当前位置:文档之家› 分形图形与分形的产生

分形图形与分形的产生

分形图形与分形的产生
分形图形与分形的产生

分形图形

分形理论是非线性科学的主要分支之一,它在计算机科学、化学、生物学、天文学、地理学等众多自然科学和经济学等社会科学中都有广泛的应用。分形的基本特征是具有标度不变性。其研究的图形是非常不规则和不光滑的已失去了通常的几何对称性;但是,在不同的尺度下进行观测时,分形几何学却具有尺度上的对称性,或称标度不变性。研究图形在标度变换群作用下不变性质和不变量对计算机图形技术的发展有重大的意义。

说到分形(fractal),先来看看分形的定义。分形这个词最早是分形的创始人曼德尔布诺特提来的,他给分形下的定义就是:一个集合形状,可以细分为若干部分,而每一部分都是整体的精确或不精确的相似形。分形这个词也是他创造的,含有“不规则”和“支离破碎”的意思。分形的概念出现很早,从十九世纪末维尔斯特拉斯构造的处处连续但处处不可微的函数,到上个世纪初的康托三分集,科赫曲线和谢尔宾斯基海绵。但是分形作为一个独立的学科被人开始研究,是一直到七十年代曼德尔布诺特提出分形的概念开始。而一直到八十年代,对于分形的研究才真正被大家所关注。

分形通常跟分数维,自相似,自组织,非线性系统,混沌等联系起来出现。它是数学的一个分支。我之前说过很多次,数学就是美。而分形的美,更能够被大众所接受,因为它可以通过图形化的方式表达出来。而更由于它美的直观性,被很多艺术家索青睐。分形在自然界里面也经常可以看到,最多被举出来当作分形的例子,就是海岸线,源自于曼德尔布诺特的著名论文《英国的海岸线有多长》。而在生物界,分形的例子也比比皆是。

近20年来,分形的研究受到非常广泛的重视,其原因在于分形既有深刻的理论意义,又有巨大的实用价值。分形向人们展示了一类具有标度不变对称性的新世界,吸引着人们寻求其中可能存在着的新规律和新特征;分形提供了描述自然形态的几何学方法,使得在计算机上可以从少量数据出发,对复杂的自然景物进行逼真的模拟,并启发人们利用分形技术对信息作大幅度的数据压缩。它以其独特的手段来解决整体与部分的关系问题,利用空间结构的对称性和自相似性,采用各种模拟真实图形的模型,使整个生成的景物呈现出细节的无穷回归的性质,丰富多彩,具有奇妙的艺术魅力。分形对像没有放大极限,无论如何放大,总会看到更详细的结构。借助于分形的计算机生成,从少量的数据生成复杂的自然景物图形,使我们在仿真模拟方面前进了一大步。在分形的诸多研究课题中,分形的计算机生成问题具有明显的挑战性,它使传统数学中无法表达的形态(如山脉、花草等)得以表达,还能生成一个根本“不存在”的图形世界。分形在制造以假乱真的景物方面的进展和潜在的前途,使得无论怎样估计它的影响也不过分。可以肯定,分形图案在自然界真实物体模拟、仿真形体生成、计算机动画、艺术装饰纹理、图案设计和创意制作等具有广泛的应用价值。

分形图形简介一、关于分形与混沌

关于分形的起源,要非常准确的找出来是非常困难的。研究动态系统、非线形数学、函数分析的科学家,已数不胜数。尽管分形的早期线索已非常古老,但这一学科却还很年轻。比如关于动态系统和细胞自动机的大部分工作可以追溯到冯-诺依曼;但是,直到Mandelbrot 才如此清楚地将自然现象和人工现象中的混沌及分形同自相似性联系在一起。大家如果对此感兴趣,可进一步查阅有关资料。下面我们看一看分形的概念。

什么是分形呢?考虑到此文的意图,我们无意给出它严格的定义,就我们的目的而言,一个分形就是一个图象,但这个图象有一个特性,就是无穷自相似性。什么又是自相似呢?在自然和人工现象中,自相似性指的是整体的结构被反映在其中的每一部分中。比如海岸线,常举的例子,你看它10公里的图象(曲线),和一寸的景象(曲线)是相似的,这就是自相似性。

与分形有着千差万屡的关系的,就是混沌。混沌一词来源与希腊词汇,原意即“张开咀”,但是在社会意义上,它又老爱和无序联系在一起。解释分形和混沌的联系,要注意到分形是

分离吸引子和排斥吸引子产生的,因此某种意义上说,分形是混沌行为的视觉表现。

看这些东东是不是比较枯燥?呵呵,我也没办法给大家弄些美丽的图片看看---不过你可以到外面走走了,看看天上武汉的云是不是很漂亮?然后再回来,下一篇我将给大家说一点数学知识,并把我写的程序拿出来,谈谈分形的产生。

二,一点数学知识

首先要说明的是,这里介绍的数学知识,只是为了介绍分形概念的方便。如果你想详细了解这方面的知识,复变函数、概率、混沌系统等等一系列的东西,你最好去专门看一看。

1,吸引点和逃离点

这是描述分形产生的基本词汇。我们考虑这样一个函数f:

f: R -> R

x -> f(x)

函数和它自身的复合,比如f,记作f(f(x))。如果你将f再一次作用于结果,则记为f(f(f(x))),这样你就完成了一个函数f的复合迭代。很显然,在定义域的某一点上的函数迭代,有可能是发散的或收敛的。使迭代发散的点称为斥点;然而,如果迭代结果趋于某一个孤立的点,则该点称为吸引点。在迭代中,两者都不是的点,就称为中性点。

下面考察某些迭代函数或迭代几何过程的所有吸引点的集合。当迭代函数或迭代几何过程的吸引集是一个无限自相似集(也就是分形,understand?),那么这个吸引集就称为一个奇异吸引子。

2,分叉图

某些实函数的吸引子集合,比如一个简单的例子:

f(x)=x**2 +c //2是幂:)

对于某些实常数c进行函数迭代。假设从c=-1.1,x=0开始,你不妨拿个计数器:),进行迭代。重复作下去,你会发现一个有趣的现象:迭代结果在-1.0左右和0.1左右跳来跳去。如果迭代次数很多,比如200次,并且对一定范围内不同的c值都这样做,将会有一个非常美妙的令人惊讶的结果。

到底如何呢?呵呵,关键时候,偏要感冒---我可以把每次迭代的结果画成图,可惜没办法给你分享。---我只能干吧吧的说,对很多c的取值都这样做,将会得到一幅图形,即分叉图。

了感欣慰的是,后面我将给大家介绍程序的实现。你回去一试,不就ok了?

很显然,分叉图是一类简单而又有趣的分形。应用很多。

3,Sierpinski三角形

从上面的介绍中,你也许已发现分形产生的一个途径。另一条途径就是通过重复进行某个特殊的几何过程。这类分形叫做迭代函数系统(IFS)。

Sierpinski三角形是一个比较经典的例子。

我只能把它形成的过程说一说了,也不管那百闻不如一见的话。

(1)三角形,取三边的中点并相互连接---产生四个全等的小三角形;

(2)根据(1)对每一个小三角形如此迭代。

重复一定次数,就会产生一个奇异吸引子,也就是一个分形。

程序实现的技巧后面详细叙述。

分形是可递推产生的,我不在详细说了,比如Cantor集的例子,大家在一般书中应能找的到.我最后想说说IFS变换规则。它在分形算法的描述和程序的实现中非常重要。

4,迭代函数系统变换

产生Sierpinski三角形和其它一些分形的几何规则可以用一套包括滑动、伸展和旋转在内的运算来进行描述。这类数学运算称为仿射变换,通常用矩阵运算实现其编程。

如下表,给出了Sierpinski三角形的规则的矩阵编码形式:

--------1-------2-------3-------4--------5-------6---------概率值-----

1------0.5------0-------0------0.5------25-------1---------0.33------

2------0.5------0-------0------0.5------1--------50--------0.33------

3------0.5------0-------0------0.5------50-------50--------0.33------

如表中d[1,5]的位置是25;表最后一列有特殊的意义,表示这一行所进行的变换将要被用到的可能性或概率。

所谓的变换,到底是如何应用的呢?假设变换是将(x,y)映射到(x’,y’),你

看一看第i行所实施的的变换:

x’=d[i,1]x +d[i,2]y +d[i,5]

y’=d[i,3]y +d[i,4]y +d[i,6]

你就会明白。概率如何应用呢?你看:

i=random(3)+1 //在变换之前:)

不行了吗?

