当前位置:文档之家› OSPF邻居及邻接关系(虚链路)置案例

OSPF邻居及邻接关系(虚链路)置案例

OSPF邻居及邻接关系(虚链路)置案例
OSPF邻居及邻接关系(虚链路)置案例

一、技术概述

OSPF网络中,所有路由信息都在邻居或邻接中传递、交换。通过维持邻居或邻接关系,对整网的稳定性起着重要作用。

本节将重点研究ospf的网络类型及邻居邻接关系。

二、网络拓扑:

三、相关知识点总结:

1. 邻居关系和邻接关系有什么区别?

邻居关系和邻接关系是不同的概念。

邻居关系是指,当双方收到对方的hello报文的时候,报文里面的参数(hello time.dead interval , area id.authentication ,mask 等)一致的时候,并且邻居关系为2-way的时候,这个就可以成为是建立了邻居关系,但是还不是邻接关系。

邻接关系是指在建立的邻居关系之后继续发送DD,LSR,LSU等报文,最终双方的LSDB达到同步之后,邻居状态为FULL时,才成为邻接关系。

希望对你希望对你有用。

2. OSPF支持的网络类型有哪些?

ospf的网络类型:根据链路层协议判断网络类型

1)、point to point----ppp

2)、广播-----以太网Ethernet

3)、NBMA FR (frame-relay)帧中继物理结构与广播很像,但是该网络默认不传递广播

4)、点到多点,从NBMA修改过来的。(可看作点到点类型网络)

3. 什么是DR和BDR?

选举DR和BDR:DR为指定路由器,BDR为备份路由器。

4. 哪些网络需要进行选举DR、BDR ?为什么要进行DR/BDR选举?

广播和BMA类型的网络都会选举DR和BDR,NBMA为人为指定。

判断该链路上是否有DR(先启动的)

根据接口优先级和route-ID选举。优先级默认为1,范围1---255,先判断优先级,若一致,选route-ID大的,最优的为DR,次之为BDR。每次评选选BDR。如果网络中路由器很多时,那么需要维护的建立的邻接关系就很多,需要发送的报文也很多。而且每台路由器之间都相互发送lsa,这样就造成好多重复的lsa在网络中传递,浪费了太多带宽资源,所以选取dr 和bdr用来节省带宽资源。

5. Router Priority最大的一定是DR吗?

不一定,选择完成后的特性:

终身制:

世袭制:

民主制:优先级培认为置为0,则没有选举权。

所有的路由器包括DR、BDR、DR-other之间的关系:所偶的DR-other和BDR时

及drDR之间会形成full,DR-other之间只能为tow-way。

6. 配置虚连接的时候如何表示对端路由器?

四、项目需求:

1. 如图所示,配置OSPF多区域后,由于area 2 和area 0 没有直接相连,故所以,在area 1里配置虚电路,使得R4可以收到R1的路由信息。

2. 区域零中使r3永远为DR,区域1和区域2中,不进行DR/BDR选举,以加快收敛

3. 所有的互联地址以192.168.255.0/24主类地址进行以/30规划,且在R3上看到去往r4直连网络的路由开销为100,r4到R3的直连网络路由为50.

R1:

sysname llb-R1

interface GigabitEthernet0/0/0

ip address 192.168.255.1 255.255.255.252

ospf network-type p2p

interface LoopBack0

ip address 1.1.1.1 255.255.255.255

#

ospf 1 router-id 1.1.1.1

area 0.0.0.0

network 1.1.1.1 0.0.0.0

network 192.168.255.1 0.0.0.0

#

R2:

sysname llb-R2

interface GigabitEthernet0/0/0

ip address 192.168.255.5 255.255.255.252 ospfdr-priority 0

#

interface GigabitEthernet0/0/1

ip address 192.168.255.2 255.255.255.252 ospf network-type p2p

interface LoopBack0

ip address 2.2.2.2 255.255.255.255

#

ospf 1 router-id 2.2.2.2

area 0.0.0.0

network 192.168.255.2 0.0.0.0

network 2.2.2.2 0.0.0.0

area 0.0.0.1

network 192.168.255.5 0.0.0.0

vlink-peer 3.3.3.3

#

R3:

sysname llb-R3

interface GigabitEthernet0/0/0

ip address 192.168.255.9 255.255.255.252 ospf cost 50

ospf network-type p2p

ospfdr-priority 50

#

interface GigabitEthernet0/0/1

ip address 192.168.255.6 255.255.255.252

interface LoopBack0

ip address 3.3.3.3 255.255.255.255

#

ospf 1 router-id 3.3.3.3

area 0.0.0.1

network 3.3.3.3 0.0.0.0

network 192.168.255.6 0.0.0.0

vlink-peer 2.2.2.2

area 0.0.0.2

network 192.168.255.9 0.0.0.0

#

R4:

sysname llb-R4

interface GigabitEthernet0/0/1

ip address 192.168.255.10 255.255.255.252

ospf cost 100

ospf network-type p2p

ospfdr-priority 100

interface LoopBack0

ip address 4.4.4.4 255.255.255.255

#

ospf 1 router-id 4.4.4.4

area 0.0.0.2

network 4.4.4.4 0.0.0.0

network 192.168.255.10 0.0.0.0

#

五、任务完成要求:

