当前位置:文档之家› 一步法SYBR Green I荧光定量RT—PCR检测鸡传染性支气管炎病毒方法的建立

一步法SYBR Green I荧光定量RT—PCR检测鸡传染性支气管炎病毒方法的建立

一步法SYBR Green I荧光定量RT—PCR检测鸡传染性支气管炎病毒方法的建立
一步法SYBR Green I荧光定量RT—PCR检测鸡传染性支气管炎病毒方法的建立

荧光显微镜原理

各位老师、同学: 按照上次组会的安排,今天下午我将结合荧光分析仪向大家简单的介绍一下荧光的原理和具体的实际操作过程,时间安排在下午3:30(京时),地点在510(荧光室,我会提前约好拿到钥匙),相关内容大概如下: 1.荧光的基本原理 2.实际的操作过程 3.几个常见的问题: a.如何选择合适的激发波长? b.狭缝宽度是如何确定的? c.荧光量子产率测试的一般流程 请有兴趣的师生按时参加。 荧光显微镜原理及应用 (一)荧光显微镜的原理和结构特点:荧光显微镜是利用一个高发光效率的点光源,经过滤色系统发出一定波长的光(如紫外光3650入或紫蓝光4200入)作为激发光、激发标本内的荧光物质发射出各种不同颜色的荧光后,再通过物镜和目镜的放大进行观察。这样在强烈的对衬背景下,即使荧光很微弱也易辨认,敏感性高,主要用于细胞结构和功能以及化学成分等的研究。荧光显微镜的基本构造是由普通光学显微镜加上一些附件(如荧光光源、激发滤片、双色束分离器和阻断滤片等)的基础上组成的。荧光光源——般采用超高压汞灯(50一

200W),它可发出各种波长的光,但每种荧光物质都有一个产生最强荧光的激发光波长,所以需加用激发滤片(一般有紫外、紫色、蓝色和绿色激发滤片),仅使一定波长的激发光透过照射到标本上,而将其他光都吸收掉。每种物质被激发光照射后,在极短时间内发射出较照射波长更长的可见荧光。荧光具有专一性,一般都比激发光弱,为能观察到专一的荧光,在物镜后面需加阻断(或压制)滤光片。它的作用有二:一是吸收和阻挡激发光进入目镜、以免于扰荧光和损伤眼睛,二是选择并让特异的荧光透过,表现出专一的荧光色彩。两种滤光片必须选择配合使用。 荧光显微镜就其光路来分有两种: 1.透射式荧光显微镜: 激发光源是通过聚光镜穿过标本材料来激发荧光的。常用暗视野集光器,也可用普通集光器,调节反光镜使激发光转射和旁射到标本上.这是比较旧式的荧光显微镜。其优点是低倍镜时荧光强,而缺点是随放大倍数增加其荧光减弱.所以对观察较大的标本材料较好。 2.落射式荧光显微镜这是近代发展起来的新式荧光显微镜,与上不同处是激发光从物镜向下落射到标本表面,即用同一物镜作为照明聚光器和收集荧光的物镜。光路中需加上一个双色束分离器,它与光铀呈45。角,激发光被反射到物镜中,并聚集在样品上,样品所产生的荧光以及由物镜透镜表面、盖玻片表面反射的激发光同时进入物镜,反回到双色束分离器,使激发光和荧光分开,残余激发光再被阻断滤片吸收。如换用不同的激发滤片/双色束分离器/阻断滤片的组

qPCR实验操作流程

Q-PCR实验流程 一、①实验前准备,每天早上到实验室后,先把超净工作台的紫外灯打 开15-20分钟。②超净台前做实验,需佩戴干净的橡胶手套/一次性薄膜手套,RNA抽提需带口罩。③取EP管/枪头时需用镊子,不可以用使用过的手套直接取用。取完EP管/枪头后,袋子及时封好。④橡胶手套须放入超净台照射紫外,实验操作过程中不得带出超净台,移液器在一天工作结束后调至最大量程,并用75%乙醇清洁移液器,枪头盒及超净台面。⑤实验进行的过程中或观看实验时,没有带口罩不要在超净台前讲话。 二、总RNA抽提 1)细胞培养皿中细胞样品用1*PBS洗两次后,用1ml枪将PBS吸干净,加入1ml Trizol (Invitrogen)溶液,吹打混匀,并吸至1.5ml RNase free EP管中使细胞充分裂解,室温静置5min; 组织样品用液氮充分研磨,加入1ml Trizol (Invitrogen)溶液,混匀,室温放置5min使其充分裂解;(管盖与管壁都需标记样品名称) 2)加入200μl氯仿,剧烈振荡混匀30s,使水相和有机相充分接触,室温静置3-5min;(离心时离心管按顺序排放,离心完毕,离心管的顺序也按顺序排好,与第一步的顺序一致) 3)4℃下,14,000g离心15min,可见分为三层,RNA在上层水相,移至另一个新的RNase free EP管;(用20-200ul的枪吸取上清,吸上清时,枪头应沿着液面上层吸取上清,枪头不可碰到、吸到中间层) 4)沉淀RNA:加入等体积异丙醇,轻柔地充分混匀(颠倒6-8次)(不应用振荡器混匀),室温静置10min; 5)4℃下,14,000g离心10min,收集RNA沉淀(如离心后仍不见EP管底部有沉淀,应将EP管放置在-80度冰箱过夜,继续在4℃下,14,000g 离心10min,收集RNA沉淀),去上清; 6)用75%乙醇洗涤两次(12,000g离心5min)(加入乙醇后只需轻轻颠倒EP管即可,不用振荡器震荡或枪头吸打沉淀),超净台风干;沉淀不