这些东东的应用也许我们都可以掌握,但发现这样的矩阵,并不是一件简单的事。我希望有志在这方面有所发展的,都好好找相关的数学理论书好好看一看。不要把时间都花在玩上嘛!书中自有黄金屋,书中自有……:)

下面看分叉图和Sierpinski三角形的程序实现(delphi6.0)。

分形的产生

两千多年来,古希腊人创立的几何学,一直是人们认识自然物体形状的有力工具。经典几何学所描绘的都是由直线或曲线、平面或曲面、平直体或曲体所构成的各种几何形状,它们是现实世界中物体形状的高度抽象。天文学家们用这种几何知识构造了多种宇宙理论,建筑师们利用它设计出大量宏伟的建筑;以致于近代物理学的奠基者、伟大的科学家伽利略极其权威地断言:大自然的语言是数学,“它的标志是三角形、圆和其他几何图形”。

然而事实上,传统几何学的功能并不是那么大的,它所描述的只是那些具有光滑性即可微性(可切性),至少是分段分片光滑的规则形体。这类形体在自然界里只占极少数。自然界里普遍存在的几何形体大多数是不规则的、不光滑的、不可微的,甚至是不连续的。如蜿蜒起伏的山脉,曲折凸凹的海岸线,坑坑洼洼的地面,枝干纵横的树枝,团块交叠的浮云,孔穴交错的蛋糕……真是奇形怪状,千姿百态。这些形状和经典几何学所描述的形状,真是大相径庭。对于了解自然界的复杂性来讲,欧几里得几何学是一种不充分、不具有普遍性的抽象。1975年冬天的一天,正在思索着现实世界真实几何形象问题的法国数学家曼德尔布罗特(Mandelbrot,B.B.)随手翻阅他儿子的字典,注意到了拉丁字“fractus”,这个来自动词frangere 的形容词含有破裂之意。他由此创立了“分形”(fractal)这个概念,并由此创立了“分形几何理论”,从而把数学研究扩展到了传统几何学无法涉足的那些“病态曲线”和“几何学怪物”的领域。曼德尔布罗特说:“云朵不是球,山峦不是锥,海岸线不是圆,树皮不光滑,闪电也不走直线。”分形几何学所映射出的自然事物不是光滑无瑕、平坦规整的,而是凸凹不平、粗糙丛杂、扭曲断裂、纠结环绕的几何形体。

自然界的现象通常都发生在某种特征标度上,如特征长度、特征时间等特征尺度上。科学家关于事物特征的描述最基本的莫过于问它有多大,持续多久。这都是依赖于标度(尺度)的一些基本性质。每种事物都有其特征尺度,例如天体物理学家描写的宇宙结构,大约在数百万光年的范围上;生物学家认识的微生物的结构大约有微米的长度;物理学家研究的夸克,约在10-13厘米的数量级上。每一个具体事物,都与特定的尺度相连系。几厘米长的昆虫与几米、十几米大小的巨兽在形态、结构上必然极不相同,否则它们就无法生存和繁衍。《楚辞·卜居》中说:“夫尺有所短,寸有所长”。这也是说事物都有其自己的特征尺度,要用适

宜的尺去测度。用寸来量度细菌,用尺来量度万里长城,前者失之过长,后者又嫌太短。所以,标度是十分重要的。试图对自然现象做定量描写时,就必须从特征尺度入手。一个好的理论模型,往往要涉及三个层次:首先是由特征尺度确定的基本层次;更大尺度的环境就用“平均场”和决定外力的“位势”等描写;更小尺度上的相互作用,则以“摩擦系数”、“扩散系数”等得自于实验的“常数”来表征。如果要从理论上对这些系数做出阐明和推算,那就必须从物质运动的更深入细微的层次上进行探讨。

但是,分形几何学却否定了关于事物大小和久暂的区分的绝对标度性,指出对于大自然的某些现象,去寻求特征尺度是毫无意义的。曼德尔布罗特研究过电子通讯中的噪音,研究过河水泛滥的数据,还研究过棉花价格的涨落。通过这些研究,他开始形成实际的图象。在他的关于现实的图象里竟然没有二分法的位置,无法把微小的变化与宏大的变化分离开来,而是把它们紧紧地联系在一起。他所寻找的图象,无所谓小尺度和大尺度的差异,而是超越一切尺度;它不是左和右的对称、上和下的对称,而是大尺度与小尺度之间的对称。曼德尔布罗特把1900年以来棉花价格的数据通过计算机处理,确实找到了他所追求的惊人的结果。那些从正态的误差分布观点看来产生偏离的数,从尺度观点看却发现了对称。每一天的价格变化曲线与每一个月的价格变化曲线完全匹配。虽然其间经历了两次世界大战和一次经济大萧条,但在60年的周期里,竟然有价格的变异度不变的基本规律。在极为无序的大量数据的内部,竟然存在着如此出人预料的序,完全具有任意性的数据竟然被一条规律所支配,这个尺度问题看来具有自己的生命。这使曼德尔布罗特从对实际现象的研究转向探索尺度现象。曼德尔布罗特关于大自然过程里不规整花样的研究以及他关于无穷复杂形象的探索最终汇流到一个交结点上,这就是自然事物的“自相似”这个特性。“大自然在所有标度上同时起作用”。自然界的许多事物在其内部的各个层次上都具有自相似的结构,在一个花样内部还有更小的同样的花样。自相似物体不具有特征标度,它是跨越尺度的对称性;它在不同测量尺度上看去差不多一样,是一种“无穷嵌套的自相似结构”。“分形”就意味着“自相似”。一个几何图形,如果它的组成部分与图形整体之间有某种相似性,就称为“分形”。“自相似”的思想在人类文化的各个方面都有所反映。中国古代就有“袖里有乾坤,壶中有日月”和“一尘一世界”的说法。曼德尔布罗特曾引颂《格列佛游记》的作者J.斯韦夫特(J.Swift1667~1745)的一首打油诗:“博物学家看仔细,大蚤身上小蚤栖;更有微蚤叮小蚤,递相啮噬无尽期。”德国哲人莱布尼兹(G.W.F.V onLeibniz1646~1716)也曾设想,在一滴水里包含着多姿多彩的世界,其中又有许多滴水,每滴水又各有新的世界。

海岸线就是天然存在的一个分形。曼德尔布罗特在一篇题为《英国的海岸线有多长》①的文章里做出这样的结论:任何海岸线,在某种意义上都是无限长的;在另一种意义上说则决定于你所选用的尺的长度。因为在不同标度上描绘的海岸线图,都显示出相似的湾、岬分布。每一个大湾中都有小湾和小岬,那些小湾和小岬中又有更小的湾和岬;把这些湾和岬放大后和实际的海岸线仍然相似。正如曼德尔布罗特所说:“当你初次在一张比例尺为十万分之一的地图看到的一个海湾或半岛重新在一张比例尺为一万分之一的地图上被观察时,无数更小的海湾和更小的半岛就变得清晰可见了。在一张比例尺为一千分之一的地图上,更小更小的海湾和更小更小的半岛又出现了。”所以,你如果用一米的尺沿海岸测量,可以得出一个近似的长度,因为实际上你已经把小于一米的曲曲弯弯部分忽略掉了。如果改用一厘米的尺去量,一些小的曲折将被计入,得到的海岸线将会增长。随着测度标尺的变小,海岸线的长度会不断加长,永远不会收敛于一个极限数值。其根本原因就在于海岸线是一个无穷嵌套的自相似结构。

分形不仅在所有的标度上都有结构,而且在所有标度上都有相同的结构。1904年,瑞典数学家科赫(Koch,Helge V on 1870~1924)构造的“雪花曲线”,严格地显示了分形这种有趣的特征。设想给出一个正三角形,再不断进行如下变换:在每边正中的1/3边上再造一个凸出

来的正三角形,使原三角形变成六角形;在这个六角形的12条边的每条边中间的1/3上再凸出一个正三角形,变成一个4×12=48边形;反复操作这种变换以至无穷,其边缘愈来愈增添精细结构,得到一个由分形曲线(“科赫曲线”)围成的科赫岛,好似一个雪花。科赫曲线是一条连续的环,绝不自身相交;每次变换都会使“科赫岛”的面积稍有增加,但总面积永远是有限的,并不比原三角形的面积大很多(小于原三角形的外接圆);但科赫曲线的总和却是无穷长的。这似乎是一个矛盾的结果:岛的面积有限,但周长无穷大;或者说一条无限长又绝不自交的曲线包围成了一个有限的面积。

分形的研究对象及分类(类别):

分形论是以复杂事物为研究对象的,包括线性分形和非线性分形.线性分形是具有自相似性的无序,无规则性的系统,其维数的变化是连续的,又称自相似分形.其余的均为非线性分形,它是研究在非均匀线性变换群或非线性变换群下几何图形的性质。

┌有规分形(经典分形多些)

┌线性分形(均匀线性变换群)┴无规分形(随机分形多些)

分形几何┤┌自仿射分形(非均匀线性变换群)

└非线性分形(非均匀线性变换群┤自反演分形(非线性变换群)

和非线性变换群) └自平方分形(非线性变换群)

还有递归分形,多重分形,胖分形等等.自仿射分形比自相似性分形更重要.反映了大自然的复杂性和丰富性.

