当前位置:文档之家› 异常值处理

异常值处理

异常值处理
异常值处理

data下拉菜单里有define variable properties,把变量选到右边的框里,点continue,在新窗口中有变量在样本中的所有取值,要定义某个值是异常值,就把相应的missing框勾上就ok 啦~~~然后再处理数据时这些值就已经被剔除,不参与分析了~~~

使用箱型图Boxplot...发现异常值,然后把大于等于最小异常值或小于等于最大异常值的值

用Data主菜单里的Cases Select子菜单里的条件设置按钮,就可以自动剔除异常值。

spss里有个功能,好像是绘图吧。绘制Box plot图的。Box plot,可译成箱线图,由一个矩形箱和几条线段组合而成。针对一个数据批,其箱线图的绘制一般由以下几个步骤:第一、画数轴,度量单位大小和数据批的单位一致,起点比最小值稍小,长度比该数据批的全距稍长。

第二、画一个矩形盒,两端边的位置分别对应数据批的上下四分位数(Q1 和Q3)。在矩形盒内部中位数(X m)位置画一条线段为中位线。

第三、在Q3+1.5IQR(四分位距)和Q1-1.5IQR处画两条与中位线一样的线段,这两条线段为异常值截断点,称其为内限;在F+3IQR和F-3IQR处画两条线段,称其为外限。处于内限以外位置的点表示的数据都是异常值,其中在内限与外限之间的异常值为温和的异常值(mild outliers),在外限以外的为极端的异常值(extreme outliers)。

第四、从矩形盒两端边向外各画一条线段直到不是异常值的最远点,表示该批数据正常值的分布区间。

第五、用“〇”标出温和的异常值,用“*”标出极端的异常值。相同值的数据点并列标出在同一数据线位置上,不同值的数据点标在不同数据线位置上。至此一批数据的箱线图便绘出了。统计软件绘制的箱线图一般没有标出内限和外限。箱线图示例可见下图。

我常用一下方法:

1、可以通过“分析”下“描述统计“下“频率”的”绘制“直方图”,看图发现频数出现最少的值,就可能是异常值,但还要看距离其它情况的程度。

2、可通过“分析”下的“描述统计”下的“探索”下的“绘制”选项的“叶茎图”,看个案偏离箱体边缘(上端、下端)的距离是箱体的几倍,“○”代表在1.5-3倍之间(离群点),“*”代表超过3倍(极端离群点)。

3、可以通过“分析”下“描述统计“下“描述”下的选项“将标准化存为变量Z”,选择相应的变量,“确定”。将生成新变量,如果值超过2,肯定是异常值。

Matlab笔记——数据预处理——剔除异常值及平滑处理

012. 数据预处理(1)——剔除异常值及平滑处理测量数据在其采集与传输过程中,由于环境干扰或人为因素有可能造成个别数据不切合实际或丢失,这种数据称为异常值。为了恢复数据的客观真实性以便将来得到更好的分析结果,有必要先对原始数据(1)剔除异常值; 另外,无论是人工观测的数据还是由数据采集系统获取的数据,都不可避免叠加上“噪声”干扰(反映在曲线图形上就是一些“毛刺和尖峰”)。为了提高数据的质量,必须对数据进行(2)平滑处理(去噪声干扰); (一)剔除异常值。 注:若是有空缺值,或导入Matlab数据显示为“NaN”(非数),需要①忽略整条空缺值数据,或者②填上空缺值。 填空缺值的方法,通常有两种:A. 使用样本平均值填充;B. 使用判定树或贝叶斯分类等方法推导最可能的值填充(略)。 一、基本思想: 规定一个置信水平,确定一个置信限度,凡是超过该限度的误差,就认为它是异常值,从而予以剔除。

二、常用方法:拉依达方法、肖维勒方法、一阶差分法。 注意:这些方法都是假设数据依正态分布为前提的。 1. 拉依达方法(非等置信概率) 如果某测量值与平均值之差大于标准偏差的三倍,则予以剔除。 3x i x x S -> 其中,11n i i x x n ==∑为样本均值,1 2 2 11()1n x i i S x x n =?? ??? =--∑为样本的标准偏差。 注:适合大样本数据,建议测量次数≥50次。 代码实例(略)。 2. 肖维勒方法(等置信概率) 在 n 次测量结果中,如果某误差可能出现的次数小于半次时,就予以剔除。 这实质上是规定了置信概率为1-1/2n ,根据这一置信概率,可计算出肖维勒系数,也可从表中查出,当要求不很严格时,还可按下列近似公式计算: 10.4ln()n n ω=+

数据中异常值的处理方法_总

数据中异常值的检测与处理方法 一、数据中的异常值 各种类型的异常值: 数据输入错误:数据收集,记录或输入过程中出现的人为错误可能导致数据异常。例如:一个客户的年收入是$ 100,000。数据输入运算符偶然会在图中增加一个零。现在收入是100万美元,是现在的10倍。显然,与其他人口相比,这将是异常值。 测量误差:这是最常见的异常值来源。这是在使用的测量仪器出现故障时引起的。例如:有10台称重机。其中9个是正确的,1个是错误的。 有问题的机器上的人测量的重量将比组中其他人的更高/更低。在错误的机器上测量的重量可能导致异常值。 实验错误:异常值的另一个原因是实验错误。举例来说:在七名跑步者的100米短跑中,一名跑步者错过了专注于“出发”的信号,导致他迟到。 因此,这导致跑步者的跑步时间比其他跑步者多。他的总运行时间可能是一个离群值。 故意的异常值:这在涉及敏感数据的自我报告的度量中通常被发现。例如:青少年通常会假报他们消耗的酒精量。只有一小部分会报告实际价值。 这里的实际值可能看起来像异常值,因为其余的青少年正在假报消费量。 数据处理错误:当我们进行数据挖掘时,我们从多个来源提取数据。某些操作或提取错误可能会导致数据集中的异常值。 抽样错误:例如,我们必须测量运动员的身高。错误地,我们在样本中包括一些篮球运动员。这个包含可能会导致数据集中的异常值。 自然异常值:当异常值不是人为的(由于错误),这是一个自然的异常值。例如:保险公司的前50名理财顾问的表现远远高于其他人。令人惊讶的是,这不是由于任何错误。因此,进行任何数据挖掘时,我们会分别处理这个细分的数据。

