当前位置:文档之家› 一些曲面的参数方程及图形

一些曲面的参数方程及图形

一些曲面的参数方程及图形
一些曲面的参数方程及图形

最新高中数学参数方程大题(带答案)精选

参数方程极坐标系 解答题 1.已知曲线C:+=1,直线l:(t为参数) (Ⅰ)写出曲线C的参数方程,直线l的普通方程. (Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值. +=1 , , 的距离为 则 取得最小值,最小值为 2.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为: ,曲线C的参数方程为:(α为参数). (I)写出直线l的直角坐标方程; (Ⅱ)求曲线C上的点到直线l的距离的最大值. 的极坐标方程为: cos= ∴

y+1=0 ( d= 的距离的最大值. 3.已知曲线C1:(t为参数),C2:(θ为参数). (1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线; (2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值. :(化为普通方程得:+ t=代入到曲线 sin =,),﹣

4.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为 ,直线l的参数方程为(t为参数),直线l和圆C交于A,B两点,P是圆C 上不同于A,B的任意一点. (Ⅰ)求圆心的极坐标; (Ⅱ)求△PAB面积的最大值. 的极坐标方程为,把 ,利用三角形的面积计算公式即可得出. 的极坐标方程为,化为= 把 ∴圆心极坐标为; (t , = 距离的最大值为 5.在平面直角坐标系xoy中,椭圆的参数方程为为参数).以o为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为.求椭圆上点到直线距离的最大值和最小值. 由题意椭圆的参数方程为为参数)直线的极坐标方程为

4.5常见曲面的参数方程

§4.5 常见曲面的参数方程 本节重点:掌握空间中的三种坐标系:直角坐标系、球坐标系、柱坐标系。 掌握旋转曲面的参数方程的建立。 掌握直纹面的参数方程。 本节难点:旋转曲面的参数方程。直纹面的参数方程。 在第二章中,我们已经引进一般曲面与曲线的参数方程的概念、并给出简单曲面与曲线的参数表示,例如球面与圆柱螺旋线,直线的参数方程。现在再介绍旋转曲面、直纹面的参数方程,同时给出空间中另外两种坐标系:球坐标系与柱坐标系。 (一)旋转曲面的参数方程,球坐标与柱坐标 设旋转曲面的轴为Z 轴,母线Γ的参数方程是 )()()()(b t a t h Z t g Y t f X ≤≤=== 则此旋转曲面可由Γ上每一点生成的纬圆所构成的。由于这纬圆上动点),,(Z Y X P 与它在坐标面XOY 上的投影' P 具有相同的Y X ,坐标,所以Γ上任一点),,(1111Z Y X P 生成的纬圆的参数方程是 ??? ????=+=+=121212121sin cos Z Z Y X Y Y X X θθ )20(πθ<≤ 其中2121Y X +是纬圆半径,即1P 到Z 轴的距离,而参数θ是X 轴到1OP 的转角。设1P 对应的参数是1t ,则 )())(())((112 1212121t h Z t g t f Y X =+=+ 再让1t 在其取值范围内变动,即得这旋转曲面的参数方程 ??? ????=+=+=)(sin ))(())((cos ))(())((2222t h Z t g t f Y t g t f X θθ ???? ??<≤≤≤πθ20b t a (4.5.1) 特别地,当母线P 为坐标面XOZ 上的径线 )(0) (t h Z Y t f X === 时,(4.5.1)成为

2.2常见曲线的参数方程

2.2 常见曲线的参数方程 第一节 圆锥曲线的参数方程 一椭圆的参数方程 1、中心在坐标原点,焦点在x 轴上,标准方程是22 221(0)x y a b a b +=>>的椭圆的参数方程 为cos (sin x a y b ? ??=??=? 为参数) 同样,中心在坐标原点,焦点在y 轴上,标准方程是22 221(0)y x a b a b +=>>的椭圆的参 数方程为cos (sin x b y a ? ??=??=? 为参数) 2、椭圆参数方程的推导 如图,以原点O 为圆心,,()a b a b o >>为半径分别作两个同心圆,设A 为大圆上的任一点,连接OA ,和小圆交于点B ,过点,A B 分别作x 轴,y 轴的垂线,两垂线交于点M 。 设以Ox 为始边,OA 为终边的角为?,点M 的坐标是(,)x y 。那么点A 的横坐标为x ,点B 的纵坐标为y 。由于点,A B 都在角?的终边上,由三角函数的定义有 cos cos ,sin sin x OA a y OB b ????==== 3 当半径OA 绕点O 旋转一周时,就得到了点M 的轨迹,它的参数方程是cos (sin x a y b ? ?? =??=?为 参数) 这是中心在原点O ,焦点在x 轴上的椭圆的参数方程。 3、椭圆的参数方程中参数?的意义 圆的参数方程cos (sin x r y r θ θθ =?? =?为参数)中的参数θ是动点(,)M x y 的旋转角,但在椭圆 的参数方程cos (sin x a y b ? ?? =?? =?为参数)中的参数?不是动点(,)M x y 的旋转角,它是动点 (,)M x y 所对应的圆的半径OA (或OB )的旋转角,称为点M 的离心角,不是OM 的旋 转角,通常规定[)0,2?π∈ 4、椭圆参数方程和普通方程的互化