实时荧光定量PCR(Real-Time-PCR)实验流程

实时荧光定量PCR(Real-Time PCR)实验流程 一、RNA的提取(详见RNA提取及反转录) 不同组织样本的RNA提取适用不同的提取方法,因为Real-Time PCR对RNA样品的质量要求较高,所以,正式实验前要选择一款适合自己样品的提取方法,在实验过程中要防止RNA的降解,保持RNA的完整性。 在总RNA的提取过程中,注意避免mRNA的断裂;取2ug进行RNA的甲醛变性胶电泳检测,如果存在DNA污染时,要用DNase I进行消化(因为在处理过程中RNA极易降解,建议体系中加入适量RNA酶抑制剂)。 二、DNase I 消化样品RNA 中的DNA 用DNase I 消化DNA 组份加量 模板(RNA) 10ug RNase Inhibitor 4ul DNase I buffer 10ul DNase I 10ul DEPC处理H2O 至100ul 混匀,37℃ 90min 三、RNA琼脂糖凝胶电泳 1.1%的琼脂糖凝胶电泳凝胶的配制: 1)称取琼脂糖0.45g放入三角瓶中,向其中加入4.5ml的10×MOPS缓冲液和39.5ml 的DEPC水,放微波炉里溶化。 2)待冷却到60摄氏度左右时,加入1ml甲醛,摇匀(避免产生气泡)。倒入凝胶板上凝固30min。 2.取各个RNA样品4μl,加入6×RNA电泳上样缓冲液2μl混匀,加入变性胶加样孔中。3.120V电压下电泳25min。用凝胶紫外分析仪观察,照相保存。 4.RNA电泳结果如下图所示。可见28S和18S两条明亮条带,无DNA条带污染。 四.RNA反转录为cDNA 反转录程序(以MBI的M-MLV为例) 组份加量(20ul体系) 加量(40ul体系) 模板(RNA) 0.1~2.5ug(根据条带的亮度适当调整) 3ug(根据条带的亮度适当调整) 引物T18(50uM)(或其他引物) 2.0ul 4.0ul DEPC处理H2O 至12.5ul 至25ul

QPCR原理及应用

QPCR原理及应用 由于Real-time qPCR的众多优点,现在已经是生命科学领域的一项常规技术。越来越多的研究文章中涉及RT-PCR的实验,也基本上被real-time qPCR 所代替。由于real-time aPCR 输出的数据不同于常规的PCR 电泳检测,很多没有做过real-time qPCR的研究者常常感到高深莫测,不知从何入手;甚至一些做过次实验的研究者也会对数据处理分析感到迷惑,不知所措。 本文就从real-time qPCR的发展史说起,包括real-time qPCR的原理,实验设计,实际操作,数据分析,常见问题解答五个方面,手把手教你从各个方面了解real-time qPCR,彻底的从菜鸟到高手! 一、Real-time qPCR发展史 Real-time qPCR就是在PCR扩增过程中,通过荧光信号,对PCR进程进行实时检测。由于在PCR扩增的指数时期,模板的Ct 值和该模板的起始拷贝数存在线性关系,所以成为定量的依据。由于常规的PCR的缺点,real-time qPCR 由于其操作简便,灵敏度高,重复性好等优点发展非常迅速。现在已经涉及到生命科学研究的各个领域,比如基因的差异表达分析,SNP检测,等位基因的检测,药物开发,临床诊断,转基因研究等。 在Real-time qPCR技术的发展过程中,定量PCR仪的发展起了至关重要的作用。1995年,美国PE公司(已经并入Invitrogen公司)成功研制了Taqman 技术,1996年推出了首台荧光定量PCR检测系统,通过检测每个循环的荧光强度,通过Ct值进行数据分析。从而荧光定量PCR获得广泛应用。现在的定量PCR 仪有ABI7000、7300、7500,7700、7900HT、StepOnePlusTM、StepOneTM、PRISM@StepOneTM系列;BIO-RAD的CFX96、iCycler iQ5@、MyiQ@、MJ Research Chromo4TM Opticon 系列;Stratagene MxTM系列;Roche LightCycler@系列;Eppendorf Masercycler@;Corbett Rotor-GeneTM;Cepheid SmartCycler@和BIOER的LineGene系列。 随国内生命科学的快速发展,科研水平不断提高,发高水平文章已不再是新鲜事。与其同时,国内公司经过长期不懈的努力,也有自主研发的real-time PCR

实时荧光定量PCR原理和实验

实时荧光定量PCR原理和实验 陈云地 作者单位:200030 美国应用生物系统公司(Applied Biosystems) 无论是对遗传病(如地中海贫血和血友病)、传染病(如肝炎和艾滋病)或肿瘤进行基因诊断,还是研究药物对基因表达水平的影响,或者监控药物和疗法的治疗效果,定量PCR技术都可以发挥很大作用。定量PCR技术的最新进展是实时荧光定量。该技术借助于荧光信号来检测PCR产物,一方面提高了灵敏度,另一方面还可以做到PCR每循环一次就收集一个数据,建立实时扩增曲线,准确地确定CT值,从而根据CT值确定起始DNA拷贝数,做到了真正意义上的DNA定量。这是DNA定量技术的一次飞跃。 根据最终得到的数据不同,定量PCR可以分为相对定量和绝对定量两种。典型的相对定量如比较经过不同方式处理的两个样本中基因表达水平的高低变化,得到的结果是百分比;绝对定量则需要使用标准曲线确定样本中基因的拷贝数或浓度。根据所使用的技术不同,荧光定量PCR 又可以分为TaqMan探针和SYBR Green I 荧光染料两种方法。比较而言,探针杂交技术在原理上更为严格,所得数据更为精确;荧光染料技术则成本更为低廉,实验设计更

为简便。在选择实验方案时要根据实验目的和对数据精度的要求来决定。 定量实验与定性实验最大的不同,是要考虑统计学要求并对数据进行严格的校正,以消除偶然误差。因此重复实验和设立内对照非常重要。由于各种各样的客观原因,这一点在实践中往往被轻视或忽视,需要着重强调。当然,与定性实验一样,定量PCR也要设立阴性和阳性对照,以监控试剂和实验操作方面可能出现的问题。 1 为什么终点定量不准确? 我们都知道理论上PCR是一个指数增长的过程,但是实际的PCR扩增曲线并不是标准的指数曲线,而是S形曲线。这是因为随着PCR循环的增多,扩增规模迅速增大,Taq酶、dNTP、引物,甚至DNA模板等各种PCR要素逐渐不敷需求,PCR的效率越来越低,产物增长的速度就逐渐减缓。当所有的Taq酶都被饱和以后,PCR就进入了平台期。由于各种环境因素的复杂相互作用,不同的PCR反应体系进入平台期的时机和平台期的高低都有很大变化,难以精确控制。所以,即使是重复实验,各种条件基本一致,最后得到的DNA拷贝数也是完全不一样的,波动很大(图1)。

