当前位置:文档之家› 光伏电站自动化系统

光伏电站自动化系统

光伏电站自动化系统
光伏电站自动化系统

电力系统中的电气自动化技术 刘二保

电力系统中的电气自动化技术刘二保 发表时间:2017-12-05T11:59:20.030Z 来源:《建筑学研究前沿》2017年第18期作者:刘二保1 张全国2 [导读] 在电力系统的发展和创新下,电气自动化技术的应用越来越广泛,并在电力系统的生产发展进程当中取得了相当优异的成绩。摘要:伴随国内近几年来不断的进步和发展,科学技术的水平有了很大提高,在电力系统当中,电气自动化这一技术的优势也在不断的探索和完善过程中显现出来,而电力系统的发展也进入到了一个全新的阶段。电气自动化这一技术在不断的探索和创新当中,适用性是非常 广泛的,并且专业性也极强,随着国家对电网和电力系统事业加大建设力度,电气自动化的发展也日益蓬勃。关键词:电力系统;电气自动化;技术分析;应用 导言 随着人们对电力需求的不断增多,传统电力企业在满足社会生产对于电力的需求方面已经逐渐力不从心,而原来运用在电力系统当中的传统技术的弊端与不足也逐渐显露出来。在科学技术蓬勃发展的时代背景之下,电气自动化技术应运而生,将其运用在电力系统当中不仅能够大大减少工作人员的工作量,与此同时,还能够有效提升生产效率,促进电力系统的长效稳健发展。为此,研究电气自动化技术在电力系统当中的运用也具有极为重要的现实意义。 1 电力系统中电气自动化技术的使用背景和现状电力系统对于保持社会稳定和推动社会进步有着相当关键的作业,能够极大推动社会生产力的发展,确保国家军事信息的安全。近几年来,电力系统正在逐步进行各个方面的完善,但是与此同时也面对着能源枯竭的问题,其中的原因是由于电力系统和能源之间有着紧密的联系。目前,国内采取的发电类型主要包括两种,一个是火力发电,二是水力发电。前者发电形式使用的资源主要为不能再生的煤炭,众所周知,煤炭能源的匮乏让这一发电形式步入末路。而对于水力发电来说,国内的水资源应用规模仍然很小,处理措施尚不成熟,想要稳定应用水资源来进行发电还有很长一段路要走。电气系统中电气自动化技术的发展现状对于电力系统的发展过程中电气自动化技术的应用,可以划分成两个类型,首先是计算机网络方面的应用,其次是 PLC 方面的应用。然而电气自动化技术与其它行业领域的技术一样,具备自身的核心技术支持,而这两个类型中的计算机网络技术可以说是其核心技术支持,同时该技术也是电力系统中应用比较普遍的技术。可以说,电力系统能够具备自动化配电功能,很大程度上是由于计算机网络技术的应用,无论是对于供电变电过程,还是输电配电的过程,计算机技术都有着重要的作用。2电气自动化的技术特点2.1电气自动化是信息化水平发展到一定高度的综合体现信息技术是指导电气自动化技术的发展的必要条件,信息技术在电气自动化技术中时刻能够体现出来,信息技术在电气自动化技术中的渗透于不单单表现在电气自动化设备的运行过程中,还表现在电气自动化的管理与处理等方面。随着科学技术的不断进步,信息技术在各个领域也得到了广泛的应用,为了使生产设备之间减少空间及概念上的距离,应当使单独的设备进行有效融合,消除其间的界限,这样才能使得生产效率得到提高,同时特提高了生产的管理水平。 2.2电气自动化具有良好的维护性,操作简单笔者从多年的实际工作经验中发现,电气自动化技术与网络技术是密不可分的,两者相辅相成、互相弥补。网络技术能够凭借自身较强的可操作性及完善的功能将所需要的重要信息从复杂的信息数据中筛选出来,并对所筛选的结果进行有效整合。现阶段计算机技术也逐渐趋于成熟,将计算机技术与网络技术进行有效结合,形成一个稳定可操控的系统,并将其应用于电气自动化系统中,从而提高电气自动化系统的可控性。 2.3有利于控制成本的,提高工作效率在电力系统中应用电气自动化能够最大程度上提高企电力企业的工作效率,减少操作电力系统的人力,有效保障了供电的安全性等,从而提高电力企业的经济效益、降低电力企业的运营成本。3电气系统对电气自动化技术的需求 3.1电力系统控制的数据化需求当前,国内每个行业领域都逐渐朝着数据化的方向发展,要想适应社会与经济的发展需求,电力系统的发展就需要不断提升本身的数据化水平。而且对于电力领域来讲,社会对输出单位电力的资源耗损的需求与对电厂生产过程中对能源造成的损失需求愈来愈高,这便需要电厂通过一定的技术手段来着实减少本身生产单位千瓦时电力的能源消耗量,改变企业的电力系统工作效果。电气自动化技术不但具备其它控制系统自动控制设备作业的特点,而且由于该技术是在数据化的基础上成长起来的,因此还具有信息采集、输送与处理的能力,使得电力管理部门可以简便地监控电力系统的运行情况,在很大程度上改善了电力系统的工作效果。 3.2电力系统控制的稳定性需求要提高一个国家的经济水平,就必须先要将电力系统的建设做好。任何行业都不能离开电力行业的建设,电力是其他行业发展的根基,无论是普通用户的平日生活,还是大型企业的制造运营,都与电力系统有着密切的关系。国内已经步入电气化阶段,电力系统已经变为保持社会稳定和提高经济水平的关键工具,其对电力系统的稳定可靠输电有着较高要求。这便需要电力系统拥有发现故障、查找故障和处理故障的能力,尽量地简化设施人工操作程度。如果电力系统出现问题,需要系统能够以最快的速度来进行故障诊断与维修。电气自动化技术与以往电力系统使用的物理操作形式不一样,其具备控制方式简捷、控制过程安全稳定等特点,将电气自动化技术使用到电力系统中,能够满足电力系统对自动化与智能化的需求,方便快速查找电力系统中的问题部位且做出合理的调节。4电气自动化技术在电力系统中的应用 4.1仿真技术的应用在电气自动化技术应用的过程中促进了电气自动化技术的发展。随着电气自动化技术的快速发展,该技术已经实现了对复杂实验数据同步控制,使该技术的发展趋于真实化。在仿真技术中使用电气自动化技术,能够达到时刻监控电力系统的目的。 4.2智能技术的应用