在以上的异常值类型中,对于房地产数据,可能出现的异常值类型主 要有:(1)数据输入错误,例如房产经纪人在发布房源信息时由于输入错误,而导致房价、面积等相关信息的异常;在数据的提取过程中也可能会出现异常值,比如在提取出售二手房单价时,遇到“1室7800元/m 2”,提取其中的数字结果为“17800”,这样就造成了该条案例的单价远远异常于同一小区的其他房源价格,如果没有去掉这个异常值,将会导致整个小区的房屋单价均值偏高,与实际不符。(2)故意的异常值,可能会存在一些人,为了吸引别人来电询问房源,故意把价格压低,比如房屋单价为1元等等;(3)自然异常值。房价中也会有一些实际就是比普通住宅价格高很多的真实价格,这个就需要根据实际请况进行判断,或在有需求时单独分析。 二、数据中异常值的检测 各种类型的异常值检测: 1、四分位数展布法 方法[1]:大于下四分位数加倍四分位距或小于上四分位数减倍。 把数据按照从小到大排序,其中25%为下四分位用FL 表示,75%处为上四分位用FU 表示。 计算展布为:L U F F F d -=,展布(间距)为上四分位数减去下四分位数。 最小估计值(下截断点):F L d F 5.1- 最大估计值(上截断点):F U d F 5.1+ 数据集中任意数用X 表示,F U F L d F X d F 5.15.1+<<-, 上面的参数不是绝对的,而是根据经验,但是效果很好。计算的是中度异常,参数等于3时,计算的是极度异常。我们把异常值定义为小于下截断点,或者大于上截断点的数据称为异常值。

回归中缺失值处理方法

在《SPSS统计分析方法及应用》一书中,对时间序列数据缺失处理给出了几种解决方法,可以供我们设计的时候参考: 新生成一个由用户命名的序列,选择处理缺失值的替代方法,单击Change按钮。替代方法有以下几种: ①Series mean:表示用整个序列的均值作为替代值。 ②Mean of nearby points:表示利用邻近点的均值作为替代值。对此用Span of nearby points框指定数据段。在Number后输入数值k,以表示缺失值为中心,前后分别选取k个数据点。这样填补的值就是由这2k个数的平均数。也可以选择All,作用同Series mean选项。 “附(邻)近点的跨度”:系统默认的是2,即缺失值上下两个观察值作为范围。

若选择“全部”,即将所有的观察值作为临近点。 ③Median of nearby points:表示利用邻近点的中位数作为替代值。数据指定方法同上。 ④Linear interpolation:为线性插值法,表示利用缺失值前后两时点数据的某种线性组合进行填补,是一种加权平均。 线性插值法应用线性插值法填补缺失值。用该列数据缺失值前一个数据和后一个数据建立插值直线,然后用缺失点在线性插值函数的函数值填充该缺失值。如果前后值有一个缺失,则得不到缺失值的替换值。 ⑤Linear trend at point:为线性趋势值法,表示利用回归拟合线的拟合值作为替代值。 缺失点处的线性趋势法应用缺失值所在的整个序列建立线性回归方程,然后用该回归方程在缺失点的预测值填充缺失值。 *注意:如果序列的第一个和最后一个数据为缺失值,只能利用序列均值和线性趋势值法处理,其他方法不适用。

数据库异常处理答案

. 一、 一、实验/实习过程 实验题1在程序中产生一个ArithmeticException类型被0除的异常,并用catch 语句捕获这个异常。最后通过ArithmeticException类的对象e 的方法getMessage给出异常的具体类型并显示出来。 package Package1; public class除数0 { public static void main(String args[]){ try{ int a=10; int b=0; System.out.println("输出结果为:"+a/b); } catch(ArithmeticException e){ System.out.println("除数不能为0"+e.getMessage()); } } } 实验题2在一个类的静态方法methodOne()方法内使用throw 产生

ArithmeticException异常,使用throws子句抛出methodOne()的异常,在main方法中捕获处理ArithmeticException异常。 package Package1; public class抛出异常 { static void methodOne() throws ArithmeticException{ System.out.println("在methodOne中"); throw new ArithmeticException("除数为0"); } public static void main(String args[]){ try{ int a=10; int b=0; int c=1; System.out.println("输出结果为:"+a/b); } catch(ArithmeticException e){ System.out.println("除数不能为0"+e.getMessage()); } } }