光学显微镜的原理及构造

光学显微镜的原理及构造显微镜是人类认识物质微观世界的重要工具,是现代科学研究工作不可缺少的仪器之一。显微镜自1666年问世以来已有300多年的历史了,其间随着科学技术不断发展,显微镜的品种不断增加,结构和性能逐步得到完善和提高。 根据不同的使用用途,光学显微镜可分为普通光学显微镜、暗视野显微镜、相差显微镜、荧光显微镜、倒置显微镜、体视显微镜、偏光显微镜等10多种。目前,世界上许多国家都可以生产光学显微镜,牌名、种类繁杂,其中德国、日本等国制造的显微镜品质、数量占优势,但价格昂贵。 对于现代的光学显微镜,包括各种简单的常规检验用显微镜、万能研究以及万能照相显微镜等,首先要认识其构造及各部件的功能,同时要掌握正确的调试、使用和保养方法,才能在实际应用中面对各种要求时以不同的显微镜检方法,充分发挥显微镜应有的功能,提高常规检验工作效率. 光学显微镜的原理和构造 随着科学技术的发展,显微镜检方法由最传统的明视野、暗视野发展出了相差法、偏光方法;荧光方法也由透射光激发进展为落射光激发,使荧光效率大为提高;微分干涉相衬方法基于偏光方法,而巧妙地利用了微分干涉棱镜,使之能应用于医学与生物学的样品,又能应用于金相样品的分析与检验。 下面以德国ZEISS公司生产的Axioplan万能研究用显微镜,简单介绍万能显微镜的基本组成部件。 1. 显微镜主机体(stand) 显微镜的主机体设计成金字塔形,而底座的截面呈T字形,使显微镜的整体相当稳固。显微镜的光学部件和机构调节部件、光源的灯室、显微照相装置、电源变压稳压器等,都可安装在主机体上或主机体内。 2. 显微镜的底座(base) 底座和主机体通常组成一个稳固的整体。底座内通常装有透射光照明光路系统(聚光、集光和反光)部件,光源的滤光片组,粗/微调焦机构,光源的视场光阑也安装在底座上。 3. 透射光光源(tranilluminator) 透射光光源由灯室(lamp housing)、灯座(lamp socket)、卤素灯(halogen lamp)、集光与聚光系统(lamp collector and lamp condenser)及其调整装置组成。 4. 透射光光源与反射光光源的转换开关(toggle switch) 这是新一代AXIO系列显微镜特有的装置,透射光和反射光可通用。当具有透/反两用的配置时,利用这一转换开关能方便而又迅速的使透射光 和反射光互相转换。在纯透射光的配置中,这一开关就改为电源开关。

实时荧光定量PCR方法简介

实时荧光定量PCR方法简介 一.实时荧光定量PCR的基本原理 理论上,PCR过程是按照2n(n代表PCR循环的次数)指数的方式进行模板的扩增。但在实际的PCR反应过程中,随着反应的进行由于体系中各成分的消耗(主要是由于聚合酶活力的衰减)使得靶序列并非按指数方式扩增,而是按线性的方式增长进入平台期。因此在起始模板量与终点的荧光信号强度间没有可靠的相关性。如采用常规的终点检测法(利用EB染色来判断扩增产物的多少,从而间接的判断起始拷贝量),即使起始模板量相同经PCR 扩增、EB染色后也完全有可能得到不同的终点荧光信号强度。 为了能准确判断样品中某基因转录产物(mRNA)的起始拷贝数,实时荧光定量PCR采用新的参数——Ct值,定量的根本原理是Ct值与样品中起始模板的拷贝数的对数成线性反比关系。 Ct值是如何得到的 在实时荧光定量PCR的过程中,靶序列的扩增与荧光信号的检测同时进行,定量PCR仪全程采集荧光信号,实验结束后分析软件自动按数学算法扣除荧光本底信号并设定阈值从而得到每个样品的Ct值。 Ct值的定义 Ct值中的“C”代表Cycle(循环),“t”代表检测threshhold(阈值),其含义是PCR扩增过程中荧光信号强度达到阈值所需要的循环数;也可以理解为扩增曲线与阈值线交点所对

应的横坐标。 Ct值与样品中模板的对应关系 Ct值与样品中起始模板的拷贝数的对数成线性反比关系(y=ax+b,x代表起始模板拷贝数的对数,y代表Ct值)。 与终点法相比利用Ct值的优势 由于Ct值是反映实际PCR反应过程中扩增即将进入指数期的参数,该参数几乎不受试剂消耗等因素的影响,因此利用Ct值判断的起始模板拷贝数更加精确,重复性也更好。传统的终点检测法是在PCR扩增经历了指数扩增期进入平台期后利用EB等染料染色来判断扩增产物的多少,从而间接的判断起始拷贝量,这种方法的精确度不高、重复性也不好。 下图中是96个复孔的实时扩增曲线(完全相同的反应体系、相同的反应protocol、相同的样品起始浓度),可以看到Ct值具有很好的重复性,而终点的荧光信号强度差异达到300个单位。 此外,采用实时荧光定量PCR还能从方法学上有效的防止PCR实验中交叉污染的问题。因为荧光定量PCR中模板的扩增与检测是同时进行的,当实验完成后即可获得定量结果,

