当前位置:文档之家› MOS管学习

MOS管学习

MOS管学习笔记

主要内容

●MOS管的种类及结构

●MOS管的工作原理

●MOS管的主要参数

●MOS管的驱动

MOS 管的种类及结构

MOS 管的全称是:Metal Oxide Semiconductor Field Effect Transistor (金

属氧化物半导体场效应管)

导电载流子的带

电极性

N 沟道(电子型)

P

沟道(空穴型)导电沟道形成机

增强型(E 型)

耗尽型(D

型)

组合共有4种类型

分类

在实际应用中,只有N 沟道增强型和P 沟道增强型,这两种中比较常用的是NMOS 管,原因是导通电阻小,且容易制造。

结构

以一块掺杂浓度较低,电阻率较高的P型硅半导体薄片作为衬底,利用扩散

的方法在P型硅中形成两个高掺杂的N+区。然后在P型硅表面生长一层很薄的二氧化硅绝缘层,并在二氧化硅表面及N+型区的表面上分别安装三个铝电极——栅极g,源极s和漏极d,这样就形成了N沟道增强型MOS管。

符号

剖面图

(1)Vgs=0,没有导电沟道此时栅源短接,源区,衬底和漏区形成两个背靠背的PN 结,无论Vds 的极性怎样,其中

总有一个PN 结是反偏的,所以d,s 之间没有形成导电沟道,MOS 管处于截止状态。(2)Vgs≥ V GS(th ),出现N 沟道

栅源之间加正向电压由栅极指向P 型衬底的电场将靠近栅极下方的空穴向下排斥形成耗尽层MOS 管的工作原理

NMOS 的特性:Vgs 大于一定的值就会导通,适合用于源极接地时的情况(低端驱动)

---s 二氧化硅P 衬底

g DD V +

N

d +b

N

V GG

i d

再增加Vgs

纵向电场

将P 区少子(电子)聚集到P 区表面形成源漏极间的N 型导电沟道

如果此时加有漏源电压,就可以形成漏极电流i d

定义:开启电压V GS(th )——

刚刚产生导电沟道所需的栅源电压Vgs

(3)输出特性曲线

MOS的输出特性曲线是指在栅源电压Vgs> V GS(th)且恒定的情况下,漏极电流i d与漏源电压Vds之间的关系,可以分为以下4段:

a.线性区

当Vds很小时,沟道就像一个阻值与Vds无关的固定电阻,此时i d与Vds

成线性关系,如图OA段所示

b.过渡区

随着Vds增大,漏极附近的沟道变薄,沟道电阻增大,曲线逐渐下弯。当Vds增大到Vdsat(饱和漏源电压)时,漏端处可动电子消失,此时沟道被夹断,如图AB段所示。

线性区和过渡区统称为非饱和区。

c.饱和区

当Vds> Vdsat时,沟道夹断点向左移,漏极附近只剩下耗尽区,此时i d 几乎与Vds无关而保持i dsat不变,曲线为水平直线,如图BC段所示。

d.击穿区

V ds继续增大到BV ds时,漏结发生雪崩击穿,i d急剧增大,如图CD段所示。

以Vgs 为参考量,可以得到不同Vgs下,漏极电流i d与漏源电压Vds 之间的关系曲线族,即为MOS管的输出特性曲线。

将各曲线的夹断点用虚线连接起来,虚线左侧为可变电阻区,右侧为饱和区。

Vgs< V GS(th)时,称为截止区

(4)转移特性

漏源电压Vds 一定的条件下,栅源电压Vgs 对漏极电流i d 的控制特性。可根据输出特性曲线作出移特性曲线。例:作Vds =10V 的一条转移特性曲线

i (mA)

D GS =6V u u =5V GS =4V u GS u =3V

GS u

DS

(V)

D i (mA)

10V

1

2341

432(V)

u

GS

2

46

U T

4种类型的MOSFET特性曲线小结

MOS管的主要参数

极限参数

I D:最大漏源电流。是指场效应管正常工作时,漏源间所允许通过的最大电流。

MOSFET的工作电流不应超过I D。此参数会随结温度的上升而有所减额。

I DM:最大脉冲漏源电流。反映了器件可以处理的脉冲电流的高低,此参数会随结温

度的上升而有所减小。

P D:最大耗散功率。是指场效应管性能不变坏时所允许的最大漏源耗散功率。使用时,场效应管实际功耗应小于P DSM并留有一定余量。此参数一般会随结温度的上升而有所减额。