qc检验异常值处理标准操作规程.doc

QC检验异常值处理标准操作规程 1目的 本程序规定了QC所涉及的各检验项目出现检验结果异常情况的处理原则和管理办法。通过实施本程序,对产品检验结果异常情况进行规范管理。 2 管理程序 1) 检验结果异常的处理原则 凡出现下列情况均属异常,必须填写《检验异常值发生的初期调查报告书》见附表一异常值:指在药品生产的试验检验中,相当于下面a~e的任何一个的所有测定值。 a 超出《药品生产批准、公定书,以及公司内部标准书中所规定的标准》的检验结果 b 虽然符合2.1的标准,但超过管理范围的检验结果。 c 在重复测定次数n=2以上的计量试验中,偏离检验标准规格幅度的1/2以上的最 大,最小的各试验结果。 d 检测以及验证等中,超出“期待结果”的试验结果 e 在长期稳定性试验中,超出质量标准时,或者特别做出的试验实施方案中,超出上 面所规定的规格的试验结果。 2) 管理范围:仅在最终成品检验的定量检验中设定。指和检验标准规格不同,为根据 日常的检验结果成品质量的偏差如下所示,作为范围数据化的值。考虑规格值和分析的精确度,难以设定管理范围的计量仪器除外。 3) 检验分析责任者:具有质量管理方面丰富的知识,在品质总责任者的领导下进行总管分析实施人的人员。 4)对照品:指过去没有发现异常的批留样中,最新的批次。用于初期调查。 5)再分析:供试品溶液,标准溶液的第二次分析(包括从同样的试验用标准溶液中的 稀释) 6) 复验:从同样的容器中准备的样品,作为初次检验的追加检验。 3 产生异常值时的处理 分析实施人要充分理解试验操作中对测定值造成较大影响的点。用于检验的装置都要进行校验。作为检验方法规定了系统符合性试验时,必须实施。

产程经过异常及处理

产程经过异常及处理 Prepared on 22 November 2020

二、产程经过异常及处理 (一)产程经过异常表现 临床上子宫收缩乏力分为协调性和不协调性两种,根据发生时期又分为原发性和继发性。类型不同,临床表现不也不同。 1、协调性宫缩乏力(低张性宫缩乏力):其特点为子宫收缩具有正常的节律性、对称性和极性,但收缩力弱,宫腔内压力低于15mmHg,持续时间短,间歇期长且不规律,宫缩<2次/10分。当宫缩高峰时,宫体隆起不明显,用手指压宫底部肌壁仍可出现凹陷,此种宫缩乏力多属继发性宫缩乏力,临产早期宫缩正常,于第一程活跃期后期或第二产程时宫缩弱,常见于中骨盆与骨盆出口平面狭窄,胎先露部下降受阻,持续性枕横位或枕后位等。此种宫缩乏力,对胎儿影响不大。 2、不协调性宫缩乏力(高张性宫缩乏力):多见于初产妇,其特点为子宫收缩的极性倒置,宫缩的兴奋点不是起自两侧宫角部,而是来自子宫下段的一处或多处冲动,子宫收缩波由下向上扩散,收缩波小而不规律,频率高,节律不协调;宫腔内压力达20mmHg,宫缩时宫底部不强,而是子宫下段强,宫缩间歇期子宫壁也不完全松弛,这种宫缩不能使宫口如期扩张,不能使胎先露部如期下降,属无效宫缩。此种宫缩乏力多属原发性宫缩乏力,故需与假临产鉴别。鉴别方法是给予强镇静剂哌替啶100mg肌内注射。能使宫缩停止者为假临产,不能使宫缩停止者为原发性宫缩乏力。这些产妇往往有头盆不称和胎位异常,使先露不能紧帖子宫下段及宫颈内口,不能引起反射性子宫收缩。产妇自觉下腹部持续疼痛、拒按、烦燥不安,严重者出现脱水。电解质紊乱、肠胀气、尿潴留;胎儿-胎盘循环障碍,出现胎儿宫内窘迫。产科检查:下腹部有压痛,胎位触不清,胎心不规律,宫口扩张早期缓慢或停止扩张,胎先露部下降延缓或停止,潜伏期延长。 3、产程曲线异常:产程图是产程监护和识别难产的重要手段,产程进展的标志是宫口扩张和胎先露部下降。宫缩乏力导致产程曲线异常有以下8种; (1)潜伏期延长:从临产规律宫缩开始至宫口扩张3cm称为潜伏期。初产妇潜伏期正常约需8小时,最大时限16小时,超过了应处理。 临床上以超过了9小时应作正理为有利。 (2)活跃期延长:从宫口扩张3cm开始至宫口开全称为活跃期。初产妇活跃期正常约需4小时,最大时限8小时,若超过8小时,称为活跃期延长。 (3)活跃期停滞:进入活跃期后,宫口不再扩张达2小时以上,称为活跃期停滞。 (注:在羊膜囊已破、宫缩正常的前提下) (4)第二产程延长:第二产程初产妇超过2小时、经产妇超过1小时尚未分娩,称为第二产程延长。 (5)第二产程停滞:第二产程达1小时胎头下降无进展,称为第二产程停滞。 (6)胎头下降延缓:活跃期晚期及第二产程、胎头下降速度初产妇<h,经产妇<h,称为胎头下降延缓。 (7)胎头下降停滞:活跃期晚期胎头停留在原处不下降达I小时以上,称为胎头下降停滞。 (8)滞产,总产程超过24小时。