分形的应用范围:

即分形所涉及的领域,几乎所有领域.有几何分形,广义分形,自然分形,社会分形等.

1)广义分形:是不只包含在形态和结构上具有自相似性的几何分形或分形几何学,在信息,功能,(组成)和时间上的相似性也包含在自相似性概念中.于是,把形态,结构,信息,功能,?[能量,物质.(从DNA到蛋白质再到活生命体的物质组份,组成的分形,能量,信息分形,重演分形,遗传分形,组织胚胎分形等多元分形)]时间或空间上具有自相似性的客体称为广义分形.

2)自然分形:是自然界客观存在的或经过理论抽象的,具有自相似性的客体.范围很广,?遍及数学,物理,化学,材料,表面,计算机,电子,微电子,生物学,医学,农学,天文学,气象,地理,地质,地震,特别是中医(经络)等等很多.按系统的具体特点,又可分为几何分形,功能分形,能量分形,信息分形和重演分形等.线状分形(经络缝隙分形),表面分形(经络截面分形),体积分形(经络细胞充填,填充分形),(中医经络,藏象的全息分形,包括几何分形,功能分形信息分形能量分形等的组合)等.生物分形是重要一环.

3)社会分形:i.经济学中的分形;ii.人文方面的分形,iii.思维分形;iv.情报分形;v.管理科学中的分形;vi.艺术分形;vii.文学(社会)与自然(社会)。

分形论的应用

4.生物全息律:分形性的表现.

分形外显性:局部与整体,缩小与放大的,自相似,自仿射的外在显现.

圆形自相似:高效率的自然选择----圆.经络截面也可能类似或接近圆形.

其它:

分形与生化及植物药用选择:"*分形子局(部)集(补集)"的对应与选择.

分形与生理学:结构与生理等自仿射,自相似的结果.

分形与遗传及定域选种,单克隆,细胞培养:分形的"*对应自相似,自仿射"

形态分形:生理或功能与形态的自相似,自仿射的变换.

穴位群的实质:局部与整体,整体与局部,缩小与放大的分形性关系,"古老的分形观".

癌变的新认识:模拟癌症扩散与癌症研究.

生物的统一性及其分形生长发育:生命体的组份,过程,生长,发育基本相同,是统一的

5.症状,诊断,治疗是疾病分形的表现----"分形补集,分形破缺"概念的提出*

疾病的症状是由疾病所引起的病理,?生理,生物,生化等功能,信息,体征等变化的一种外在表现,?是相应疾病的"自仿射变换"的结果,故也应具有分形的特征.疾病的诊断也一样,"正确"的诊断应是依据疾病的症状等指标,即是由疾病及其症状的"自仿射变换"的延续,来判断和确定病症的,它也是分形的延伸,放大和转换的结果."误诊"不属此类.

正常机体的各个层次,从形态,组成,信息,能量,功能等上应该是由分形子集组成的"分形全集U".而在疾病或病变情况下,即原来正常的分形全集,发生了改变,形成了相对于原分形全集有破缺的"缺陷分形集A'(或叫病变分形集,?分形病集)",则缺失的部分叫"分形补集A".?对于疾病的治疗,用药,就相当于修补,调理缺失的补集,使其重新恢复或趋于正常或完整,?即使A+A'=U,或A∪A'=U,把其缺失的组份,形态,功能等修缮整理齐全,分形全集被补全,疾病被治愈.集A与A'互为补集。

(二)物理学和化学:进展最大,结晶,相变,电解等的分形生长,化学振荡,浓度花纹,化学波.超导,固体表面(膜,生物膜,反渗透膜,经络分界等),高分子(与经络缝隙等类似).

(三)材料科学

(四)计算机图形学

(五)经济学:经济学家和生物学家(中医师)一样,都在对付一个有意志的活物的世界.经济学家们所研究的又是一切生物中最难以捉摸的.

(六)地球物理学:憘海岸线,河流,地震预报,地震的时空分维(时间分维,空间分维),断层分维与岩石破裂模型,地震前兆分维,地震的多重分形等.

(七)天文学:

(八)语言学与情报学

(九)气象学

分形研究动向与发展前景:

(1).分形数学理论及体系的创建与完善,憖特别是多重分形理论的研究。

i.如何判断一个对象是分形或多重分形(寻找完整而精确的分形定义):现在的分形是"看"出来的,还无法严格证明"什么"是"分形",因此,给分形下一个严格的定义,还需努力.

ii.分形维数的物理意义:分形维数是描述分形特征的定量参数.但如何理解分维的确切物理意义,?是非常实用的现实问题.豪斯道夫维数的意义似乎明确一些,它定量地描述出一个集规则或不规则的几何尺度.其整数部分反映出图形的空间规模(整数维数部分,对分维一般形象化的理解或解释.经络的空间状况).对动力系统,豪斯道夫维数大体上表示动力变量的数目(个数).广义维数Dq或奇异谱,主要表征多重分形的非均衡性和奇异性.在材料科学中发现分维与材料的某些性质参数有关.在化学领域,发现分维同催化剂的催化性和选择性有关.但是,分维能否作为一个独立参数存在,现在还不太清楚.(经络分形:复杂性,不规则性,可能的多元性,管道,通道的分数维性和分形性,边界的不规整性,全息性等)寻找分维的更深刻的意义和实际用途,对分形理论的发展是一个极为重要的问题.

iii.分形的动力学机制(分形与混沌):分形理论主要致力于形态的描述(对过程也做),对动力学机制(包括产生分形的充要条件)则很少涉及.为改变这种"知其然,不知其所以然"的状况,有必要引入非平衡态物理学,协同学等学科中一些概念和方法,还要把时间参量纳入研究之中.?同时应对分数阶微分方程,非线性发展方程,辛几何等方面的进展给予关注.?目前,在化学动力学及酶动力学领域已有发展,主要是通过分形子维数(谱维数)沟通时间与概率之间的关系.但这远远不能说明分形的生长动力学.应加强以下三方面的研究:?i)必须研究集团生长的时间演化规律和集团的结构标度行为;ii)应当考虑耗散结构理论及自组织临界理论,进行有效的解析和数值研究.同时要重视随机力和涨落对系统的影响;?iii)从细胞自动机和神经网络方面对生长问题进行模拟研究.总之,分形动力学是急需努力开拓的领域.

iv.分形重构问题:这是动力学研究的逆问题.是"如何由分形维数来重构分形",即已知一个分形的维数,如何重新构建(还原)这个分形?显然,由于存在"一因多果"或"一果多因",由分形维数来重构分形还必须有其它的辅助参数,仅靠一个分维是不够的.

v.关于Julia集和Mandelbrot集的问题

vi.其它问题:i)随机多重分形的数学问题;ii)分形曲线的导数问题(如Gibbs导数);iii)分维计算的方法特别是由混沌时序计算分维的可信度问题;iv)多重分形的热力学,相变实质及相变普适性划分判据问题;v)分形的小波分析及小波变换产生分形的问题;vi)生物膜的分形结构及其与细胞膜病变的关系问题;?vii)原子,分子的分形问题(包括量子混沌);viii)胖分形及重正化混沌(renormchaos)问题;ix)自组织临界现象及负幂律问题;x)图像的分形压缩问题.等.

1.中医的传统观念和思想方法:

中医是"*黑箱的方法",是朴素,原始的分形观念的产物.中医多是靠经验的,直觉的,抽象,概括,归纳,综合进行思辨的.是整体与辩证的哲学观的经典杰作.中医可以从整体到整体, 从局部到整体,从整体到局部. 是局部可以反映整体,整体包容着局部的共性观(分形观), 只是没有再进一步,升华为现代分形概念,并予以广泛扩展.以复杂为主,又不失简洁. 中医也有简化,分析和局部方法但不够深入,细致,比不过西方.中医的学问与哲学涵概了许多古代与现代,甚至未来的许多新的与旧的,已有出现的与潜在尚未出台的科学观.与西医不同的判断,判定,分类方法和体系.所以与西医类比的结果,难免会有不一样的地方, 就象对同一事物用不同的分类法会得到不同的结果和类别一样. 中医与西医比较的结果达不到完全的一致也是意料之中的.但是两者间的共同点还是可以找到的,这才是中西医结合的实用策略.中医学是整体(共性,全息,隐分形)观的,与系统论,协同,控制,突变,超循环的观点都有一些联系, 它是以整体为主,双向的,局部与整体结合的学说.中医是哲学,象艺术,又正在努力向科学化发展,延伸,正试着将多是通过直觉感受来表达他们的观察和体验,定性,经验,非数理化的中医,代入科学定量,可以用现代科学或数理化语言表述的,可以与现代科学接轨的具有带动或启动未来科学的新学科,使其成为科学与艺术与哲学, 古代与现代结合的典范.

