看作是轴向具有周期性的一维晶体,其晶体结构为密排六方, 被认为是理想的一维材料。 碳纳米管可看成是由石墨片层绕中心轴卷曲而成, 卷曲时石墨片层中保持不变的六边形网格与碳纳米管轴向之间可能会出现夹角即螺旋角.当螺旋角为零时, 碳纳米管中的网格不产生螺旋而不具有手性, 称之为锯齿型碳纳米管或扶手型碳纳米管;当碳纳米管中的网格产生螺旋现象而具有手性时,称为螺旋型碳纳米管。随着直径与螺旋角的不同, 碳纳米管可表现出金属性或半导体性。 3.碳纳米管的制备方法 3.1石墨电弧法

碳纤维表面改性及其在尼龙复合材料中的应用研究进展

工 程 塑 料 应 用 ENGINEERING PLASTICS APPLICATION 第47卷,第7期2019年7月 V ol.47,No.7Jul. 2019 141 doi:10.3969/j.issn.1001-3539.2019.07.026 碳纤维表面改性及其在尼龙复合材料中的应用研究进展 张顶顶1,张福华1,杨吉祥1,李晓峰1,李彦希2,曾骥1 (1.上海海事大学海洋科学与工程学院,上海 201306; 2.浙江四兄绳业有限公司,浙江台州 317016) 摘要:对近几年碳纤维(CF)表面改性及其在CF 增强尼龙(CFRPA)复合材料中的应用研究情况进行了综述,将CF 表面改性方法划分为干法改性、湿法改性和纳米材料多尺度改性三大类。其中干法改性包括气相氧化法、等离子体氧化法和辐照处理;湿法改性包括液相氧化法、阳极电解氧化法和上浆处理法;纳米材料多尺度改性包括石墨烯、碳纳米管等纳米材料改性。比较了各种表面改性方法的优缺点,并对CFRPA 复合材料中CF 表面改性技术的发展进行了展望。 关键词: 碳纤维;尼龙;复合材料;界面结合;表面改性中图分类号:TQ327.3 文献标识码:A 文章编号:1001-3539(2019)07-0141-06 Research Progress on Surface Modification of Carbon Fiber and Its Application in Polyamide Composites Zhang Dingding 1, Zhang Fuhua 1, Yang Jixiang 1, Li Xiaofeng 1, Li Yanxi 2, Zeng Ji 1 (1. College of Ocean Science and Engineering , Shanghai Maritime University , Shanghai 201306, China ; 2. Zhejiang Four Brothers Rope Co. Ltd., Taizhou 317016, China) Abstract :Research situations of surface modification of carbon fiber (CF) and its application in CF reinforced polyamide (CFRPA) composites in recent years were reviewed. Accordingly ,the surface modi ?cation of CF can be classi ?ed into dry modi ?ca-tion methods ,wet modi ?cation methods and nanomaterials multi-scale modi ?cation methods. The dry modi ?cation methods include gas phase oxidation ,plasma oxidation and irradiation treatment ,the wet modi ?cation methods include liquid phase oxidation ,anodic electrolytic oxidation and sizing treatment , the nanomaterials multi-scale modi ?cation methods include graphene modi ?cation and carbon nanotube modi ?cation. The advantages and disadvantages of various surface modi ?cation methods were compared ,and the development of CF surface modi ?cation technology in CFRPA composites was prospected. Keywords :carbon ?ber ;polyamide ;composite ;interfacial bonding ;surface modi ?cation 碳纤维(CF)增强热塑性树脂复合材料具有轻质高强,耐腐蚀和出色的热稳定性等优点,已广泛应用于航空航天、汽车、建筑等行业[1–6]。尼龙(PA)作为一类典型的热塑性树脂与CF 形成的复合材料具有优异的综合性能。CF 增强PA (CFRPA)复合材料与热固性复合材料相比具有可回收性、易于加工、成型时间短、抗冲击性好等优点[7–9]。CFRPA 复合材料的力学性能首先取决于CF 和PA 树脂基体自身性质。同时,纤维与基体之间的界面粘结性很大程度上决定了复合材料的最终力学性能。 然而,未经任何处理CF 表面是非极性的[10–11],表面活性官能团极少、化学惰性较强,但PA 树脂基体因含有大量的 酰胺键通常表现为极性,造成了CF 与PA 树脂基体之间浸润性较差,界面粘结力较弱,限制了CFRPA 复合材料在更多领域的应用。因此,要想扩大CFRPA 复合材料应用范围,获得力学性能更为优异的CFRPA 复合材料就必须对CF 表面进行改性。通过对CF 表面改性可以有效增大CF 表面的粗糙度,同时在其表面引进大量的活性官能团,改善纤维与基体之间的浸润性,进而提高纤维表面与基体之间的机械嵌锁力和化学键合力,使得所受应力在纤维与基体界面之间得到有效传递。 基于PA 复合材料的CF 表面改性方法可以分为以下三大类:干法改性、湿法改性和纳米材料多尺度改性。干法 基金项目:上海市自然科学基金项目(15ZR1420500) 通讯作者:张福华,博士,副教授,主要从事复合材料应用基础研究 E-mail :fhzhang@https://www.doczj.com/doc/355234534.html, 收稿日期:2019-03-12 引用格式:张顶顶,张福华,杨吉祥,等.碳纤维表面改性及其在尼龙复合材料中的应用研究进展[J].工程塑料应用,2019,47(7):141–146. Zhang Dingding ,Zhang Fuhua ,Yang Jixiang ,et al. Research progress on surface modification of carbon fiber and its application in polyamide composites[J]. Engineering Plastics Application ,2019,47(7):141–146.

相关主题
文本预览
相关文档 最新文档