回归中缺失值处理方法

回归中缺失值处理方法文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

在《SPSS统计分析方法及应用》一书中,对时间序列数据缺失处理给出了几种解决方法,可以供我们设计的时候参考: 新生成一个由用户命名的序列,选择处理缺失值的替代方法,单击Change按钮。替代方法有以下几种: ①Series mean:表示用整个序列的均值作为替代值。 ②Mean of nearby points:表示利用邻近点的均值作为替代值。对此用Span of nearby points框指定数据段。在Number后输入数值k,以表示缺失值为中心,前后分别选取k个数据点。这样填补的值就是由这2k 个数的平均数。也可以选择All,作用同Series mean选项。 “附(邻)近点的跨度”:系统默认的是2,即缺失值上下两个观察值作为范围。若选择“全部”,即将所有的观察值作为临近点。 ③Median of nearby points:表示利用邻近点的中位数作为替代值。数据指定方法同上。 ④Linear interpolation:为线性插值法,表示利用缺失值前后两时点数据的某种线性组合进行填补,是一种加权平均。 线性插值法应用线性插值法填补缺失值。用该列数据缺失值前一个数据和后一个数据建立插值直线,然后用缺失点在线性插值函数的函数值填充该缺失值。如果前后值有一个缺失,则得不到缺失值的替换值。 ⑤Linear trend at point:为线性趋势值法,表示利用回归拟合线的拟合值作为替代值。 缺失点处的线性趋势法应用缺失值所在的整个序列建立线性回归方程,然后用该回归方程在缺失点的预测值填充缺失值。

spss缺失值处理

spss数据录入时缺失值怎么处理 录入的时候可以直接省略不录入 分析的时候也一般剔除这样的样本。但也有替换的方法,一般有: 均值替换法(mean imputation),即用其他个案中该变量观测值的平均数对缺失的数据进行替换,但这种方法会产生有偏估计,所以并不被推崇。 个别替换法(single imputation)通常也被叫做回归替换法(regression imputation),在该个案的其他变量值都是通过回归估计得到的情况下,这种 方法用缺失数据的条件期望值对它进行替换。这虽然是一个无偏估计,但是却倾向于低估标准差和其他未知性质的测量值,而且这一问题会随着缺失信息的增多而变得更加严重。 多重替代法(multiple imputation)(Rubin, 1977) 。 ?它从相似情况中或根据后来在可观测的数据上得到的缺省数据的分布情况给每个缺省数据赋予一个模拟值。结合这种方法,研究者可以比较容易地,在不舍弃任何数据的情况下对缺失数据的未知性质进行推断(Little and Rubin,1987; ubin,1987, 1996)。 (一)个案剔除法(Listwise Deletion) 最常见、最简单的处理缺失数据的方法是用个案剔除法(listwise deletion),也是很多统计软件(如SPSS和SAS)默认的缺失值处理方法。在这种方法中如果任何一个变量含有缺失数据的话,就把相对应的个案从分析中剔除。如果缺失值所占比例比较小的话,这一方法十分有效。至于具体多大的缺失比例算是“小”比例,专家们意见也存在较大的差距。有学者认为应在5%以下,也有学者认为20%以下即可。然而,这种方法却有很大的局限性。它是以减少样本量来换取信息的完备,会造成资源的大量浪费,丢弃了大量隐藏在这些对象中的信息。在样本量较小的情况下,删除少量对象就足以严重影响到数据的客观性和结果的正确性。因此,当缺失数据所占比例较大,特别是当缺数据非随机分布时,这种方法可能导致数据发生偏离,从而得出错误的结论。 (二)均值替换法(Mean Imputation) 在变量十分重要而所缺失的数据量又较为庞大的时候,个案剔除法就遇到了困难,因为许多有用的数据也同时被剔除。围绕着这一问题,研究者尝试了各种各样的办法。其中的一个方法是均值替换法(mean imputation)。我们将变量的属性分为数值型和非数值型来分别进行处理。如果缺失值是数值型的,就根据该变量在其他所有对象的取值的平均值来填充该缺失的变量值;如果缺失值是非数值型的,就根据统计学中的众数原理,用该变量在其他所有对象的取值次数最多的值来补齐该缺失的变量值。但这种方法会产生有偏估计,所以并不被推崇。均值替换法也是一种简便、快速的缺失数据处理方法。使用均值替换法插补缺失数据,对该变量的均值估计不会产生影响。但这种方法是建立在完全随机缺失(MCAR)的假设之上的,而且会造成变量的方差和标准差变小。 (三)热卡填充法(Hotdecking)

产程观察及异常产程处理技术

产程观察及异常产程处理技术 了解引发难产的因素 讨论预防难产的方法 降低难产的措施 正常分娩三要素 产力(子宫收缩力、腹肌及膈肌收缩力、肛提肌收缩力) 产道(骨产道、软产道) 胎儿(胎儿大小、胎位、胎儿发育) 产程观察 产力:子宫收缩力的特点: 节律性(加强期、极期、减弱期);对称性和极性;缩复作用 宫口扩张和胎先露下降 胎儿情况 母亲情况 正常产程 总产程(规律宫缩至胎盘娩出)不能超过24小时 第一产程(规律宫缩至宫口开全——潜伏期、活跃期)约需11~12小时 第二产程(宫口开全至胎儿娩出)初产妇约需1~2小时 第三产程(胎儿娩出至胎盘娩出)约需5~15分钟,不超过30分钟 潜伏期和活跃期正常进展 潜伏期:规律宫缩至宫口开大3cm,平均每2~3小时扩张1cm,约需8小时,最大时限16小时,超过16小时为潜伏期延长。 活跃期(加速期、最大加速期、减速期):宫口扩张3~10cm,约需4小时,最大时限8小时,超过8小时为活跃期延长。 加速期:宫口扩张3~4cm,约需1.5小时。 最大加速期:宫口4~9cm,约需2小时。 减速期:宫口9~10cm,约需0.5~1小时。 美国医学会标准 活跃期宫颈扩张和胎头下降最小限度 初产妇: 宫颈扩张应为1.2cm/h 胎头下降应为1cm/h。 经产妇: 宫颈扩张应为1.5cm/h 胎头下降应为2cm/h。 产程图的重要性 产程图:是指以临产时间(小时)为横坐标,以宫口扩张程度(cm)为纵坐标在左侧,先露下降速度(cm)在右侧,划出宫口扩张曲线及胎先露下降曲线。