基于分形几何的分形图绘制与分析

基于分形几何的分形图绘制与分析 摘要:基于分形几何的分形图绘制方法源于l系统、迭代函数系统ifs、复动力系统等。在运用分形原理及算法编程绘制多种分形图的基础上,重点对ifs参数进行实验分析,ifs吸引集实现了对原图形的几何变换。分形图的演变具有渐变性。 关键词:分形几何迭代函数系统分形图绘制渐变 1 分形几何学 现代数学的一个新的分支——,它是由美籍法国数学家曼德勃罗(b.b.mandelbrot)1973年在法兰西学院讲课时,首次提出了分形几何的设想。分形(fractal)一词,是曼德勃罗创造出来的,其原意具有不规则、支离破碎等意义,分形几何学是一门以非规则几何形态为研究对象的几何学。由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。分形几何的诞生无论是在理论上还是在实践上都具有重要价值。 2 分形的定义 目前分形还没有最终的科学定义,曼德勃罗曾经为分形下过两个定义: (1)分形是hausdorff-besicovitch维数严格大于拓扑维数的集合。因为它把许多hausdorff维数是整数的分形集合排除在外,例如,经典分形集合peano曲线分形维数 (2)局部与整体以某种方式自相似的形,称为分形。 然而,经过理论和应用的检验,人们发现这两个定义很难包括分形

如此丰富的内容。实际上,对于什么是分形,到目前为止还不能给出一个确切的定义,正如生物学中对“生命”也没有严格明确的定义一样,人们通常是列出生命体的一系列特征来加以说明。对分形的定义也可同样的处理。 (ⅰ) 分形集合在任意小尺度下,它总有复杂的细节,或者说它具有精细的结构。 (ⅱ) 分形集合是非常不规则的,用传统的几何语言无法来描述它的局部和整体,它既不是满足某些条件的点的轨迹,也不是某些简单方程的解集。 (ⅲ) 分形集具有某种自相似形式,可能是近似的自相似或者统计的自相似。 (ⅳ) 以某种方式定义的分形集合的“分形维数”,严格大于它相应的拓扑维数。 (ⅴ) 在大多数令人感兴趣的情形下,分形集合是以非常简单的递归的方法产生的。 3 分形研究的对象 几何学的研究对象是物体的形状,在自然界中,许多物体的形状是极不规则的,例如:弯弯曲曲的海岸线,起伏不平的山脉,变化无偿的浮云,以及令人眼花缭乱的满天繁星,等等。这些物体的形状有着共同的特点,就是极不规则,极不光滑。但是,所有的经典几何学都是以规则而光滑的形状为其研究对象的,例如:初等平面几何的主要研究对象是直线与圆;平面解析几何的主要研究对象是一

几个分形的matlab实现

几个分形得matlab实现 摘要:给出几个分形得实例,并用matlab编程实现方便更好得理解分形,欣赏其带来得数学美感 关键字:Koch曲线实验图像 一、问题描述: 从一条直线段开始,将线段中间得三分之一部分用一个等边三角形得两边代替,形成山丘形图形如下 ?图1 在新得图形中,又将图中每一直线段中间得三分之一部分都用一个等边三角形得两条边代替,再次形成新得图形如此迭代,形成Koch分形曲线。 二、算法分析: 考虑由直线段(2个点)产生第一个图形(5个点)得过程。图1中,设与分别为原始直线段得两个端点,现需要在直线段得中间依次插入三个点,,。显然位于线段三分之一处,位于线段三分 之二处,点得位置可瞧成就是由点以点为轴心,逆时针旋转600而得。旋转由正交矩阵 实现。 算法根据初始数据(与点得坐标),产生图1中5个结点得坐标、结点得坐标数组形成一个矩阵,矩阵得第一行为得坐标,第二行为得坐标……,第五行为得坐标。矩阵得第一列元素分别为5个结点得坐标,第二列元素分别为5个结点得坐标。 进一步考虑Koch曲线形成过程中结点数目得变化规律。设第次迭代产生得结点数为,第次迭代产生得结点数为,则与中间得递推关系为。 三、实验程序及注释: p=[0 0;10 0]; %P为初始两个点得坐标,第一列为x坐标,第二列为y坐标 n=2; %n为结点数 A=[cos(pi/3) —sin(pi/3);sin(pi/3) cos(pi/3)]; %旋转矩阵 for k=1:4 d=diff(p)/3; %diff计算相邻两个点得坐标之差,得到相邻两点确定得向量 %则d就计算出每个向量长度得三分之一,与题中将线段三等分对应 m=4*n-3; %迭代公式 q=p(1:n—1,:); %以原点为起点,前n—1个点得坐标为终点形成向量 p(5:4:m,:)=p(2:n,:); %迭代后处于4k+1位置上得点得坐标为迭代前得相应坐标 p(2:4:m,:)=q+d; %用向量方法计算迭代后处于4k+2位置上得点得坐标 p(3:4:m,:)=q+d+d*A'; %用向量方法计算迭代后处于4k+3位置上得点得坐标 p(4:4:m,:)=q+2*d; %用向量方法计算迭代后处于4k位置上得点得坐标 n=m; %迭代后新得结点数目 end plot(p(:,1),p(:,2)) %绘出每相邻两个点得连线 axis([0 10 0 10]) 四、实验数据记录: 由第三部分得程序,可得到如下得Koch分形曲线:

经典的分形算法 (1)

经典的分形算法 小宇宙2012-08-11 17:46:33 小宇宙 被誉为大自然的几何学的分形(Fractal)理论,是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。它与动力系统的混沌理论交叉结合,相辅相成。它承认世界的局部可能在一定条件下,在某一方面(形态,结构,信息,功能,时间,能量等)表现出与整体的相似性,它承认空间维数的变化既可以是离散的也可以是连续的,因而拓展了视野。 分形几何的概念是美籍法国数学家曼德布罗(B.B.Mandelbrot)1975年首先提出的,但最早的工作可追朔到1875年,德国数学家维尔斯特拉斯(K.Weierestrass)构造了处处连续但处处不可微的函数,集合论创始人康托(G.Cantor,德国数学家)构造了有许多奇异性质的三分康托集。1890年,意大利数学家皮亚诺(G.Peano)构造了填充空间的曲线。1904年,瑞典数学家科赫(H.von Koch)设计出类似雪花和岛屿边缘的一类曲线。1915年,波兰数学家谢尔宾斯基(W.Sierpinski)设计了象地毯和海绵一样的几何图形。这些都是为解决分析与拓朴学中的问题而提出的反例,但它们正是分形几何思想的源泉。1910年,德国数学家豪斯道夫(F.Hausdorff)开始了奇异集合性质与量的研究,提出分数维概念。1928年布利干(G.Bouligand)将闵可夫斯基容度应用于非整数维,由此能将螺线作很好的分类。1932年庞特里亚金(L.S.Pontryagin)等引入盒维数。1934年,贝塞考维奇(A.S.Besicovitch)更深刻地提示了豪斯道夫测度的性质和奇异集的分数维,他在豪斯道夫测度及其几何的研究领域中作出了主要贡献,从而产生了豪斯道夫-贝塞考维奇维数概念。以后,这一领域的研究工作没有引起更多人的注意,先驱们的工作只是作为分析与拓扑学教科书中的反例而流传开来。 真正令大众了解分形是从计算机的普及肇始,而一开始,分形图的计算机绘制也只是停留在二维平面,但这也足以使人们心驰神往。近来,一个分形体爱好者丹尼尔?怀特(英国一钢琴教师)提出一个大胆的方法,创造出令人称奇的3D分形影像,并将它们命名为芒德球(mandelbulb)。

分形实例

2、对一条横向线段,先将其等分成4段,然后再将第二段向上移,将第三段向下移,再将第四段的相邻端点连接起来,迭代一次后变成图3-21.继续迭代得到的分形图,称为Minkouski (1)编辑实现上述迭代的函数 在Matlab中,编制一个函数来绘制Minkouski香肠的图形。具体代码如下:function frat1(k) p=[0,0;10,0]; A=[0,1;-1,0]; n=1; for s=1:k j=0; for i=1:n; q1=p(i,:); q2=p(i+1,:); d=(q2-q1)/4; j=j+1;r(j,:)=q1; j=j+1;r(j,:)=q1+d; j=j+1;r(j,:)=q1+d+d*A; j=j+1;r(j,:)=q1+2*d+d*A; j=j+1;r(j,:)=q1+2*d+d*A'; j=j+1;r(j,:)=q1+3*d+d*A'; j=j+1;r(j,:)=q1+3*d; end n=n*7; clear p p=[r;q2]; end

plot(p(:,1),p(:,2)) axis equal 将这个文件保存,文件名记为frat1.m. (2)绘制Minkouski香肠的图形 代码:frat(3) 运行结果: 代码:frat(5) 运行结果:

根据迭代规律得到:形似形个数m=7,边长放大倍数c=4,故维数d=1.4037.因此,Minkouski香肠的维数介于1与2之间。具体计算如下: d=ln m/ln c=ln 7/ln 4=1.4037 5、自己构造生成元(要有创意),按照图形迭代的方式产生分形图,用计算机编制程序绘出它的图形,并计算维数。 function frat2(k) p=[-5,5;5,5;5,-5;-5,-5;-5,5]; A=[1.5,-0.5;0.5,1.5]; n=4; for s=1:k j=0; for i=1:n; q1=p(i,:); q2=p(i+1,:); d=(q2-q1)/3; j=j+1;r(j,:)=q1; j=j+1;r(j,:)=q1+d; j=j+1;r(j,:)=q1+d+d*A; j=j+1;r(j,:)=q1+2*d; end n=n*4;

《高频电子线路》课程设计指导书.doc

《高频电子线路》课程设计指导书 一、课程设计基本信息 核心课程名称(中文)高频电子线路核心课程名称(英文)High-frequency Electronic Circuits 课程设计名称高频电子线路课程设计 课程设计编号课程设计类型实物制作 相关辅助课程电路分析、电子线路(线性部分) 教材及实验指导书教材《电子线路(非线性部分)》,谢嘉奎,高等教育出版 课程设计时间:第五学期18 周 面向专业电子信息科学与技术 二、课程设计的目的 《高频电子线路》课程是电子信息专业继《电路理论》、《电子线路(线性部分)》之后必修的主要技术基础课,同时也是一门工程性和实践性都很强的课程。课程设计是在课程内容学习结束,学生基本掌握了该课程的基本理论和方法后,通过完成特定电子电路的设计、安装和调试,培养学生灵活运用所学理论知识分析、解决实际问题的能力,具有一定的独立进行资料查阅、电路方案设计及组织实验的能力。通过设计,加深对调幅的理解,学会电路的调整;进一步培养学生的动手能力 三、主要仪器设备 序号实验项目名称仪器设备名称仪器设备编号 1调幅收音机设计高频信号发生器、数字示波器、稳压电源 四、课程设计的内容与要求 1、内容:根据所学知识,设计一超外差调幅收音机电路,选择合适的元器件,进行安装和调试电路;应能接收正常广播,且接收的广播节目不少于3套° 序 号 名称目的方式场所要求

1调幅收音机设计加深对调幅的理解,学会 电路的调整;进一步培养 学生的动手能力 实物制作 通信学 院 2、要求 1设计电路图; 2供电电压:直流3V 3 接收频段:535kHz ~ 1605kHz; 4输出功率:P o> 1W。 5为满足偷出功率要求,采用两级放大电路; 6采用互补推挽功率放大器作为输出级。 五、考核与报告 考核内容:1实际操作:包括电路设计、安装、焊接及调试 2设计报告:包括原理、电路图、元器件的选择 成绩评定:实际操作和设计报告各占50%o 六、主要参考文献 1、《电子线路(非线性部分)》,谢嘉奎,高等教育出版社 2、《实用电子电路手册》,孙肖子,高等教育出版社 3、《电子技术技能训练》,张大彪,电子工业出版社七、课程设计报告 1、报告内容 目的、原理、电路图、安装注意事项、调试过程及结果。 2、版面格式 (1)A4纸打印,上、下、左、右边距为2. 5cm,段落间距0,行间距1. 5倍; (2)标题使用四号黑体、居中,正文使用小四号宋体; 一级标题:小四号黑体(如:1、2、3……);

具视觉美学形态的Mandelbrot集合分形图案

具视觉美学形态的Mandelbrot集合分形图案 作者:蔡宗文林建德温国勋 来源:《海峡科学》2012年第08期 [摘要] 分形图案具有极高的视觉美学形态。该文介绍了Mandelbrot集合分形图案的生成方法,根据复数平面逃逸时间算法生成分形图案,程序设计以Visual Basic 2008程序语言及开发整合环境为发展工具,建立一个具有图案信息显示的工作系统。应用所发展的程序,分析不同幕次Mandelbrot集合所生成分形图案的形态,并据此提出色差控制与大色差控制两种分形图案的色差控制方法,产生具有极高视觉美学形态的分形图案。 [关键词] 分形图案 Mandelbrot集合视觉美学 0 引言 分形几何(Fractal Geometry)起源于19世纪,一些著名数学家对连续不可微曲线进行了研究,发现了存在一类结构及形态,与传统几何曲线有所不同的“病态”曲线,诸如Cantor集合、Koch曲线、Peano曲线及Sierpinski集合[1, 2]。到了20世纪70年代,Mandelbrot[1,2]透过对复数平面(Complex Plane)的一个简单函数的迭代研究,得到了令人赞叹的复杂平面图案,称为Mandelbrot集合。该图案集合的边界具有复杂而精细的结构,在电脑的计算精度容许下,对其边界进行任意放大时,可以得到的局部图案与整体图案具有自相似性(Self-Similar),亦即分形集合(Fractal Sets)的自相似性结构[1,2]。1982年,Mandelbrot在其著作《自然界中的分形几何》中,将这类数学问题称为分形几何,而这些分形几何集合则称为分形艺术图案或分形图案(Fractal Art Pattern or Fractal Pattern)[1-6]。 分形艺术图案在装饰艺术设计、广告设计、服装设计、陶瓷设计等设计领域中已有部份应用[7-14]。应用分形几何理论于艺术图案与纺织纹样设计,可以得到一些具有特殊的线条、图案与色彩的分形艺术图案。 1 复数平面上的Mandelbrot集合 在众多的分形模型中,复数平面分形系统所生成的分形图案具有令人心动的视觉美学形态。图1为由Mandelbrot集合进行迭代计算后所产生的图案,图案的形态表现出无限细分、重复对称与自相似的分形性质,具有极高的视觉美学形态。 图1 Mandelbrot集合分形图案 1.1 二次Mandelbrot集合

分形插值算法和MATLAB实验

一,分形插值算法 ——分形图的递归算法1,分形的定义 分形(Fractal)一词,是法国人B.B.Mandelbrot 创造出来的,其原意包含了不规则、支离破碎等意思。Mandelbrot 基于对不规则的几何对象长期地、系统地研究,于1973 年提出了分维数和分形几何的设想。分形几何是一门以非规则几何形状为研究对象的几何学,用以描述自然界中普遍存在着的不规则对象。分形几何有其显明的特征,一是自相似性;分形作为一个数学集合, 其内部具有精细结构, 即在所有比例尺度上其组成部分应包含整体, 而且彼此是相似的。其定义有如下两种描述: 定义 1如果一个集合在欧式空间中的 Hausdorff 维数H D 恒大于其拓扑维数 r D ,则称该集合为分形集,简称分形。 定义 2组成部分以某种方式与整体相似的形体叫分形。 对于定义 1 的理解需要一定的数学基础,不仅要知道什么是Hausdorff 维数,而且要知道什么是拓扑维数,看起来很抽象,也不容易推广。定义 2 比较笼统的说明了自然界中的物质只要局部和局部或者局部和整体之间存在自相似性,那么这个物质就是分形。正是这一比较“模糊”的概念被人们普遍接受,同时也促进了分形的发展。 根据自相似性的程度,分形可分为有规分形和无规分形。有规分形是指具有严格的自相似的分形,比如,三分康托集,Koch 曲线。无规分形是指具有统计意义上的自相似性的分形,比如,曲折的海岸线,漂浮的云等。本文主要研究有规分形。

2. 分形图的递归算法 2.1 三分康托集 1883 年,德国数学家康托(G.Cantor)提出了如今广为人知的三分康托集。三分康托集是很容易构造的,然而,它却显示出许多最典型的分形特征。它是从单位区间出发,再由这个区间不断地去掉部分子区间的过程构造出来的(如图2.1)。 其详细构造过程是:第一步,把闭区间[0,1]平均分为三段,去掉中间的 1/3 部分段,则只剩下两个闭区间[0,1/3]和[2/3,1]。第二步,再将剩下的两个闭区间各自平均分为三段,同样去掉中间的区间段,这时剩下四段闭区间:[0,1/9],[2/9,1/3],[2/3,7/9]和[8/9,1]。第三步,重复删除每个小区间中间的 1/3 段。如此不断的分割下去,最后剩下的各个小区间段就构成了三分康托集。三分康托集的 Hausdorff 维数是0.6309。 图2.2 三分康托集的构造过程