1. 将设备的基本配置命令贴出,且描述关键命令作用

每个设备的命名为操作者姓名的简写,如张三,设备名称问zs-RT1

OSPF实验4:虚链路

OSPF实验4:虚链路 实验等级:Professional 实验拓扑: 实验分析: 上面这个网络的设计在OSPF中是比较失败的,因为OSPF建议所有的非骨干区域都和骨干区域直连。上面这个网络的设计将会导致Area2的数据和Area0无法通信。为了解决这个问题,一种方法可以在R3和R1上增加一条物理链路。还有一种过渡的方法就是使用虚链路。 实验基本配置: R1: interface Loopback0 ip address 1.1.1.1 255.255.255.0 ip ospf network point-to-point ! interface Serial1/0 ip address 10.1.1.1 255.255.255.0 serial restart-delay 0 ! router ospf 10

router-id 1.1.1.1 log-adjacency-changes network 10.1.1.0 0.0.0.255 area 0 R2: interface Loopback0 ip address 2.2.2.2 255.255.255.0 ! interface Serial1/0 ip address 10.1.1.2 255.255.255.0 serial restart-delay 0 ! interface Serial1/1 ip address 11.1.1.1 255.255.255.0 serial restart-delay 0 ! router ospf 10 router-id 2.2.2.2 log-adjacency-changes network 10.1.1.0 0.0.0.255 area 0 network 11.1.1.0 0.0.0.255 area 1 R3: interface Loopback0 ip address 3.3.3.3 255.255.255.0 ! interface Serial1/0 ip address 11.1.1.2 255.255.255.0 serial restart-delay 0 ! router ospf 10 router-id 3.3.3.3 log-adjacency-changes network 3.3.3.0 0.0.0.255 area 2 network 11.1.1.0 0.0.0.255 area 1 我们在R1上查看路由表,发现没有R3的Loopback接口路由: R1#sho ip rou Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2

典型设备故障及事故案例

典型设备故障及事故 案例 机电保全部 二〇一四年十月

前言 为帮助装备人员进一步了解设备特性,掌握设备运行规律,及时发现并解决设备隐患,减少设备故障及事故的发生。机电保全部对近几年发生的设备故障和事故进行了分类汇总,力求通过典型故障和事故案例,使管理人员直观的了解故障现象,发生原因,防范措施,从而掌握对同类型故障的预防和处理能力。也希望通过这些案例起到警示作用,强化各级管理人员的工作责任心,提高履职能力。

目录 1、皮带机胶带撕(断)裂 1.1 兴业海螺1004皮带机胶带撕裂 6 1.2 重庆海螺1#石灰石皮带接头断裂8 1.3 荻港海螺三期石灰石长皮带撕裂11 1.4 石门海螺1005长皮带撕裂13 1.5弋阳海螺2202矿山皮带撕裂15 1.6 益阳海螺矿山1#长皮带撕裂17 2、胶带斗提胶带断裂 2.1 芜湖海螺3428胶带斗提胶带断裂19 2.2 枞阳海螺3428胶带斗提胶带断裂20 3、回转窑轮带开裂 3.1荻港海螺3#窑二档轮带开裂22 3.2枞阳海螺4#窑二档轮带开裂23 4、回转窑托轮瓦高温 4.1白马山水泥厂2#窑8#托轮瓦高温24 4.2英德海螺B线窑3-3托轮瓦高温26 4.3 武冈云峰3-2托轮高温28 4.4 贵定海螺2#窑2-3托轮瓦高温30 5、回转窑筒体开裂 5.1分宜海螺1#窑筒体30.4米开裂32 6、回转窑液压挡轮损坏 6.1双峰海螺2516液压挡轮损坏34 6.2中国厂2#窑液压挡轮损坏35 6.3英德海螺A线窑液压挡轮损坏36

7、大型风机轴承损坏 7.1平凉海螺1327风机轴承损坏38 7.2宏熙公司原料磨循环风机轴承损坏40 8、中、大型减速机损坏 8.1 兴安海螺2428入窑斗提减速机损坏42 8.2 安龙公司一线原料磨减速机损坏44 8.3 凌云公司一线原料磨减速机损坏46 8.4 分宜公司一线原料磨减速机损坏48 9、熟料拉链机脱轨 9.1 英德海螺熟料拉链机脱轨49 9.2 贵阳海螺熟料拉链机脱轨51 9.3 江华海螺熟料拉链机脱轨52 10、余热发电汽轮机组 10.1英德海螺余热发电2#汽轮机组飞车54 10.2分宜海螺余热发电机组设备60 11、总降类 11.1池州海螺总降联络隔离柜故障63 11.2枞阳海螺110kV总降变电站GIS故障66 11.3枞阳海螺FSR高速开关柜爆炸71 11.4广元海螺总降GIS断路器故障跳闸77 11.5龙陵海螺总降进线柜短路79 11.6双峰海螺总降FSR柜故障82 11.7芜湖型材公司总降母排螺栓松动87 11.8荻港海螺总降电容柜拉弧90 12、高压开关柜类 12.1荻港海螺高压开关柜操作中发生拉弧94