光伏电站集控中心监控系统

光伏电站集控中心监控系统(SPSIC-3000)简介 如今光伏电站分布地域广、运行管理人员少、运行管理工作量大。为了减少场站监管的工作量、实现不同类型各光伏电站的统一监管、多层监控、从而实现无人值班少人值守的运营模式,国能日新推出了光伏电站集控中心监控系统的解决方案。 光伏电站集控中心监控系统(SPSIC-3000)是在已有的各光伏电站监控的基础上建立统一的实时历史数据库平台以及集中监控平台来实现对光伏电站群的远程监控和管理的总体目标。集控系统将现有光伏电站本地的监控系统、功率预测系统等相关信息进行整合构建成统一的生产信息系统平台,实现各光伏电站监控系统和统一系统平台之间的数据交互,并能够向各个监控点提供统一的运行相关信息,实现新能源公司在监控层面上的一致性。因此,基于远程的集中监控系统平台能够实现对其区域内的光伏电站进行监控调度功能,实现对光伏电站群的集中运行管理、集中检修管理、集中经营管理和集中后勤管理,通过人力资源、工具和备件、资金和技术的合理调配与运用,达到人、财、物的高效运作和资源的优化利用,保障实现光伏电站群综合利用效益最大化。 集控系统充分总结了调度自动化系统的成功运行经验,涵盖了调度主站、变电站、集控中心站运行工作的各种业务需求,可以向用户提供各种规模的调度运行、集控中心、变电站的完整解决方案。系统采用模块化设计,基于厂站一体化综合信息平台,搭建站内各种应用子系统,各子系统相对独立;通过配置的方式改变运行方式,应用子系统可以合并到一台机器/嵌入式工控机上运行,也可以分散到多个机器上运行。在此背景上,紧密跟踪国际上电网调度自动化技术的最新发展,广泛吸取国内外的调度自动化系统的实际经验而产生的新一代平台系统。 光伏电站集控中心监控系统(SPSIC-3000)可实现如下功能: 1、升压站监控系统功能; 2、光功率预测系统; 3、电站视频/安防监控系统; 4、故障报警系统; 5、光伏电站生产运营分析系统; 6、能量综合管理子系统; 7、监控中心GPS; 国能日新24小时技术支持服务,为客户的利益保驾护航。

水电站自动化系统机组LCU

水电站自动化系统机组LCU 一、系统概述: 1、水电站自动化系统概括说明: 水电站自动化系统是电站安全、优质、高效运行的重要保证。 目前我国绝大多数大中型电厂以及新建电厂均投入计算机自动化系统设备,国内自动化系统的市场已步入成熟发展的阶段。 水电站自动化系统采用全开放、分层分布式结构,系统由站控层、网络层和现地层设备构成。站控层各站点功能相对独立,互不影响;现地层以间隔为单元,各个 LCU (现地控制单元Local Control Unit)功能也相对独立,在站控层故障的情况下,LCU 仍能独立完成其监测和控制功能。 站控层是水电厂/站设备监视、测量、控制、管理的中心。站控层包括:操作员站、工程师站、通信服务器。另外根据水电厂/站的需要可以配置模拟屏、背投系统。 现地层一般以间隔为单元,配有机组LCU、公用设备及升压站LCU、坝区LCU 以及辅机控制单元等,不同的控制对象分散在各个机旁,或是中控室。在站控层及网络层故障的情况下,现地层仍能独立完成各间隔的监测和控制功能。现地层各LCU完成各单元的任务,相互独立,一个LCU故障不会影响其他LCU的运行。

