当前位置:文档之家› 农业生产机械化论文-果蔬采摘机器人国内外研究现状

农业生产机械化论文-果蔬采摘机器人国内外研究现状

农业生产机械化论文-果蔬采摘机器人国内外研究现状
农业生产机械化论文-果蔬采摘机器人国内外研究现状

《农业生产机械化》课程论文论文题目:果蔬采摘机器人国内外研究现状

学院:

专业:

班级:

学号:

学生姓名:

指导教师:

年月日

果蔬采摘机器人国内外研究现状

摘要

本文描述了什么是果蔬机器人,果蔬采摘机器人的作用以及国内外果蔬采摘机器人的研究现状并对其作以评价。

关键词:果蔬采摘机器人国内外研究现状

Fruit and vegetable picking robot research

status at home and abroad

Abstract

In this paper, What fruit and vegetable is robot are described in this paper, the effect of harvesting robot, and the research status of fruit and vegetable picki ng robot at home and abroad and its evaluati on. Keywords: fruit and vegetable pick ing robot research status at home and abroad

农业是国民经济的基础,这是不以人们意志为转移的客观经济规律。农业生产力发展的水平和农业劳动生产率的高低,决定了农业为其他部门提供剩余产品和劳动力的数量,进而制约着这些部门的发展规模和速度。只有农业发展了

国民经济其他部门才能得以进一步的发展。⑴农业机械化是农业现代化的中心环节,它凝聚着现代科学技术的最新成果,并配合农业生物等农业技术,成为发挥增产作用的基本手段和提高劳动生产率、减轻繁重体力劳动的必要条件和根本途径,从而带来生产力

的质的飞跃。

农业机械化是现代农业的重要组成部分[2]:农业机械化就是农业劳动者在进行农业生产过程中,利用机械化代替手工和畜力作业,减轻农业劳动者的劳动强度,从而提高劳动生产效率。农业机械化是建设现代农业的客观要求,现代农业和农村经济结构较之过去有了大的调整,不再是过去的单一经济形式,而是大力发展特色农业、畜牧业等多种经济形式。农业机械化为建设现代农业提供有力的物质技术保证,农业机械在农业生产中的应用,不但突破传统农业生产模式的限制,把人从大量繁重的手工体力劳动中解脱出来,而且实现了人工所不能达到的现代科学农艺要求,提高了农业生产水平。[3]农业机械化为农产品的专业化、商品化生产提高了可能,为农业生产的专业化、规模化奠定了基础,同时农业机械化的发展拓宽了现代农业生产的广度和深度,使农村的二、三产业得到发展,农业生产链得到延长。

果蔬采摘是农业生产链中最耗时耗力的一个环节,其成本高,需要大量的劳动力高强度的工作,但是由于工业生产化的一迅速发展分流了大量农业劳动力以及人口老龄化加剧等原因,使得能够从事农业生产的劳动力越来越少了,单靠人工劳动已经不能满足现状的需要。为解决农业采摘中的实际问题,果蔬采摘机器人的研究与应用已成为一种迫切需要。

果蔬机器人是一类针对水果和蔬菜,可以通过编程来完成采摘等相关作业任务的具有感知能力的自动化机械收获系统【1】,是集机械、电子、信息、智能技术、计算机科学、农业和生物等学科于一体的交叉边缘性科学,需要涉及机械结构、视觉图像处理、机器人运动学动力学、传感器技术、控制技术以及计算机处理等多方面学科领域知识【2】。采摘机器人在解决劳动力不足,降低工人劳动强度,提高工人劳动舒适性,减轻农业化肥和农药对人体的危害、提高采摘果蔬的质量、降低采摘成本、提高劳动生产率、保证果蔬的适时采收、提高产品的国际竞争力多方面具有很大作用。

首先,谈谈国内果蔬采摘机器人的研究现状:

我国对采摘机器人的研究始于20世纪90年代中期,虽然与发达国家还有很大的差距,但是在不少院校和研究学者的努力下也取得了一定的进展。中国农业

大学的汤修映等人研制了一个6自由度黄瓜采摘机器人,该机器人基于RGB三基色模型的采摘点。同时提出了新的适合自动化采摘的斜栅网架式黄瓜栽培模式。孙明等人为苹果采摘机器人开发了一套果实识别视觉系统,并研究成功了一种使

二值图像的像素分割正确率大于80%勺彩色图像处理技术【3】。

东北林业大学的陆怀民研制了林木球果采摘机器人【4】,主要由5自由度机械手、行走机构、液压驱动系统和单片控制系统组成。浙江大学提出了基于彩色信息和红外热成像技术的树上水果识别方法。并且对7自由度番茄收获机械手进行了机构分析与优化。南京农业大学的姬长英等人在番茄采摘中运用了双目立体视觉技术对红色番茄进行定位。上海交通大学的曹其新等人运用了彩色图像处理技术和神经网络理论,开发了草莓拣选机器人【5】。江苏大学的陈树人和尹建军等提出了基于彩色柱状图算法的番茄采摘机器人视觉系统。赵杰文等研究了

基于HISS颜色特征的田间成熟番茄识别技术【6】。

再次,谈一下国外果蔬采摘机器人的研究现状:

首次应用机器人技术进行果蔬采摘的是美国学者Schertz和Brown于1968

年提出的【7】,但是当时开发的收获机器人样机只能算是半自动化的收获机械。随着计算机图形处理技术、工业机器人技术以及人工智能控制等技术的发展和日趋成熟,日本、美国、荷兰、法国、英国、意大利等国家在采摘机器人的研究上做了大量研究工作,并且试验成功了多种具有人工智能的采摘机器人。但是由于

采摘对象的复杂性和采摘环境的特殊性,目前市场上任然没有商品化的采摘机器人。

蘑菇机器人:英国Silsoe研究院研制了蘑菇采摘机器人【8】,它可以自动检测蘑菇的位置,大小,并选择性地采摘和修剪。它的末端执行器是带有软衬垫的吸引器。采摘速度为1.5g/个,成功率约为75%

甜瓜收获机器人:以色列和美国联合研制了一台甜瓜采摘机器人。该机器人主体架设在以拖拉机牵引为动力的移动平台上,采用黑白图像处理技术的

方法进行甜瓜的识别和定位,并根据甜瓜的特殊性来增加识别的成功率。试验表明。该机器人可以完成85鸠上的田间甜瓜的识别和采摘工作【9】。

苹果采摘机:该采摘机机械手具有4自由度,工作空间可以达到3m 利用CCD摄像机和光电传感器识别果实,识别率达85%该机器人末端执行器下方装有果实收集袋,缩短了从摘取到放置的时间,提高了采摘速度。缺点是该机器人无法绕过障碍物采摘苹果,也没有给出完全被茎叶遮盖的苹果的识别和采摘方法【10】。

西红柿采摘机器人:1993年,日本近腾等人研制出一台具有7自由度的西红柿收获机器人。该机器人由机械手、末端执行器、视觉传感器和移动机构等组成。末端执行器有两个机械手指和一个吸盘组成。通过彩色摄像机来寻找