H3C常见的OSPF

1. OSPF邻接形成过程? 互发HELLO包,形成双向通信 根据接口网络类型选DR/BDR 发第一个DBD,选主从 进行DBD同步 交互LSR、LSU、LSack进行LSA同步 同步结束后进入FULL 2. OSPF中承载完整的链路状态的包?LSU 3. 链路状态协议和距离矢量协议的比较? (1)路由传递方法不同(2)收敛速度不同(3)度量值不同(4)有环无环 (5)应用环境不同(6)有无跳数限制(7)生成路由的算法不同(8)对设备资源的消耗不同 4. OSPF防环措施? (1)SFP算法无环(2)更新信息中携始发者信息,并且为一手信息(3)多区域时要求非骨干区域,必须连接骨干区域,才能互通路由,防止了始发者信息的丧失,避免了环路。 5. OSPF是纯链路状态的协议吗? (1)单区域时是纯的链路状态协议,而多区域时,区域间路由使用的是距离矢量算法。6. OSPF中DR选举的意义?DR选举时的网络类型?DR和其它路由器的关系? (1)提高LSA同步效率。(2)广播型和NBMA要选DR (3)DR与其它路由器为邻接关系。 7. OSPF的NSSA区域和其它区域的区别? 比普通区域相比:去除了四类五类LSA,增加了七类LSA 和STUB区域相比:他可以单向引入外部路由 8. OSPF的LSA类型,主要由谁生成? 一类路由器LSA 所有路由器本区域描述直连拓扑信息 二类网络LSA DR 本区域描述本网段的掩码和邻居 三类网络汇总LSA ABR 相关区域区域间的路由信息 四类ASBR汇总LSA ABR 相关区域去往ASBR的一条路由信息 五类外部LSA ASBR 整个AS AS外部的路由信息 七类NSSA外部LSA ASBR 本NSSA区域AS外部的路由信息 9. IBGP为什么采用全互联?不采用全互联怎么部署? (1)解决IBGP水平分割问题(2)反射器或联盟 10. 路由反射器的反射原则? (1)客户端的路由反射给所有邻居(2)非客户端的路由反射给客户端(3)只发最优路由(4)两个非客户端路由不能互通(5)反射不改变路由属性 11. OSPF邻居形成过程? 12. OSPF有几类LSA? 13. OSPF的NSSA区域与其它区域的通信方法? 14. PPP协商过程? 15. OSPF没有形成FULL状态的原因? (1)HELLO和失效时间不一致(2)接口网络类型不一致(3)区域不一致(4)MA网络中掩码不一致(5)版本不一致(6)认证不通过(7)ROUTER-ID 相同(8)MA网络中优先级都为0 (9)MTU不一致(10)特殊区域标记不一样(11)底层不通(12)NBMA网络中没有指邻居

ospf邻接关系的建立过程

运行OSPF协议的路由器,如果你想正常运转的话,那么就得和其他的路由器建立完全邻接的关系。因为这种状态下,同一个区域中的所有的路由器的LSDB都是完全同步的、一致的。呵呵、、、其实呢,应该反过来说,当同一个区域中的所有的路由器的LSDB的完全同步、一致的情况下,OSPF路由器才算是达到了这个完全邻接的状态! 有这么几个过程: OSPF 处于down 状态----àInit状态-----à双向(two—way)状态-----à邻接状态--à预启动( exstart )状态------à交换(exchange )状态----à完全( full )邻接状态! 当配置了OSPF的路由器刚刚启动的时候,这个协议还是处于down的状态的,为什么呢?因为还没有其他的路由器和他交换信息啊。所以他接下来要做的就是通过所有的OSPF接口向外发送HELLO分组,并且分组的目标地址是224.0.0.5 (这个地址代表的是哪些路由器呢?我认识吧,他代表的是与发送HELLO分组的路由器直接相连的那些路由器,就是指的那些直连路由器。并且在这里需要说明的是,HELLO分组不会被路由,这个HELLO分组的行程只有一跳。那我们看到的“HELLO分组在整个区域中的多个路由器之间进行扩展”又该如何解释呢?HELLO分组在同一个区域中的多个路由器之间进行扩展,运用的不是路由功能,而是一个路由器发送这个HELLO分组到了直接相连的所有的路由器后,这些路由器就复制一个副本,并且将自己的信息添加进去后,就还是运用目标地址为224.0.0.5来分发这个HELLO分组到与自己直接相连的各个路由器上。就这样一直下去,以此类推!)