网络层是站控层与现地层数据传输通道通。网络层可以按不同的容量的水电厂/站和不同的客户需求,配置成单以太网、双以太网和光纤自愈环网。网络通讯介质可采用光纤、同轴电缆或屏蔽双绞线。 系统网络结构有:单以太网、双以太网模式等。 单以太网系统特点是:在保证系统数据通道带宽的同时,做到系统扩展能力强,形式简洁,接口简单,方便安装调试。在实现系统性能的同时,可以有效地降低系统的成本。系统适合与中小型水电站,以及对系统成本控制有较高要求的水电站。 选用双以太网模式,相比单以太网而言,有效地提高系统的可靠性以及分担数据流量、减轻网络负荷,相应得网络投资加大。正常时,设备的数据交换分配在两个网络上,当某个网络发生故障的时候,立即自动切换到非故障的网络上,保证系统得正常通讯。该网络模式适用于各类大中型水电站,以及对系统 可靠性要求相对较高的用户。

发电效率PR计算公式

光伏电站发电效率的计算与监测 1、影响光伏电站发电量的主要因素 光伏发电系统的总效率主要由光伏阵列的效率、逆变器的效率、交流并网效率三部分组成。 1.1光伏阵列效率: 光伏阵列的直流输出功率与标称功率之比。光伏阵列在能量转换与传输过程中影响光伏阵列效率的损失主要包括:组件匹配损失、表面尘埃遮挡损失、不可利用的太阳辐射损失、温度的影响以及直流线路损失等。 1.2逆变器的转换效率: 逆变器输出的交流电功率与直流输入功率之比。影响逆变器转换效率的损失主要包括:逆变器交直流转换造成的能量损失、最大功率点跟踪(MPPT)精度损失等。 1.3交流配电设备效率: 即从逆变器输出至高压电网的传输效率,其中影响交流配电设备效率的损失最主要是:升压变压器的损耗和交流电气连接的线路损耗。 1.4系统发电量的衰减: 晶硅光伏组件在光照及常规大气环境中使用造成的输出功率衰减。 在光伏电站各系统设备正常运行的情况下,影响光伏电站发电量的主要因素为光伏组件表面尘埃遮挡所造成太阳辐射损失。 2、光伏电站发电效率测试原理 2.1光伏电站整体发电效率测试原理 整体发电效率E PR公式为: E PDR PR PT = —PDR为测试时间间隔(t?)内的实际发电量;—PT为测试时间间隔(t?)内的理论发电量;

理论发电量PT 公式中: i o I T I =,为光伏电站测试时间间隔(t ?)内对应STC 条件下的实际有效发电时间; -P 为光伏电站STC 条件下组件容量标称值; -I 0为STC 条件下太阳辐射总量值,Io =1000 w/m 2; -Ii 为测试时间内的总太阳辐射值。 2.2光伏电站整体效率测试(小时、日、月、年) 气象仪能够记录每小时的辐射总量,将数据传至监控中心。 2.2.1光伏电站小时效率测试 根据2.1公式,光伏电站1小时的发电效率PR H i H i PDR PR PT = 0I I i i T = —PDRi ,光伏电站1小时实际发电量,关口计量表通讯至监控系统获得; —P ,光伏电站STC 条件下光伏电站总容量标称值; —Ti ,光伏电站1小时内发电有效时间; —Ii ,1小时内最佳角度总辐射总量,气象设备采集通讯至监控系统获得; —I 0=1000w/m 2 。 2.2.2光伏电站日效率测试 根据气象设备计算的每日的辐射总量,计算每日的电站整体发电效率PR D D PDR PR PT = 0I I T = —PDR ,每日N 小时的实际发电量,关口计量表通讯至监控系统获得; —P ,光伏电站STC 条件下光伏电站总容量标称值; —T ,光伏电站每日发电有效小时数

电厂电气自动化系统

发电厂电气自动化解决方案 发电厂电气自动化解决方案1.PDS-7000电厂电气自动化系统 电厂电气自动化系统(ECS)是指使用保护、测控、通信接口、监控系统等设备实现所有电厂电气设备的监测、控制、保护和信息管理。是实现发电厂电气自动化的全面解决方案。 国内大部分发电厂都采用集散控制系统(DCS)来实现热工系统的自动化运行,而传统的电气系统一般采用“一对一”的硬连接控制以及仪表监视,自动化水平相对落后。为了提升电气系统的自动化水平,应考虑建设相对独立的电气控制系统,ECS系统包括电厂所有电气子系统即升压站子系统、机组子系统和厂用电子系统。 PDS-7000电厂电气自动化系统适用于中小型电厂的电厂电气系统。 1.1系统特点 ★完整的电厂电气自动化解决方案 PDS-7000系统贯彻“以高性能的子系统构筑优异的电厂电气自动化系统” 的设计思想,包含了计算机监控系统、发电机机组子系统、升压站子系统、厂用电子系统,实现与电网调度通讯、与DCS通讯以及电厂内其它智能电气设备的接入等功能,构成了一个完整的电厂电气自动化系统。 PDS-7000电厂电气自动化系统采用分层分布式结构,从间隔层设备、通信网络到监控系统等各方面综合考虑,提供了完整的电厂电气自动化解决方案,系统结构更加清晰,信息的获得更加快捷,系统的维护更加简便,扩展更加灵活。 ★开放性设计思想 PDS-7000的开放性设计思想满足了系统扩展的灵活性,在从间隔层到站控层的各个环节的设计中,PDS-7000除了保持其自身的系统性和完整性以外,还可以方便的实现与其他智能设备的互相联接。 在系统的互联设计中,PDS-7000系统提供了与其它通信方式(以太网、RS-232C、EIA422/485或现场总线)的兼容性设计,这使得电厂电气自动化的设计或改造选择性更多、更灵活,能够方便的被接入DCS、SIS和远方调度。 ★可靠性