警戒线和行动线 产程图 图1 图2 图3 胎头位置高低的判定 对难产的认识 人们认为分娩过程是自然的,期望每一件事情都是自然地进行。然而,我们知道:许多分娩常会导致相反的结果。因此“分娩是一本没有打开的书”,只有提高警惕才能有助于我们准备处理产程中出现的紧急情况和灾难。 分娩也是最难诊断的情况之一,错误的诊断常导致错误的处理。 判别难产产前危险因素 身材矮小,特别是脖子较短的孕妇 骨骼异常:骨盆外伤、脊髓灰质炎后遗症、佝偻病 阴道、宫颈和子宫发育异常、盆腔肿瘤 胎儿过大(头盆不称) 子宫过度膨胀:多胎妊娠、羊水过多 年龄过小:青少年和青春期前妊娠 异常先露和异常胎位 引发难产的因素 产次 产力 产道 胎儿(体重、胎位、发育异常) 宫内感染 其他(失望、无助、不幸等情感因素) 难产产程中的因素 对产妇的焦虑情绪缺乏关注、缺乏护理支持 过早入院待产 缺乏监测:必须牢记:一旦临产,就是产程 持续胎心监护 体位、限制走动 硬膜外麻醉 产程进展异常 产程延长:宫颈扩张和胎头下降缓慢 产程延长的诊断:产程不能以最低速率即每小时一厘米的进度进行 产程停滞:活跃期2~4小时,宫口无扩张,胎头无下降。 宫颈扩张和胎头下降缓慢原因:镇静剂、麻醉、宫内感染、胎位异常 梗阻性难产的征象 梗阻性难产是产程延长的结局和最终结果。 特征是:尽管有强烈的宫缩,但产程无进展,并出现胎儿颅骨变形增加,胎儿安全受到威胁,以及产母衰竭的迹象。

数据库异常处理答案

一、实验/实习过程 实验题1在程序中产生一个ArithmeticException类型被0除的异常,并用catch 语句捕获这个异常。最后通过ArithmeticException类的对象e 的方法getMessage给出异常的具体类型并显示出来。 package Package1; public class除数0 { public static void main(String args[]){ try{ int a=10; int b=0; System.out.println("输出结果为:"+a/b); } catch(ArithmeticException e){ System.out.println("除数不能为0"+e.getMessage()); } } } 实验题2在一个类的静态方法methodOne()方法内使用throw 产生ArithmeticException异常,使用throws子句抛出methodOne()的异常,

在main方法中捕获处理ArithmeticException异常。 package Package1; public class抛出异常 { static void methodOne() throws ArithmeticException{ System.out.println("在methodOne中"); throw new ArithmeticException("除数为0"); } public static void main(String args[]){ try{ int a=10; int b=0; int c=1; System.out.println("输出结果为:"+a/b); } catch(ArithmeticException e){ System.out.println("除数不能为0"+e.getMessage()); } } }

缺失值处理

缺失值 1. is.na 确实值位置判断 注意: 缺失值被认为是不可比较的,即便是与缺失值自身的比较。这意味着无法使用比较运算 符来检测缺失值是否存在。例如,逻辑测试myvar == NA的结果永远不会为TRUE。作为替代,你只能使用处理缺失值的函数(如本节中所述的那些)来识别出R数据对象中的缺失值。 2. na.omit() 删除不完整观测 manyNAs library(DMwR) manyNAs(data, nORp = 0.2) Arguments data A data frame with the data set. nORp A number controlling when a row is considered to have too many NA values (defaults to 0.2, i.e. 20% of the columns). If no rows satisfy the constraint indicated by the user, a

warning is generated. 按照比例判断缺失. 3. knnImputation K 近邻填补 library(DMwR) knnImputation(data, k = 10, scale = T, meth = "weighAvg", distData = NULL) ? 1 ? 2 Arguments Arguments data A data frame with the data set k The number of nearest neighbours to use (defaults to 10) scale Boolean setting if the data should be scale before finding the nearest neighbours (defaults to T) meth String indicating the method used to calculate the value to fill in each NA. Available values are ‘median’ or ‘weighAvg’ (the default). distData Optionally you may sepecify here a data frame containing the data set that should be used to find the neighbours. This is usefull when filling in NA values on a test set, where you should use only information from the training set. This defaults to NULL, which means that the neighbours will be searched in data Details This function uses the k-nearest neighbours to fill in the unknown (NA) values in a data set. For each case with any NA value it will search for its k most similar cases and use the values of these cases to fill in the unknowns.