实验五 OSPF的基本配置

实验五OSPF的基本配置 实验拓扑图 1.基本配置 R1(config)#interface fastEthernet 0/0 R1(config-if)#ip address 172.16.1.1 255.255.255.0 R1(config-if)#no shutdown R1(config)#interface s2/0 R1(config-if)#ip add 192.168.1.5 255.255.255.252 R1(config-if)#clock rate 64000 R1(config-if)#no shutdown R2(config)#interface s3/0 R2(config-if)#ip add 192.168.1.6 255.255.255.252 R2(config-if)#no shutdown R2(config)#interface fa1/0 R2(config-if)#ip add 10.10.10.1 255.255.255.0 R2(config-if)#no shutdown 2.OSPF的配置 R1(config)#router ospf 1 启动ospf进程,进程ID为1(进程ID取值范围是1-65535中的一个整数),此进程号只是本地的一个标识,具有本地意义,与同一个区域中的OSPF路由器进程号没有关系,进程号不同不影响邻接关系的建立。 R1(config-router)#network 172.16.1.0 0.0.0.255 area 0 宣告网络,即定义参与OSPF进程的接口或网络,并指定其运行的区域(区域0为骨干区域),通配符掩码用来控制要宣告的范围,任何在此地址范围内的接口都运行OSPF协议,发送和接收OSPF报文,0表示精确匹配,将检查匹配地址中对应位,1表示任意匹配,不检查匹配地址中对应位。 R1(config-router)#network 192.168.1.4 0.0.0.3 area 0 R2(config)#router ospf 1 R2(config-router)#network 192.168.1.4 0.0.0.3 area 0 R2(config-router)#network 10.10.10.0 0.0.0.255 area 0 3.查看信息 (1)查看路由表 R1#show ip route 要求对R1路由表截图,说明OSPF路由的含义

最全的网络故障案例分析及解决方案

第一部:网络经脉篇2 [故事之一]三类线仿冒5类线,加上网卡出错,升级后比升级前速度反而慢2 [故事之二]UPS电源滤波质量下降,接地通路故障,谐波大量涌入系统,导致网络变慢、数据出错4 [故事之三]光纤链路造侵蚀损坏6 [故事之四]水晶头损坏引起大型网络故障7 [故事之五] 雏菊链效应引起得网络不能进行数据交换9 [故事之六]网线制作不标准,引起干扰,发生错误11 [故事之七]插头故障13 [故事之八]5类线Cat5勉强运行千兆以太网15 [故事之九]电缆超长,LAN可用,WAN不可用17 [故事之十]线缆连接错误,误用3类插头,致使网络升级到100BaseTX网络后无法上网18 [故事之十一]网线共用,升级100Mbps后干扰服务器21 [故事之十二]电梯动力线干扰,占用带宽,整个楼层速度降低24 [故事之十三]“水漫金山”,始发现用错光纤接头类型,网络不能联通27 [故事之十四]千兆网升级工程,主服务器不可用,自制跳线RL参数不合格29 [故事之十五]用错链路器件,超五类线系统工程验收,合格率仅76%32 [故事之十六]六类线作跳线,打线错误造成100M链路高额碰撞,速度缓慢,验收余量达不到合同规定的40%;34 [故事之十七]六类线工艺要求高,一次验收合格率仅80%36 第二部:网络脏腑篇39 [故事之一] 服务器网卡损坏引起广播风暴39 [故事之二]交换机软故障:电路板接触不良41 [故事之三]防火墙设置错误,合法用户进入受限44 [故事之四]路由器工作不稳定,自生垃圾太多,通道受阻47 [故事之五]PC机开关电源故障,导致网卡工作不正常,干扰系统运行49 [故事之六]私自运行Proxy发生冲突,服务器响应速度“变慢”,网虫太“勤快” 52 [故事之七]供电质量差,路由器工作不稳定,造成路由漂移和备份路由器拥塞54 [故事之八]中心DNS服务器主板“失常”,占用带宽资源并攻击其它子网的服务器57 [故事之九]网卡故障,用户变“狂人”,网络运行速度变慢60 [故事之十]PC机网卡故障,攻击服务器,速度下降62 [故事之十一]多协议使用,设置不良,服务器超流量工作65 [故事之十二]交换机设置不良,加之雏菊链效应和接头问题,100M升级失败67 [故事之十三]交换机端口低效,不能全部识别数据包,访问速度慢70 [故事之十四]服务器、交换机、工作站工作状态不匹配,访问速度慢72 第三部:网络免疫篇75 [故事之一]网络黑客程序激活,内部服务器攻击路由器,封闭网络75 [故事之二]局域网最常见十大错误及解决(转载)78 [故事之三] 浅谈局域网故障排除81 网络医院的故事 时间:2003/04/24 10:03am来源:sliuy0 整理人:蓝天(QQ:) [引言]网络正以空前的速度走进我们每个人的生活。网络的规模越来越大,结构越来越复杂,新的设备越来越多。一个正常工作的网络给人们带来方便和快捷是不言而喻的,但一个带病