分形之Julia集及其算法实现

成绩:课程名称:智能信息处理概论 分形之Julia集及其算法实现 摘要:本文从自然界的几何现象引出分形的概念,再从其定义、几何特征和分形维的计算这三个方面来加以介绍。以Julia集和Mandelbort集为例来具体描述分形。本文主要从Julia集的特点和算法实现来描述分形以及其实现的方法。 关键词:分形、分数维、Julia集、Mandelbort集、算法实现 引言 大自然是个很伟大的造物者,它留给我们一大笔美丽景观:蜿蜒曲折的海岸线、起伏不定的山脉,变幻无常的浮云,粗糙不堪的断面,袅袅上升的烟柱,九曲回肠的河流,纵横交错的血管,令人眼花缭乱的满天繁星……那么,我们又能从这些美妙的自然现象中得到什么有趣的结论呢? 正文 分形概述 分形的英文单词为fractal,是由美籍法国数学家曼德勃罗(Benoit Mandelbrot)创造出来的。其取自拉丁文词frangere(破碎、产生无规则碎片)之头,撷英文之尾所合成,本意是不规则的、破碎的、分数的。他曾说:分形就是通过将光滑的形状弄成多个小块,反复的碎弄。1975年,曼德勃罗出版了他的法文专著《分形对象:形、机遇与维数》,标志着分形理论正式诞生。【1】 两种定义 其一:具有自相似性结构的叫做分形; 其二:数学定义:豪斯道夫维Df>=拓扑维Dt。 若一有界集合,包含N个不相重叠的子集,当其放大或缩小r倍后,仍与原集合叠合,则称为自相似集合。自相似集合是分形集。具有相似性的系统叫做分形。 当放大或缩小的倍数r不是一个常数,而必须是r(r1,r2,….)的各种不同放大倍数去放大或缩小各子集,才能与原集合重合时,称为自仿射集合。具有自仿射性的系统叫做分形。【2】 特征 1.自相似性:局部与整体的相似,是局部到整体在各个方向上的等比例变换的结果; 2.自仿射性:是自相似性的一种拓展,是局部到整体在不同方向上的不等比例变换的结果; 3.精细结构:即使对该分形图放大无穷多倍,还是能看到与整体相似的结构,表现出无休止的重复; 4.分形集无法用传统几何语言来描述,它不是某些简单方程的解集,也不是满足某些条件的点的轨 迹; 5.分形集一般可以用简单的方法定义和产生,如递归、迭代;分形其实是由一些简单的图形,经过 递归或者迭代产生的复杂、精细的结构; 6.无确定的标度且具有分数维数。【3】

分形图形与分形的产生

分形图形 分形理论是非线性科学的主要分支之一,它在计算机科学、化学、生物学、天文学、地理学等众多自然科学和经济学等社会科学中都有广泛的应用。分形的基本特征是具有标度不变性。其研究的图形是非常不规则和不光滑的已失去了通常的几何对称性;但是,在不同的尺度下进行观测时,分形几何学却具有尺度上的对称性,或称标度不变性。研究图形在标度变换群作用下不变性质和不变量对计算机图形技术的发展有重大的意义。 说到分形(fractal),先来看看分形的定义。分形这个词最早是分形的创始人曼德尔布诺特提来的,他给分形下的定义就是:一个集合形状,可以细分为若干部分,而每一部分都是整体的精确或不精确的相似形。分形这个词也是他创造的,含有“不规则”和“支离破碎”的意思。分形的概念出现很早,从十九世纪末维尔斯特拉斯构造的处处连续但处处不可微的函数,到上个世纪初的康托三分集,科赫曲线和谢尔宾斯基海绵。但是分形作为一个独立的学科被人开始研究,是一直到七十年代曼德尔布诺特提出分形的概念开始。而一直到八十年代,对于分形的研究才真正被大家所关注。 分形通常跟分数维,自相似,自组织,非线性系统,混沌等联系起来出现。它是数学的一个分支。我之前说过很多次,数学就是美。而分形的美,更能够被大众所接受,因为它可以通过图形化的方式表达出来。而更由于它美的直观性,被很多艺术家索青睐。分形在自然界里面也经常可以看到,最多被举出来当作分形的例子,就是海岸线,源自于曼德尔布诺特的著名论文《英国的海岸线有多长》。而在生物界,分形的例子也比比皆是。 近20年来,分形的研究受到非常广泛的重视,其原因在于分形既有深刻的理论意义,又有巨大的实用价值。分形向人们展示了一类具有标度不变对称性的新世界,吸引着人们寻求其中可能存在着的新规律和新特征;分形提供了描述自然形态的几何学方法,使得在计算机上可以从少量数据出发,对复杂的自然景物进行逼真的模拟,并启发人们利用分形技术对信息作大幅度的数据压缩。它以其独特的手段来解决整体与部分的关系问题,利用空间结构的对称性和自相似性,采用各种模拟真实图形的模型,使整个生成的景物呈现出细节的无穷回归的性质,丰富多彩,具有奇妙的艺术魅力。分形对像没有放大极限,无论如何放大,总会看到更详细的结构。借助于分形的计算机生成,从少量的数据生成复杂的自然景物图形,使我们在仿真模拟方面前进了一大步。在分形的诸多研究课题中,分形的计算机生成问题具有明显的挑战性,它使传统数学中无法表达的形态(如山脉、花草等)得以表达,还能生成一个根本“不存在”的图形世界。分形在制造以假乱真的景物方面的进展和潜在的前途,使得无论怎样估计它的影响也不过分。可以肯定,分形图案在自然界真实物体模拟、仿真形体生成、计算机动画、艺术装饰纹理、图案设计和创意制作等具有广泛的应用价值。 分形图形简介一、关于分形与混沌 关于分形的起源,要非常准确的找出来是非常困难的。研究动态系统、非线形数学、函数分析的科学家,已数不胜数。尽管分形的早期线索已非常古老,但这一学科却还很年轻。比如关于动态系统和细胞自动机的大部分工作可以追溯到冯-诺依曼;但是,直到Mandelbrot 才如此清楚地将自然现象和人工现象中的混沌及分形同自相似性联系在一起。大家如果对此感兴趣,可进一步查阅有关资料。下面我们看一看分形的概念。 什么是分形呢?考虑到此文的意图,我们无意给出它严格的定义,就我们的目的而言,一个分形就是一个图象,但这个图象有一个特性,就是无穷自相似性。什么又是自相似呢?在自然和人工现象中,自相似性指的是整体的结构被反映在其中的每一部分中。比如海岸线,常举的例子,你看它10公里的图象(曲线),和一寸的景象(曲线)是相似的,这就是自相似性。 与分形有着千差万屡的关系的,就是混沌。混沌一词来源与希腊词汇,原意即“张开咀”,但是在社会意义上,它又老爱和无序联系在一起。解释分形和混沌的联系,要注意到分形是

Visual C++茱莉亚分形图形绘制

1.绘制茱莉亚图 (1)绘制窗口 首先在VC中建一个新的Projects,选择项目类型为MFC AppWizard(exe),在项目名称中键入DrawJulial,按下OK。 在随后的窗口中选择Single Document,选中Document/View architecture support,在语言中选中中文。 在Step 2 of 6窗口中不要数据库支持(None)。 在Step 3 of 6窗口中选中不要复合文档支持(None),将Automation的ActiveX Controls 选项都取消 在Step 4 of 6窗口中将默认选项中的Printing and print preview 和Docking toolbar去除,接下Next。 对Step 5 of 6窗口和Step 6 of 6窗口不作修改,按下Finish。 此时VC已经自动将我们想要的程序框架建立完毕。 然后将VC框架建立的菜单中的编辑菜单完全删去,将文件菜单中除退出一项外全部删去,在查看后面加入一个菜单项,去掉其Pop-up属性,命其ID号为ID_DRAWJULIAL,Caption为绘制茱莉亚图。 (2)定义消息映射函数 在Class Wizard中选择Message Maps栏,在Class Name 栏中选择CDrawJulialView,在Object IDs中选择

ID_DRAWJULIAL,为其COMMAND消息建立一个消息映射函数。 (3)建立代码 1.类CBaseDraw是一个基本的绘图函数,可以作为基类使用。CJulial类就是从CBaseDraw继承下来的类。由于在CBaseDraw的成员函数sleep中调用了系统函数timeGetTime(),因此要做以下工作: 选择主菜单的Project项中的Setting,在弹出的对话框中选择Link页,在Object/library modules项中加入“winmm.lib”。 源程序BaseDraw.h代码如下: //BaseDraw.h: interface for the CBaseDraw class #if !defined(AFX_BASEDRAW_H__CB43CA20_175A_11D4_81F F_94DCC6655E1C__INCLUDED_) #define AFX_BASEDRAW_H__CB43CA20_175A_11D4_81FF_94DCC6655E1 C__INCLUDED_ #if _MSC_VER > 1000 #pragma once # endif //_MSC_VER >1000 #define pi 3.141592654 //基本绘图类 class CBaseDraw