和识别成熟果实,利用双目视觉方法对目标进行定位。采摘时,4轮行走机构行

走指定的距离后,进行图像采集,利用视觉系统检测出果实相对机械手坐标系的位置信息,判断西红柿是否符合收获标准,如果符合,则控制吸盘把果实吸住,再由机械手指抓住果实,然后通过机械手的腕关节拧下果实。该采摘机器人的采摘速度约为15g/个,成功率约为70%该机器人存在的问题是有些被叶茎遮挡的成熟西红柿没有被成功摘取。

2004年,美国加利福尼亚西红柿机械公司在当地农业博览会上展出2台全自动西红柿采摘机。该采摘机长12.5m,宽4.3m,每分钟可采摘1g多西红柿。这种西红柿采摘机首先将西红柿连枝带叶搁到后卷入分选仓,分选设备挑选出红色的西红柿,并将其通过输送带送入随行卡车的货舱内,然后将未成熟的西红柿连同枝叶一道粉碎喷洒在田里做肥料【11】。

柑橘采摘机:西班牙自动化研究所基于人机协作思想研究出一种柑橘采摘机器人,该机器人主体装在拖拉机上,有机械手、彩色视觉系统和超声传感定位器组成。它能通过柑橘的颜色、大小和形状来判断柑橘是否达到采摘标准,还

可以按照色泽、大小进行分级装箱。该机器人采摘速度为 1s/个。这个机器人的

特点在于:采摘机器人寻找、定位待栽果实以及机器人导航任务由人来完成,

机 器人的运动轨迹规划、关节控制和末端执行器控制等任务由机器人的采摘效率好 成功率,还能大幅度降低系统成本,有利于尽早实现采摘机器人的产业化 【12】。

草莓米摘机器人:日本近腾等人研制出一种气吸式草莓采摘机器人。 实验证明利用真空设备可以有效的补偿摄像机检测果实的位置误差, 并且最大程 度减少了跟果实娇嫩表皮的接触。该机器人对成熟果实也会随着目标果实被吸起, 因此需要控制真空吸力的强度等方面进行改进【13】。

甘蓝采摘机器人:日本国立农业研究中心的 Murakami 等人研制了甘蓝 采摘机器人【14】。该机器人由极坐标机械表、手指的末端执行器、履带式行走 装置和机器视觉系统组成。整个系统采用减压驱动,系统利用人工神经网络算法 提取果实的二值图像,采用模板匹配的方法识别合格的甘蓝。采用速度为

55g/

个,成功率为43% 从国内外果蔬采摘机器人的研究现状来看,

于一种由试验阶段向实用推广阶段的过度时期, 进

目前采摘机器人存在的问题与不足,研究开发采摘

机器人的新功能新特点 参考文献: [1 ]Edan Y ,Caines E.Systems engineering

of argicul-tural ro-bot desig n[ J].IEEE Tran sacti on on Systems,Ma n,a nd Cybernectica,1994,24(8):1259-1265.

[2] 汤修映,张铁中,果蔬收获机器人研究综述[J ].机器人。2005.27(1):90-95. [3] 周天娟,张铁中,果实采摘机器人技术研究进展和分析[J ]。中国农机化,2002

(5) :45-47.

目前果蔬采摘机器人的研究正处 我国在这方面的研究更只是只处

于起步阶段。要想让采摘机器人真正造福于人, 必须进行更深入广泛的研究,改

[4] 陆怀民。林木球果蔬采摘机器人的开发与应用[J].中国农机化,

2002(5);45-47.

[5 ]曹其新,吕恬生,永田雅辉等,草莓拣选机器人的开发[J]。农业机械,2006

(22): 38-39.

[6] 赵杰文,刘木华,杨国斌,基于HIS颜色特征田间成熟番茄识别技术[J]。农业机械学报,2004,,35( 5):122-124.

[7] Harrell R C,Adsit P D ,Pool TA,etAL.Design and imple-mentation of and mided fruit-harvesting Robot[J].Industri-al Robot,1998,25(5) ;337-346.

[8] 赵匀,武传宇,胡旭东等农业机器人的研究进进展分析[D].北京:中国农业

大学,2006.

[9] Edan Y ,Rogoizn DFlash T ,et al .Robotic melon harves-ting[J].Roboties

an Automation,2000,16(6):831-835,

[10] Kondo N ,Ting K C.Robties for Bio prodcction system [M]New York:ASAE Publicatio n,1998.

[11] 赵金英,基于三维机器视觉的西红柿采摘机器人技术研究[D]。北京:中国

农业大学,2006.

[12] 胡桂仙,于勇,王俊。农业机器人的开发与应用[J].中国农机化,2002(5):

45-47.

[13] 周天娟,张铁中,果实采摘机器人技术研究进展和分析[D] o北京农业大学,2006.

[14] MurakamiN,InoueK,OtsukaK.Selective harvesting robot of cabbage [J].JSAM,1995(2):24 31.

制系统的设计与研究

PV8/A内嵌EEPROM的工艺和制程方法及对良率的影响制系研究研制)调节器

于片于/IP 协议栈的实现 采叫处理开的研究 fl 单 勺应用研究 m 究 究研制 拿研制 和应用 系统的研制 究究 于 于 、于-口 片 / —- 试仪的研制 S 系研究与实现 Q 8585i ■?-■- ]、彳冲机 数 协寸 实持控制面板的研制 浊度仪的研制 机床短循环走丝方式研究 究开究 究 污染测量仪的研制 实的控改造 监测技术议转换器 的设计 究 巨及实现 互统的究究与实现 研究与实现 系统的设计与实现 议栈的实现与应用 开功能络嵌入式电子血压计的设计 统的设计

工业机器人发展现状及趋势

工业机器人发展现状及趋势 1国内工业机器人的发展现状 1.1发展概述 我国的工业机器人研究开始于20世纪80年代中期.在国家的支持下,通过“七五”、“八五”科技攻关.已经基本实现了实验、引进到自主开发的转变。促进了我国制造业、勘探等行业的发展。但随着我国门户的逐渐开放.国内的工业机器人产业面临着越来越大的竞争与冲击。虽然我国机器人的需求量逐年增加,但目前生产的机器人还很难达到所要求的质量.很多机器人的关键部件还需要进口。所以目前来说。我国还处在一个机器人消费型的同家。 现在,我国从事机器人研发的单位有200多家,专业从事机器人产业开发的企业有50家以上。在众多专家的建议和规划下,“七五”期间由机电部主持,中央各部委、中科院及地方科研院所和大学参加,国家投入相当资金,进行了工业机器人基础技术、基础元器件、工业机器人整机及应用工程的开发研究。“九五”期间,在国家“863”高技术计划项目的支持下,沈阳新松机器人自动化股份有限公司、哈尔滨博实自动化设备有限责任公司、上海机电一体化工程公司、北京机械工业自动化所、四川绵阳思维焊接自动化设备有限公司等确立为智能机器人主题产业基地。此外,还有上海富安工厂自动化公司、哈尔滨焊接研究所、国家机械局机械研究院及北京机电研究所、首钢莫托曼公司、安川北科公司、奇瑞汽车股份有限公司等都以其研发生产的特色机器人或应用工程项目而活跃在当今我国工业机器人市场上。 1.2机器人分类 随着科学技术的不断进步,我国工业机器人已经走上了自主研发阶段,这样标志着我国工业自动化走向了新的里程碑按照工业机器人的关键技术发展过程其可分为三代:第一代是示教再现机器人,主要由机器人本体、运动控制器和示教盒组成,操作过程比较简单。第一代机器人使用示教盒在线示教编程,并保存示教信息。当机器人自动运行时,由运动控制器解析并执行存储的示教程序,使机器人实现预定动作。这类机器人通常采用点到点运动,连续轨迹再现的控制方法,可以完成直线和圆弧的连续轨迹运动,然而复杂曲线的运动则由多段圆弧和直线组合而成。由于操作的容易性、可视性强,所以在当前工业中应用最多。