OSPF虚链路认证

OSPF域间汇总 实验目的:了解并掌握域间汇总的配置 实验拓扑图: 基本配置 R1(config)#int s2/1 R1(config-if)#ip ad 12.0.0.1 255.255.255.0 R1(config-if)#int lo 0 R1(config-if)#ip ad 1.1.0.1 255.255.255.0 R1(config-if)#int lo 1 R1(config-if)#ip ad 1.1.1.1 255.255.255.0 R1(config-if)#int lo 2 R1(config-if)#ip ad 1.1.2.1 255.255.255.0 R1(config-if)#int lo 3 R1(config-if)#ip ad 1.1.3.1 255.255.255.0 R1(config-if)#int s2/1 R1(config-if)#no sh R1(config-if)# 00:02:54: %LINK-3-UPDOWN: Interface Serial2/1, changed state to up R1(config-if)# 00:02:55: %LINEPROTO-5-UPDOWN: Line protocol on Interface Serial2/1, changed state to up R1(config-if)#router ospf 10 R1(config-router)#net 12.0.0.0 0.0.0.255 a 0 R1(config-router)#no net 12.0.0.0 0.0.0.255 a 0 R1(config-router)#net 12.0.0.0 0.0.0.255 a 1 R1(config-router)#net 1.1.0.0 0.0.0.255 a 1 R1(config-router)#net 1.1.1.0 0.0.0.255 a 1 R1(config-router)#net 1.1.2.0 0.0.0.255 a 1 R1(config-router)#net 1.1.3.0 0.0.0.255 a 1 R2(config)#int s2/1

OSPF建立邻居的过程

1.R1的一个连接到广播类型网络的接口上激活了OSPF协议,并发送了一个HELLO报文(使用组播地址224.0.0.5)。由于此时R1在该网段中还未发现任何邻居,所以HELLO报文中的Neighbor字段为空。 2.R2收到R1发送的HELLO报文后,为R1创建一个邻居的数据结构。R2发送一个HELLO报文回应R1,并且在报文中的Neighbor字段中填入R1的Router -id,表示已收到R1的HELLO报文,并且将R1的邻居状态机置为Init 3.R1收到R2回应的HELLO报文后,为R2创建一个邻居的数据结构,并将邻居状态机置为Exstart状态。下一步双方开始发送各自的链路状态数据库。 为了提高发送的效率,双方需先了解一下对端数据库中那些LSA是自己所需要的(如果某一条LSA自己已经有了,就不再需要请求了)。方法是先发送DD报文,DD报文中包含了对本地数据库中LSA的摘要描述(每一条摘要可以惟一标识一条LSA,但所占的空间要少得多)。由于OSPF直接用IP报文来封装自己的协议报文,所以在传输的过程中必须考虑到报文传输的可靠性。为了做到这一点,在DD报文的发送过程中需要确定双方的主从关系。作为Master的一方定义一个序列号seq,每发送一个新的DD报文将seq 加一。作为Slave的一方,每次发送DD报文时使用接收到的上一个Master的DD报文中的seq。实际上这种序列号机制是一种隐含的确认方法。如果再加上每个报文都有超时重传,就可以保证这种传输是可靠的。 R1首先发送一个DD报文,宣称自己是Master(MS=1),并规定序列号为x。I=1表示这是第一个DD报文,报文中并不包含LSA的摘要,只是为了协商主从关系。M=1说明这不是最后一个报文。 4.R2在收到R1的DD报文后,将R1的邻居状态机改为Exstart,并且回应了一个DD报文(该报文中同样不包含LSA的摘要信息)。由于RT2的Router ID 较大,所以在报文中R2认为自己是Master,并且重新规定了序列号为y。 5.R1收到报文后,同意了R2为Master,并将R2的邻居状态机改为Exchange。

解决OSPF不连续区域的3种方法

解决OSPF不连续区域的3种方法 网络拓扑图 解决OSPF不连续区域的问题我们有三种解决办法: 1.多进程双向重新分布 2.创建tunnel通道宣告到区域0 3.创建虚链路 以下是3种方法配置的详细命令: 方法1:多进程双向重新分布 (1).重新启动另外一个OSPF进程 (2).在2个OSPF进程中宣告不连续的网段

(3).双向发布OSPF进程: redistribute ospf 进程号 subnets R1 int s0/0 ip add 1.1.1.1 255.255.255.0 no shut router ospf 110 router-id 1.1.1.1 network 1.1.1.0 0.0.0.255 area 0 R2 int s0/0 ip add 1.1.1.2 255.255.255.0 no shut int s0/1 ip add 2.2.2.1 255.255.255.0 no shut

router ospf 110 router-id 2.2.2.2 network 2.2.2.0 0.0.0.255 area 1 network 1.1.1.0 0.0.0.255 area 0 router ospf 120 router-id 2.2.2.5 network R3 int s0/0 ip add 2.2.2.2 255.255.255.0 no shut int s0/1 ip add 3.3.3.1 255.255.255.0 no shut router ospf 110 router-id 3.3.3.3