V GS:最大栅源电压。是指栅源间反向电流开始急剧增加时的V GS值

T j:最大工作结温。通常为150℃或175℃,器件设计的工作条件下须确应避免超过这个温度,并留有一定裕量。

T STG:存储温度范围。

静态参数

V(BR)DSS:漏源击穿电压。是指栅源电压V GS为0时,场效应管正常工作所能承受的最大漏源电压。加在场效应管上的工作电压必须小于V(BR)DSS。它具有正温度特性。故应以此参数在低温条件下的值作为安全考虑。

V(BR)DSS/△T j:漏源击穿电压的温度系数,一般为0.1V/℃。

R DS(on):在特定的V GS(一般为10V)、结温及漏极电流的条件下,MOSFET导通时漏源间的最大阻抗。它是一个非常重要的参数,决定了MOSFET导通时的消耗功率。此参数一般会随结温度的上升而有所增大。故应以此参数在最高工作结温条件下的值作为损耗及压降计算。

V GS(th):开启电压(阀值电压)。当外加栅极控制电压V GS超过V GS(th)时,漏区和源区的表面反型层形成了连接的沟道。应用中,常将漏极短接条件下I D等于1毫安时的栅极电压称为开启电压。此参数一般会随结温度的上升而有所降低。

I DSS:饱和漏源电流,栅极电压V GS=0、V DS为一定值时的漏源电流。一般在微安级。

I GSS:栅源驱动电流或反向电流。由于MOSFET输入阻抗很大,I GSS一般在纳安级。

动态参数

g fs:跨导。是指漏极输出电流的变化量与栅源电压变化量之比,是栅源电压对漏极电流控制能力大小的量度。

Q g:栅极总充电电量。MOSFET是电压型驱动器件,驱动的过程就是栅极电压的建立过程,这是通过对栅源及栅漏之间的电容充电来实现的。

Q gs:栅源充电电量。

Q gd:栅漏充电电量。

C iss:输入电容,将漏源短接,用交流信号测得的栅极和源极之间的电容。C iss= C GD+

C GS。对器件的开启和关断延时有直接的影响。

C oss:输出电容,将栅源短接,用交流信号测得的漏极和源极之间的电容。C oss= C DS

+C GD。

C rss:反向传输电容,在源极接地的情况下,测得的漏极和栅极之间的电容C rss= C GD。对于开关的上升和下降时间来说是其中一个重要的参数

T d(on):导通延迟时间。从有输入电压上升到10%开始到V DS(V out)下降到其幅值90%的时间(如下图示)。

T r:上升时间。输出电压V DS(V out)从90%下降到其幅值10%的时间。

T d(off):关断延迟时间。输入电压下降到90%开始到V DS (V out)上升到其关断电压时10%的时间。

T f:下降时间。输出电压V DS(V out)从10%上升到其幅值90%的时间,参照下图所示。

如果电压超过漏源极限电压将导致器件处在雪崩状态

EAS :单次脉冲雪崩击穿能量,说明MOSFET 所能承受的最大雪崩击穿能量IAR :雪崩电流

EAR :重复雪崩击穿能量

I S :连续最大续流电流(从源极)I SM :脉冲最大续流电流(从源极)V SD :正向导通压降T rr :反向恢复时间

Q rr :反向恢复充电电量

T on :正向导通时间(基本可以忽略不计)

●雪崩击穿参数

●体内二极管参数

MOS 管的驱动

●开关管导通时,驱动电路应能提供足够大的充电电流使栅源电压上升到需要值,保证开关管快速开通且不存在上升沿的高频震荡。

●开关管导通期间驱动电路能保证MOSFET 栅源间电压保持稳定使其可靠导通。

●关断瞬间驱动电路能提供一个低阻抗通路供MOSFET 栅源间电压快速泻放,保证开关管能快速关断。

●关断期间驱动电路可以提供一定的负电压避免受到干扰产生误导通。●驱动电路结构尽量简单,最好有隔离。

在进行驱动电路设计之前,必须先清楚MOS 管的模型、MOS 管的开关过程、MOS 管的栅极电荷以及MOS 管的输入输出电容、跨接电容、等效电容等参数对驱动的影响。驱动电路的好坏直接影响了电源的工作性能及可靠性,一个好的MOSFET 驱动电路的基本要求是:

POWER MOSFET 等效模型

POWER MOSFET 寄生参数

C iss= C GD+ C GS

C oss= C DS+C GD

C rss= C GD

POWER MOSFET 导通过程

T0~T1:驱动通过R GATE对C gs充电,电压V gs以指数的形式上升

MOS管基础知识

MOS管基础知识 MOS管场效应管 知识要点: 场效应管原理、场效应管的小信号模型及其参数 场效应管是只有一种载流子参与导电的半导体器件,是一种用输入电压控制输出电流的半导体器件。有N沟道器件和P沟道器件。有结型场效应三极管JFET(Junction Field Effect Transister)和绝缘栅型场效应三极管IGFET( Insulated Gate Field Effect Transister) 之分。IGFET也称金属-氧化物-半导体三极管MOSFET (Metal Oxide Semiconductor FET)。 1.1 1.1.1 MOS场效应管 MOS场效应管有增强型(Enhancement MOS 或EMOS)和耗尽型(Depletion)MOS或DMOS)两大类,每一类有N沟道和P沟道两种导电类型。场效应管有三个电极: D(Drain) 称为漏极,相当双极型三极管的集电极; G(Gate) 称为栅极,相当于双极型三极管的基极; S(Source) 称为源极,相当于双极型三极管的发射极。 增强型MOS(EMOS)场效应管 根据图3-1,N沟道增强型MOSFET基本上是一种左右对称的拓扑结构,它是在P型半导体上生成一层SiO2 薄膜绝缘层,然后用光刻工艺扩散两个高掺杂的N型区,从N型区引出电极,一个是漏极D,一个是源极S。在源极和漏极之间的绝缘层上镀一层金属铝作为栅极G。P 型半导体称为衬底,用符号B表示。 图3-1 N 沟道增强型EMOS管结构示意 一、工作原理 1.沟道形成原理 当VGS=0 V时,漏源之间相当两个背靠背的二极管,在D、S之间加上电压不会在D、S间形成电流。 当栅极加有电压时,若0<VGS<VGS(th)时,通过栅极和衬底间的电容作用,将靠近栅极下方的P型半导体中的空穴向下方排斥,出现了一薄层负离子的耗尽层。耗尽层中的少子将向表层运动,但数量有限,不足以形成沟道,所以仍然不足以形成漏极电流ID。 进一步增加VGS,当VGS>VGS(th)时( VGS(th) 称为开启电压),由于此时的栅极电压已经比较强,在靠近栅极下方的P型半导体表层中聚集较多的电子,可以形成沟道,将漏极和源极沟通。如果此时加有漏源电压,就可以形成漏极电流ID。在栅极下方形成的导电沟 1 线性电子电路教案 道中的电子,因与P型半导体的载流子空穴极性相反,故称为反型层(inversion layer)。随着VGS的继续增加,ID将不断增加。在VGS=0V时ID=0,只有当VGS>VGS(th)后才会出现漏极电流,这种MOS管称为增强型MOS管。 转移特性曲线的斜率gm的大小反映了栅源电压对漏极电流的控制作用。 gm 的量纲为mA/V,所以gm也称为跨导。 跨导的定义式如下: constDS==VGSDVIgmΔΔ (单位mS) 2. VDS对沟道导电能力的控制 当VGS>VGS(th),且固定为某一值时,来分析漏源电压VDS对漏极电流ID的影响。VDS的不同变化对沟道的影响如图3-2所示。根据此图可以有如下关系 VDS=VDG+VGS= —VGD+VGS