果蔬采摘机器人的研究_陈磊

果蔬采摘机器人的研究 陈磊,陈帝伊,马孝义 (西北农林科技大学水利与建筑工程学院,陕西杨凌712100) 摘要:果蔬采摘机器人是实现农业自动化的一项重要技术。为了掌握果蔬采摘机器人的最新研究动态,将其尽早应用到生产实际,根据近年来国内外最新的研究资料,简要阐述了果蔬采摘机器人的特点和国内外的研究进展,结合当前在此领域的一些研究实例进行比较分析;从采摘机器人的移动机构、机械手、识别和定位系统、末端执行器4部分介绍了其结构组成与设计技术,并在此基础上重点分析了果蔬采摘机器人研究中存在的问题,提出了未来研究开发的技术关键与方向。 关键词:果蔬采摘;机器人;机械手;控制系统 中图分类号:S24;S225.93文献标识码:A文章编号:1003-188X(2011)01-0224-04 0引言 随着电子计算机和自动控制技术的迅速发展、农业高新科技的应用和推广,农业机器人已逐步进入到农业生产领域中,并将促进现代农业向着装备机械化、生产智能化的方向发展。果蔬采摘是农业生产中季节性强、劳动强度大、作业要求高的一个重要环节,研究和开发果蔬采摘的智能机器人技术对于解放劳动力、提高劳动生产效率、降低生产成本、保证新鲜果蔬品质,以及满足作物生长的实时性要求等方面都有着重要的意义。 1果树采摘机器人的特点 工业领域是机器人技术的传统应用领域,目前已经得到了相当成熟的应用;而采摘机器人工作在高度非结构化的复杂环境下,作业对象是有生命力的新鲜水果或蔬菜。 同工业机器人相比,采摘机器人具有以下的特点[1]:①作业对象娇嫩、形状复杂且个体状况之间的差异性大,需要从机器人结构、传感器、控制系统等方面加以协调和控制;②采摘对象具有随机分布性,大多被树叶、树枝等掩盖,增大了机器人视觉定位难度,使得采摘速度和成功率降低,同时对机械手的 收稿日期:2010-03-31 基金项目:国家自然科学基金项目(50879072);国家级大学生创新实验项目(2009-2011) 作者简介:陈磊(1988-),男,陕西商洛人,在读本科生,(E-mail)chenlei055@nwsuaf.edu.cn。 通讯作者:陈帝伊(1982-),男,河北遵化人,讲师,博士研究生,(E -mail)diyichen@nwsuaf.edu.cn。避障提出了更高的要求;③采摘机器人工作在非结构化的环境下,环境条件随着季节、天气的变化而发生变化,环境信息完全是未知的、开放的,要求机器人在视觉、知识推理和判断等方面有相当高的智能;④采摘对象是有生命的、脆弱的生物体,要求在采摘过程中对果实无任何损伤,从而需要机器人的末端执行器具有柔顺性和灵巧性;⑤高智能导致高成本,农民或农业经营者无法接受,并且采摘机器人的使用具有短时间、季节性、利用率不高的缺点,是限制采摘机器人推广使用的重要因素;⑥果蔬采摘机器人的操作者是农民,不是具有机电知识的工程师,因此要求果蔬采摘机器人必须具有高可靠性和操作简单、界面友好的特点。 2国内外采摘机器人的研究进展 果蔬采摘机器人的研究开始于20世纪60年代的美国(1968年)[2],采用的收获方式主要是机械震摇式和气动震摇式。其缺点是果实易损、效率不高,特别是无法进行选择性的收获,在采摘柔软、新鲜的果蔬方面还存在很大的局限性。但在此后,随着电子技术和计算机技术的发展,特别是工业机器人技术、计算机图像处理技术和人工智能技术的日益成熟,采摘机器人的研究和开发技术得到了快速的发展。目前,日本、荷兰、法国、英国、意大利、美国、以色列、西班牙等国都展开了果蔬收获机器人方面的研究工作,涉及到的研究对象主要有甜橙、苹果、西红柿、樱桃西红柿、芦笋、黄瓜、甜瓜、葡萄、甘蓝、菊花、草莓、蘑菇等,但这些收获机器人目前都还没能真正实现商业化[3]。 我国在农业机器人领域的研究相对开始较晚,但

国内外机器人发展现状及发展动向

国外机器人发展现状及发展动向 一、全球机器人行业现状 (一)全球机器人行业现状 1、行业发展:增长态势延续 (1)预计2017年全球工业机器人销售量25万台 从2008年第四季度起,全球金融风暴导致工业机器人的销量急剧下滑。2010年全球工业机器人市场逐渐由2009年的谷底恢复。 2011年是全球工业机器人市场自1961年以来的行业顶峰,全年销售达16.6万台。2012年全球工业机器人销量为15.9万台,略有回落,主要原因是电气电子工业领域的销量有所下滑,但汽车工业机器人销量延续增长态势。 随着全球制造业产能自动化水平提升,特别是中国制造业升级,我们估计到2017年全球工业机器人销量达到25万台,年复合增长率9.5%. (2)预计到2017年全球工业机器人市场容量2700亿 2012年全球机器人本体市场容量为530亿元,本体加集成市场容量按本体大约三倍算,估计1600亿元。 估计2013年至2017年,包含本体和集成在的全球工业机器人市场,年复合增长率约为11%。预计2017年全球工业机器人市场容量将达到2700亿元。 (3)预计到2017年全球服务机器人市场容量接近500亿 根据IFR数据,2012年全球个人(或家庭)用服务机器人市场容量为73亿元,公共服务机器人市场容量为208亿元。目前看公共服务机器人产业化走在前面,市场容量更大。 预计2013-2017年个人(或家庭)用服务机器人市场容量增长率为7%,公共服务机器人市场容量年均复合增长率为17%。到2017年,全球服务机器人市场容量将接近500亿元。如果智能家居算是广义的服务机器人,服务机器人市场容量会大很多。 2、全球机器人行业布局:日欧产业优势明显,中国市场潜力巨大 (1)工业机器人市场销量与存量 全球工业机器人本体市场以中欧美日为主。日、美、德、韩、中五国存量占全球比例达71.24%,销量达69.92%。 截至2012年底,全球机器人累计销量达到247万台。机器人平均使用寿命为12年,最长15年。估计现在全球机器人存量在120万台-150万台之间。 分区域看,亚洲/澳洲增幅达到9%。亚洲增幅主要由中国需求拉动,因为中国2012年工业机器人销量增幅达到30%。 分生产地和消费地看,日本是唯一的工业机器人净出口国,拥有全球最大的机器人产能,占据全球机器人产量的66%。机器人消费地最大的区域是除日本以外的亚洲地区,占比约34%,而且是以中国市场为主。 (2)全球工业机器人与机床行业销量的对比 工业机器人销量占机床销量比反映各国机器人使用情况。这个比例的上升在一定程度上代表着这个国家机器人普及水平的提升。我们给出美日德中四国的机器人销量占机床销量比,从这个数据和历年的变化趋势看各国机器人行业的发展状况。 美日德三国的机器人销量占机床销量比稳定在一定区间(15%-25%),表明这