参数方程类型题详解

参数方程题型大全 参27.在极坐标系中,点(ρ,θ)与(-ρ, π-θ)的位置关系为( )。 A .关于极轴所在直线对称 B .关于极点对称 C .关于直线θ=2 π (ρ∈R) 对称 D .重合 28.极坐标方程 4ρsin 2 2θ =5 表示的曲线是( )。 A .圆 B .椭圆 C .双曲线的一支 D .抛物线 29.点 P 1(ρ1,θ1) 与 P 2(ρ2,θ2) 满足ρ1 +ρ2=0,θ1 +θ2 = 2π,则 P 1、P 2 两点 的位置关系是( )。 A .关于极轴所在直线对称 B .关于极点对称 C .关于θ=2 π所在直线对称 D .重合 30.椭圆?? ?Φ +-=Φ +=sin 51cos 33y x 的两个焦点坐标是( )。 A .(-3, 5),(-3, -3) B .(3, 3),(3, -5) C .(1, 1),(-7, 1) D .(7, -1),(-1, -1) 六、1.若直线的参数方程为12()23x t t y t =+??=-? 为参数,则直线的斜率为( ) A . 2 3 B .23- C . 32 D .3 2 - 2.下列在曲线sin 2()cos sin x y θ θθθ =?? =+?为参数上的点是( ) A .1( ,2 B .31 (,)42 - C . D . 3.将参数方程2 2 2sin ()sin x y θ θθ ?=+??=??为参数化为普通方程为( ) A . 2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤ 4.化极坐标方程2 cos 0ρθρ-=为直角坐标方程为( )

最新坐标系与参数方程31793

坐标系与参数方程 31793

暑假作业---坐标系与参数方程试题 一、选择题 1.若直线的参数方程为?Skip Record If...?,则直线的斜率为()A.?Skip Record If...? B.?Skip Record If...? C.?Skip Record If...? D.?Skip Record If...? 2.下列在曲线?Skip Record If...?上的点是() A.?Skip Record If...? B.?Skip Record If...? C.?Skip Record If...?D.?Skip Record If...? 3.将参数方程?Skip Record If...?化为普通方程为() A.?Skip Record If...? B.?Skip Record If...? C.?Skip Record If...?D.?Skip Record If...? 4.化极坐标方程?Skip Record If...?为直角坐标方程为() A.?Skip Record If...? B.?Skip Record If...? C.?Skip Record If...?D.?Skip Record If...? 5.点?Skip Record If...?的直角坐标是?Skip Record If...?,则点?Skip Record If...?的极坐标为() A.?Skip Record If...? B.?Skip Record If...? C.?Skip Record If...?D.?Skip Record If...? 6.极坐标方程?Skip Record If...?表示的曲线为() A.一条射线和一个圆 B.两条直线 C.一条直线和一个圆 D.一个圆7.参数方程为?Skip Record If...?表示的曲线是()

极坐标与参数方程测试题(有详解答案)

极坐标与参数方程测试题 一、选择题 1.直线12+=x y 的参数方程是( ) A 、???+==1 222t y t x (t 为参数) B 、???+=-=1412t y t x (t 为参数) C、 ???-=-=121t y t x (t为参数) D 、? ??+==1sin 2sin θθy x (t 为参数) 2.已知实数x,y 满足02cos 3=-+x x ,022cos 83=+-y y ,则=+y x 2( ) ?A .0 ?B.1 ?C .-2 D.8 3.已知??? ? ?-3,5πM ,下列所给出的不能表示点的坐标的是( ) A、??? ?? -3,5π B 、??? ?? 34,5π ??C、??? ??-32,5π ? D 、?? ? ?? --35,5π 4.极坐标系中,下列各点与点P(ρ,θ)(θ≠kπ,k ∈Z)关于极轴所在直线 对称的是( ) A.(-ρ,θ)B .(-ρ,-θ)C.(ρ,2π-θ) D.(ρ,2π+θ) 5.点()3,1-P ,则它的极坐标是 ( ) A 、??? ??3,2π ? B、??? ??34,2π ??C 、??? ??-3,2π ?D、?? ? ?? -34,2π 6.直角坐标系xo y中,以原点为极点,x 轴的正半轴为极轴建极坐标系,设点A,B 分别在曲 线13cos :sin x C y θθ =+??=? (θ为参数)和曲线2:1C ρ=上,则AB 的最小值为( ). A .1 B .2 C.3 D.4 7.参数方程为1()2 x t t t y ?=+???=?为参数表示的曲线是( ) A.一条直线 B.两条直线 C.一条射线 D.两条射线 8.()124123x t t x ky k y t =-?+==?=+?若直线为参数与直线垂直,则常数( )