MOS管基础知识

MOS管(MOSFET)基础知识:结构,特性驱动电路及应用 MOS管(MOSFET)基础知识:结构,特性驱动电路及应用分析 下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创。包括MOS管的介绍,特性,驱动以及应用电路。 1,MOS管种类和结构 MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。 至于为什么不使用耗尽型的MOS管,不建议刨根问底。 对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。 MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。 在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。 2,MOS管导通特性 导通的意思是作为开关,相当于开关闭合。 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。 PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 3,MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有。 MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越快,损失也越大。 导通瞬间电压和电流的乘积很大,造成的损失也就很大。缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。 4,MOS管驱动 跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。这个很容易做到,但是,我们还需要速度。 在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大小。 第二注意的是,普遍用于高端驱动的NMOS,导通时需要是栅极电压大于源极电压。而高端驱动的MOS管导通时源极电压与漏极电压(VCC)相同,所以这时栅极电压要比VCC大4V或10V。如果在同一个系统里,要得到比VCC大的电压,就要专门的升压电路了。很多马达驱动器都集成了电荷泵,要注意的是应该选择合适的外接电容,以得到足够的短路电流去驱动MOS管。 上边说的4V或10V是常用的MOS管的导通电压,设计时当然需要有一定的余量。而且电压越高,导通速度越快,导通电阻也越小。现在也有导通电压更小的MOS管用在不同的领域里,但在12V汽车电子系统里,一般4V导通就够用了。 MOS管的驱动电路及其损失,可以参考Microchip公司的AN799Matching MOSFET Drivers to MOSFETs。讲述得很详细,所以不打算多写了。 5,MOS管应用电路 MOS管最显著的特性是开关特性好,所以被广泛应用在需要电子开关的电路中,常见的如开关电源和马达驱动,也有照明调光。现在的MOS驱动,有几个特别的需求, 1,低压应用 当使用5V电源,这时候如果使用传统的图腾柱结构,由于三极管的be有0.7V左右的压降,导致实际最终加在gate上的电压只有4.3V。这时候,我们选用标称gate电压4.5V的MOS管就存在一定的风险。 同样的问题也发生在使用3V或者其他低压电源的场合。 2,宽电压应用 输入电压并不是一个固定值,它会随着时间或者其他因素而变动。这个变动导致PWM电路提供给MOS管的驱动电压是不稳定的。

MOS管应用

MOS管基础知识与应用 1,MOS管种类和结构 MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。 至于为什么不使用耗尽型的MOS管,不建议刨根问底。 对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。 MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。 在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS 管中存在,在集成电路芯片内部通常是没有的。

2,MOS管导通特性 导通的意思是作为开关,相当于开关闭合。 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。 PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 下图是瑞萨2SK3418的Vgs电压和Vds电压的关系图。可以看出小电流时,Vgs达到4V,DS间压降已经很小,可以认为导通。 增强型 N沟道是G大于D 5V以上即高电平时导通 增强型 P沟道 耗尽型 N沟道是G小于D 5V以上即低电平时导通 耗尽型 P沟道 3,MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有。 MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越快,损失也越大。

mos管基础知识

MOS管的基础知识 什么是场效应管呢?场效应管式是利用输入回路的电场效应来控制输出回路 电流的一种半导体器件,并以此命名。由于它是靠半导体中的多数载流子导电,又称单极性晶体管。它区别晶体管,晶体管是利用基极的小电流可以控制大的集电极电流。又称双极性晶体管。 一, MOS管的种类,符号。 1JFET结型场效应管----利用PN结反向电压对耗尽层厚度的控制来改变导电沟道的宽度,从而控制漏极电流的大小。结型场效应管一般是耗尽型的。 耗尽型的特点: a,PN结反向电压,这个怎么理解,就是栅极G,到漏极D和源极s有个PN吉, b,未加栅压的时候,器件已经导通。要施加一定的负压才能使器件关闭。 C,从原理上讲,漏极D和源极S不区分,即漏极也可作源极,源极也可以做 漏极。漏源之间有导通电阻。 2IGFET绝缘栅极场效应管----利用栅源电压的大小来改变半导体表面感生电荷

的多少,从而控制漏极电流的大小。 增强型效应管特点: A, 栅极和源极电压为0时,漏极电流为0的管子是增强型的。 B, 栅源电压,这个之间是个绝缘层,绝缘栅型一般用的是 SIO 2绝缘层。 耗尽 型绝缘栅场效应晶体管 的性能特点是:当栅极电压U 0 =0时有一定的漏 极电流。对于N 沟道耗尽型绝缘栅场效应晶体管,漏极加正电压,栅极电压从 0 逐渐上升时漏极电流逐渐增大,栅极电压从 0逐渐下降时漏极电流逐渐减小直至 截 止。对于P 沟道耗尽型绝缘栅场效应晶体管,漏极加负电压,栅极电压从 0逐 渐下降时漏极电流逐渐增大,栅极电压从 0逐渐上升时漏极电流逐渐减小直至截 绝缘栅型场效应 管: N 沟道增强型,P 沟道增强型,N 沟道耗尽型,P 沟道耗 尽型 MOSFET 増强型 N 沟道 二,用数字万用表测量MO 管的方法 用数字万用表判断MOS 的管脚定义。 1, 判断结型场效应管的 栅极的判断, 我们以N 沟道为例,大家知道,结型场效应管在 VGS 之间不施加反向电压 的 话,DS 之间是导通的,(沟道是以N 型半导体为导电沟道),有一定的 阻值,所以止0 1, 2, 按功率分类: A, 小信号管,一般指的是耗尽型场效应管。主要用于信号电路的控制。 B, 功率管,一般指的是增强型的场效应管,只要在电力开关电路,驱动 电路等。 按结构分类: 结型场效应管: 型) 增强型, 耗尽型 N 沟道结型场效应管 P 沟道结型场效应管(一般是耗尽 ZU 耗尽型 ZK7 工4