xx水电站自动化改造

水电站自动化改造工程 一、工程概况 xxx水电站位于xx流域,xx河支流东河、西河上,xxx镇境内,为跨流域开发的水电站,该电站是xx公司装机容量最大的电站。装机容量为2×2000KW,设计年发电量1026万KWh,年利用小时数2565h。电站水库来水面积为66.2km2,总库容635万m3,调节库容298.9万m3。 电站主体建筑物有:拦河坝、隧洞、压力钢管、厂房、升压站。 拦河坝为砌石双曲拱坝,坝顶高程238.2m,最大坝高52.55m,坝顶宽3.0m,坝顶弧长158m。 发电引水隧洞,总长1554.3m,由进口、隧洞、调压井组成,从隧洞进口到调压井断面为2.5×2.75m的城门洞,局部采用钢筋混凝土衬砌。调压井为圆筒型,内径为2.5m,从调压井至隧洞出口101.5m,隧洞出口接压力钢管,主管直径1.3m,长241.5m,支管直径0.9m,两支管长30+21.5m,壁厚10mm及12mm。 发电主厂房内安装2×2000kW的卧式机组。水轮机型号为HLD46-WJ-67,额定出力为2000kW,设计水头103.5m,流量2.688m3/s,额定转速1000r/min,配套的水轮发电机为SFW2000-6/1430,额定容量2500kVA,额定电压为6300V,额定电流为229.1A,调速器为YDT-600型,油压装置为HYZ-0.3型,并设置了一台手动双梁桥式起重机。 升压站位于厂房左侧山坡,距厂房40m,站内布置S7-5000kVA/38.5/6.3kV主变压器1台,S7-100kVA/35/0.4kV厂用变1台,(另S7-100kVA/6.3/0.4kV厂用变1台备用),DW1-35/630型多

光伏电站发电量计算方法

光伏电站平均发电量计算方法小结 一般而言,每个有经验的光伏人心里都有一个简便的估算方法,可以得出与计算值相差不多的数据,那么本次总结列举光伏电站的平均发电量计算/估算的方法,通过案例分析各方法的差异,方便读者选择最合适的计算方法。 光伏电站在做前期可行性研究的过程中,需要对拟建光伏电站的发电量做理论上的预测,以此来计算投资收益率,进而决定项目就是否值得建设。一般而言,每个有经验的光伏人心里都有一个简便的估算方法,可以得出与计算值相差不多的数据,那么本次总结列举光伏电站的平均发电量计算 /估算的方法,通过案例分析各方法的差异,方便读者选择最合适的计算方法。 一、计算方法 1)国家规范规定的计算方法。 根据最新的《光伏发电站设计规范 GB50797-2012》第6 6条:发电量计算中规 疋: 1、光伏发电站发电量预测应根据站址所在地的太阳能资源情况,并考虑光伏发电站系统设计、光伏方阵布置与环境条件等各种因素后计算确定。 2、光伏发电站年平均发电量 Ep计算如下: Ep=HA< PAZX K 式中: HA为水平面太阳能年总辐照量(kW? h/m2); Ep——为上网发电量(kW?h); PAZ ――系统安装容量(kW); K ――为综合效率系数。 综合效率系数K就是考虑了各种因素影响后的修正系数,其中包括: 1)光伏组件类型修正系数; 2)光伏方阵的倾角、方位角修正系数 3)光伏发电系统可用率 ;

4)光照利用率; 5)逆变器效率 ; 6)集电线路、升压变压器损耗 ; 7)光伏组件表面污染修正系数 ; 8)光伏组件转换效率修正系数。 这种计算方法就是最全面一种 ,但就是对于综合效率系数的把握 , 对非资深光伏从业人员来讲 ,就是一个考验 ,总的来讲 ,K2 的取值在 75%-85%之间,视情况而定。 2)组件面积——辐射量计算方法 光伏发电站上网电量Ep计算如下: Ep=HA< SX K1X K2 式中: HA为倾斜面太阳能总辐照量(kW? h/m2); S――为组件面积总与(m2) K1 ——组件转换效率 ; K2 ——为系统综合效率。 综合效率系数K2就是考虑了各种因素影响后的修正系数,其中包括: 1)厂用电、线损等能量折减 交直流配电房与输电线路损失约占总发电量的3%,相应折减修正系数取为 97%。 2)逆变器折减 逆变器效率为 95%~98%。 3)工作温度损耗折减光伏电池的效率会随着其工作时的温度变化而变化。当它们的温度升高时 , 光伏组件发电效率会呈降低趋势。一般而言 , 工作温度损耗平均值为在 2、5%左右。 其她因素折减