(待分)rtpcr原理和实验步骤

原理与实验步骤 一、知识背景: 、基因表达: 单拷贝基因表达存在逐步放大机制,如一个蚕丝心蛋白基因个丝心蛋白(每个存活,可以合成个丝心蛋白)共合成个丝心蛋白。因此单拷贝基因的表达水平对于其功能水平的调控是非常重要的。 、技术( ):即聚合酶链式反应。 在模板、引物和四种脱氧核苷酸存在的条件下依赖于聚合酶的酶促反应,其特异性由两我工合成的引物序列决定。反应分三步: .变性:通过加热使双螺旋的氢键断裂,形成单链。 .退火:将反应混合液冷却至某一温度,使引物与模板结合。 .延伸:在聚合酶和及+存在下,退火引物沿’’方向延伸。 以上三步为一个循环,如此反复。 、逆转录酶和 逆转录酶()是存在于病毒体内的依赖的聚合酶,至少具有以下三种活性: 、依赖的聚合酶活性:以为模板合成第一条链。 、水解活性:水解杂合体中的。 、依赖的聚合酶活性:以第一条链为模板合成互补的双链. 二、的准备: .引物的设计及其原则: ) 引物的特异性决定反应特异性。因此引物设计是否合理对于整个实验有着至关重要的影响。在引物设计时要充分考虑到可能存在的同源序列,同种蛋白的不同亚型,不同的剪切方式以及可能存在的对引物的特异性的影响。尽量选择覆盖相连两个内含子的引物,或者在目的蛋白表达过程中特异存在而在其他亚型中不存在的内含子。 ) 引物设计原则的把握 引物设计原则包括 : 、引物长度:一般为~,引物太短会影响的特异性,引物太长的最适延伸温度会超过酶的最适温度,也影响反应的特异性。 、碱基分布:四种碱基最好应随机分布,避免嘌呤或嘧啶的聚集存在,特别是连续出现个以上的单一碱基。含量(值):%~%,扩增的复性温度一般是较低值减去~度。 、’端要求:’端必须与模板严格互补,不能进行任何修饰,也不能有形成任何二级结构的可能。末位碱基是时错配的引发效率最低,、居中间,因此引物的’端最好选用、、而尽可能避免连续出现两个以上的。 、引物自身二级结构:引物自身不应存在互补序列,否则会自身折叠成发夹状结构或引物自身复性。 、引物之间的二级结构:两引物之间不应有多于个连续碱基互补,’端不应超过个。、同源序列:引物与非特异扩增序列的同源性应小于连续个的互补碱基存在。 、’端无严格限制:’末端碱基可以游离,但最好是或,使产物的末端结合稳定。还可以进行特异修饰(标记、酶切位点等)等等。 根据实验目的选择适当的引物。常用引物设计软件如,等对于这些条件都可以自行设置。 、耗材:

实时荧光定量PCR原理

实时荧光定量PCR原理 所谓实时荧光定量PCR技术,是指在PCR反应体系中加入荧光基团,利用荧光信号积累实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析的方法。 1. Ct 值的定义 在荧光定量PCR技术中,有一个很重要的概念-- Ct值。C代表Cycle,t代表threshold,Ct值的含义是:每个反应管内的荧光信号到达设定的域值时所经历的循环数(如图1所示)。 2. 荧光域值(threshold)的设定 PCR反应的前15个循环的荧光信号作为荧光本底信号,荧光域值的缺省设置是3-15个循环的荧光信号的标准偏差的10倍,即:threshold = 10 ′ SDcycle 3-15 3. Ct值与起始模板的关系 研究表明,每个模板的Ct值与该模板的起始拷贝数的对数存在线性关系,起始拷贝数越多,Ct值越小。利用已知起始拷贝数的标准品可作出标准曲线,其中横坐标代表起始拷贝数的对数,纵坐标代Ct值。因此,只要获得未知样品的Ct值,即可从标准曲线上计算出该样品的起始拷贝数。 4. 荧光化学 荧光定量PCR所使用的荧光化学可分为两种:荧光探针和荧光染料。现将其原理简述如下:1)TaqMan荧光探针:PCR扩增时在加入一对引物的同时加入一个特异性的荧光探针,该探针为一寡核苷酸,两端分别标记一个报告荧光基团和一个淬灭荧光基团。探针完整时,报告基团发射的荧光信号被淬灭基团吸收;PCR扩增时,Taq酶的5'-3'外切酶活性将探针酶切降解,使报告荧光基团和淬灭荧光基团分离,从而荧光监测系统可接收到荧光信号,即每扩增一条DNA链,就有一个荧光分子形成,实现了荧光信号的累积与PCR产物形成完全同步。而新型TaqMan-MGB探针使该技术既可进行基因定量分析,又可分析基因突变(SNP),有望成为基因诊断和个体化用药分析的首选技术平台。2)SYBR荧光染料:在PCR反应体系中,加入过量SYBR荧光染料,SYBR荧光染料特异性地掺入DNA 双链后,发射荧光信号,而不掺入链中的SYBR染料分子不会发射任何荧光信号,从而保证荧光信号的增加与PCR产物的增加完全同步。 内标在传统定量中的意义 1.几种传统定量PCR方法简介: 1)内参照法:在不同的PCR反应管中加入已定量的内标和引物,内标用基因工程方法合成。上游引物用荧光标记,下游引物不标记。在模板扩增的同时,内标也被扩增。在PCR 产物中,由于内标与靶模板的长度不同,二者的扩增产物可用电泳或高效液相分离开来,分别测定其荧光强度,以内标为对照定量待检测模板。2)竞争法:选择由突变克隆产生的含有一个新内切位点的外源竞争性模板。在同一反应管中,待测样品与竞争模板用同一对引物同时扩增(其中一个引物为荧光标记)。扩增后用内切酶消化PCR产物,竞争性模板的产物被酶解为两个片段,而待测模板不被酶切,可通过电泳或高效液相将两种产物分开,分别测定荧光强度,根据已知模板推测未知模板的起始拷贝数。3)PCR-ELISA法:利