最新极坐标参数方程题型归纳--7种

极坐标与参数方程(高考真题)题型归纳 一、极坐标方程与直角坐标方程的互化 1.(2015·广东理,14)已知直线l 的极坐标方程为2ρsin ????θ-π4=2,点A 的极坐标为A ????22,7π 4,则点A 到直线l 的距离为________. [立意与点拨] 本题考查极坐标与平面直角坐标的互化、点到直线的距离,属于容易题.解答本题先进行极直互化,再求距离. 二、参数方程与直角坐标方程的互化 【解析】椭圆方程为:14622=+y x ,因为1cos sin 2 2=+x x ,令???==α αcos 2sin 6y x ,则有 X+2y=αsin 6+αcos 4=()?α++sin 166,最大值22,最小值22- 三、根据条件求直线和圆的极坐标方程 四、求曲线的交点及交点距离 4.(2015·湖北高考)在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 的极坐标方程为ρ(sin θ-3cos θ)=0,曲线C 的参数方程为? ??x =t -1t , y =t + 1t (t 为参数),l 与C 相交于A ,B 两点,则|AB |=________. 【解析】 直线l 的极坐标方程ρ(sin θ-3cos θ)=0化为直角坐标方程为3x -y =0,曲线C 的参 数方程? ??x =t -1t ,y =t + 1t 两式经过平方相减,化为普通方程为y 2-x 2=4,联立? ??? ?3x -y =0,y 2-x 2=4 解得???x =-22,y =-322或? ??x =2 2, y =32 2 . 所以点A ????-22,-322,B ???? 22,322. 所以|AB |= ????-22-222+??? ?-322-3222=2 5.

高中数学第2章参数方程2.4一些常见曲线的参数方程讲义新人教B版选修44

高中数学第2章参数方程2.4一些常见曲线的参数方程讲义新人 教B 版选修44 学习目标:1.了解圆的渐开线和摆线的参数方程.(重点)2.了解渐开线与摆线的参数方程的推导过程.(难点) 1.摆线 (1)定义 一圆周沿一直线作无滑动滚动时,圆周上的一定点M 的轨迹称为摆线. (2)参数方程 ????? x =a (t -sin t )y =a (1-cos t ) (t 是参数). 2.圆的渐开线 (1)定义 把一条没有弹性的细绳绕在一个固定不动的圆盘的侧面上,把绳拉紧逐渐展开,绳的外端点随之移动,且绳的拉直部分始终和圆相切.绳的端点移动的轨迹就是一条圆的渐开线,固定的圆称为渐开线的基圆. (2)参数方程 ? ?? ?? x =a (cos t +t sin t )y =a (sin t -t cos t )(t 是参数). 思考:圆的渐开线和摆线的参数方程中,参数t 的几何意义是什么? [提示] 根据渐开线的定义和求解参数方程的过程,可知其中的字母a 是指基圆的半径,而参数t 是指绳子外端运动时绳子与基圆的切点B 转过的角度,如图,其中的∠AOB 即是角 t .显然点M 由参数t 惟一确定.在我们解决有关问题时可以适当利用其几何意义,把点的坐 标转化为与三角函数有关的问题,使求解过程更加简单. 同样,根据圆的摆线的定义和建立参数方程的过程,可知其中的字母a 是指定圆的半径,参数t 是指圆上定点相对于定直线与圆的切点所张开的角度.参数的几何意义可以在解决问题中加以引用,简化运算过程.当然这个几何意义还不是很明显,直接使用还要注意其取值的具体情况.

1.关于渐开线和摆线的叙述,正确的是( ) A .只有圆才有渐开线 B .渐开线和摆线的定义是一样的,只是绘图的方法不一样,所以才得到了不同的图形 C .正方形也可以有渐开线 D .对于同一个圆,如果建立的平面直角坐标系的位置不同,画出的渐开线形状就不同 [解析] 不仅圆有渐开线,其他图形如椭圆、正方形也有渐开线;渐开线和摆线的实质是完全不一样的,因此得出的图形也不相同;对于同一个圆不论在什么地方建立平面直角坐标系,画出的图形的大小和形状都是一样的,只是方程的形式及图形在坐标系中的位置可能不同. [答案] C 2.半径为3的圆的摆线上某点的纵坐标为0,那么其横坐标可能是( ) A .π B .2π C .12π D .14π [解析] 根据条件可知圆的摆线的参数方程为? ?? ?? x =3t -3sin t y =3-3cos t (t 为参数),把y =0代 入可得cos t =1,所以t =2k π(k ∈Z ).而x =3t -3sin t =6k π(k ∈Z ).根据选项可知应选C. [答案] C 3.半径为4的圆的渐开线的参数方程是________. [解析] 将a =4代入圆的渐开线方程即可. [答案] ? ?? ?? x =4(cos t +t sin t ) y =4(sin t -t cos t ) 4.给出某渐开线的参数方程? ?? ?? x =3cos t +3t sin t y =3sin t -3t cos t (t 为参数),根据参数方程可以看 出该渐开线的基圆半径是______,当参数t 取π 2 时,对应的曲线上的点的坐标是________. [解析] 与渐开线的参数方程进行对照可知,a =3,即基圆半径是3,然后把t =π 2代入, 可得????? x =3π2,y =3. [答案] (3π 2 ,3)