变电站综合自动化系统设计方案

变电站综合自动化系统设计方案 1.1.2 研究现状 变电站综合自动化系统是利用先进的计算机技术、现代电子技术、通信技术和信息处理技术等实现对变电站二次设备(包括继电保护、控制、测量、信号、故障录波、自动装置及远动装置等)的功能进行重新组合、优化设计,对变电站全部设备的运行情况执行监视、测量、控制和协调的一种综合性的自动化系统。通过变电站综合自动化系统内各设备间相互交换信息,数据共享,完成变电站运行监视和控制任务。变电站综合自动化替代了变电站常规二次设备,简化了变电站二次接线。变电站综合自动化是提高变电站安全稳定运行水平、降低运行维护成本、提高经济效益、向用户提供高质量电能的一项重要技术措施。 如今变电站综合自动化已成为热门话题,研究单位和产品也越来越多,国内具有代表性的公司和产品有:北京四方公司的CSC 2000系列综合自动化系统,南京南瑞集团公司的BSJ2200计算机监控系统,南京南瑞继电保护电气有限公司的RCS一9000系列综合自动化系统,国电南自PS 6000系列综合自动化系统、武汉国测GCSIA变电站综合自动化系统、许继电气公司的CBZ一8000系列综合自动化系统。国外具有代表性的公司和产品有:瑞典ABB的MicroSCADA自动化系统等。现在的变电站自动化系统将站内间隔层设备(包括微机继电保护及自动装置、测控、直流系统等)以互联的方式与主机实现数据交换与处理,从而构成一种服务于电网安全与监测控制,全分散、全数字化和可操作的自动控制系统。 本系统站控层用的软件工具是瑞典ABB公司开发的用于变电站自动化系统的MicroSCADA和COM500,COM500作为前置机,它是整个系统数据采集的核心,MicroSCADA用于后台监控;间隔层测控装置用的主要是芬兰ABB公司生产的是REF54_系列和瑞典ABB公司生产的REC561等自动化产品,远动装置用的是浙江创维自动化工程有限公司自主研发CWCOM200。