实时荧光定量PCR仪ViiA7操作步骤

实时荧光定量PCR仪ViiA 7 操作步骤 ——以RNase P示例实验为例 一、定义384孔样品模块的实验属性 打开电脑访问ViiA 7 软件,然后打开左侧仪器开关。单击Experiment Setup图标。单击Experiment Properties以访问Experiment Properties屏幕。 在ViiA 7 软件中设计RNase P实验示例时,请输入: 二、使用Define屏幕定义RNase P示例实验的目标基因、样品。 1. 单击Define以访问Define屏幕。 2. 定义目标基因 a. 单击New以增加和定义目标基因。 b. 在目标基因表中,单击Target Name列中的一个单元格,并输入: c. (可选)单击Save以便将新增或原有的正在编辑的目标基因保存到Target Library。 d. 单击Add Saved从目标基因库添加目标基因。 3. 定义样品 a. 单击New以增加和命名样品。 b. 在样品表中,单击Sample Name列中的一个单元格,并输入: c. (可选)单击Save以将新增或原有的正在编辑的样品保存到Sample Library。 d. 单击Add Saved从样品库添加样品。 4. (可选)定义生物学平行测定 a. 在Define Biological Replicates Groups表中,单击New以增加和命名生物学平行 测定组。 b. 从下拉菜单选择Color。 c. 单击Comments列,以便为该生物学平行测定组添加注释。 注:实验示例不使用生物学平行测定组。保留Biological Replicate Groups空白。 5. 选择用作参比荧光的染料ROX。

荧光显微镜原理

荧光显微镜原理 一、荧光显微镜 荧光显微镜是免疫荧光细胞化学的基本工具。它是由光源、滤板系统和光学系统等主要 部件组成。是利用一定波长的光激发标本发射荧光,通过物镜和目镜系统放大以观察标本的 荧光图像。 (一)光源 现在多采用200W的超高压汞灯作光源,它是用石英玻璃制作,中间呈球形,内充一定 数量的汞,工作时由两个电极间放电,引起水银蒸发,球内气压迅速升高,当水银完全蒸发 时,可达50~70个标准大气压力,这一过程一般约需5~15min。超高压汞灯的发光是电极间放电使水银分子不断解离和还原过程中发射光量子的结果。它发射很强的紫外和蓝紫光, 足以激发各类荧光物质,因此,为荧光显微镜普遍采用。 超高压汞灯也散发大量热能。因此,灯室必须有良好的散热条件,工作环境温度不宜太 高。 新型超高压汞灯在使用初期不需高电压即可引燃,使用一些时间后,则需要高压启动(约

为15000V),启动后,维持工作电压一般为50~60V,工作电流约4A左右。200W超高压汞灯的平均寿命,在每次使用2h的情况下约为200h,开动一次工作时间愈短,则寿命愈短, 如开一次只工作20min,则寿命降低50%。因此,使用时尽量减少启动次数。灯泡在使用过 程中,其光效是逐渐降低的。灯熄灭后要等待冷却才能重新启动。点燃灯泡后不可立即关闭, 以免水银蒸发不完全而损坏电极,一般需要等15min。由于超高压汞灯压力很高,紫外线强 烈,因此灯泡必须置灯室中方可点燃,以免伤害眼睛和发生爆炸时造成操作者受伤。 超高压汞灯(100W或200W)光源的电路和包括变压、镇流、启动几个部分。在灯室上 有调节灯泡发光中心的系统,灯泡球部后面安装有镀铝的凹面反射镜,前面安装有集光透镜。 国产超高压汞灯GCQ-200型性能良好,可以代替HBO-200等型的进口灯泡,平均寿命在200h以上,价格也比较低。 我国研制的一种简易轻便型高色温溴钨荧光光源装置,体积小,重量轻,功率小,交、 直流两用(自带直流电源),易于携带,使用方便,已推广应用。 (二)滤色系统 滤色系统是荧光显微镜的重要部位,由激发滤板和压制滤板组成。滤板型号,各厂家名

荧光显微镜的原理和荧光显微镜结构特点

荧光显微镜的原理和荧光显微镜结构特点发布时间:2011-06-14 荧光显微镜的原理和荧光显微镜结构特点 荧光显微镜的原理是什么, 荧光显微镜是利用一个高发光效率的点光源,经过滤色系统发出一定波长的光(如紫外光365nm或紫蓝光420nm)作为激发光,激发检测标本内的荧光物质发射出各种不同颜色的荧光后,通过物镜和目镜系统的放大以观察标本的荧光图像的光学显微镜,是医学检验中的重要仪器之一。 在强烈的对衬背景下,即使荧光很微弱也易辨认,敏感性高,主要用于细胞结构和功能以及化学成分等的研究。荧光显微镜的基本构造是由普通光学显微镜加上一些附件(如荧光光源、激发滤片、双色束分离器和阻断滤片等)的基础上组成的。荧光光源——般采用超高压汞灯(50一200W),它可发出各种波长的光,但每种荧光物质都有一个产生最强荧光的激发光波长,所以需加用激发滤片(一般有紫外、紫色、蓝色和绿色激发滤片),仅使一定波长的激发光透过照射到标本上,而将其他光都吸收掉。每种物质被激发光照射后,在极短时间内发射出较照射波长更长的可见荧光。荧光具有专一性,一般都比激发光弱,为能观察到专一的荧光,在物镜后面需加阻断(或压制)滤光片。它的作用有二:一是吸收和阻挡激发光进入目镜、以免于扰荧光和损伤眼睛,二是选择并让特异的荧光透过,表现出专一的荧光色彩。两种滤光片必须选择配合使用。 萤光显微镜原理: (1) 光源幅射出各种波长的光(以紫外至红外)。 (2) 激励滤光源:透过能使标本产生萤光的特定波长的光,同时阻挡对激发萤光无用的光。

(3) 荧光标本:一般用萤光色素染色。 (4) 阻挡滤光镜:阻挡掉没有被标本吸收的激发光有选择地透射萤光,在萤光中也有部分波长被选择透过。以紫外线为光源,使被照射的物体发出荧光的显微镜。