诺西GSM基站常见告警及处理建议

诺西GSM常见告警处理建议 一、 UltraSite BTS常见告警 1、7600 BCF FAULTY 基站故障 (1) Crystal oscillator damage 晶体振荡器损坏 Oven oscillator is broken 晶体振荡器故障 处理建议:更换BOIA单元。 (2) Base station synchronous failure 基站同步失败 处理建议:①检查同步线及接头②检查传输设置的同步设置③更换BOIA单元并重启BCF。 (3) BIOA unit to the temperature too high BIOA 单元温度太高 处理建议:①确保周围环境温度在允许的范围内②检查机柜风扇单元③更换BOIA单元。 1、7601 BCF OPERATION DEGRADED 基站性能下降告警 (1)Power unit output voltage fault./Power unit input voltage fault./No connection to power unit电源单元输入或输出电压故障,或者无法连接到电源单元 处理建议:更换所有出故障的电源单元。 (2)Power unit temperature is dangerously high电源单元温度太高 处理建议:①确保周围环境温度在限定范围内②检查机柜风扇③更换电源单元 (3)Difference between PCM and base station frequency reference.PCM链路和基站的频率参考有差异 处理建议:①检查2M线和2M头子②调整基站主时钟,观察时钟是否稳定③更换BOIA。 (4) Flash operation failed in BOI or TRX BOI或者TRX闪存操作失败 处理建议:更换BOIA。 (5)POWER SUPPLY FAULT 电源模块故障

ospf虚链路的配置实验

ospf虚链路的配置实验 一、目的:Area 2经过Area 1与Area 0之间建立虚链路. 此拓扑中,virtual-link在R4与R2之间建立,从而使得Area 2与Area 0之间进行直接连接,virtual-link配置在R2与R4实施。通过实验,R4就变成一个特别的ABR。virtual-link 上面转发的是LSA – 3。 二、思想:R2与R4路由器互指对方的Router-ID。 三、问题:如何确认虚连接的对端IP地址? 中间连接area 0的过渡area 1上的ABR之间存在lsa-1与lsa-2的传递,确认对端的IP 地址。通过邻居地址指定, R2上的邻接状态: R4上的邻接状态:

四、配置内容: 4.1、R2: sh ip ospf database self-originate 可以看到Summary Net Link States 。 注意R2是个ABR,它的一个接口连接Area 0,另一个接口连接Area 1,所以R2会产生两区域的Summary Net Link States (lsa-3),通过Summary Net Link States (Area 0)中可以看到R2把23.1.1.0与34.1.1.0网段Upward(转发)到Area 0中;把1.1.1.0与12.1.1.0网段Upward(转发)到Area 1中,使得Area 0与Area 1中都有相互之间的路由,从而23.1.1.0、34.1.1.0 、1.1.1.0、12.1.1.0网段之间互通。

4.2、R4: R4为什么说是一个特殊的ABR呢?通过Virtual-Link 后,R4跨了Area 0, Area 1、Area 2三个区域,R4把学习到相关网段进行汇总,然后分发到了不同区域中。 Summary Net Link States (Area 1): R4把源Area 2中的5.5.5.0、45.1.1.0网段Upward到Area 1。 Summary Net Link States (Area 0): 由于R4与R2建立了Virtual-Link,R2的一个口在Area 1中,R4自然也就学习到了源Area 1中的23.1.1.0、34.1.1.0网段,同样也通过Virtual-link,R4把5.5.5.0、45.1.1.0、23.1.1.0、34.1.1.0网段Upward到了Area 0中。在此,有同学要问,那么不是和R2宣告进Area 0中的23.1.1.0、34.1.1.0网段重复了吗?跨了三Area 的特殊性就体现在这里! 同理,通过R2与R4之间的virtual-link,R4把源Area 0与Area 1中的路由信息汇总传递到Area 2中。 五、小结: 由于R4通过Virtual-Link横跨了area 0,area 1,area 2三个区域,那么把Area 0、Area 1区域中的路由信息通过Area 1传递给了Area 2,把Area 1、Area 2 传递给了Area 0,通过配置Virtual-Link,Area 2 就与Area 0进行直连。

OSPF配置步骤

前言: 本文主要介绍了园区网中OSPF规划要点和部署OSPF的主要配置,对于OSPF协议原理和技术细节没有过多的阐述,适用于对于OSPF协议原理有一定了解的渠道工程师和网络维护人员。 保持OSPF数据库的稳定性:Router-id的选择 层次化的网络设计:OSPF区域的规划 非骨干区域内部路由器的路由表项优化:特殊区域的使用 骨干区域路由器的路由表项优化:非骨干区域IP子网规划和路由汇总 OSPF默认路由的引入和选路优化:重分布静态和cost调整 OSPF网络基本安全:阻止发往用户的OSPF报文 非骨干区域内部路由器的路由表项优化:特殊区域的使用 骨干区域路由器的路由表项优化:非骨干区域IP子网规划和路由汇总 OSPF默认路由的引入和选路优化:重分布静态和cost调整 OSPF网络的基本安全:阻止发往用户的OSPF报文 enable conf t router ospf 110 //启用进程号为110的OSPF router-id *.*.*.* // 配置router ID号OSPF中用来识别路由器的 no au //关闭自动汇总

net 12.12.12.0 0.0.0.255 area 0 //把12.12.12.0/24网段宣告进OSPF中,并且激活该网段上的接口。 OSPF博大精深,太多太多配置了都。。 譬如 OSPF的验证,分为区域验证,链路验证,虚链路验证 建立虚链路,建立TUNNEL 口 手工汇总,修改AD值, 修改接口的COST值, OSPF的特殊区域如:STUB ,totally stub, nssa ,TOTALLY NSSA 路由的重分发