第三章 常见曲面球面和旋转面

第三章 常 见 曲 面 §3.1 球面和旋转面 1.1球面的普通方程 球面方程的建立 首先建立球心在点()0000,,z y x M ,半径为0R ≥的球面方程。根据以下充分必要条件 (,,)M x y z 在球面上0M M R ?=, 得 ()()()2 2 2 2 000x x y y z z R -+-+-=, (3.1) 展开得 2221232220,x y z b x b y b z c ++++++= (3.2) 其中, 2222102030,000,,b x b y b z c x y z R =-=-=-=++-。 (3.1)或(3.2)就是所求球面方程,它是一个三元二次方程,没有交叉项(yz xz xy ,,项),平方项的系数相同。反之,任一形如(3.2)的方程经过配方后可写成: ()()(),0232221232221=---++++++b b b c b z b y b x 当c b b b >++2 32 22 1时,它表示一个球心在()321,,b b b ---,半径为c b b b -++2 32 22 1的 球面;当c b b b =++2 32221时,它表示一个点() 32,1,b b b ---;当c b b b <++2 32221时,它没有轨迹(或者说它表示一个虚球面)。 1.2球面的参数方程,点的球面坐标 如果球心在原点,半径为R ,在球面上任取一点()z y x M ,,,从M 作xOy 面的垂线,垂

足为N N ,连,O M O N 。设x 轴到ON 的角度为?,ON 到OM 的角度为θ(M 在xOy 面上方时,θ为正,反之为负),则有 cos cos ,cos sin ,02,.2 2 sin ,x R y R z R θ?π π θ??πθθ=?? =≤<- ≤≤ ??=? (3.3) (3.3)称为球心在原点,半径为R 的球面的参数方程,有两个参数θ?,,其中?称为经度,θ称为纬度。 球面上的每一个点(除去它与z 轴的交点)对应唯一的对实数()?θ,,因此()?θ,称为球面上点的曲纹坐标。 因为空间中任一点()z y x M ,,必在以原点为球心,以R OM =为半径的球面上,而球面上点(除去它与z 轴的交点外)又由它的曲纹坐标()?θ,唯一确定,因此,除去z 轴外,空间中的点M 由有序三元实数组()?θ,,R 唯一确定。我们把()?θ,,R 称为空间中点M 的球面坐标(或空间极坐标),其中0R ≥,,022 2 π π θ?π-≤≤ ≤≤。 点M 的球面坐标()?θ,,R 与M 的直角坐标()z y x ,,的关系为 cos cos , 0,cos sin , - ,22 sin , 02x R R y R z R θ?π π θ?θθ?π =≥??? =≤≤ ??=≤≤?? (3.4) 1.3曲面和曲线的普通方程、参数方程 从球面的方程(3.2)和球面的参数方程(3.3)看到,一般来说,曲面的普通方程是一个三元方程()z y x F ,,=0,曲面的参数方程是含有两个参数的方程: (,),(,), ,,(,),x x u v y y u v a u b c v d z z u v =?? =≤≤≤≤??=? (3.5) 其中,对于()v u ,的每一对值,由(3.5)确定的点()z y x ,,在此曲面上;而此曲面上任一点的坐标都可由()v u ,的某一对值(3.5)表示。于是通过曲面的参数方程(3.5),曲面上的

最新坐标系与参数方程知识点

坐标系与参数方程知识点 1、平面直角坐标系中的伸缩变换://,(0) ,(0) x x y y λλμμ?=>??=>?? 2、 ρ、θ为点M 的极径、极角,有序数对(,)ρθ就叫做M 的极坐标。 [注] :①一般地0ρ≥,当极角θ的取值范围是[0,2)π时,平面上的点(除去极点)就与极坐标(,) ρθ建立一一对应的关系,否则点与极坐标就不是一一对应。极点的极坐标是(0,)θ,其中极角θ是任意角,②负极径的规定:在极坐标系中,(ρ-, θ)与(ρ,θ)关于原点对称。 4、极坐标与直角坐标互化公式:(看课本) 5、球坐标系:空间点P 直角坐标),,(z y x 与球坐标),,(?θr 的变换关系:2222 sin cos sin sin cos x y z r x r y r z r θ? θ?θ ?++=? =??=??=?; 6、柱坐标系:空间点P 的直角坐标(,,)x y z 与柱坐标(,,)z ρθ的变换关系为:cos sin x y z z ρθ ρθ=?? =??=? ; 7、参数方程化为普通方程,常见方法有三种:(1)代入法(2)三角消元(注:范围易错) 8、常见曲线的参数方程: (1)圆2 2 2 00()()x x y y r -+-=的参数方程为? ??+=+=θθ sin cos 00r y y r x x (θ为参数); (2)椭圆122 22=+b y a x 的参数方程为???==θ θsin cos b y a x (θ为参数); (3)双曲线122 22=-b y a x 的参数方程 ? ? ?==θθ tan sec b y a x (θ为参数); (4)抛物线2 2y px =参数方程2 22x pt y pt ?=?=? (t 为参数); (6)过定点),(00y x P 、倾斜角为α的直线的参数方程?? ?+=+=α α sin cos 00t y y t x x (t 为参数);