异常值处理

R语言:异常数据处理 前言 在数据处理中,尤其在作函数拟合时,异常点的出现不仅会很大程度的改变函数拟合的效果,而且有时还会使得函数的梯度出现奇异梯度,这就导致算法的终止,从而影响研究变量之间的函数关系。为了有效的避免这些异常点造成的损失,我们需要采取一定的方法对其进行处理,而处理的第一步便是找到异常点在数据中的位置。 什么是异常值?如何检测异常值? 目录 1. 单变量异常值检测 2. 使用LOF(local outlier factor,局部异常因子)进行异常检测 3. 通过聚类的方法检验异常值 4. 检验时间序列数据里面的异常值 5. 讨论 主要程序包 install.packages(c("DMwR","dprep")) library(DMwR) library(dprep) 1. 单变量异常值检测

这节主要讲单变量异常值检测,并演示如何将它应用到多元(多个自变量)数据中。使用函数boxplot.stats()实现单变量检测,该函数根据返回的统计数据生成箱线图。在上述函数的返回结果中,有一个参数out,它是由异常值组成的列表。更明确的说就是里面列出了箱线图中箱须线外面的数据点。其中参数coef可以控制箱须线从箱线盒上延伸出来的长度,关于该函数的更多细节可以通过输入‘?boxplot.ststs’查看。 画箱线图: set.seed(3147) #产生100个服从正态分布的数据 x <- rnorm(100) summary(x) #输出异常值 boxplot.stats(x)$out #绘制箱线图 boxplot(x)

如上的单变量异常检测可以用来发现多元数据中的异常值,通过简单搭配的方式。在下例中,我们首先产生一个数据框df,它有两列x和y。之后,异常值分别从x和y检测出来。然后,我们获取两列都是异常值的数据作为异常数据。 x <- rnorm(100) y <- rnorm(100) # 生成一个包含列名分别为x与y的数据框df df<- data.frame(x, y) rm(x,y) head(df)

试验数据异常值的检验及剔除方法

目录 摘要......................................................................... I 关键词...................................................................... I 1引言 (1) 2异常值的判别方法 (1) 检验(3S)准则 (1) 狄克松(Dixon)准则 (2) 格拉布斯(Grubbs)准则 (2) 指数分布时异常值检验 (3) 莱茵达准则(PanTa) (3) 肖维勒准则(Chauvenet) (4) 3 实验异常数据的处理 (4) 4 结束语 (5) 参考文献 (6)

试验数据异常值的检验及剔除方法 摘要:在实验中不可避免会存在一些异常数据,而异常数据的存在会掩盖研究对象的变化规律和对分析结果产生重要的影响,异常值的检验与正确处理是保证原始数据可靠性、平均值与标准差计算准确性的前提.本文简述判别测量值异常的几种统计学方法,并利用DPS软件检验及剔除实验数据中异常值,此方法简单、直观、快捷,适合实验者用于实验的数据处理和分析. 关键词:异常值检验;异常值剔除;DPS;测量数据

1 引言 在实验中,由于测量产生误差,从而导致个别数据出现异常,往往导致结果产生较大的误差,即出现数据的异常.而异常数据的出现会掩盖实验数据的变化规律,以致使研究对象变化规律异常,得出错误结论.因此,正确分析并剔除异常值有助于提高实验精度. 判别实验数据中异常值的步骤是先要检验和分析原始数据的记录、操作方法、实验条件等过程,找出异常值出现的原因并予以剔除. 利用计算机剔除异常值的方法许多专家做了详细的文献[1] 报告.如王鑫,吴先球,用Origin 剔除线形拟合中实验数据的异常值;严昌顺.用计算机快速剔除含粗大误差的“环值”;运用了统计学中各种判别异常值的准则,各种准则的优劣程度将体现在下文. 2 异常值的判别方法 判别异常值的准则很多,常用的有t 检验(3S )准则、狄克松(Dixon )准则、格拉布斯(Grubbs )准则等准则.下面将一一简要介绍. 2.1 检验(3S )准则 t 检验准则又称罗曼诺夫斯基准则,它是按t 分布的实际误差分布范围来判别异常值,对重复测量次数较少的情况比较合理. 基本思想:首先剔除一个可疑值,然后安t 分布来检验被剔除的值是否为异常值. 设样本数据为123,,n x x x x ,若认j x 为可疑值.计算余下1n -个数据平均值 1n x -及标准差1n s - ,即2 111,1,1n n i n i i j x x s n --=≠=-∑. 然后,按t 分布来判别被剔除的值j x 是否为异常值. 若1(,)n j x x kn a -->,则j x 为异常值,应予剔除,否则为正常值,应予以保留.其中:a 为显著水平;n 数据个数;(,)k n a 为检验系数,可通过查表得到.