思科OSPF实验1:基本的OSPF配置

思科OSPF实验1:基本的OSPF配置 实验步骤: 1.首先在3台路由器上配置物理接口,并且使用ping命令确保物理链路的畅通。 2.在路由器上配置loopback接口: R1(config)#int loopback 0 R1(config-if)#ip add 1.1.1.1 255.255.255.0 R2(config)#int loopback 0 R2(config-if)#ip add 2.2.2.2 255.255.255.0 R3(config)#int loopback 0 R3(config-if)#ip add 3.3.3.3 255.255.255.0 路由器的RID是路由器接口的最高的IP地址,当有环回口存在是,路由器将使用环回口的最高IP地址作为起RID,从而保证RID的稳定。 3.在3台路由器上分别启动ospf进程,并且宣告直连接口的网络。 R1(config)#router ospf 10 R1(config-router)#network 192.168.1.0 0.0.0.255area 0 R1(config-router)#network 1.1.1.0 0.0.0.255 area 0 R1(config-router)#network 192.168.3.0.0.0.255 area 0

ospf的进程号只有本地意义,既在不同路由器上的进程号可以不相同。但是为了日后维护的方便,一般启用相同的进程号。 ospf使用反向掩码。Area 0表示骨干区域,在设计ospf网络时,所有的非骨干区域都需要和骨干区域直连! R2,R3的配置和R1类似,这里省略。不同的是我们在R2和R3上不宣告各自的环回口。 *Aug 13 17:58:51.411: %OSPF-5-ADJCHG: Process 10, Nbr 2.2.2.2 on Serial1/0 from LOADING to FULL, Loading Done 配置结束后,我们可以看到邻居关系已经到达FULL状态。 4. 在R1上查看路由表,可以看到以下信息: R1#show ip route Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route Gateway of last resort is not set 1.0.0.0/24 is subnetted, 1 subnets

诺西故障处理案例库

一体化代维项目试点课题研究成果 故障处理案例库 中国移动通信集团福建有限公司 二○一二年四月

目录: 1基站专业 (5) 1.1天馈类 (5) 1.1.1.Antenna connection faulty. (5) 1.1.2.Rx levels differ too much between main and diversity antennas (6) 1.1.3.RSSI detected Rx signal difference exceeding threshold (7) 1.1.4.ERxx DDU module has detected VSWR above minor limit at A (Or B) (8) 1.1.5.ECxx RTC module has detected VSWR above major limit at antenna (10) 1.1.6.RF module detected VSWR above major limit (11) 1.1.7.The reflected power of remote tune combiner is too high (12) 1.1.8.CHANNEL FAILURE RATE ABOVE DEFINED THRESHOLD (13) 1.1.9.MEAN HOLDING TIME BELOW DEFINED THRESHOLD (15) 1.1.10.EXCESSIVE TCH INTERFERENCE (16) 1.1.11.BTS WITH NO TRANSACTIONS (18) 1.2基站硬件类 (19) 1.2.1Oven oscillator adjustment function interrupted (19) 1.2.2ESMA System module has lost connection to ESEA System Extension module (20) 1.2.3ESMx System module has lost connection to all modules on optical ports (21) 1.2.4FBUS HW failure (22) 1.2.5LAPD failure (23) 1.2.6ECxx RTC module received insufficient Tx power (24) 1.2.7EXxx TRX module Tx power overdriven at DPC (25) 1.2.8ERxx DDU module has detected no Tx power at TxB input (26) 1.2.9RF Module has detected no TX power in internal filter block (27) 1.2.10The RF receiver frequency hopping synthesizer 1 is not locked (27) 1.2.11The transmitter output power has dropped at least 3 dB (28) 1.2.12EXCESSIVE TCH INTERFERENCE (29) 1.2.13CHANNEL FAILURE RATE ABOVE DEFINED THRESHOLD (30) 1.2.14The tuning of a cavity has failed in remote tune combiner (31)

OSPF各种数据包结构解析

OSPF Packet Header OSPF报头为24字节. Version OSPF的版本号.IPv4为OSPFv2,IPv6为OSPFv3. Type OSPF数据包类型. Packet Length OSPF数据包长度. Router ID 始发OSPF数据包的路由器的Router-ID. Area ID 始发OSPF数据包的路由器接口所在的区域. Checksum OSPF数据包的校验和. AuType OSPF认证类型. Authentication AuType为0,不检查该字段. AuType为1,包含最长为64bit的口令. AuType为2,包含Key-ID,消息摘要和不减小的加密序列号. Authentication Data Length 附加在OSPF数据包尾部的消息摘要长度. Cryptographic Sequence Number 一个不会减小的序列号,用于防重放攻击. OSPF Hello Packet Hello包用于建立和维护邻接关系,也在MA网络中选举DR/BDR. *Network Mask 发送数据包的接口的网络掩码,必须匹配. *Hello Interval 接口上发送Hello包的时间间隔,BMA和P2P网络中默认为10s,NBMA网络中默认为30s. *Options DN MPLS VPN使用. O 用于Opaque LSA. DC按需链路上使用 EA 接收和转发具有外部属性LSA的能力. N/P N为1表明支持NSSA LSA,N为0表明不接收和发送NSSA. P(Propagation)为1执行7类到5类LSA转换,P为0不执行转换. MC MOPSF中使用. E E为1接收5类LSA,E为0不接收5类LSA. MT MT-OSPF使用. Router Priority 接口优先级,用于选举DR/BDR.为0将不参与选举,默认接口优先级为1. *Router Dead Interval 将邻居视为down前等待Hello包的时间间隔,默认为Hello Interval的4倍. Designated Router MA网络中的DR接口的IP地址,如果不存在将设置为 Backup Designated Router MA网络中的BDR接口的IP地址,如果不存在将设置为Neighbor 列出了始发路由器保存的邻居列表. * 必须匹配才可建立OSPF邻接关系. OSPF DBD Packet DBD中包含LSA头部信息,用于选举Master/Slave路由器,同步LSDB. Interface MTU 始发路由器接口可发送的最大IP数据包大小,在虚链路上传送时设置为0x0000. I Initial,发送是第一个DBD包时设置为1,后续DBD包设置为0. M More,发送不是最后一个DBD包时,设置为1,如果是最后一个DBD包设置为0. MS Master/Slave,如果设置为1代表是Master路由器,设置为0代表是Slave路由器. DD Sequence Number DBD包的序列号由Master路由器设置.