果实采摘机器人有关论文-刘今朝

果实采摘机器人有关论文-刘今朝

果实采摘机器人有关论文 机化141 刘今朝 摘要:果园收获作业机械化、自动化是广大果农关注的热点问题。进行果树采摘机器人研究,不仅对于适应市场需求、降低劳动强度、提高经济效率有着一定的现实意义,而且对于跟踪世界农业新技术、促进我国农业科技进步,加速农业现代化进程有着重大的意义。 关键词:果树采摘机器人现状,发展,常见问题等。 机器人技术是一门新兴的多学科交叉的综合性高新技术,涉及机构学、机械设计学、自动控制、传感技术、计算机、人工智能、仿生学等多个学科领域。机器人作为高自动化、智能化的机电一体化设备,通过计算机编程能够自动完成目标操作或移动作业,具有较高的可靠性、灵活性。因此,机器人技术已成为当今应用广泛、发展迅速和最引人注目的高新技术之一。 随着科学技术的发展和社会的进步,机器人技术已经广泛应用于工业、农业、国防、科技等各个领域。在农业生产中,由于易对植被造成损害、易污染环境等原因,传统的机械通常存在着许多的缺点。为了解决这个问题,国内、外都在进行农业机器人的研究,对农业机器人的需求极其迫切。就我国而言,机械化、自动化程度比较落后。农业机器人的问世,有望改变传统的劳动方式,改善农民的生活劳动状态。因此,世界各国对农业机器人非常重视,投入了大量的资金和人力进行研究开发。农业机器人在农业领域得到很大进展,其功能已经非常完备。农业机器人正在或已经替代人的繁重体力劳动,可以连

续不间断地工作,极大地提高了劳动生产率,是农业智能化不可缺少的重要环节。 采摘机器人是21世纪精确农业的重要装备之一,是未来智能农业机械的发展方向。采摘机器人是针对水果和蔬菜,可以通过编程来完成这些作物的采摘、转运、打包等相关作业任务的具有感知能力的自动化机械收获系统,是集机械、电子、信息、智能技术、计算机科学、农业和生物等学科于一体的交叉边缘性科学,需要涉及机械结构、视觉图像处理、机器人运动学动力学、传感器技术、控制技术以及计算信息处理等多方面的学科领域知识。 果实采摘机器人特点: (1) 作业对象的非结构性和不确定性; (2) 作业对象的娇嫩性和复杂性; (3) 良好的通用性和可编程性; (4) 操作对象和价格的特殊性。 果树采摘机器人操作者是农民,不是具有机电知识的工程师,因此要求果树采摘机器人必须具有高可靠性和操作简单的特点;另外,农业生产以个体经营为主,如果价格太高,就很难普及。 国外研究进展 ①日本的西红柿采摘机器人 日本的果蔬采摘机器人研究始于1980年,他们利用红色的番茄与背景(绿色)的差别,采用机器视觉对果实进行判别,研制了番茄采摘机器人。该机器人有5个自由度,对果实实行三维定位。由于不是

水果采摘装置设计

水果采摘装置设计 0文献综述 0.1水果采摘实现机械化的必然趋势 在水果的生产作业中,收获采摘是整个生产中最耗时最费力的一个环节。 水果收获期间需投入的劳力约占整个种植过程的50%~70%采摘作业质量的好 坏直接影响到水果的储存、加工和销售,从而最终影响市场价格和经济效益。水果收获具有很强的时效性,属于典型的劳动密集型的工作。但是由于采摘作业环境和操作的复杂性,水果采摘的自动化程度仍然很低,目前国内水果的采摘作业基本上还是手工完成。在很多国家随着人口的老龄化和农业劳动力的减少,劳动力不仅成本高,而且还越来越不容易得到,而人工收获水果所需的成本在水果的整个生产成本中所占的比例竟高达33%~50%高枝水果的采摘还带 有一定的危险性。因此实现水果收获的的机械化变得越来越迫切,发展机械化的收获技术,研究开发水果采摘机器人具有重要的意义。 研究和开发果蔬收获的智能机器人技术对于解放劳动力、提高劳动生产效率、降低生产成本、保证新鲜果蔬品质,以及满足作物生长的实时性要求等方面都有着重要的意义。采摘机器人是未来智能农业机械化的发展方向,具有广阔的应用前景。2004年11月1日颁布施行的《中华人民共和国农业机械化促进法》还明确规定国家采取措施鼓励,扶持农业机械化的发展,机械采摘取代手工作业是必然的发展趋势。 0.2国外水果机械化采摘装置研究进展及现状 水果的机械化收获技术已有40余年的研究历史。收获作业的自动化和机器人的研究始于20世纪60年代的美国,1968年美国学者Schertz和Brown首次提出应用机器人技术进行果蔬的收获,当时开发的收获机器人样机几乎都需要有人的参与,因此只能算是半自动化的收获机械。采用的收获方式主要是机械震摇式和气动震摇式,其缺点是果实易损,效率不高,特别是无法进行选择性的收获。 从20世纪80年代中期开始,随着电子技术和计算机技术的发展,特别是工业机器人技术、计算机图像处理技术和人工智能技术的日益成熟,以日本为代表的西方发达国家,包括美国、英国、法国、荷兰、以色列、西班牙等国家,都在水果采摘机