2017参数方程学案.doc

第2讲 参数方程 【考情分析】 考查直线、圆和圆锥曲线的参数方程以及简单的应用问题. 基础梳理 1.参数方程的意义 在平面直角坐标系中,如果曲线上的任意一点的坐标x ,y 都是某个变量的函数??? x =f (t ),y =f (t ), 并且对于t 的每个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,则该方程叫曲线的参数方程,联系变数x ,y 的变数t 是参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.常见曲线的参数方程的一般形式 (1)经过点P 0(x 0,y 0),倾斜角为α的直线的参数方程为??? x =x 0+t cos α, y =y 0+t sin α(t 为参 数). 设P 是直线上的任一点,则t 表示有向线段P 0P → 的数量. (2)圆的参数方程??? x =r cos θ, y =r sin θ(θ为参数). (3)圆锥曲线的参数方程 椭圆x 2a 2+y 2 b 2=1的参数方程为??? x =a cos θ,y =b sin θ(θ为参数). 双曲线x 2a 2-y 2 b 2=1的参数方程为??? x =a sec φ,y =tan φ(φ为参数). 抛物线y 2=2px 的参数方程为??? x =2pt 2,y =2pt (t 为参数). 双基自测 1.极坐标方程ρ=cos θ和参数方程??? x =-1-t , y =2+t (t 为参数)所表示的图形分别 是( ).

A .直线、直线 B .直线、圆 C .圆、圆 D .圆、直线 解析 ∵ρcos θ=x ,∴cos θ=x ρ代入到ρ=cos θ,得ρ=x ρ,∴ρ2=x ,∴x 2+y 2=x 表示圆. 又∵??? x =-1-t ,y =2+t ,相加得x +y =1,表示直线. 答案 D 2.若直线??? x =1-2t , y =2+3t (t 为实数)与直线4x +ky =1垂直,则常数k =________. 解析 参数方程??? x =1-2t , y =2+3t ,所表示的直线方程为3x +2y =7,由此直线与直线 4x +ky =1垂直可得-32×? ???? -4k =-1,解得k =-6. 答案 -6 3.二次曲线??? x =5cos θ, y =3sin θ(θ是参数)的左焦点的坐标是________. 解析 题中二次曲线的普通方程为x 225+y 2 9=1左焦点为(-4,0). 答案 (-4,0) 4.(2011·广州调研)已知直线l 的参数方程为:??? x =2t , y =1+4t (t 为参数),圆C 的极 坐标方程为ρ=22sin θ,则直线l 与圆C 的位置关系为________. 解析 将直线l 的参数方程:??? x =2t , y =1+4t 化为普通方程得,y =1+2x ,圆ρ=22 sin θ的直角坐标方程为x 2+(y -2)2=2,圆心(0,2)到直线y =1+2x 的距离为 2-1 1+4 ,因为该距离小于圆的半径,所以直线l 与圆C 相交. 答案 相交

5常见曲面的参数方程

§ 常见曲面的参数方程 本节重点:掌握空间中的三种坐标系:直角坐标系、球坐标系、柱坐标系。 掌握旋转曲面的参数方程的建立。 掌握直纹面的参数方程。 本节难点:旋转曲面的参数方程。直纹面的参数方程。 在第二章中,我们已经引进一般曲面与曲线的参数方程的概念、并给出简单曲面与曲线的参数表示,例如球面与圆柱螺旋线,直线的参数方程。现在再介绍旋转曲面、直纹面的参数方程,同时给出空间中另外两种坐标系:球坐标系与柱坐标系。 (一)旋转曲面的参数方程,球坐标与柱坐标 设旋转曲面的轴为Z 轴,母线Γ的参数方程是 )()()()(b t a t h Z t g Y t f X ≤≤=== 则此旋转曲面可由Γ上每一点生成的纬圆所构成的。由于这纬圆上动点),,(Z Y X P 与它在坐标面XOY 上的投影' P 具有相同的Y X ,坐标,所以Γ上任一点),,(1111Z Y X P 生成的纬圆的参数方程是 ??? ????=+=+=121212121sin cos Z Z Y X Y Y X X θθ )20(πθ<≤ 其中2121Y X +是纬圆半径,即1P 到Z 轴的距离,而参数θ是X 轴到1OP 的转角。设1P 对应的参数是1t ,则 )())(())((112 1212121t h Z t g t f Y X =+=+ 再让1t 在其取值范围内变动,即得这旋转曲面的参数方程 ??? ????=+=+=)(sin ))(())((cos ))(())((2222t h Z t g t f Y t g t f X θθ ???? ??<≤≤≤πθ20b t a (4.5.1) 特别地,当母线P 为坐标面XOZ 上的径线