MOS管的作用

MOS管的作用主板 MOS管为压控元件,你只要加到它的压控元件所需电压就能使它导通,它的导通就像三极管在饱和状态一样,导通结的压降最小.这就是常说的精典是开关作用.去掉这个控制电压经就截止. MOS管 MOS管的英文全称叫MOSFET(Metal Oxide Semiconductor Field Effect Transistor),即金属氧化物半导体型场效应管,属于场效应晶体管中的绝缘栅型。因此,MOS管有时被称为场效应管。在一般电子电路中,MOS管通常被用于放大电路或开关电路。而在主板上的电源稳压电路中,MOSFET扮演的角色主要是判断电位,它在主板上常用“Q”加数字表示。 一、MOS管的作用是什么? 目前主板或显卡上所采用的MOS管并不是太多,一般有10个左右,主要原因是大部分MOS管被整合到IC芯片中去了。由于MOS管主要是为配件提供稳定的电压,所以它一般使用在CPU、AGP插槽和内存插槽附近。其中在CPU与AGP插槽附近各安排一组MOS 管,而内存插槽则共用了一组MOS管,MOS管一般是以两个组成一组的形式出现主板上的。 二、MOS管的性能参数有哪些? 优质的MOS管能够承受的电流峰值更高。一般情况下我们要判断主板上MOS管的质量高低,可以看它能承受的最大电流值。影响MOS管质量高低的参数非常多,像极端电流、极端电压等。但在MOS管上无法标注这么多参数,所以在MOS管表面一般只标注了产品的型号,我们可以根据该型号上网查找具体的性能参数。 还要说明的是,温度也是MOS管一个非常重要的性能参数。主要包括环境温度、管壳温度、贮成温度等。由于CPU频率的提高,MOS管需要承受的电流也随着增强,提供近百A的电流已经很常见了。如此巨大的电流通过时产生的热量当然使MOS管“发烧”了。为了MOS管的安全,高品质主板也开始为MOS管加装散热片了。 电感与MOS管是如何合作的? 通过上面的介绍,我们知道MOS管对于整个供电系统起着稳压的作用,但是MOS管不能单独使用,它必须和电感线圈、电容等共同组成的滤波稳压电路,才能发挥充分它的优势。 主板上的PWM(Plus Width Modulator,脉冲宽度调制器)芯片产生一个宽度可调的脉冲波形,这样可以使两只MOS管轮流导通。当负载两端的电压(如CPU需要的电压)要降低时,这时MOS管的开关作用开始生效,外部电源对电感进行充电并达到所需的额定电压。当负

MOS管的基本特性

HUNAN UNIVERSITY 实验报告 题目 MOS管的基本特性 学生姓名 学生学号 专业班级计算机科学与技术1403班 日期2016年3月27日 一、实验目的 1.熟练掌握仿真工具Hspice相关语法; 2.熟练掌握MOS管基本特性; 3.掌握使用HSPICE对MOS电路进行SPICE仿真,以得到MOS电路的I-V曲线。 4.掌握通过SPICE仿真评估器件性能的方法。

二、实验内容及要求 1、熟悉Hspice仿真工具; 2、使用Hspice仿真MOS的输出特性,当Vds从0~5V变化,Vgs分别从1V、2V、3V、4V和5V时的输出特性曲线; 三、实验原理 1.Nmos管的简单电路图: 1)当Vds=0时,Vgs=0的话不会有电流,即输出电流Id=0。 2)当Vgs是小于开启电压的一个确定值,不管Vds如何变化,输出电流Id都不会改变。 3)当Vgs是大于开启电压的一个确定值,在一定范围内增大Vds时,输出电流Id增大。但当 出现预夹断之后,再增大Vds,输出电流Id不会再变化。 2端为控制端,称为“栅极”;3端通常接地,称为“源极”;源极电压记作Vss,1端接正电压,称为“漏极”,漏极电压记作VDD。要使1端与3端导通,栅极2上要加高电平。 2.Nmos管的输出特性曲线图:

四、实验方法与步骤 1.实验环境: 计算机平台:联想Thinkpad E540计算机平台、windows7操作系统(虚拟机)。 软件仿真平台:在Hspice上完成实验。 2.实验步骤: 1、编写源代码。按照实验要求,在记事本上编写MOS管输出特性曲线的描述代码,当Vds从0-5V 变化,Vgs分别取1V、2V、3V、4V、5V。以sp文件扩展名保存代码文件。 2、打开Hspice软件平台,点击File中的test1.sp文件。编写的文件名 3、编译与调试:确定源代码文件为当前工程文件,点击Complier进行文件编译。编译结果有错误或警告,则将要调试修改直至文件编译成功。 4、软件仿真运行及验证。在编译成功后,点击simulate开始仿真运行。点击Edit LL查看单步运行的结果,打开仿真图形生成软件Avanwaves,按照程序所述对比仿真结果。 5、断点设置与仿真。 6、仿真平台各结果信息说明。 五、实验仿真结果及其分析 1、仿真过程(代码为借用,刚开始还对Hspice代码语法不怎么了解) 1)源代码 *Sample netlist for GSMC $对接下来的网表进行分析 .TEMP 25.0000 $温度仿真设定 .option abstol=1e-6 reltol=1e-6 post ingold$设定abstol,reltol的参数值 .lib 'gd018.l' TT $使用库文件 * --- Voltage Sources --- vdd VDD 0 dc=1.8 $分析电压源 vgs g 0 0 $分析栅源电压

MOSFET管开关电路基本知识总结

一直以来模拟电路就学的不好,好不容易把三极管了解完了,就一直没敢碰MOSFET 了,没想到两年后还是会遇到,不过有一句话倒是很不错,就是技术这个东西不能太深入,否则你会发现其实都很简单. (一)MOSFET 管的基本知识 MOSFET 是利用半导体表面的电场效应进行工作的,也称为表面场效应器件.它分为N 沟道和P 沟道两类,其中每一类又可分为增强型和耗尽型两种,所谓耗尽型就是当0GS V =时,存在导电沟道,0D I ≠,所谓增强型就是0GS V =时,没有导电沟道,即0D I =. 以上是N 沟道和P 沟道MOS 管的符号图, 其相关基本参数: (1) 开启电压V th ,指栅源之间所加的电压, (2) 饱和漏电流I DSS ,指的是在V GS =0的情况下,当V DS >|V th |时的漏极电流称为饱和漏电流I DSS (3) 最大漏源电压V DS (4) 最大栅源电压V GS

(5)直流输入电阻R GS 通常MOS管的漏极与源极与以互换,但有些产品出厂时已将源极与衬底连在一起,这时源极与漏极不能对调,使用时应该注意.下面以FDN336P的一些主要参数为例进行介绍: 上表指出其源极与漏极之间的电压差为20V,而且只能是S接正极,D 接负极, 栅极与源极之间的最大电压差为8V,可以反接. 源极最大电流为1.3A,由S->D流向,脉冲电流为10A 这是表示在0 V 时,V DS=-16V时的饱和漏电流, GS 上图表示其开启电压为1.5V,并指出了其DS间导通电阻值. (二)MOSFET做开关管的知识

一般来讲,三极管是电流驱动的,MOSFET是电压驱动的,因为我是用CPLD来驱动这个开关,所以选择了用MOSFET做,这样也可以节省系统功耗吧,在做开关管时有一个必须注意的事项就是输入和输入两端间的管压降问题,比如一个5V的电源,经过管子后可能变为了4.5V,这时候要考虑负载能不能接受了,我曾经遇到过这样的问题就是负载的最小工作电压就是5V了,经过管子后发现系统工作不起来,后来才想起来管子上占了一部分压降了,类似的问题还有在使用二极管的时候(尤其是做电压反接保护时)也要注意管子的压降问题 开关电路原则 a. BJT三极管Transistors只要发射极e 对电源短路就是电子开关用法 N管发射极E 对电源负极短路. (搭铁) 低边开关;b-e 正向电流饱和导通 P管发射极E 对电源正极短路. 高边开关;b-e 反向电流饱和导通 b. FET场效应管MOSFET只要源极S 对电源短路就是电子开关用法 N管源极S 对电源负极短路. (搭铁) 低边开关;栅-源正向电压导通 P管源极S 对电源正极短路. 高边开关;栅-源反向电压导通 总结: 低边开关用 NPN 管 高边开关用 PNP 管 三极管 b-e 必须有大于 C-E 饱和导通的电流 场效应管理论上栅-源有大于漏-源导通条件的电压就就OK 假如原来用NPN 三极管作ECU 氧传感器加热电源控制低边开关 则直接用N-Channel 场效应管代换;或看情况修改下拉或上拉电阻 基极--栅极 集电极--漏极 发射极--源极 上面是在一个论坛上摘抄的,语言通俗,很实用,