电厂电气自动化系统管理及通讯技术探讨

电厂电气自动化系统管理及通讯技术探讨 发表时间:2019-09-03T10:11:39.713Z 来源:《建筑模拟》2019年第30期作者:张新梅[导读] 电厂的电气自动化系统通过厂家网络将测控、微机保护、备用投入等智能化装置联网实现智能化管理,利用网络通信的方式实现与电网调度、电厂DCS系统的信息交换。 张新梅 大唐三门峡发电有限责任公司河南省三门峡市 472143 摘要:电厂的电气自动化系统通过厂家网络将测控、微机保护、备用投入等智能化装置联网实现智能化管理,利用网络通信的方式实现与电网调度、电厂DCS系统的信息交换。电厂电气自动化系统为电气系统的电气运行、电气故障定位分析提供了资源保障,也提高了电气系统的安全性、经济性、可靠性。本文对电厂电气自动化系统管理及通讯技术进行探讨。 关键词:电气自动化;系统管理;通讯技术 引言:目前电厂电气系统包括发变组保护、厂用电、励磁系统等等的自动化水平还相对落后。文中在此基础上,利用先进的测控技术、网络技术,研发了基于网络的火电厂电气分层分布式的电气自动化系统。该系统集管理、通信、测控、保护等功能于一体,可完成电厂整个电气系统的信息管理、实时信息监控、电能管理、GPS对时等功能。为电气系统的运行管理和故障分析提供了可靠的数据保障,可大大提高电厂电气系统的自动化水平。 一、电厂电气自动化技术特征 1、发电效率的提升 在社会经济发展作用下,人们对于电力供应质量与数量的需求不断提升,这也使得电厂运行期间有了全新的挑战,并使得强化电厂运行效率逐渐成为了人们关注与研究的主要问题之一。在以往的电厂设备中,通常需要工作人员对其进行操作与控制,使其运行效率的提升受到阻碍。而对电气自动化进行使用,可确保电厂自动化运行与控制的实现,促进其发电效率快速提升,更好的满足社会供电需求。 2、发电成本下降 现阶段,电厂使用的发电原材料主要为石油以及煤炭等资源,同时传统电厂技术也存在着较为明显的不足,使得这种资源利用率相对较多,发电效果也相对较差,使用资源较多但却没有产生预期的电量,使得发电成本快速提升。而在电厂中使用电气自动化技术,可较好实现对各种燃烧模式进行自动化控制,使燃料燃烧率得到全面的提升,有效降低燃料燃烧费用,使发电成本明显的降低了。 二、电厂电气自动化系统的管理研究 电厂电气自动化系统在运行过程中会受到各个功能的作用及保护,无论是对故障进行分析,还是实现信息管理,都可以通过这一系统集中运行,从其本质进行研究可以发现,该系统运行是以计算机控制及测控技术为主导,这样就能在复杂的系统环境下进行分层管理,而通信技术的应用优势也能进一步凸显。电厂电气自动化系统能够简化及优化电气运行流程,为后续电气运行及管理提供便利条件,这不仅能够有效提高电气信息应用能效,更能强化电厂内部联系,确保各个关联项目之间都能精准衔接。 电力电气系统在实际运行过程中能够充分发挥其信息报警及图形接口等作用,电气设备在运行中的实时状态可以通过绘制曲线图等形式表现出来,数据等信息能够精准显示,就能使得运行环境更为清晰、明了的表现出来,这也就能够为潮流监控功能的实现提供基础保障。信息报警涵盖多种报警项目,在系统运作时,只要各项运行指标的能效发挥状态超出预设标准、智能设备出现异常运行状态等,系统就会自动报警;事件报告能够对人工操作等项目的运行流程进行记录,并以报告形式展现出来;图形接口能够在结合实际运行标准的基础上,对报表数据进行调整;报表功能则能够对潮流及电量进行记录,无论是开关动作次数还是电气设备检修都能以报表形式得以显示。 首先,电气设备管理。利用此系统测控装置的计量和转换电表脉冲信号的功能,在系统主站进行电量在线统计生成报表,可实现厂用电抄表系统的全部功能,另外可统计系统实时潮流信息。系统可实现对在线的电气设备管理,现场信息可传送到MIS系统,补充MIS系统的数据,可实现对电气设备档案、台账、维修记录的统计等等。 其次,故障信息管理。可对设备动作,事件信息SOE、事故重演、事件追忆、录波分析等功能实现信息管理,可对事故原因分析起到重要作用,对事故防范提供借鉴。例如可通过对电动机启动时的波形和在线运行状态,分析电动机相关故障,实现对电动机的故障检修。 第三,定值管理。此系统可实现对定值的在线校核和远方修改。随着科技的不断发展,电厂未来电气的主站系统可扩展为可视化电厂定值管理系统和继电保护整定计算;最后,小电流接地选线管理。目前的小电流接地选线技术还是由独立的系统单片机计算得到,而电厂电气系统形成的网络可使每路CPU间可并行采集计算,极大的优于目前的小电流接地选线装置技术。使小电流接地选线管理水平得到极大的提高。 三、电厂电气自动化系统通讯技术 1、网络通讯技术的应用 在现场总线通讯技术之前,电厂电气系统广泛采用串行通信技术。这种通讯技术在实际应用中不断暴露出各种问题,诸如通信速率低、较难实现星型拓扑结构时系统站点和功能的扩展、不能在通信网中设置一个以上的主机等等。随着生产现场对自动化技术要求的不断提高,现场总线在电厂电气自动化系统应用中的不足逐步凸显,主要表现为系统的通讯节点超过一定数量时,系统的响应速度不能满足厂家系统对通讯的要求;拓扑结构的网络系统任何一个节点都可能导致整个系统的崩溃;系统的大量数据的传输延时不能满足系统要求等等。 因此具有可擴展性、高带宽、可靠性等诸多优点的以太网逐步成为电厂电气自动化系统的主导通讯技术。以太网以其优越的性能成为网络连接的标准,不仅在电厂电气系统得到应用,也应用到大量工业控制领域。以太网具有以下优势:可根据通讯要求在一个网络中混合使用光纤、双绞线等各种通讯介质;以太网被通讯用的交换式集线器分为多个冲突域,这样就大大增加了系统的响应速率,就目前形势和可见的将来,以太网完全可以满足电厂电气系统的通讯节点和通讯实时性的要求;以太网的标准IEEE802.3已经成为国际通用标准,具有开放系统的共性。随着以太网的不断推广,各种网络通讯设备和工具也得到大量使用,使得以太网的成本得到大大的降低;以太网的布线技术是基于集线器的总线拓扑结构,使得以太网通讯达到高标准的可靠性,每个节点都被集线器隔离开来。因此单环的环网可做到任何一点的固执都不会影响整个系统的通讯,可准确定位故障点,大大优化了网络通讯。

光伏电站发电量的计算方法

光伏电站发电量计算方法 ①理论发电量 1)1MW屋顶光伏电站所需电池板面积一块235MW的多晶电池板面积 1.65*0.992=1.6368㎡,1MW需要1000000/235=4255.32块电池,电池板总面积 1.6368*4255.32=6965㎡ 2)年平均太阳辐射总量计算 上海倾角等于当地纬度斜面上的太阳总辐射月平均日辐照量H 由于太阳能电池组件铺设斜度正好与当地纬度相同,所以在计算辐照量时可以直接采 用表中所列数据(2月份以2 8天记)。 年平均太阳辐射总量=Σ(月平均日辐照量×当月天数) 结算结果为5 5 5 5.3 3 9 MJ/(m 2·a)。 3)理论年发电量=年平均太阳辐射总量*电池总面积*光电转换效率 =5555.339*6965*17.5% =6771263.8MJ=6771263.8*0.28KWH=1895953.86KWH =189.6万度 ②系统预估实际年发电量 太阳电池板输出的直流功率是太阳电池板的标称功率。在现场运行的太阳电池板往往 达不到标准测试条件,输出的允许偏差是5%,因此,在分析太阳电池板输出功率时 要考虑到0.9 5的影响系数。 随着光伏组件温度的升高,组f:l二输出的功率就会下降。对于晶体硅组件,当光伏组件内部的温度达到5 0-7 5℃时,它的输出功率降为额定时的8 9%,在分析太阳 电池板输出功率时要考虑到0.8 9的影响系数。 光伏组件表面灰尘的累积,会影响辐射到电池板表面的太阳辐射强度,同样会影响太 阳电池板的输出功率。据相关文献报道,此因素会对光伏组件的输出产生7%的影响,在分析太阳电池板输出功率时要考虑到0.9 3的影响系数。