实时荧光定量PCR全方位解析

实时荧光定量PCR全方位解析 实时荧光定量PCR技术于1996年由美国Applied Biosystems公司推出,所谓实时荧光定量PCR技术,是指在PCR反应体系中加入荧光基团,利用荧光信号积累实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析的方法。 PCR原理 所谓实时荧光定量PCR技术,是指在PCR反应体系中加入荧光基团,利用荧光信号积累实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析的方法。 1. Ct 值的定义 在荧光定量PCR技术中,有一个很重要的概念-- Ct值。C代表Cycle,t代表threshold,Ct值的含义是:每个反应管内的荧光信号到达设定的域值时所经历的循环数。 2. 荧光域值(threshold)的设定 PCR反应的前15个循环的荧光信号作为荧光本底信号,荧光域值的缺省设置是3-15个循环的荧光信号的标准偏差的10倍,即:threshold = 10 ′ SDcycle 6-15 3. Ct值与起始模板的关系 研究表明,每个模板的Ct值与该模板的起始拷贝数的对数存在线性关系〔1〕,起始拷贝数越多,Ct值越小。利用已知起始拷贝数的标准品可作出标准曲线,其中横坐标代表起始拷贝数的对数,纵坐标代Ct值。因此,只要获得未知样品的Ct值,即可从标准曲线上计算出该样品的起始拷贝数。 4. 荧光化学 荧光定量PCR所使用的荧光化学可分为两种:荧光探针和荧光染料。现将其原理简述如下: 1)TaqMan荧光探针:PCR扩增时在加入一对引物的同时加入一个特异性的荧光探针,该探针为一寡核苷酸,两端分别标记一个报告荧光基团和一个淬灭荧光基团。探针完整时,报告基团发射的荧光信号被淬灭基团吸收;PCR扩增时,Taq酶的5'-3'外切酶活性将探针酶切降解,使报告荧光基团和淬灭荧光基团分离,从而荧光监测系统可接收到荧光信号,即每扩增一条DNA链,就有一个荧

荧光定量PCR实验指南(一)

荧光定量PCR实验指南(一) 一、基本步骤: 1、目的基因(DNA和mRNA)的查找和比对; 2、引物、探针的设计; 3、引物探针的合成; 4、反应体系的配制; 5、反应条件的设定; 6、反应体系和条件的优化; 7、荧光曲线和数据分析; 8、标准品的制备; 二、技术关键: 1、目的基因(DNA和mRNA)的查找和比对; 从https://www.doczj.com/doc/3d14594902.html,/网点的genbank中下载所需要的序列。下载的方式有两种:一为打开某个序列后,直接点击“save”,保存格式为“.txt”文件。保存的名称中要包括序列的物种、序列的亚型、序列的注册号。然后,再打开DNAstar软件中的Editseq 软件,点击“file”菜单中的“import”,打开后点击“save”,保存为“.seq”文件。另一种直接用DNAstar软件中的Editseq软件,点击“file”菜单中的“open entrez sequence”,导入后保存为“.seq”文件,保存的名称中要包括序列的物种、序列的亚型、序列的注册号。然后要对所有的序列进行排序。用DNAstar软件中的Seqman软件,点击“sequence”菜单中的“add”,选择要比较的“.seq”的所有文件,点击“add”或“add all”,然后点击“Done”导入要比较的序列,再点击“assemble”进行比较。横线的上列为一致性序列,所有红色的碱基是不同的序列,一致的序列用黑色碱基表示。有时要设定

比较序列的开始与结尾。有时因为参数设置的原因,可能分为几组(contig),若想全部放在一组中进行比较,就调整“project”菜单下的“parameter”,在“assembling”内的“minimum math percentage”默认设置为80,可调低即可。再选择几个组,点击“contig”菜单下的“reassemble contig”即可。选择高低的原则是在保证所分析的序列在一个“contig”内的前提下,尽量提高“minimum math percentage”的值。有时因此个别序列原因,会出现重复序列,碱基的缺失或插入,要对“contig”的序列的排列进行修改,确保排列是每个序列的真实且排列同源性最好的排列。然后,点击“save”保存即可。分析时,主要是观察是否全部为一致性的黑色或红色,对于弥散性的红色是不可用的。 2、引物和探针设计 2.1引物设计 细心地进行引物设计是PCR中最重要的一步。理想的引物对只同目的序列两侧的单一序列而非其他序列退火。设计糟糕的引物可能会同扩增其他的非目的序列。下面的指导描述了一个可以增加特异性的引物所具有的令人满意的特点: 序列选取应在基因的保守区段; 扩增片段长度根据技术的不同有所分别: sybr green I技术对片段长度没有特殊要求; Taqman探针技术要求片段长度在50bp-150bp; 避免引物自身或与引物之间形成4个或4个以上连续配对; 避免引物自身形成环状发卡结构; 典型的引物18到24个核苷长。引物需要足够长,保证序列独特性,并降低序列存在于非目的序列位点的可能性。但是长度大于24核苷的引物并不意味着更高的特异性。较长的序列可能会与错误配对序列杂交,降低了特异性,而且比短序列杂交慢,从而降低了产量。