MOS管开关电路设计知识

M O S管开关电路设计 知识 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

M O S管开关电路设计知识 学过模拟电路,竟然连MOS管的用法都不是很懂,真是"杯具"! 在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。 下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创。包括MOS管的介绍,特性,驱动以及应用电路。 1,MOS管种类和结构 MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。 至于为什么不使用耗尽型的MOS管,不建议刨根问底。 对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。 MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。 在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。 2,MOS管导通特性 导通的意思是作为开关,相当于开关闭合。 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。 PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 3,MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有。 MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越快,损失也越大。 导通瞬间电压和电流的乘积很大,造成的损失也就很大。缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。 4,MOS管驱动 跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。这个很容易做到,但是,我们还需要速度。 在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短

mos基础知识

什么是功率MOSFET? 我们都懂得如何利用二极管来实现开关,但是,我们只能对其进行开关操作,而不能逐渐控制信号流。此外,二极管作为开关取决于信号流的方向;我们不能对其编程以通过或屏蔽一个信号。对于诸如“流控制”或可编程开关之类的应用,我们需要一种三端器件和双极型三极管。我们都听说过Bardeen & Brattain,是他们偶然之间发明了三极管,就像许多其它伟大的发现一样。 结构上,它由两个背靠背的结实现(这不是一笔大交易,早在Bardeen之前,我们可能就是采用相同的结构实现了共阴极),但是,在功能上它是完全不同的器件,就像一个控制发射极电流流动的“龙头”—操作龙头的“手”就是基极电流。双极型三极管因此就是电流受控的器件。 场效应三极管(FET)尽管结构上不同,但是,提供相同的“龙头”功能。差异在于:FET是电压受控器件;你不需要基极电流,而是要用电压实施电流控制。双极型三极管诞生于1947年,不久之后一对杰出的父子Shockley和Pearson就发明了(至少是概念)FET。为了与较早出现的双极型“孪生兄弟”相区别,FET的三个电极分别被称为漏极、栅极和源极,对应的三极管的三个电极分别是集电极、基极和发射极。FET有两个主要变种,它们针对不同类型的应用做了最优化。JFET(结型FET)被用于小信号处理,而MOSFET(金属氧化物半导体FET)主要被用于线性或开关电源应用。 他们为什么要发明功率MOSFET? 当把双极型三极管按照比例提高到功率应用的时候,它显露出一些恼人的局限性。确实,你仍然可以在洗衣机、空调机和电冰箱中找到它们的踪影,但是,对我们这些能够忍受一定程度的家用电器低效能的一般消费者来说,这些应用都是低功率应用。在一些UPS、电机控制或焊接机器人中仍然采用双极型三极管,但是,它们的用途实际上被限制到小于10KHz的应用,并且在整体效率成为关键参数的技术前沿应用中,它们正加速退出。 作为双极型器件,三极管依赖于被注入到基极的少数载流子来“击败”(电子和空穴)复合并被再次注入集电极。为了维持大的集电极电流,我们要从发射极一侧把电流注入基极,如果可能的话,在基极/集电极的边界恢复所有的电流(意味着在基极的复合要保持为最小)。 但是,这意味着当我们想要三极管打开的时候,在基极中存在复合因子低的大量少数载流子,开关在闭合之前要对它们进行处理,换言之,与所有少数载流子器件相关的存储电荷问题限制了最大工作速度。FET的主要优势目前带来了一线曙光:作为多数载流子器件,不存在已存储的少数电荷问题,因此,其工作频率要高得多。MOSFET的开关延迟特性完全是因为寄生电容的充电和放电。