先兆临产、临产的诊断与产程 , 产程经过异常及处理

新钢中心医院妇产科业务学习讲课 讲课内容:先兆临产、临产的诊断与产程,产程经过异常及处理 讲课时间: 讲课地点:妇产科医生办公室 讲课人: 参加人员: 一、先兆临产、临产的诊断与产程 1、先兆临产出现预示不久将临产的症状称为先兆临产。 (1)假临产:孕妇在分娩发动前,常出现假临产。假临产的特点是宫缩持续时间短(不超过30秒)且不恒定,间歇时间长且不规律,宫缩强度不增加,常在夜间出现、清晨消失,宫缩时不适主要在下腹部,宫颈管不短缩,宫口不扩张,给予镇静药物能抑制假临产。 (2)胎儿下降感:多数初孕妇感到上腹部较前舒适,进食量较前增多,呼吸较前轻快,系胎先露部进入骨盆入口使宫底位置下降的缘故。 (3)见红:在分娩发动前24—48小时内,因宫颈内口附近的胎膜与该处的子宫壁分离,毛细血管破裂经阴道排出少量血液,与宫颈管内的粘液栓相混排出,称为见红,是分娩即将开始的比较可靠征象。若阴道流血量较多,超过平时月经量,不应认为是先兆临产,应想到妊娠晚期出血如前置胎盘等。 2、临产的诊断临产开始的标志为有规律且逐渐增强的子宫收缩,持续30秒或以上,间歇5~6分钟,同时伴随进行性宫颈管消失、宫口扩张和胎先露部下降,用镇静药物不能抑制临产。 3、总产程及产程分期总产程即分娩全过程,是指从开始出现规律宫缩直到胎儿胎盘娩出。分为3个产程。 (1)第一产程:又称宫颈扩张期。从子宫肌层出现规律的具有足够频率(5~6分钟一次)、强度和持续时间的收缩,导致宫颈管逐渐消失、扩张直至宫口完全扩张即开全为止。初产妇的宫颈较紧,宫口扩张较慢,需11~12小时;经产妇的宫颈较松,宫口扩张较快,需6~8小时。 (2)第二产程:又称胎儿娩出期。从宫口完全扩张(开全)到胎儿娩出结束是娩出胎儿的全过程。初产妇需1~2小时,不应超过2小时;经产妇通常数分钟即可完成,但也有长达1小时者,不应超过1小时。 (3)第三产程:又称胎盘娩出期。从胎儿娩出开始到胎盘胎膜娩出,即胎盘剥离和娩出的过程.需5~15分钟,不应超过30分钟。 二、产程经过异常及处理 (一)产程经过异常表现

剔除异常值的方法

1.拉依达准则法(3δ):简单,无需查表。测量次数较多或要求不高时用。是最常用的异常值判定与剔除准则。但当测量次数《=10次时,该准则失效。 如果实验数据值的总体x是服从正态分布的,则 式中,μ与σ分别表示正态总体的数学期望和标准差。此时,在实验数据值中出现大于μ+3σ或小于μ—3σ数据值的概率是很小的。因此,根据上式对于大于μ+3σ或小于μ—3σ的实验数据值作为异常值,予以剔除。 在这种情况下,异常值是指一组测定值中与平均值的偏差超过两倍标准差的测定值。与平均值的偏差超过三倍标准差的测定值,称为高度异常的异常值。在处理数据时,应剔除高度异常的异常值。异常值是否剔除,视具体情况而定。在统计检验时,指定为检出异常值的显著性水平α=0.05,称为检出水平;指定为检出高度异常的异常值的显著性水平α=0.01,称为舍弃水平,又称剔除水平(reject level)。 标准化数值(Z-score)可用来帮助识别异常值。Z分数标准化后的数据服从正态分布。因此,应用Z分数可识别异常值。我们建议将Z分数低于-3或高于3的数据看成是异常值。这些数据的准确性要复查,以决定它是否属于该数据集。 2.肖维勒准则法(Chauvenet):经典方法,改善了拉依达准则,过去应用较多,但它没有固定的概率意义,特别是当测量数据值n无穷大时失效。 3.狄克逊准则法(Dixon):对数据值中只存在一个异常值时,效果良好。担当异常值不止一个且出现在同侧时,检验效果不好。尤其同侧的异常值较接近时效果更差,易遭受到屏蔽效应。 4.罗马诺夫斯基(t检验)准则法:计算较为复杂。 5.格拉布斯准则法(Grubbs):和狄克逊法均给出了严格的结果,但存在狄克逊法同样的缺陷。朱宏等人采用数据值的中位数取代平均值,改进得到了更为稳健的处理方法。有效消除了同侧异常值的屏蔽效应。国际上常推荐采用格拉布斯准则法。 这些方法,都有各自的特点,例如,拉依达准则不能检验样本量较小(显著性水平为0.1时,n必须大于10)的情况,格拉布斯准则则可以检验较少的数据。在国际上,常推荐格拉布斯准则和狄克逊准则。

异常值处理

data下拉菜单里有define variable properties,把变量选到右边的框里,点continue,在新窗口中有变量在样本中的所有取值,要定义某个值是异常值,就把相应的missing框勾上就ok 啦~~~然后再处理数据时这些值就已经被剔除,不参与分析了~~~ 使用箱型图Boxplot...发现异常值,然后把大于等于最小异常值或小于等于最大异常值的值 用Data主菜单里的Cases Select子菜单里的条件设置按钮,就可以自动剔除异常值。 spss里有个功能,好像是绘图吧。绘制Box plot图的。Box plot,可译成箱线图,由一个矩形箱和几条线段组合而成。针对一个数据批,其箱线图的绘制一般由以下几个步骤:第一、画数轴,度量单位大小和数据批的单位一致,起点比最小值稍小,长度比该数据批的全距稍长。 第二、画一个矩形盒,两端边的位置分别对应数据批的上下四分位数(Q1 和Q3)。在矩形盒内部中位数(X m)位置画一条线段为中位线。 第三、在Q3+1.5IQR(四分位距)和Q1-1.5IQR处画两条与中位线一样的线段,这两条线段为异常值截断点,称其为内限;在F+3IQR和F-3IQR处画两条线段,称其为外限。处于内限以外位置的点表示的数据都是异常值,其中在内限与外限之间的异常值为温和的异常值(mild outliers),在外限以外的为极端的异常值(extreme outliers)。 第四、从矩形盒两端边向外各画一条线段直到不是异常值的最远点,表示该批数据正常值的分布区间。 第五、用“〇”标出温和的异常值,用“*”标出极端的异常值。相同值的数据点并列标出在同一数据线位置上,不同值的数据点标在不同数据线位置上。至此一批数据的箱线图便绘出了。统计软件绘制的箱线图一般没有标出内限和外限。箱线图示例可见下图。 我常用一下方法: 1、可以通过“分析”下“描述统计“下“频率”的”绘制“直方图”,看图发现频数出现最少的值,就可能是异常值,但还要看距离其它情况的程度。 2、可通过“分析”下的“描述统计”下的“探索”下的“绘制”选项的“叶茎图”,看个案偏离箱体边缘(上端、下端)的距离是箱体的几倍,“○”代表在1.5-3倍之间(离群点),“*”代表超过3倍(极端离群点)。 3、可以通过“分析”下“描述统计“下“描述”下的选项“将标准化存为变量Z”,选择相应的变量,“确定”。将生成新变量,如果值超过2,肯定是异常值。