半定量RT-PCR的实验原理和方法步骤

半定量RT-PCR的实验原理和方法步骤 以下实验步骤仅供参考: 1 样品RNA的抽提 ①取冻存已裂解的细胞,室温放置5分钟使其完全溶解。 ②两相分离每1ml的TRIZOL试剂裂解的样品中加入0.2ml的氯仿,盖紧管盖。手动剧烈振荡管体15秒后,15到30℃孵育2到3分钟。4℃下12000rpm离心15分钟。离心后混合液体将分为下层的红色酚氯仿相,中间层以及无色水相上层。RNA全部被分配于水相中。水相上层的体积大约是匀浆时加入的TRIZOL试剂的60%。 ③RNA沉淀将水相上层转移到一干净无RNA酶的离心管中。加等体积异丙醇混合以沉淀其中的RNA,混匀后15到30℃孵育10分钟后,于4℃下12000rpm 离心10分钟。此时离心前不可见的RNA沉淀将在管底部和侧壁上形成胶状沉淀块。 ④RNA清洗移去上清液,每1mlTRIZOL试剂裂解的样品中加入至少1ml的75%乙醇(75%乙醇用DEPCH2O配制),清洗RNA沉淀。混匀后,4℃下7000rpm离心5分钟。 ⑤RNA干燥小心吸去大部分乙醇溶液,使RNA沉淀在室温空气中干燥5-10分钟。 ⑥溶解RNA沉淀溶解RNA时,先加入无RNA酶的水40μl用枪反复吹打几次,使其完全溶解,获得的RNA溶液保存于-80℃待用。 2 RNA质量检测 1)紫外吸收法测定 先用稀释用的TE溶液将分光光度计调零。然后取少量RNA溶液用TE稀释(1:100)后,读取其在分光光度计260nm和280nm处的吸收值,测定RNA溶液浓度和纯度。 ①浓度测定 A260下读值为1表示40 μg RNA/ml。样品RNA浓度(μg/ml)计算公式为:A260 ×稀释倍数× 40 μg/ml。具体计算如下: RNA溶于40 μl DEPC水中,取5ul,1:100稀释至495μl的TE中,测得A260 = 0.21 RNA 浓度= 0.21 ×100 ×40 μg/ml = 840 μg/ml 或0.84 μg/μl 取5ul用来测量以后,剩余样品RNA为35 μl,剩余RNA总量为: 35 μl × 0.84 μg/μl = 29.4 μg ②纯度检测 RNA溶液的A260/A280的比值即为RNA纯度,比值范围1.8到2.1。 2)变性琼脂糖凝胶电泳测定 ①制胶 1g琼脂糖溶于72ml水中,冷却至60℃,10 ml的10× MOPS电泳缓冲液和18 ml 的37% 甲醛溶液(12.3 M)。 10×MOPS电泳缓冲液 浓度成分 0.4M MOPS,pH 7.0 0.1M 乙酸钠 0.01M EDTA 灌制凝胶板,预留加样孔至少可以加入25 μl溶液。胶凝后取下梳子,将凝胶板

荧光显微镜的原理和荧光显微镜结构特点

荧光显微镜的原理和荧光显微镜结构特点 发布时间:2011-06-14 荧光显微镜的原理和荧光显微镜结构特点 荧光显微镜的原理是什么? 荧光显微镜是利用一个高发光效率的点光源,经过滤色系统发出一定波长的光(如紫外光365nm或紫蓝光420nm)作为激发光,激发检测标本内的荧光物质发射出各种不同颜色的荧光后,通过物镜和目镜系统的放大以观察标本的荧光图像的光学显微镜,是医学检验中的重要仪器之一。 在强烈的对衬背景下,即使荧光很微弱也易辨认,敏感性高,主要用于细胞结构和功能以及化学成分等的研究。荧光显微镜的基本构造是由普通光学显微镜加上一些附件(如荧光光源、激发滤片、双色束分离器和阻断滤片等)的基础上组成的。荧光光源——般采用超高压汞灯(50一200W),它可发出各种波长的光,但每种荧光物质都有一个产生最强荧光的激发光波长,所以需加用激发滤片(一般有紫外、紫色、蓝色和绿色激发滤片),仅使一定波长的激发光透过照射到标本上,而将其他光都吸收掉。每种物质被激发光照射后,在极短时间内发射出较照射波长更长的可见荧光。荧光具有专一性,一般都比激发光弱,为能观察到专一的荧光,在物镜后面需加阻断(或压制)滤光片。它的作用有二:一是吸收和阻挡激发光进入目镜、以免于扰荧光和损伤眼睛,二是选择并让特异的荧光透过,表现出专一的荧光色彩。两种滤光片必须选择配合使用。 萤光显微镜原理: (1) 光源幅射出各种波长的光(以紫外至红外)。 (2) 激励滤光源:透过能使标本产生萤光的特定波长的光,同时阻挡对激发萤光无用的光。 (3) 荧光标本:一般用萤光色素染色。 (4) 阻挡滤光镜:阻挡掉没有被标本吸收的激发光有选择地透射萤光,在萤光中也有部分波长被选择透过。以紫外线为光源,使被照射的物体发出荧光的显微镜。

实时荧光定量PCR具体实验步骤

以下实验步骤仅供参考: 1 样品RNA的抽提 ①取冻存已裂解的细胞,室温放置5分钟使其完全溶解。 ②两相分离每1ml的TRIZOL试剂裂解的样品中加入0.2ml的氯仿,盖紧管盖。手动剧烈振荡管体15秒后,15到30℃孵育2到3分钟。4℃下12000rpm离心15分钟。离心后混合液体将分为下层的红色酚氯仿相,中间层以及无色水相上层。RNA全部被分配于水相中。水相上层的体积大约是匀浆时加入的TRIZOL 试剂的60%。 ③RNA沉淀将水相上层转移到一干净无RNA酶的离心管中。加等体积异丙醇混合以沉淀其中的RNA,混匀后15到30℃孵育10分钟后,于4℃下12000rpm 离心10分钟。此时离心前不可见的RNA沉淀将在管底部和侧壁上形成胶状沉淀块。 ④RNA清洗移去上清液,每1mlTRIZOL试剂裂解的样品中加入至少1ml的75%乙醇(75%乙醇用DEPCH2O配制),清洗RNA沉淀。混匀后,4℃下7000rpm 离心5分钟。 ⑤RNA干燥小心吸去大部分乙醇溶液,使RNA沉淀在室温空气中干燥5-10分钟。 ⑥溶解RNA沉淀溶解RNA时,先加入无RNA酶的水40μl用枪反复吹打几次,使其完全溶解,获得的RNA溶液保存于-80℃待用。 2 RNA质量检测 1)紫外吸收法测定 先用稀释用的TE溶液将分光光度计调零。然后取少量RNA溶液用TE稀释(1:100)后,读取其在分光光度计260nm和280nm处的吸收值,测定RNA 溶液浓度和纯度。 ①浓度测定 A260下读值为1表示40 μg RNA/ml。样品RNA浓度(μg/ml)计算公式为:A260 ×稀释倍数× 40 μg/ml。具体计算如下: RNA溶于40 μl DEPC水中,取5ul,1:100稀释至495μl的TE中,测得A260 = 0.21 RNA 浓度= 0.21 ×100 ×40 μg/ml = 840 μg/ml 或0.84 μg/μl 取5ul用来测量以后,剩余样品RNA为35 μl,剩余RNA总量为: 35 μl × 0.84 μg/μl = 29.4 μg ②纯度检测 RNA溶液的A260/A280的比值即为RNA纯度,比值范围1.8到2.1。 2)变性琼脂糖凝胶电泳测定 ①制胶 1g琼脂糖溶于72ml水中,冷却至60℃,10 ml的10× MOPS电泳缓冲液和18 ml的37% 甲醛溶液(12.3 M)。 10×MOPS电泳缓冲液 浓度成分 0.4M MOPS,pH 7.0 0.1M 乙酸钠 0.01M EDTA 灌制凝胶板,预留加样孔至少可以加入25 μl溶液。胶凝后取下梳子,将凝胶板