水电站自动化

水电站自动化 1、同步发电机并列时脉动电压周期为20s,则滑差角频率允许值ωsy为5、在电力系统通信中,主站轮流询问各RTU,RTU接到询问后回答的方式属于6、下列同步发电机励磁系统可以实现无刷励磁的是7、某同步发电机的额定有功出力为100MW,系统频率下降时,其有功功率增量为20MW,那么该机组调差系数的标么值R*为8、下列关于AGC 和EDC的频率调整功能描述正确的是9、在互联电力系统中进行频率和有功功率控制时一般均采用10、电力系统的稳定性问题分为两类,即11、电力系统状态估计的正确表述是1 2、发电机并列操作最终的执行机构是13.同步发电机励磁控制系统组成。14.电机励磁系统在下列哪种情况下需要进行强行励磁15.同步发电机的励磁调节器16.直流励

磁机励磁系统的优点是17.当同步发电机进相运行时,其有功功率和无功功率的特点是18.进行预想事故分析时,应采用快速潮流法仿真计算,主要包括19.电力系统发生有功功率缺额时,系统频率将。20.在互联电力系统区内的频率和有功功率控制用的最普遍的调频方法是。21.自动励磁调节器的强励倍数一般取。22.分区调频法负荷变动判断。23.下列关于主导发电机调频描述错误的是。24.下列不属于值班主机的任务是。发电计划的功能包括26.电力系统中期负荷预测的时间范围是。27.馈线远方终端FTU 的设备包括28.重合器的特点是29.主站与子站间通常采用的通信方案是30.同步发电机并列的理想条件表达式为:fG=fX、UG=UX、δe=0。 31.若同步发电机并列的滑差角频率允许值为ωsy =%,则脉动电压周期为(s)。 32.谋台装有调速器的同步发电机,额定有功出力为100MW,当其有功功率增量

光伏发电年发电量计算

以1MW装机容量为例(300KW即0.3MW),你可以自己换算下。 电力系统的装机容量是指该系统实际安装的发电机组额定有效功率的总和。 由于光伏发电必然有损耗,所以实际发电量是无法达到理论值的。 1、1MW光伏电站理论年发电量: =年平均太阳辐射总量*电池总面积*光电转换效率 =5555.339*6965*17.5% =6771263.8MJ =6771263.8*0.28 KWH =1895953.86 KWH =189.6万度 2、实际发电效率 太阳电池板输出的直流功率是太阳电池板的标称功率。在现场运行的太阳电池板往往达不到标准测试条件,输出的允许偏差是5%,因此,在分析太阳电池板输出功率时要考虑到0.9 5的影响系数。 随着光伏组件温度的升高,组f:l二输出的功率就会下降。对于晶体硅组件, 当光伏组件内部的温度达到50-75℃时,它的输出功率降为额定时的89%,在分析太阳电池板输出功率时要考虑到0.89的影响系数。 光伏组件表面灰尘的累积,会影响辐射到电池板表面的太阳辐射强度,同样会影响太阳电池板的输出功率。据相关文献报道,此因素会对光伏组件的输出产生7%

的影响,在分析太阳电池板输出功率时要考虑到0.93的影响系数。 由于太阳辐射的不均匀性,光伏组件的输出几乎不可能同时达到最大功率输出,因此光伏阵列的输出功率要低于各个组件的标称功率之和。 另外,还有光伏组件的不匹配性和板问连线损失等,这些因素影响太阳电池板输出功率的系数按0.9 计算。 并网光伏电站考虑安装角度因素折算后的效率为0.88。 所以实际发电效率为:0.9 5 * 0.8 9 * 0.9 3*0.9 5 *0.8 8 =65.7%。 3、系统实际年发电量: =理论年发电量*实际发电效率 =189.6*0.9 5 * 0.8 9 *0.9 3*0.9 5 * 0.8 8 =189.6*65.7% =124.56万度

光伏发电原理及发电系统简介

光伏发电原理及发电系统简介 光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。 一、光伏效应 如果光线照射在太阳能电池上并且光在界面层被吸收,具有足够能量的光子能够在P型硅和N型硅中将电子从共价键中激发,以致产生电子-空穴对。界面层附近的电子和空穴在复合之前,将通过空间电荷的电场作用被相互分离。电子向带正电的N区和空穴向带负电的P区运动。