现阶段国内外机器人产业发展现状分析

机器人与智能装备产业是高度集成微电子、通信、计算机、人工智能、控制和图像处理等学科最新科研和产业成果的前沿高新技术产业,是拟建的江苏省(常州)工业技术研究院的服务的产业核心和研发的产业立足点。直接影响生活最优化和智能化的机器人技术是机器人与智能装备产业的技术核心,推进着未来机器人与智能装备领域的科技创新力和产业竞争力。 机器人技术是一种是以自动化技术和计算机技术为主体、有机融合各种现代信息技术的系统集成和应用。经过半个多世纪的发展,机器人技术在工业生产领域得到了广泛的应用,极大地提升了生产品质并成功解放了劳动力资源。作为高技术领域中重要的前沿技术之一,机器人技术具有前瞻性、先导性的特点,对学术研究、产业升级、培养创新意识、保障国家安全、引领未来经济社会的发展有着十分重要的作用。 目前,相关领域的技术突破,从根本上为提升机器人技术的学术研究提供了必要的支持,为机器人的应用范围拓宽了道路,已涵盖国防、航空航天、工业生产、服务、老人康复、教育甚至普通家庭生活,一场新的机器人技术研究高潮和发展契机业已到来。 机器人技术毫无疑问是未来的战略性高技术,充满机遇和挑战。 目前,国际上机器人市场大概有80亿至100亿,其中工业机器人占的比重最大。2025年,整个机器人市场将达到500亿,服务机器人从原来的300多万台增加到1200多万台,特种机器人(如:排爆机器人、医疗机器人等)的呼声也越来越高。另外,微软等IT企业,丰田、奔驰等汽车公司,甚至还有家具、卫生洁具企业都纷纷参与机器人的研制。 美国和日本多年来引领国际机器人的发展方向,代表着国际上机器人领域的最高科技水平。目前,日本除了比较关注特种机器人和服务机器人以外,还注重中间件的研制。然而,近年来日本基本上在做模仿性的工作,突破性技术比较少。而美国在机器人领域的技术开发方面,一直保持着世界领先地位。再有,美国主要做高附加值的产业,比如军用机器人,目前世界销售的9000台军用机器人之中,有60%来自美国。比如:美国最近研制成功的BigDog 军用机器人,能负重100公斤,行进速度跟人相当,每小时达到五公里,还能适应各种地形,即使是在侧面受到冲击时也能保持很好的系统稳定性。 在各种机器人中,工业机器人应用较早,发展最为成熟。同时,技术的不断进步一直在牵引着机器人学科的发展,使机器人的应用领域从工业机器人扩展到特种机器人和服务机器人等。机器人技术也正越来越深刻地影响着我们的生活。机器人不但将在工厂、实验室与人一起工作,还将在车站、机场、码头、交通路口为人们指引路径、回答问题、帮助行人。机器人还将步入千家万户,为老人端茶送水,护理伤病人等等。未来机器人将会越来越广泛地进入人类社会,人类对机器人的依赖会如同现时对待计算机一样,即使是短时间的离开都可能会造成很大不便。 机器人化是先进制造领域的重要标志和关键技术,针对先进制造业生产效率提高的诸多瓶颈问题,尤其是在汽车产业中,机器人得到了广泛的应用。如在毛坯制造(冲压、压铸、锻造等)、机械加工、焊接、热处理、表面涂覆、上下料、装配、检测及仓库堆垛等作业中,机器人都已逐步取代了人工作业。目前汽车制造业是所有行业中人均拥有机器人密度最高的

国内外机器人发展的现状及发展动向

国内外机器人发展的现状及发展动向 机器人技术毫无疑问是未来的战略性高技术,充满机遇和挑战。目前,国际上机器人市场大概有80亿至100亿,其中工业机器人占的比重最大。2025年,整个机器人市场将达到500亿,服务机器人从原来的300多万台增加到1200多万台,特种机器人(如:排爆机器人、医疗机器人等)的呼声也越来越高。另外,微软等IT企业,丰田、奔驰等汽车公司,甚至还有家具、卫生洁具企业都纷纷参与机器人的研制。 美国和日本多年来引领国际机器人的发展方向,代表着国际上机器人领域的最高科技水平。目前,日本除了比较关注特种机器人和服务机器人以外,还注重中间件的研制。然而,近年来日本基本上在做模仿性的工作,突破性技术比较少。而美国在机器人领域的技术开发方面,一直保持着世界领先地位。再有,美国主要做高附加值的产业,比如军用机器人,目前世界销售的9000台军用机器人之中,有60%来自美国。比如:美国最近研制成功的Big Dog军用机器人,能负重100公斤,行进速度跟人相当,每小时达到五公里,还能适应各种地形,即使是在侧面受到冲击时也能保持很好的系统稳定性。 在各种机器人中,工业机器人应用较早,发展最为成熟。同时,技术的不断进步一直在牵引着机器人学科的发展,使机器人的应用领域从工业机器人扩展到特种机器人和服务机器人等。机器人技术也正越来越深刻地影响着我们的生活。机器人不但将在工厂、实验室与人一起工作,还将在车站、机场、码头、交通路口为人们指引路径、回答问题、帮助行人。机器人还将步入千家万户,为老人端茶送水,护理伤病人等等。未来机器人将会越来越广泛地进入人类社会,人类对机器人的依赖会如同现时对待计算机一样,即使是短时间的离开都可能会造成很大不便。 机器人化是先进制造领域的重要标志和关键技术,针对先进制造业生产效率提高的诸多瓶颈问题,尤其是在汽车产业中,机器人得到了广泛的应用。如在毛坯制造(冲压、压铸、锻造等)、机械加工、焊接、热处理、表面涂覆、上下料、装配、检测及仓库堆垛等作业中,机器人都已逐步取代了人工作业。目前汽车制

果蔬采摘机器人研究进展

果蔬采摘机器人研究进展 刘长林,张铁中,杨丽 (中国农业大学,北京100083) 摘要 综述了果蔬采摘机器人的国内外研究现状,介绍了目前大部分典型的果蔬采摘机器人的研究成果。通过分析大部分采摘机器人的工作情况、功能、存在问题,指出了目前采摘机器人的应用与研究过程中的主要难点与制约因素,提出了研究开发的方向与关键技术。关键词 果蔬采摘;机器人;研究进展;关键技术中图分类号 S225 文献标识码 A 文章编号 0517-6611(2008)13-05394-04R esearch P rogress on Picking R obot for F ruits and V egetables LIU Ch ang 2lin et al (Chinese Agricultural University ,Beijing 100083) Abstract T he current situation of research on fruit and vegetable picking rob ot at h om e and broad was summ arized ,the particularly focus were on the re 2search results of m ost ty pical picking rob ots ,including rob ot principle and structure.T hrough analyzing the w orking condition ,function and problems of m ost of picking rob ot ,the present difficulties and restricted factors of picking rob ot in its research and application were point out and the research direction and key techn ology in future were provided.K ey w ords Fruit and vegetable picking ;R ob ot ;Research progress ;K ey techn ology 果蔬采摘作业是果蔬生产中最耗时、最费力的一个环节。果蔬收获期间需投入的劳力约占整个种植过程的50%~70%。随着社会经济的发展和人口的老龄化,很多国家农业劳动力严重短缺,导致果蔬生产劳动力成本增加。为降低成本,提高劳动效率,果实采摘的自动化成为亟待解决的问题。收获作业自动化和机器人的研究开始于20世纪60年代的美国,采用的收获方式主要是机械震摇式和气动震摇式,其缺点是果实易损,效率不高,特别是无法进行选择性的收获[1]。20世纪80年代中期以来,随着电子技术和计算机技术的发展,特别是工业机器人技术、计算机图像处理技术和 人工智能技术的日益成熟,以日本为代表的发达国家,包括荷兰、美国、法国、英国、以色列、西班牙等国家,在收获采摘机器人的研究上做了大量的工作。 1 国外研究进展 1.1  西红柿采摘机器人 日本近藤(K ONT O )等研制的番茄 采摘机器人,由机械手、末端执行器、视觉传感器、移动机构组成(图1)。该采摘机器人采用了7个自由度机械手。用彩色摄像机作为视觉传感器,寻找和识别成熟果实,并采用双目视觉方法对果实进行定位,利用机械手的腕关节把果实拧下。移动系统采用4轮机构,可在垄间自动行走。该番茄采 图1 日本的番茄采摘机器人 Fig.1 T om ato picking 2robot m ade in Jap an 摘机器人采摘速度大约是15s/个,成功率在70%左右。主要存在的问题是当成熟番茄的位置处于叶茎相对茂密的地方时,机械手无法避开叶茎障碍物完成采摘[2-3]。 在2004年2月10日美国加利福尼亚州图莱里开幕的世界农业博览会上,美国加利福尼亚西红柿机械公司展出2台全自动西红柿采摘机(图2)。如果西红柿单位面积产量有保证的话,那么这种长12.5m 、宽4.3m 的西红柿采摘机每分钟可采摘1t 多西红柿,1h 可采摘70t 西红柿。这种西红柿采摘机首先将西红柿连枝带叶割倒后卷入分选仓,仓内能识别红色的光谱分选设备挑选出红色的西红柿,并将其通过输送 基金项目 国家自然科学基金资助项目(60375036)。作者简介 刘长林(1979-),男,吉林榆树人,博士研究生,研究方向:农 业机器人和生物生产自动化。 收稿日期 2008203228 图2 美国的番茄采摘机器人 Fig.2 T om ato picking 2robot m ade in Am erica 带送入随行卡车的货舱内,然后将未成熟的西红柿连同枝叶 安徽农业科学,Journal of Anhui Agri.S ci.2008,36(13):5394-5397 责任编辑 刘月娟 责任校对 马君叶