最新极坐标与参数方程知识点、题型总结

极坐标与参数方程知识点、题型总结 一、极坐标:直角坐标?极坐标 cos sin x y ρθ ρθ = ? ? = ? 极坐标?直角坐标 222 tan(0) x y y x x ρ θ ?=+ ? ? =≠ ? ? 二、直线的参数方程:过定点(x0,y0)倾角为α的直线: α α sin cos t y y t x x + = + = (t为参 数)直线上 12 ,P P对应的参数是 12 ,t t。|P1P2|=|t1-t2|=t1+t22-4t1t2. 直线的一般参数方程:0 x x at y y bt =+ =+ (t为参数)若221 a b +=,则上面几何意义成立,否则,不成立。此时,需要换参,令) ( 2 2 2 2 2 2 为参数 t b a t b y y b a t a x x b a t t' ? ? ? ? ? ? ? + ' + = + ' + = ? + ' = 三、圆、椭圆的参数方程 圆心在(x0,y0),半径等于r的圆: α α sin cos r y y r x x + = + = (α为参数) 椭圆 22 22 1 x y a b +=(或 22 22 1 y x a b +=): α α sin cos b y a x = = (α为参数)(或 α α sin cos a y b x = = ) 补充知识:伸缩变换:点) ,(y x P是平面直角坐标系中的任意一点,在变换? ? ? > ? =' > ? =' ). (,y y 0), ( x, x : μ μ λ λ ?的作用下,点) , (y x P对应到点) , (y x P' ' ',称伸缩变换抛物线22 y px =: pt y pt x 2 22 = = (t为参数,p>0) 题型归类:方程的互化:1、代公式;2、消参

4.5常见曲面的参数方程

§4.5 常见曲面的参数方程 本节重点:掌握空间中的三种坐标系:直角坐标系、球坐标系、柱坐标系。 掌握旋转曲面的参数方程的建立。 掌握直纹面的参数方程。 本节难点:旋转曲面的参数方程。直纹面的参数方程。 在第二章中,我们已经引进一般曲面与曲线的参数方程的概念、并给出简单曲面与曲线的参数表示,例如球面与圆柱螺旋线,直线的参数方程。现在再介绍旋转曲面、直纹面的参数方程,同时给出空间中另外两种坐标系:球坐标系与柱坐标系。 (一)旋转曲面的参数方程,球坐标与柱坐标 设旋转曲面的轴为Z 轴,母线Γ的参数方程是 )()()()(b t a t h Z t g Y t f X ≤≤=== 则此旋转曲面可由Γ上每一点生成的纬圆所构成的。由于这纬圆上动点),,(Z Y X P 与它在坐标面XOY 上的投影' P 具有相同的Y X ,坐标,所以Γ上任一点),,(1111Z Y X P 生成的纬圆的参数方程是 ??? ????=+=+=121212121sin cos Z Z Y X Y Y X X θθ )20(πθ<≤ 其中2121Y X +是纬圆半径,即1P 到Z 轴的距离,而参数θ是X 轴到1OP 的转角。设1P 对应的参数是1t ,则 )())(())((1121212121t h Z t g t f Y X =+=+ 再让1t 在其取值范围内变动,即得这旋转曲面的参数方程 ???????=+=+=)(sin ))(())((cos ))(())((2222t h Z t g t f Y t g t f X θθ ??? ? ??<≤≤≤πθ20b t a (4.5.1) 特别地,当母线P 为坐标面XOZ 上的径线 )(0) (t h Z Y t f X === 时,(4.5.1)成为

极坐标与参数方程经典练习题含答案详解

一、选择题:本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合题目要求的. 1.曲线25()12x t t y t =-+?? =-?为参数与坐标轴的交点是( ). A .21(0,)(,0)5 2 、 B .11(0,)(,0)5 2 、 C .(0,4)(8,0)-、 D .5(0,)(8,0)9 、 2.把方程1xy =化为以t 参数的参数方程是( ). A .1 21 2x t y t -?=???=? B .sin 1sin x t y t =???=?? C .cos 1cos x t y t =???=?? D .tan 1tan x t y t =???=?? 3.若直线的参数方程为12()23x t t y t =+?? =-?为参数,则直线的斜率为( ). A . 23 B .23- C .32 D .32 - 4.点(1,2)在圆18cos 8sin x y θ θ =-+?? =?的( ). A .内部 B .外部 C .圆上 D .与θ的值有关 5.参数方程为1()2 x t t t y ? =+ ???=?为参数表示的曲线是( ). A .一条直线 B .两条直线 C .一条射线 D .两条射线 6.两圆???+=+-=θθsin 24cos 23y x 与???==θ θ sin 3cos 3y x 的位置关系是( ). A .内切 B .外切 C .相离 D .内含 7.与参数方程为()21x t t y t ?=?? =-??为参数等价的普通方程为( ). A .22 14y x += B .221(01)4 y x x +=≤≤ C .22 1(02)4y x y +=≤≤ D .221(01,02)4 y x x y +=≤≤≤≤