分形算法与应用

《分形算法与应用》教学大纲 1 课程的基本描述 课程名称:分形算法与应用Algorithm and Application of Fractal 课程编号:5301A36 课程性质:专业课适用专业:计算机专业 教材选用:孙博文编著,《分形算法与程序设计》,科学出版社,2004.11 总学时:32学时理论学时:32学时 实验学时:0学时课程设计:无 学分:2学分开课学期:第七学期 前导课程:算法分析 后续课程:毕业设计 2 教学定位 2.1 能力培养目标 通过本课程的学习,培养学生的认知和理解能力、逻辑思维能力,以及算法设计与分析能力,程序设计和实现能力。一方面使学生掌握非规则图形的计算机绘制的基本方法,以便实现对不规则对象的算法设计。另一方面,学习本课程的过程也是进行复杂程序设计的训练过程。 2.2 课程的主要特点 本课程是一门重要的专业课,有理论性、设计性与实践性的特点。介绍分形的基本概念及算法设计的基本方法。它是介于计算机软件、程序设计和数学三门课程之间的核心课程。不仅为后续专业课提供了必要的知识基础,也为计算机、软件工程的专业人员提供了必要的技能训练。

2.3 教学定位 通过本课程的学习,使学生达到知识和技能两方面的目标: 1.知识方面:从算法设计及其实现这两个层次的相互关系的角度,系统地学习和掌握非规则图形的算法设计方法,了解并掌握分析、比较和选择不同非规则结构的设计方案,不同运算实现的原则和方法。 2.技能方面:系统地学习和掌握在不同非规则对象实现的不同算法及其设计思想,从中体会并掌握结构选择和算法设计的思维方式及技巧,使分析问题和解决问题的能力得到提高。 3 知识点与学时分配 3.1掌握分形的基本概念 分形简介 分形 分维 分形的测量 共2学时 3.2分形图生成算法之一 分形图的递归算法 Cantor三分集、Koch曲线、Sierpinski垫片、 Peano曲线、分形树等的递归算法。 共2学时 3.3分形图生成算法之二 文法构图算法 LS文法、单一规则的LS文法生成、多规则的LS文法生成、 随机LS文法生成。 共2学时 3.4分形图生成算法之三 迭代函数系统

分形图程序

(1)Koch曲线程序koch.m function koch(a1,b1,a2,b2,n) %koch(0,0,9,0,3) %a1,b1,a2,b2为初始线段两端点坐标,n为迭代次数 a1=0;b1=0;a2=9;b2=0;n=3; %第i-1次迭代时由各条线段产生的新四条线段的五点横、纵坐标存储在数组A、B中 [A,B]=sub_koch1(a1,b1,a2,b2); for i=1:n for j=1:length(A)/5; w=sub_koch2(A(1+5*(j-1):5*j),B(1+5*(j-1):5*j)); for k=1:4 [AA(5*4*(j-1)+5*(k-1)+1:5*4*(j-1)+5*(k-1)+5),BB(5*4*(j-1)+5*(k-1)+1:5*4*(j-1)+5*(k-1)+5)]=sub_koch1(w(k,1),w(k,2),w(k,3),w(k,4)); end end A=AA; B=BB; end plot(A,B) hold on axis equal %由以(ax,ay),(bx,by)为端点的线段生成新的中间三点坐标并把这五点横、纵坐标依次分别存%储在数组A,B中 function [A,B]=sub_koch1(ax,ay,bx,by) cx=ax+(bx-ax)/3; cy=ay+(by-ay)/3; ex=bx-(bx-ax)/3;

ey=by-(by-ay)/3; L=sqrt((ex-cx).^2+(ey-cy).^2); alpha=atan((ey-cy)./(ex-cx)); if (ex-cx)<0 alpha=alpha+pi; end dx=cx+cos(alpha+pi/3)*L; dy=cy+sin(alpha+pi/3)*L; A=[ax,cx,dx,ex,bx]; B=[ay,cy,dy,ey,by]; %把由函数sub_koch1生成的五点横、纵坐标A,B顺次划分为四组,分别对应四条折线段中 %每条线段两端点的坐标,并依次分别存储在4*4阶矩阵k中,k中第i(i=1,2,3,4)行数字代表第%i条线段两端点的坐标 function w=sub_koch2(A,B) a11=A(1);b11=B(1); a12=A(2);b12=B(2); a21=A(2);b21=B(2); a22=A(3);b22=B(3); a31=A(3);b31=B(3); a32=A(4);b32=B(4); a41=A(4);b41=B(4); a42=A(5);b42=B(5); w=[a11,b11,a12,b12;a21,b21,a22,b22;a31,b31,a32,b32;a41,b41,a42,b42];

几个分形的matlab实现资料

几个分形的matlab 实现 摘要:给出几个分形的实例,并用matlab 编程实现方便更好的理解分形,欣赏其带来的 数学美感 关键字:Koch 曲线 实验 图像 一、问题描述: 从一条直线段开始,将线段中间的三分之一部分用一个等边三角形的两边代替,形成山丘形图形如下 图1 在新的图形中,又将图中每一直线段中间的三分之一部分都用一个等边三角形的两条边代替,再次形成新的图形如此迭代,形成Koch 分形曲线。 二、算法分析: 考虑由直线段(2个点)产生第一个图形(5个点)的过程。图1中,设1P 和5P 分别为原始直线段的两个端点,现需要在直线段的中间依次插入三个点2P ,3P ,4P 。显然2P 位于线段三分之一处,4P 位于线段三分之二处,3P 点的位置可看成是由4P 点以2P 点为轴心,逆时针旋转600 而得。旋转由正交矩阵 ?????? ? ?-=)3cos()3sin()3sin()3cos(ππππA 实现。 算法根据初始数据(1P 和5P 点的坐标),产生图1中5个结点的坐标。结点的坐标数组形成一个25?矩阵,矩阵的第一行为1P 的坐标,第二行为2P 的坐标……,第五行为5P 的坐标。矩阵的第一列元素分别为5个结点的x 坐标,第二列元素分别为5个结点的y 坐标。 进一步考虑Koch 曲线形成过程中结点数目的变化规律。设第k 次迭代产生的结点数为k n ,第1+k 次迭代产生的结点数为1+k n ,则k n 和1+k n 中间的递推关系为341-=+k k n n 。 三、实验程序及注释:

p=[0 0;10 0]; %P为初始两个点的坐标,第一列为x坐标,第二列为y坐标 n=2; %n为结点数 A=[cos(pi/3) -sin(pi/3);sin(pi/3) cos(pi/3)]; %旋转矩阵 for k=1:4 d=diff(p)/3; %diff计算相邻两个点的坐标之差,得到相邻两点确定的向量 %则d就计算出每个向量长度的三分之一,与题中将线段三等分对应 m=4*n-3; %迭代公式 q=p(1:n-1,:); %以原点为起点,前n-1个点的坐标为终点形成向量 p(5:4:m,:)=p(2:n,:); %迭代后处于4k+1位置上的点的坐标为迭代前的相应坐标 p(2:4:m,:)=q+d; %用向量方法计算迭代后处于4k+2位置上的点的坐标 p(3:4:m,:)=q+d+d*A'; %用向量方法计算迭代后处于4k+3位置上的点的坐标 p(4:4:m,:)=q+2*d; %用向量方法计算迭代后处于4k位置上的点的坐标 n=m; %迭代后新的结点数目 end plot(p(:,1),p(:,2)) %绘出每相邻两个点的连线 axis([0 10 0 10]) 四、实验数据记录: 由第三部分的程序,可得到如下的Koch分形曲线: 图2 五、注记: 1.参照实验方法,可绘制如下生成元的Koch 分形曲线: 图3

数学实验之分形图的绘制

钦州学院数学与计算机科学学院 数学实验报告 专业 : 数学与应用数学班级姓名:学号: 实验完成日期 :2010 年 11 月 1 日,第 10 周,星期一 成绩等级(五级分制)评阅教师评阅日期年月日数学实验报告填写要求:思路清晰,中间结果和最终结果真实;字迹工整,报告完整。[实验题目及内容] 实验题目:分形图形的绘制 实验内容:利用二叉树的画法对生成元带参数进行迭代绘制分形图。 [问题描述](用自己组织的相关数学语言重述现实问题;注意对约定的条件作说明) 分形图是由一个简单的枝杈不断向周围延伸增加枝干而成,由简单元素生成整体,其中包含有旋转、带参数深层迭代等步骤,对生成元的张开角度和线段长度也有所控制才能绘制出多彩的图形,所以就要设计几个能控制生成图的角度的圆,随时改动分形图的伸张。 [模型建立或思路分析](建立合理,可解释的数学模型,通过公式、表格或图形直观明确地描述模型的结构;无法通过建立模型解决的,给出解题的思路及办法。) 整个分形图就由几个简单的枝杈进行带参数深层迭代而成,所以先做一个作为整棵树的树主干,做线段AB,以一个B端点作为旋转中心,做两个能控制角度旋转的圆,以圆上所选的角度做适当旋转将线段AB及端点A向上旋转得到两条线段,将得到的线段进行缩放到原来的三分之二,三条线段就组成一个树杈,再继续做另外两个圆选好角度将由线段AB旋转得到的两条线段再向上旋转得到另两条线段,将得到的线段进行缩放到原来的一半。新建参数n=1,对AB两点和参数n进行深度迭代,使得旋转得到的线段的起始点对应