国内外机器人发展现状及发展动向

国内外机器人发展现状及发展动向 一、全球机器人行业现状 (一)全球机器人行业现状 1、行业发展:增长态势延续 (1)预计2017年全球工业机器人销售量25万台 从2008年第四季度起,全球金融风暴导致工业机器人的销量急剧下滑。2010年全球工业机器人市场逐渐由2009年的谷底恢复。 2011年是全球工业机器人市场自1961年以来的行业顶峰,全年销售达16.6万台。2012年全球工业机器人销量为15.9万台,略有回落,主要原因是电气电子工业领域的销量有所下滑,但汽车工业机器人销量延续增长态势。 随着全球制造业产能自动化水平提升,特别是中国制造业升级,我们估计到2017年全球工业机器人销量达到25万台,年复合增长率9.5%. (2)预计到2017年全球工业机器人市场容量2700亿 2012年全球机器人本体市场容量为530亿元,本体加集成市场容量按本体大约三倍算,估计1600亿元。 估计2013年至2017年,包含本体和集成在内的全球工业机器人市场,年复合增长率约为11%。预计2017年全球工业机器人市场容量将达到2700亿元。 (3)预计到2017年全球服务机器人市场容量接近500亿 根据IFR数据,2012年全球个人(或家庭)用服务机器人市场容量为73亿元,公共服务机器人市场容量为208亿元。目前看公共服务机器人产业化走在前面,市场容量更大。 预计2013-2017年个人(或家庭)用服务机器人市场容量增长率为7%,公共服务机器人市场容量年均复合增长率为17%。到2017年,全球服务机器人市场容量将接近500亿元。如果智能家居算是广义的服务机器人,服务机器人市场容量会大很多。 2、全球机器人行业布局:日欧产业优势明显,中国市场潜力巨大 (1)工业机器人市场销量与存量 全球工业机器人本体市场以中欧美日为主。日、美、德、韩、中五国存量占全球比例达71.24%,销量达69.92%。 截至2012年底,全球机器人累计销量达到247万台。机器人平均使用寿命为12年,最长15年。估计现在全球机器人存量在120万台-150万台之间。 分区域看,亚洲/澳洲增幅达到9%。亚洲增幅主要由中国需求拉动,因为中国2012年工业机器人销量增幅达到30%。 分生产地和消费地看,日本是唯一的工业机器人净出口国,拥有全球最大的机器人产能,占据全球机器人产量的66%。机器人消费地最大的区域是除日本以外的亚洲地区,占比约34%,而且是以中国市场为主。 (2)全球工业机器人与机床行业销量的对比 工业机器人销量占机床销量比反映各国机器人使用情况。这个比例的上升在一定程度上代表着这个国家机器人普及水平的提升。我们给出美日德中四国的机器人销量占机床销量比,从这个数据和历年的变化趋势看各国机器人行业的发展状况。 美日德三国的机器人销量占机床销量比稳定在一定区间内(15%-25%),表明