最新参数方程知识讲解及典型例题

参数方程 一、定义:在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个参数 t 的函数,即 ?? ?==)()(t f y t f x ,其中,t 为参数,并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数t 叫做参变数,简称参数. 注意:参数方程没有直接体现曲线上点的横纵坐标之间的关系,而是分别体现了点的横纵坐标与参数间的关系。 二、二次曲线的参数方程 1、圆的参数方程: 特殊:圆心是(0,0),半径为r 的圆: θ θ sin cos r y r x == 一般:圆心在(x 0,y 0),半径等于r 的圆: θθ sin cos 00r y y r x x +=+= (θ为参数,θ的几何意义为圆心角), Eg1:已知点P (x ,y )是圆x 2 +y 2 -6x-4y+12=0上的动点,求: (1)x 2 +y 2 的最值;(2)x+y 的最值;(3)点P 到直线x+y-1=0的距离d 的最值。 Eg2:将下列参数方程化为普通方程 (1) x=2+3cos θ (2) x=sin θ (3) x=t+t 1 y=3sin θ y=cos θ y=t 2 + 21t 总结:参数方程化为普通方程步骤:(1)消参(2)求定义域 2、椭圆的参数方程: 中心在原点,焦点在x 轴上的椭圆: θ θ sin cos b y a x == (θ为参数,θ的几何意义是离心角,如图角AON 是离心角) 注意:离心率和离心角没关系,如图,分别以椭圆的长轴和短轴为半径画两个同心圆,M 点的轨迹是椭圆,中心在(x 0,y 0)椭圆的参数方程: θ θsin cos 00b y y a x x +=+=

极坐标与参数方程最新题型

(1)在直角坐标平面内,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系. 已知点的极坐标为,曲线的参数方程为 . (Ⅰ)求直线的直角坐标方程;(Ⅱ)求点到曲线上的点的距离的最小值. (2)在直角坐标系xoy中,直线的参数方程为(t为参数)。在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴) 中,圆C的方程为。 (Ⅰ)求圆C的直角坐标方程; (Ⅱ)设圆C与直线交于点A、B,若点P的坐标为,求|PA|+|PB|。 2. 已知曲线,. (1)化的方程为普通方程; (2)若上的点对应的参数为为上的动点,求中点到直线 距离的最小值. 3. 在平面直角坐标系中,以原点为极点,轴为极轴建立极坐标系,曲线的方程为(为参数),曲线的极坐标方程为,若曲 线与相交于、两点. (1)求的值; (2)求点到、两点的距离之积.

已知曲线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平 面直角坐标系,设直线的参数方程为(为参数). (1)求曲线的直角坐标方程与直线的普通方程; (2)设曲线与直线相交于两点,以为一条边作曲线的内接矩形,求该矩形的面积。 5. 已知某圆的极坐标方程是,求 (Ⅰ)圆的普通方程和一个参数方程; (Ⅱ)圆上所有点中的最大值和最小值。 6. 在直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系。圆,直线的极坐标方程分别为 (1)求与的交点的极坐标; (2)设为的圆心,为与的交点连线的中点,已知直线的参数方程为 求的值。 7. 已知极坐标系的原点在直角坐标系的原点处,极轴为轴正半轴,直线的参数 方程为,曲线的极坐标方程为 (1)写出的直角坐标方程,并说明是什么曲线? (2)设直线与曲线相交于两点,求.

常见曲面的参数方程

§4、5 常见曲面得参数方程 本节重点:掌握空间中得三种坐标系:直角坐标系、球坐标系、柱坐标系。 掌握旋转曲面得参数方程得建立。 掌握直纹面得参数方程、 本节难点:旋转曲面得参数方程。直纹面得参数方程。 在第二章中,我们已经引进一般曲面与曲线得参数方程得概念、并给出简单曲面与曲线得参数表示,例如球面与圆柱螺旋线,直线得参数方程。现在再介绍旋转曲面、直纹面得参数方程,同时给出空间中另外两种坐标系:球坐标系与柱坐标系。 (一)旋转曲面得参数方程,球坐标与柱坐标 设旋转曲面得轴为轴,母线得参数方程就是 则此旋转曲面可由上每一点生成得纬圆所构成得、由于这纬圆上动点与它在坐标面上得投影具有相同得坐标,所以上任一点生成得纬圆得参数方程就是 其中就是纬圆半径,即到轴得距离,而参数就是轴到得转角、设对应得参数就是,则 再让在其取值范围内变动,即得这旋转曲面得参数方程 (4、5.1) 特别地,当母线为坐标面上得径线 时,(4。5、1)成为 (4.5.2) 例1、如图,以原点为中心,为半径得球面可瞧作就是由坐标面上得半圆, ()绕轴旋转所生成得,由(4.5。2)得其参数方程为 (4、5。3) 它与§2。1中得球面参数方程得形式就是相同得。 (4、5、3)中得参数分别叫做经度与纬度,序对叫做地理坐标、显然,除两极外,球面上得点与序对一一对应。这种利用曲面参数方程中得两个参数来表示曲面上得点得坐标叫做曲纹坐标,它对于曲面理论得进一步研究有着重要得作用。 利用球面得这种曲纹坐标还可以引入空间得另一种坐标系。设为空间任意一点,它到原点得距离为,过作以原点为中心,以为半径得球面,则在这球面上具有地理坐标,可令点P对应有序数组;反之,由非负实数可确定所在得球面,再由在这球面上确定点。空间中点得这种坐标叫做球坐标。显然,轴上点得球坐标可取任意值、 把(4.5。3)中得常数换为变数,就成为球坐标与直角坐标得变换式,即 (4、5。4) 反之,有 (4。5.5) 当时,=0,于就是,对坐标面上得点,只需序对即可确定、这里不就是别得,正就是大家熟知得极坐标。这时原点就是极点,轴就是极轴,因此,球坐标可以瞧作就是平面极坐标在空间中得一种推广。 例2、如图4-17,以轴为对称轴,半径为得圆柱面可瞧作就是由坐标面上得直线: ,