线段AB的起始点,改变n值,即可得到一棵参天大树,即分形图完成。 [实验结果](通过数学表达式、列表或图形图像的方式显示实验结果。) [结果分析及结论](对实验结果进行定量分析、合理性分析或误差分析;对所讨论的问题重新认识或提出相关类似问题的拓延;给出自己的意见和合理建议。) 得出的分形图伸张程度和倾斜程度都可以由原先做出的角度控制,改变圆上的角度的大小就可以改变树的弯曲倾斜程度,改变三层基层线段的粗细和颜色可以让分形图更形象,分形图的迭代情况有参数n控制,改变n值增加迭代次数,让树的枝丫伸展使得分形图更多彩。也可以改变生成元的构成,可以在基层增加枝干,进行深层迭代后得出不同形象的分形图。 [求解方法或解题步骤](针对所建模型或解题思路,给出具体的求解方法或解题步骤。对通过编程解决的问题,画出流程图,给出细节部分的算法,给出相关软件的代码;其他方法解决的,给出详细的解题步骤。)

计算机图形学 分形图的生成936

实验六分形图的生成 班级08信计二学号52 姓名刘丽杰分数 一、实验目的和要求: 1、掌握分形基本原理,熟悉分形的计算机模拟算法。 2、学习调试程序及分析运行结果。 3、上机操作迭代函数系统算法。 二、实验内容: 1、编程实现分形的贝塞尔算法,并输出图形。 2、编程实现一棵树,先按某一方向画一条直线段,然后在此线段上找到一系列节点,在每一节点处向左右偏转60度各画一条分支。节点位置和节点处所画分支的长度的比值各按0.618分割。 三、程序执行和运行结果: 1、贝塞尔程序: #include #include #define WIDTH 640 #define HEIGHT 480 #define NUMPTS 6 HDC hdc; float animpts[NUMPTS * 2]; float deltas[NUMPTS * 2]; void Init() { for (int i = 0; i < NUMPTS * 2; i += 2) { animpts[i ] = (float)rand() / RAND_MAX * WIDTH; animpts[i + 1] = (float)rand() / RAND_MAX * HEIGHT; deltas[i ] = (float)rand() / RAND_MAX * 4 + 2; deltas[i + 1] = (float)rand() / RAND_MAX * 4 + 2; if (animpts[i ] > WIDTH / 6.0f) deltas[i ] = -deltas[i ]; if (animpts[i + 1] > HEIGHT / 6.0f) deltas[i + 1] = -deltas[i + 1];

1分形图基本图形以及源程序

分形图基本图形以及源程序 第一部分 本人新手,如有错误请指正。程序完成于2011/6/17晚间到2011/6/18。 很多变量名称采用的是同学的姓名拼音,为的是告诉大家这些都是可以随意命名的变量或函数名,一般大写字母开头的是系统定义的变量不可以随意更改。 一、(*雪花*) 源程序 lovelyduwangen[zhengguojie_List]:=Block[{weihuayan={},i,wuxiaonan=Length[zhe ngguojie],gengping=60Degree,sa=Sin[gengping],ca=Cos[gengping],c,d,e,T={{ca,-sa} ,{sa,ca}}}, For[i=1,i< wuxiaonan,i++,c=zhengguojie[[i]]*2/3+zhengguojie[[i+1]]/3; e=zhengguojie[[i]]/3+zhengguojie[[i+1]]*2/3; d=c+T.(e-c); weihuayan=Join[weihuayan,{zhengguojie[[i]],c,d,e,zhengguojie[[i+1]]}]]; weihuayan] dongquanfa={{0,0},{1/2,Sqrt[3]/2},{1,0},{0,0}}; Show[Graphics[Line[Nest[lovelyduwangen,dongquanfa,0]],AspectRatio→Sqrt[3]/2]] Show[Graphics[Line[Nest[lovelyduwangen,dongquanfa,5]],AspectRatio→Sqrt[3]/2]] 基本生成元

分形维数算法

分形维数算法 分形包括规则分形和无规则分形两种。规则分形是指可以由简单的迭代或者是按一定规律所生成的分形,如Cantor集,Koch曲线,Sierpinski海绵等。这些分形图形具有严格的自相似性。无规则分形是指不光滑的,随机生成的分形,如蜿蜒曲折的海岸线,变换无穷的布朗运动轨迹等。这类曲线的自相似性是近似的或统计意义上的,这种自相似性只存于标度不变区域。 对于规则分形,其自相似性、标度不变性理论上是无限的(观测尺度可以趋于无限小)。不管我们怎样缩小(或放大)尺度(标度)去观察图形,其组成部分和原来的图形没有区别,也就是说它具有无限的膨胀和收缩对称性。因些对于这类分形,其计算方法比较简单,可以用缩小测量尺度的或者不断放大图形而得到。分形维数 D=lnN(λ)/ln(1/λ) (2-20) 如Cantor集,分数维D=ln2/ln3=0.631;Koch曲线分数维D=ln4/ln3=1.262; Sierpinski海绵分数维D=ln20/ln3=2.777。 对于不规则分形,它只具有统计意义下的自相似性。不规则分形种类繁多,它可以是离散的点集、粗糙曲线、多枝权的二维图形、粗糙曲面、以至三维的点集和多枝权的三维图形,下面介绍一些常用的测定方法[26]。 (1)尺码法 用某个选定尺码沿曲线以分规方式测量,保持尺码分规两端的落点始终在曲线上。不断改变尺码λ,得到一系列长度N(λ),λ越小、N越大。如果作lnN~lnλ图后得到斜率为负的直线,这表明存在如下的幂函数关系 N~λ-D(2-21) 上式也就是Mandelbrot在《分形:形状、机遇与维数》专著中引用的Richardson公式。Richardson是根据挪威、澳大利亚、南非、德国、不列颠西部、葡萄牙的海岸线丈量结果得出此公式的,使用的测量长度单位一般在1公里到4公里之间。海岸线绝对长度L被表示为: L=Nλ~λ1-D(2-22) 他得到挪威东南部海岸线的分维D≈1.52,而不列颠西部海岸线的分维D≈1.3。这说明挪威的海岸线更曲折一些[27]。

各种有趣的分形

各种有趣的分形 我们看到正方形,圆,球等物体时,不仅头脑里会迅速反映出它是什么,同时,只要我们有足够的数学知识,我们头脑中也反映出它的数学概念,如正方形是每边长度相等的四边形,圆是平面上与某一点距离相等的点的集合,等等。 但是,当我们看到一个山的形状时,我们会想到什么?"这是山",没错,山是如此的不同于其他景象,以至于你如果绘画水平不高,根本画不出象山的东西。可是,山到底是什么?它既不是三角形,也不是球,我们甚至不能说明山具有怎样的几何轮廓,但为什么我们却有如此直观而又强烈的山的印象?分形的创始人是曼德布洛特思考了这个问题。让 图中的风景图片又是说明分形的另一 很好的例子。这张美丽的图片是利用分 形技术生成的。在生成自然真实的景物 中,分形具有独特的优势,因为分形可 以很好地构建自然景物的模型。 这是一棵厥类植物,仔细观察,你会发 现,它的每个枝杈都在外形上和整体相 同,仅仅在尺寸上小了一些。而枝杈的 枝杈也和整体相同,只是变得更加小 了。 Sierpinski三角形具有严格的自相似特 性

Kohn雪花具有严格的自相似特性 分维及分形的定义 分维概念的提出 对于欧几里得几何所描述的整形来说,可以由长度、面积、体积来测度。但用这种办法对分形的层层细节做出测定是不可能的。曼德尔布罗特放弃了这些测定而转向了维数概念。分形的主要几何特征是关于它的结构的不规则性和复杂性,主要特征量应该是关于它的不规则性和复杂性程度的度量,这可用“维数”来表征。维数是几何形体的一种重要性质,有其丰富的内涵。整形几何学描述的都是有整数维的对象:点是零维的,线是一维的,面是二维的,体是三维的。这种几何对象即使做拉伸、压缩、折叠、扭曲等变换,它们的维数也是不变的;这种维数称

相关主题
文本预览
相关文档 最新文档