OSPF协议配置

OSPF 协议配置 【实验目的】 1.了解和掌握ospf 的原理; 2.熟悉ospf 的配置步骤; 3.懂得如何配置OSPF router ID ,了解DR/BDR 选举过程; 4.掌握hello-interval 的使用; 5.学会使用OSPF 的authentication ; 【实验拓扑】 【实验器材】 如上图,需用到路由器三台,hub/switch 一个,串行线、网线若干,主机三台。 说明:拓扑中网云可用hub 或普通switch 替代,建立multiaccess 网络,以太口连接。 【实验原理】 一、OSPF 1. OSPF 基本原理以及邻居关系建立过程 OSPF 是一种链路状态型路由选择协议。它依靠5种(Hello, DBD, LSR, LSU and LSAck)不同种类的数据包来识别、建立和维护邻居关系。当路由器接收到来自邻居的链路状态信息后,会建立一个链路状态数据库;然后根据该链路状态数据库,采用SPF 算法确定到各目的地的最佳路径;最后将最佳路径放到它的路由表中,生成路由表。 OSPF 会进行周期性的更新以维护网络拓扑状态,在LSA 的生存期到期时进行周期性的更新。除了周期性更新之外,还有触发性更新。即当网络结构发生变化(例如增减路由器、链路状态发生变化等)时,会产生触发性更新,把变化的那一部分通告给整个网络。 192.168.1.0/24 RT A

2.Designated Router (DR) / Backup Designated Router(BDR)选举过程 存在于multiaccess网络,点对点链路和NBMA网络中无此选举过程,此过程发生在Two-Way之后ExStart之前。 选举过程: 选举时,依次比较hello包中的各台router priority和router ID,根据这两个值选出DR 和BDR。选举结束后,只有DR/BDR失效才会引起新的选举过程;如果DR故障,则BDR 替补上去,次高优先级Router被选为BDR。 基本原则如下: 1)有最高优先级值的路由器成为DR,有第二高优先级的路由器成为BDR; 2)优先级为0的路由器不能作为DR或BDR,只能做DRother (非DR); 3)如果一台优先级更高的路由器加到了网络中,原来的DR与BDR保持不变,只有DR 或BDR它们失效时才会改变; 4)当优先级相同时,路由器ID最高和次高的的就成为DR和BDR; 5)当没有配置loopback时,用router上up起来的端口中最高IP地址作为Router ID,否则就用loopback口的IP地址作为它的ID;如果有多个loopback则用loopback端口中最高IP地址作为ID;而且路由器ID 一旦确定就不再更改。 建议使用优先级操纵DR/BDR选举过程 3.update timer与authentication的影响 要让OSPF路由器能相互交换信息,它们必须具有相同的hello间隔和相同的dead-time 间隔。缺省情况下,后者是前者的4倍。 缺省地,路由器认为进入的路由信息总是可靠的、准确的,从而不加甄别就进行处理,这存在一定的危险。因此,为了确保进入的路由信息的可靠性和准确性,我们可以在路由器接口上配置认证密钥来作为同一区域OSPF路由器之间的口令,或对路由信息采用MD5算法附带摘要信息来保证路由信息的可靠性和准确性。建议采用后者,因为前者的密钥是明文发送的。 三、其它预备知识 1、回环接口的配置: Router(config)#int l0 Router(config-if)#ip addr *.*.*.* *.*.*.* 2、telnet:是属于应用层的远程登陆协议,是一个用于远程连接服务的标准协议,用户可以 用它建立起到远程终端的连接,连接到Telnet服务器;用户也可以用它远程连接上路由器进行路由器配置。 【实验内容】 一、在路由器上配置单域的OSPF 1.按照拓扑图1接好线,完成如下基本配置: (1)配置端口IP地址 以RTA路由器的配置为例: RTA(config)#Interface Ethernet 0 RTA(config-if)#ip address 192.168.1.1 255.255.255.0

相关主题
文本预览
相关文档 最新文档