果树采摘机器人发展概况及特点

果树采摘机器人发展概况及特点 机器人技术的发展是一个国家高科技水平和工业自动化程度的重要标志和体现f3l。机器人集成了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科的发展成果,代表高技术的发展前沿,是当前科技研究的热点方向14J。21世纪是农业机械化向智能化方向发展的重要历史时期。我国是一个农业大国,要实现农业现代化,农业装备的机械化、智能化是发展的必然趋势。随着计算机和自动控制技术的迅速发展,机器人已逐步进入农、lp生产领域。目前,国内浆果采摘作业基本上都是靠人工完成的,采摘效率低,费用占成本的比例约为50%.70%。采摘机器人作为农业机器人的重要类型,其作用在于能够降低工人劳动强度和尘产费用、提高劳动生产率和产品质量、保证果实适时采收,冈而具有很大的发展潜力lM。1.2.1国外研究成果及现状自从20世纪60年代(1968年)美国人Schertz 和Brown提出,}J机器人采摘果实之后,对采摘机器人的研究便受到广泛重视。随蓿科学技术的发展,农业机器人在国外迅速发展起来。最早的机械采摘方法是机械振摇式和7 e动振摇式两种方法,但这两种方法不仅容易损伤果实,采摘效率也不高,同时容易摘到未成熟果实I61。1983年,第一台采摘机器人在美固诞生,在以后20多年的时M晕,同、韩及欧美国家相继研究了采摘番茄、黄瓜、苹果、蘑菇、柑橘、番茄和甜瓜等的智能机器人。l、日本的番茄采摘机器人:日本的果蔬采摘机器人研究始于1 984年,他们利用红色的番茄与背景(绿色)的差别,采用机器视觉对果实进行判别,研制了番茄采摘机器人。该机器人有5个自由度,对果实实行三维定位。由于不是全自由度的机械手,操作空间受到了限制,而且孥硬的机械手爪容易损伤果实。日本冈山大学的Kondo等人研制的番茄采摘机器人,山机械手、末端执行器、行走装置、视觉系统和控制部分组成,如图1-1所示。·—●T—争Sl7777一图1.1番茄采摘机器人结构简图S1一前后延伸棱柱关节;S2一上下延伸棱柱关节:3、4、5、6、7一旋转关节该机器人采用由彩色摄像头和图像处理卡组成的视觉系统来寻找和识别成熟果实。考虑到番茄的果实经常被叶茎遮挡,为了能灵活避开障碍物,采用具有冗余度的7自由度机械手。为了不损伤果实,其末端执行器配带2个带有橡胶的手指和1个气动吸嘴,把果实吸住抓紧后,利用机械手的腕关节把果实拧下。行走机构有4个车轮,能在!tl问自动行走,利用机器人上的光传感器和设置在地头土埂的反射板,可检测是否到达土埂,到达后自动停止,转向后再继续前进。该番茄采摘机器人从识别到采摘完成的速度大约是15s/个,成功率在70%左右。有些成熟番茄未被采摘的主要原因是其位置处于叶茎相对茂密的地方,机器手无法避开叶茎障碍物。因此需要在机器手的结构、采摘工作方式和避障规划方面加以改进,以提高采摘速度和采摘成功率,降低机器人自动化收获的成本,才可能达到实用化17,81。2、荷兰的黄瓜采摘机器人:1996年,荷兰农业环境工程研究所(1MAG)研制出一种多功能黄瓜收获机器人。该机器人利用近红外视觉系统辨识黄瓜果实,并探测它的位置;末端执行器由手爪和切割器构成,用来完成采摘作业。机械手安装在行走车上,机械手的操作和采摘系统初步定位通过移动行走车来实现,机械手只收获成熟黄瓜,不损伤其他未成熟的黄瓜。该机械手有7个自山度,采用三菱公司(Mitsubishi)RV.E2的6自由度机械手,另外在底座增加了一个线性滑动自由度。收获后黄瓜的运输由一个装有可卸集装箱的自动行走的运输车来完成。整个系统无人工干预就能在温室工作,工作速度为54s/根,采摘率为80%。试验结果表明:该机器人在实验室中的采摘效果良好,但由于制造成本和适应性的制约,还不能满足商用的要求l引。3、韩国的苹果收获机器人:韩国庆北大学的科研人员研制出节果采摘机器人,它具有4个自由度,包括3个旋转关节和1个移动关节。采用三指夹持器作为末端执行器,其手心装有压力传感器,可以起到避免苹果损伤的作用。它利用CCD摄像机和光电传感器识别果实,从树冠外部识别苹果的识别率达85%,速度达5个/s。该机器人末端执行器下方安装有果实收集袋,缩短了从采摘到放置的时问,提高了采摘速度。该机器人无法绕过障碍物摘取苹果;对于叶茎完全遮盖的苹果,也没有给出识别和采摘的解决方法【lol。4、英国的蘑菇采摘机器人:英国Silsoe研究院研制了蘑菇采摘机器人,它可以自动测量蘑菇的位置、大小,并选择性地采摘和修剪。它的机械手包括2个气动移动关节和1个步进电机驱动的旋转关节;末端执行器是带有软衬挚的吸引器;视觉传感器采用TV摄像头,安装在顶部用来确定蘑菇的位置和大小。采摘成功率在7s%左右,采摘速度为6.7s/个,生长倾斜是采摘失败的主要原因。如何根据图像信息调整机器手姿态动作来提高成功率和采用多个未端执行器提高生产率是亟待解决的问趔¨1。5、西班牙的柑橘采摘机器人:西班爿:科技人员发明的这种柑橘采摘机器人主体装在拖拉机上,由摘果手、彩色视觉系统和超声传感定位器3部分组成。它能依据柑桔的颜色、大小、形状束判断柑桔是否成熟?决定是否采摘。采下的桔子还可按色泽、大小分级装箱。这种采桔机器人采摘速度为1个/s,比人工提高效率6倍多‘121。6、以色列和美国联合研制的甜瓜收获机器人:以色列和美国科技人员联合开发研制了一台甜瓜采摘机器人。该机器人丰体架设在以拖拉机牵引为动力的移动平台上,采用黑白图像处理的方法进行甜瓜的识别和定位,并根据甜瓜的特殊性来增加识别的成功率。在两个季节和两个品种的}H问试验证明,甜瓜采摘机器人可以完成85%以上的}H问甜瓜的识别和采摘.1=作‘"1。表1.1给出了国外部分国家果蔬收获机器人同期研究进展统计。1.2.2国内研究成果及现状国内在农业机器人方面的研究始于20世纪90年代中期,与发达国家相比,虽然起步较晚,但不少大专院校、研究所都在迸行采摘机器人和智能农业机械方面的研究,已有很多研究成果披露,简介如下:l、林木球果采摘机器人:东北林业大学的陆怀民研制了林木球果采摘机器人,主要由5自由度机械手、行走机构、液压驱动系统和单片机控制系统组成,如图1.2所示。采摘时,机器人停在距离母树3.5m处,操纵机械手回转马达对准母树。然后,单片机控制系统控制机械手大、小臂同时柔性升起达到~定高度,采摘爪张开并摆动,对准要采集的树枝,大小臂同时运动,使采摘爪沿着树枝生长方向趋近I 5-2m,然后采摘爪的梳齿夹拢果技,大小臂带动采集爪按原路向后返回,梳下枝上的球果-完成一次采摘。这种机器人效率是500k∥天,是人工的30一50倍。而且,采摘时对母树的破坏较小,采净率矧川。2、蘑菇采摘机器人:吉林工qk大学的周云山等人研究了蘑菇_={壬摘机器人。该系统主要由蘑菇传送带、摄像机、采摘机器手、二自由度气动伺服机构、机器手抓取控制系统和计算机等组成。汁算机视觉系统为蘑菇采摘机器提供分类所需的尺寸、面积信息,并且引导机器手准确抵达待采摘蘑菇的中心位置,防止因对不准造成抓取失败或损伤蘑菇il”。3、草莓采摘机器人:中国农业大学的张铁中等人针对我国常见的温室罩垄作栽培的草莓设计了3 种采摘机器人。分别采用桥架式、4自由度』毛门式和3自由度直角坐标形式的机械手进行跨行收获,通过彩色CCD传感系统获取彩色图像,经过图像处理进行目标草莓的识别和定位,进而控制末端执行器进行收获。同时,对草莓的生物特性、成熟度、多个草莓遮挡等实际问题进行了研究,为草莓采摘提供设计依据和理论基础{161。4、番茄采摘机器人:南京农业大学的张瑞合、姬长英等人在番茄采摘中运用双目立体视觉技术对红色番茄进行定位,将图像进行灰度变换,而后对图像的二维直方图进彳亍腐蚀、膨胀以去除小团块,提取背景区边缘,然后用拟合曲线实现彩色图像的分割,将番茄从背景中分离出来。对目标进行标定后,用面积匹配实现共轭图像中目标的配准。运用体视成像原理,从两幅二维图像中恢复目标的三维坐标。通过分析实验数据得出的结论为.当目标与摄像机的距离为300mm-400mm 时,深度误差可控制在3%4%t”I。5、黄瓜采摘机器人:中国农业大学汤修映等人研制了6自由度黄瓜采摘机器人,采用基于RGB三基色模型的G分量来进行图像分割,在特征提取后确定出黄瓜果实的采摘点,未端执行器的活动刃口平移接近固定刃口,通过简单的开合动作剪切掉黄瓜。同时,提出了新的适合机器人自动化采摘的斜栅网架式黄瓜栽培模式。6、节果采摘机器人:中国农业大学的孙明等人为苹果采摘机器人开发了一套果实识别机器视觉系统,并成功研究了一种使二值图像的像素分割J下确率大于80%的彩色图像处王甲技术。通过对果实、叶、茎等的色泽信号浓度频率谱图的分析,求}l{闽值,然后运用此值对彩色图像进行二值化处理l。引。1.2.3果树采摘机器人的特点1、采摘对象的非结构性和不确定性果实的生长是随着时fHJ和空问而变化的。生长的环境是变化的,直接受土地、季节和天气等自然条件的影响。这就要求果树采摘机器人不但要具有与生物体柔性相对应的处理功能,而且还要能够顺应多变的自然环境,在视觉、知识推理和判断等方面具有很高的智能性。2、采摘对象的娇嫩性和复杂性果实具有软弱易伤的特性,必须细心轻柔地对待和处理;并且其形状复杂,生长发育程度不一,导致相互差异很大。果蔬采摘机器人一般是采摘、移动协调进行,行走轨迹不是连接出发点和终点的最短距离,而是具有狭窄的范围、较长的距离以及遍及整个果园表面等特点。3、具备良好的通用性和可编程性因为果树采摘机器人的操作对象具有多样性和可变性,这就要求采摘机器人具有良好的通用性和可编程性。只要改变部分软、硬件,就能进行多种作业。4、操作对象的特殊性和价格的实惠性农民是果树采摘机器人的主要操作者,他们不具有相关的机电理论知识,因此要求果树采摘机器人必须具有高可靠性和操作简单的特点;另外,农业生产以个体经营为主,如果价格太高,就很难普及。