功率MOSFET基础知识:什么是MOSFET,MOSFET功能、结构原理

什么是功率MOSFET ? 我们都懂得如何利用二极管来实现开关,但是,我们只能对其进行开关操作,而不能逐渐控制信号流。此外,二极管作为开关取决于信号流的方向;我们不能对其编程以通过或屏蔽一个信号。对于诸如“ 流控制” 或可编程开关之类的应用,我们需要一种三端器件和双极型三极管。我们都听说过Bardeen & Brattain ,是他们偶然之间发明了三极管,就像许多其它伟大的发现一样。 结构上,它由两个背靠背的结实现( 这不是一笔大交易,早在Bardeen 之前,我们可能就是采用相同的结构实现了共阴极) ,但是,在功能上它是完全不同的器件,就像一个控制发射极电流流动的“ 龙头”—操作龙头的“ 手” 就是基极电流。双极型三极管因此就是电流受控的器件。 场效应三极管(FET) 尽管结构上不同,但是,提供相同的“ 龙头” 功能。差异在于:FET 是电压受控器件;你不需要基极电流,而是要用电压实施电流控制。双极型三极管诞生于1947 年,不久之后一对杰出的父子Shockley 和Pearson 就发明了( 至少是概念)FET 。为了与较早出现的双极型“ 孪生兄弟”相区别,FET 的三个电极分别被称为漏极、栅极和源极,对应的三极管的三个电极分别是集电极、基极和发射极。FET 有两个主要变种,它们针对不同类型的应用做了最优化。JFET( 结型FET) 被用于小信号处理,而MOSFET( 金属氧化物半导体FET) 主要被用于线性或开关电源应用。 他们为什么要发明功率MOSFET ? 当把双极型三极管按照比例提高到功率应用的时候,它显露出一些恼人的局限性。确实,你仍然可以在洗衣机、空调机和电冰箱中找到它们的踪影,但是,对我们这些能够忍受一定程度的家用电器低效能的一般消费者来说,这些应用都是低功率应用。在一些UPS 、电机控制或焊接机器人中仍然采用双极型三极管,但是,它们的用途实际上被限制到小于10KHz 的应用,并且在整体效率成为关键参数的技术前沿应用中,它们正加速退出。 作为双极型器件,三极管依赖于被注入到基极的少数载流子来“ 击败”( 电子和空穴) 复合并被再次注入集电极。为了维持大的集电极电流,我们要从发射极一侧把电流注入基极,如果可能的话,在基极/ 集电极的边界恢复所有的电流( 意味着在基极的复合要保持为最小) 。 但是,这意味着当我们想要三极管打开的时候,在基极中存在复合因子低的大量少数载流子,开关在闭合之前要对它们进行处理,换言之,与所有少数载流子器件相关的存储电荷问题限制了最大工作速度。FET 的主要优势目前带来了一线曙光:作为多数载流子器件,不存在

MOS管常见与不常见的相关知识整理

MOS管常见与不常见的相关知识整理 防静电保护 MOS管是属于绝缘栅场效应管,栅极是无直流通路,输入阻抗极高,极易引起静电荷聚集,产生较高的电压将栅极和源极之间的绝缘层击穿。 早期生产的MOS管大都没有防静电的措施,所以在保管及应用上要非常小心,特别是功率较小的MOS管,由于功率较小的MOS管输入电容比较小,接触到静电时产生的电压较高,容易引起静电击穿。 而近期的增强型大功率MOS管则有比较大的区别,首先由于功能较大输入电容也比较大,这样接触到静电就有一个充电的过程,产生的电压较小,引起击穿的可能较小,再者现在的大功率MOS管在内部的栅极和源极有一个保护的稳压管DZ(如下图所示),把静电嵌位于保护稳压二极管的稳压值以下,有效的保护了栅极和源极的绝缘层,不同功率、不同型号的MOS管其保护稳压二极管的稳压值是不同的。 虽然MOS管内部有了保护措施,我们操作时也应按照防静电的操作规程进行,这是一个合格的维修员应该具备的。 检测与代换 在修理电视机及电器设备时,会遇到各种元器件的损坏,MOS管也在其中,这就是我们的维修人员如何利用常用的万用表来判断MOS管的好坏、优劣。在更换MOS管时如果没有相同厂家及相同型号,如何代换的问题。 1、MOS管的测试: 作为一般的电器电视机维修人员在测量晶体三极管或二极管时,一般是采用普通的万用表来判断三极管或者二极管的好坏,虽然对所判断的三极管或二极管的电气参数没法确认,但是只要方法正确对于确认晶体三极管的“好”与“坏”还是没有问题的。同样MOS管也可以应用万用表来判断其“好”与“坏”,从一般的维修来说,也可以满足需求了。 检测必须采用指针式万用表(数字表是不适宜测量半导体器件的)。对于功率型MOSFET 开关管都属N沟道增强型,各生产厂的产品也几乎都采用相同的TO-220F封装形式(指

相关主题
文本预览
相关文档 最新文档