抛物线的参数方程(教师版)

14. 抛物线的参数方程 主备: 审核: 学习目标:1. 了解椭圆的参数方程的推导过程及参数的意义; 2. 掌握椭圆的参数方程,并能解决一些简单的问题. 学习重点:椭圆参数方程的应用, 学习难点:椭圆参数方程中参数的意义. 学习过程: 一、课前准备: 阅读教材3334P P -的内容,理解抛物线的参数方程的推导过程,并复习以下问题: 1.将下列参数方程化为普通方程: (1)2 23 x t y t t =-?? =+-?(t 为参数),答:2 53x x y --=; (2)224x m y m ?=?=?(m 为参数),答:2 8x y =. 2.将下列普通方程化为参数方程: (1)2 2x y =,其中1x t t =-(t 为参数),答:221224 x t t y t t ?=-???=+-? ; (2)2 34y x =,其中x t =(0t ≥为参数) ,答:x t y =???=?? . 二、新课导学: (一)新知: 抛物线的参数方程的推导过程: 如图:设(,)M x y 为抛物线上除顶点外的任意一点,以射线OM 为终边的角记为α,当α在(,)22 ππ - 内变化时, 点M 在抛物线上运动,并且对于α的每一个值,在抛物线上都有唯一的M 点与对应.因此,可以取α为参数探求抛物线的参数方程. 根据三角函数的定义得,tan y x α=,即tan y x α=,联立2 2y px =,得 22tan 2tan p x p y α α?=??? ?=?? (α为参数),这为抛物线的不含顶点的参数方程,但方程的形式不够简洁, 设1 tan t α=,(,0)(0,)t ∈-∞+∞U ,则222x pt y pt ?=?=?(t 为参数 ), 当0t =时,由参数方程得,正好为顶点(0,0)O ,因此当(,)t ∈-∞+∞时,上式为 22y px =的参数方程. 注意:参数t 的几何意义为:表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数. 动动手:(1)选择适当的参数t ,建立抛物线2 2x py =的参数方程 .

最新坐标系与参数方程31972

坐标系与参数方程 31972

§4.4 坐标系与参数方程 基础自测 1.曲线的极坐标方程?Skip Record If...?=4sin?Skip Record If...?化为直角坐标方程为 . 答案 x2+(y-2)2=4 2.直线?Skip Record If...?(t为参数)上到点A(1,2)的距离为4?Skip Record If...?的点的坐标为 . 答案(-3,6)或(5,-2) 3.过点A(2,3)的直线的参数方程?Skip Record If...?(t为参数),若此直线与直线x-y+3=0相交于点B,则|AB|= . 答案 2?Skip Record If...? 4.直线?Skip Record If...?(t为参数)被圆(x-3)2+(y+1)2=25所截得的弦长为 . 答案?Skip Record If...? 5.若直线x+y=m与圆?Skip Record If...?(?Skip Record If...?为参数,m>0)相切,则m为 . 答案 2 例1将极坐标方程sin?Skip Record If...?=?Skip Record If...?化为直角坐标方程,并说明该方程表示什么曲线. 解由sin?Skip Record If...?=?Skip Record If...?,?Skip Record If...?=?Skip Record If...?, 得sin?Skip Record If...?=?Skip Record If...?=?Skip Record If...?=?Skip Record If...?. 则y>0,平方得x2+y2=9y2, 即y2=?Skip Record If...?x2,y=±?Skip Record If (x) 因此,它表示端点除外的两条射线: y=?Skip Record If...?x (x>0)和y=-?Skip Record If...?x(x<0). 例2在极坐标系中,求过点A?Skip Record If...?,并且平行于极轴的直线l的极坐标方程. 解如图所示,设M(?Skip Record If...?,?Skip Record If...?)为直线l上的任意一点, 则OM=?Skip Record If...?,∠MOC=?Skip Record If...?. 过点A,M作极轴的垂线AB,MC交极轴与B,C两点. ∵l∥Ox,∴MC=AB.则OA=6,∠AOB=?Skip Record If...?. 所以MC=AB=3.由sin?Skip Record If...?=?Skip Record If...?=?Skip Record If...?,得?Skip Record If...?sin?Skip Record If...?=3. 所以?Skip Record If...?sin?Skip Record If...?=3为所求的直线l的极坐标方程. 例3把下列参数方程化为普通方程,并说明它们各表示什么曲线: (1)?Skip Record If...?(t为参数); (2)?Skip Record If...?(t为参数); (3)?Skip Record If...?(t为参数); (4)?Skip Record If...?(?Skip Record If...?为参数).

相关主题
文本预览
相关文档 最新文档