农业生产机械化论文-果蔬采摘机器人国内外研究现状

《农业生产机械化》课程论文论文题目:果蔬采摘机器人国内外研究现状 学院: 专业: 班级: 学号: 学生姓名: 指导教师: 年月日

果蔬采摘机器人国内外研究现状 摘要 本文描述了什么是果蔬机器人,果蔬采摘机器人的作用以及国内外果蔬采摘机器人的研究现状并对其作以评价。 关键词:果蔬采摘机器人国内外研究现状 Fruit and vegetable picking robot research status at home and abroad Abstract In this paper, What fruit and vegetable is robot are described in this paper, the effect of harvesting robot, and the research status of fruit and vegetable picki ng robot at home and abroad and its evaluati on. Keywords: fruit and vegetable pick ing robot research status at home and abroad 农业是国民经济的基础,这是不以人们意志为转移的客观经济规律。农业生产力发展的水平和农业劳动生产率的高低,决定了农业为其他部门提供剩余产品和劳动力的数量,进而制约着这些部门的发展规模和速度。只有农业发展了 , 国民经济其他部门才能得以进一步的发展。⑴农业机械化是农业现代化的中心环节,它凝聚着现代科学技术的最新成果,并配合农业生物等农业技术,成为发挥增产作用的基本手段和提高劳动生产率、减轻繁重体力劳动的必要条件和根本途径,从而带来生产力

国内外机器人发展现状与趋势学术报告

物联网工程 专业教育及新技术讲座 题目国内外机器人发展现状与趋 势学术报告 报告人孙立宁苏州大学教授博导 报告时间大二上 13.10.10 学院计算机科学与工程学院 专业物联网工程 学生姓名学号

随着计算机技术不断向智能化方向发展,机器人应用领域的不断地发展,一种高新技术产业已经开始发展--机器人,它在工业自动化凌云发挥了巨大作用,并且将对未来生产和社会发展起越来越重要的作用。讲座介绍了机器人的国内国外的发展历史、状况、应用、并对机器人的发展趋势作了预测,有幸参加了孙教授的讲座,让我对机器人有了更多的了解。 1.工业机器人的发展史 1893年,在机械实物制造方面,发明家摩尔制造了“蒸汽人”,它靠蒸汽驱动行走。20世纪以后,机器人的研究与开发情况更好,实用机器人问世。1927年,美国西屋公司工程师温兹利制造了第一个机器人“电报箱”。它是电动机器人,装有无线电发报机。1959年第一台可以编程、画坐标的工业机器人在美国诞生。近年来,信息技术的发展使软件机器人、网络机器人诞生,机器人概念继续拓展。自1954年美国戴沃尔最早提出了机器人的概念以来,机器人就得以不断地发展。概括起来机器人可以分为三代: (1)第一代机器人为目前工业中大量使用的示教再现机器人,通过示教存储信息,工作时读出这些信息,向执行机构发出指令,执行机构按指令再现示教的操作,广泛应用于焊接、上下料、喷漆和搬运等。 (2)第二代机器人是带感觉的机器人,机器人带有视觉、触觉等功能,可以完成检测、装配、环境探测等作业。 (3)第三代机器人即智能机器人,它不仅具备感觉功能,而且能根据人的命令,按所处环境自行决策,规划出行动。 2.工业机器人的现状 通过教授的讲解我了解了国外工业机器人发展已有60年的历史,我国的工业机器人发展也有50多年的历史,广泛引人注目也只是近30年的事情。进入21世纪后,工业机器人进入到快速发展时期。但是我国工业机器人行业正面临着十分严峻的形势。随着机器人技术的发展和工业机器人的广泛应用,装备制造业将会迎来一次新的变革。 目前,我国研制的工业机器人已达到了工业应用水平。在制造业中,尤其是在汽车产业中,工业机器人得到了广泛的应用。如在机械加工、焊接、热处理、

果树采摘机器人的发展现状及运动学分析

果树采摘机器人的发展现状及运动学分析 专业:机械制造与自动化 学生:张长峰 指导老师:周威铎 完成日期:2013.4.10

摘要 果园收获作业机械化、自动化是广大果农关注的热点问题。进行果树采摘机器人研究,不仅对于适应市场需求、降低劳动强度、提高经济效率有着一定的现实意义,而且对于跟踪世界农业新技术、促进我国农业科技进步,加速农业现代化进程有着重大的意义。 果树采摘机器人是一个集环境感知、动态决策与规划、行为控制与执行等多种功能于一体的综合系统,它是由机械手固定在履带式移动平台上构成的一类特殊的移动机器人系统。本文在以自行设计的机器人机械结构为研究对象,对果树采摘机器人的控制系统进行了分析、研究和设计,并对采摘机器人避障技术进行了探讨。主要工作如下: 分析了果树采摘机器人机械结构,介绍了机器人运动学理论,根据自行设计的5自由度机械臂机械特性,采用几何结构算法,建立了果树采摘机器人机械臂的正、逆运动学方程。 关键词:果树采摘机器人,机械结构,运动学分析等等。

ABSTRACT Orchard mechanized and automation harvesting operations have become the hot issue of majority fruit growers concerned.Develop the fruit harvesting robot research not only has a certain degree of practical significance to meet market demand and reduce labor intensity and improve economic efficiency, but also can to track new agricultural technologies of the world. It is important to promote China's agricultural scientific and technological progress, accelerate the agricultural modernization process. Fruit harvesting robot is an integrated system that has multiple functions such as environmental apperceive,dynamic decision making, planning conduct control and implementation. It is a special kind of mobile robot system that the mechanical hand was fixed in the track type mobile platform. This paper was supported by the National “863” Project: “research on fruit harvesting robot’s key technologies”. A self-designed robot mechanical structure was uesd as the study object.Analysis, research and design was progressed for the fruit harvesting robot's control system. The adaptive fuzzy PID controller was composed by PID control method combined with fuzzy logic control method and the controller was used in fruit harvesting robot visual servo control.At the same time the technology of harvesting robot’s control and obstacle avoidance was analysed.The main research contents as follows: the mechanical structure of the fruit harvesting robot was analysed and the theory of robot kinematics was introduced. Based on the self-design 5 degrees of freedom robot manipulator’s mechanical properties, the fruit harvesting robot’s positive and inverse kinematics equations were found using the geometric structure of the algorithm. KEY WORDS: fruit harvesting robot, obstacle avoidance, sensor and so on.

相关主题
文本预览
相关文档 最新文档