实时荧光定量PCR操作步骤

实时荧光定量PCR操作步骤 以下实验步骤仅供参考: 1 样品RNA的抽提 ①取冻存已裂解的细胞,室温放臵5分钟使其完全溶解。 ②两相分离每1ml的TRIZOL试剂裂解的样品中加入0.2ml的氯仿,盖紧管盖。手动剧烈振荡管体15秒后,15到30℃孵育2到3分钟。4℃下12000rpm离心15分钟。离心后混合液体将分为下层的红色酚氯仿相,中间层以及无色水相上层。RNA全部被分配于水相中。水相上层的体积大约是匀浆时加入的TRIZOL试剂的60%。 ③RNA沉淀将水相上层转移到一干净无RNA酶的离心管中。加等体积异丙醇混合以沉淀其中的RNA,混匀后15到30℃孵育10分钟后,于4℃下12000rpm 离心10分钟。此时离心前不可见的RNA沉淀将在管底部和侧壁上形成胶状沉淀块。 ④RNA清洗移去上清液,每1mlTRIZOL试剂裂解的样品中加入至少1ml的75% O配制),清洗RNA沉淀。混匀后,4℃下7000rpm离心乙醇(75%乙醇用DEPCH 2 5分钟。 ⑤RNA干燥小心吸去大部分乙醇溶液,使RNA沉淀在室温空气中干燥5-10分钟。 ⑥溶解RNA沉淀溶解RNA时,先加入无RNA酶的水40μl用枪反复吹打几次,使其完全溶解,获得的RNA溶液保存于-80℃待用。 2 RNA质量检测 1)紫外吸收法测定 先用稀释用的TE溶液将分光光度计调零。然后取少量RNA溶液用TE稀释(1:100)后,读取其在分光光度计260nm和280nm处的吸收值,测定RNA溶液浓度和纯度。 ①浓度测定 A260下读值为1表示40 μg RNA/ml。样品RNA浓度(μg/ml)计算公式为:A260 ×稀释倍数× 40 μg/ml。具体计算如下: RNA溶于40 μl DEPC水中,取5ul,1:100稀释至495μl的TE中,测得A260 = 0.21 RNA 浓度= 0.21 ×100 ×40 μg/ml = 840 μg/ml 或 0.84 μg/μl 取5ul用来测量以后,剩余样品RNA为35 μl,剩余RNA总量为: 35 μl × 0.84 μg/μl = 29.4 μg ②纯度检测 RNA溶液的A260/A280的比值即为RNA纯度,比值范围1.8到2.1。 2)变性琼脂糖凝胶电泳测定 ①制胶 1g琼脂糖溶于72ml水中,冷却至60℃,10 ml的10× MOPS电泳缓冲液和18 ml 的37% 甲醛溶液(12.3 M)。 10×MOPS电泳缓冲液 浓度成分 0.4M MOPS,pH 7.0 0.1M乙酸钠 0.01M EDTA 灌制凝胶板,预留加样孔至少可以加入25 μl溶液。胶凝后取下梳子,将凝胶板

实时荧光定量pcr步骤

实时荧光定量pcr步骤: 荧光定量PCR 实验步骤:①取冻存已裂解的细胞,室温放置5分钟使其完全溶解。②两相分离每1ml的TRIZOL试剂裂解的样品中加入0.2ml的氯仿,盖紧管盖。手动剧烈振荡管体15秒后,15到30℃孵育2到3分钟。4℃下12000rpm离心15分钟。离心后混合液体将分为下层的红色酚氯仿相,中间层以及无色水相上层。RNA全部被分配于水相中。水相上层的体积大约是匀浆时加入的TRIZOL试剂的60%。③RNA沉淀将水相上层转移到一干净无RNA 酶的离心管中。加等体积异丙醇混合以沉淀其中的RNA,混匀后15到30℃孵育10分钟后,于4℃下12000rpm 离心10分钟。此时离心前不可见的RNA沉淀将在管底部和侧壁上形成胶状沉淀块。 ④RNA清洗移去上清液,每1mlTRIZOL试剂裂解的样品中加入至少1ml的75%乙醇(75%乙醇用DEPCH2O配制),清洗RNA沉淀。混匀后,4℃下7000rpm离心5分钟。⑤RNA干燥小心吸去大部分乙醇溶液,使RNA沉淀在室温空气中干燥5-10分钟。⑥溶解RNA 沉淀溶解RNA时,先加入无RNA酶的水40μl用枪反复吹打几次,使其完全溶解,获得的RNA溶液保存于-80℃待用。1)紫外吸收法测定先用稀释用的TE溶液将分光光度计调零。然后取少量RNA 溶液用TE稀释(1:100)后,读取其在分光光度计260nm和280nm 处的吸收值,测定RNA溶液浓度和纯度。① 浓度测定A260下读值为1表示40 μg RNA/ml。样品RNA浓度(μg/ml)计算公式为:A260 ×稀释倍数× 40 μg/ml。具体计算如下:RNA溶于40 μl DEPC

相关主题
文本预览
相关文档 最新文档