缺失值的处理方法

缺失值的处理方法 对于缺失值的处理,从总体上来说分为删除存在缺失值的个案和缺失值插补。对于主观数据,人将影响数据的真实性,存在缺失值的样本的其他属性的真实值不能保证,那么依赖于这些属性值的插补也是不可靠的,所以对于主观数据一般不推荐插补的方法。插补主要是针对客观数据,它的可靠性有保证。 1.删除含有缺失值的个案 主要有简单删除法和权重法。简单删除法是对缺失值进行处理的最原始方法。它将存在缺失值的个案删除。如果数据缺失问题可以通过简单的删除小部分样本来达到目标,那么这个方法是最有效的。当缺失值的类型为非完全随机缺失的时候,可以通过对完整的数据加权来减小偏差。把数据不完全的个案标记后,将完整的数据个案赋予不同的权重,个案的权重可以通过logistic或probit回归求得。如果解释变量中存在对权重估计起决定行因素的变量,那么这种方法可以有效减小偏差。如果解释变量和权重并不相关,它并不能减小偏差。对于存在多个属性缺失的情况,就需要对不同属性的缺失组合赋不同的权重,这将大大增加计算的难度,降低预测的准确性,这时权重法并不理想。 2.可能值插补缺失值 它的思想来源是以最可能的值来插补缺失值比全部删除不完全样本所 产生的信息丢失要少。在数据挖掘中,面对的通常是大型的数据库,它的属性有几十个甚至几百个,因为一个属性值的缺失而放弃大量的其他属性值,这种删除是对信息的极大浪费,所以产生了以可能值对缺失值进行插补的思想与方法。常用的有如下几种方法。 (1)均值插补。数据的属性分为定距型和非定距型。如果缺失值是定距型的,就以该属性存在值的平均值来插补缺失的值;如果缺失值是非定距型的,就根据统计学中的众数原理,用该属性的众数(即出现频率最高的值) 来补齐缺失的值。 (2)利用同类均值插补。同均值插补的方法都属于单值插补,不同的是,它用层次聚类模型预测缺失变量的类型,再以该类型的均值插补。假设X= (X1,X2…Xp)为信息完全的变量,Y为存在缺失值的变量,那么首先对X或其子集行聚类,然后按缺失个案所属类来插补不同类的均值。如果在以后统计分析中还需以引入的解释变量和Y做分析,那么这种插补方法将在模型中引入自相关,给分析造成障碍。 (3)极大似然估计(Max Likelihood ,ML)。在缺失类型为随机缺失的条件下,假设模型对于完整的样本是正确的,那么通过观测数据的边际分布可以对未知参数进行极大似然估计(Little and Rubin)。这种方法也被称为忽略缺失值的极大似然估计,对于极大似然的参数估计实际中常采用的计算方法是期望值最大化(Expectation Maximization,EM)。该方法比删除

回归分析中异常值的诊断与处理

回归分析中异常值的诊断与处理 1 引言 对调查得到的大量原始数据进行加工处理,提取其中有用的信息,即统计整理,是进一步进行统计分析的前提.但是通常的统计整理方法往往都对样本数据有一个前提假设,即样本数据是来自同一个总体,而这个假设有时却不能成立.原因一是由客观因素造成的,如总体条件的突然变化或人们未知的某个因素的突然出现等等;二是由主观方面的因素造成的,即人为的差错如调查人员读错或抄错数据,不小心把另一些不同条件下的样本数据混杂进来.当样本中的个别数据明显的偏离样本中其余数据时,这些数据可能是来自不同的总体,我们称这样的数据为异常数据.若对混有异常数据的样本按常规进行统计整理、分析、推断,往往会得出不符合实际的结论.本文就样本中的异常数据提出了诊断方法和处理方法,并结合实例说明了简单回归中上述方法的具体应用. 2 异常值的概念 所谓异常值就是在所获统计数据中相对误差较大的观察数据,也称奇异值(Outliers).狭义地定义异常值就是一批数据中有部分数据与其余数据相比明显不一致的数据,也称离群值. 社会经济统计中一切失实数据统称为异常值.由于人为或随机因素的影响,失实的数据随时都有可能出现,因而统计数据中的任何一个都有可能成为异常值,而狭义界定的异常值是指离群值,如果把统计数据按由小到大排列,若有异常值,它必位于其数据的两端,左端称为异常小值,右端的称为异常大值. 残差:考虑线性回归模型 y X e β=+,()0E e =,()2n Cov e I σ=. ()1 其中 ? ????? ??????=n y y y y 2 1,??? ??? ????????=---1,11,2211,111111p n n p p x x x x x x X ,??????????????=-110p ββββ ,????? ? ??????= n e e e e 21. 分量形式为

相关主题
文本预览
相关文档 最新文档