通过界面层的电荷分离,将在P区和N区之间产生一个向外的可测试的电压。此时可在硅片的两边加上电极并接入电压表。对晶体硅太阳能电池来说,开路电压的典型数值为0.5~0.6V。通过光照在界面层产生的电子-空穴对越多,电流越大。界面层吸收的光能越多,界面层即电池面积越大,在太阳能电池中形成的电流也越大。 二、原理 太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结内建电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流。这就是光电效应太阳能电池的工作原理。

太阳能发电有两种方式,一种是光-热-电转换方式,另一种是光-电直接转换方式。 (1)光-热-电转换方式通过利用太阳辐射产生的热能发电,一般是由太阳能集热器将所吸收的热能转换成工质的蒸气,再驱动汽轮机发电。前一个过程是光-热转换过程;后一个过程是热-电转换过程,与普通的火力发电一样.太阳能热发电的缺点是效率很低而成本很高,估计它的投资至少要比普通火电站贵5~10倍。

(2)光-电直接转换方式该方式是利用光伏效应,将太阳辐射能直接转换成电能,光-电转换的基本装置就是太阳能电池。太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。当许多个电池串联或并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染。 三、系统组成 光伏发电系统是由太阳能电池方阵,蓄电池组,充放电控制器,逆变器,交流配电柜,太阳跟踪控制系统等设备组成。 1、电池方阵

水电站自动化讲解

1.7 数字式并列装置 1.7.1 概述 用大规模集成电路微处理器(CPU )等器件构成的数字式并列装置,由于硬件简单, 编程方便灵活,运行可靠,且技术上已日趋成熟,成为当前自动并列装置发展的主流。 模拟式并列装置为简化电路,在一个滑差周期s T 时间内,把S ω假设为恒定。数字式并列装置可以克服这一假设的局限性,采用较为精确的公式,按照e δ当时的变化规律,选择最佳的越前时间发出合闸信号,可以缩短并列操作的过程,提高了自动并列装置的技术性能和运行可靠性。 数字式并列装置由硬件和软件组成,以下分别进行介绍。 1. 主机。 微处理器(CPU )是装置的核心。 2. 输入、输出接口通道。 在计算机控制系统中,输入、输出过程通道的信息不能直接与主机总线相连,它必须由接口电路来完成信息传递的任务。 3. 输入、输出过程通道。 为了实现发电机自动并列操作,需要将电网和带并发电机的电压和频率等状态按照要 求送到接口电路进入主机。 (1) 输入通道。按发电机并列条件,分别从发电机和母线电压互感器二次侧交流电压 信号中提取电压幅值、频率和相角差等三种信息,作为并列操作的依据。 1)交流电压幅值测量。采用变送器,把交流电压转换成直流电压,然后由A /D 接 口电路进入主机。对交流电压信号直接采样,通过计算求得它的有效值。如图1.18所示。 2)频率测量。测量交流信号波形的周期T 。把交流电压正弦信号转化为方波,经二 分频后,它的半波时间即为交流电压的周期T 。 3)相角差e δ测量。如图1.19所示,把电压互感器电压信号转换成同频、同相的方 波信号。 (2)输出通道。自动并列装置的输出控制信号有: 1)发电机转速调节的增速、减速信号。 图1.17 数字式并列装置控制逻辑图

光伏发电系统设备安装(完整版)

国电宁夏平罗光伏电站Ⅰ期10MWp工程 光伏发电系统设备安装 作业指导书 编制: 审核: 批准: 中环光伏系统有限公司 宁夏平罗项目部 2010年3月20日

目录1. 工程概况 2. 编制依据 3. 工程量 4. 参加作业人员的资格和要求 5. 作业所需的工器具 6. 作业前应做的准备工作 7. 作业程序、操作方法及质量要求 8. 质保措施 9. 安全措施及文明施工要求

1 工程概况 国电宁夏平罗光伏电站Ⅰ期10MWp工程是由中环光伏系统有限公司设计。主要的运行流程是:光伏板→汇流箱→逆变器→升压变压器→35KV开关柜→上网发电。本工程施工由江苏华能公司电气工地负责施工。 2 编制依据 2.1中环光伏系统有限公司设计施工图 2.2《电气装置安装工程电缆线路施工及验收规范》(GB50168-92) 2.3《电力建设火电工程施工工艺实施细则》(DJ-GY-19) 2.4《电力建设安全工作规程》(DL5009.1-2002) 2.5《电气装置安装工程质量检验及评定规程》(DL/T 5161.1~5161.17-2002) 3 工作量 其中35KV高压柜8面,升压变压器10台,逆变器19台、厂用电变压器1台,低压柜4面。 4 参加作业人员的资格和要求 4.1凡参加作业人员必须经三级安全教育,并经考试合格。 4.2熟悉光伏发电系统设备安装的工艺要求、验收规范及质量标准。 4.3施工人员应熟知本作业指导书,必须参加技术交底活动,并做好记录 5 作业所需的工器具 千斤顶 2个 套筒扳手 1套 手拉葫芦 2T 2个 力矩扳手 1套 电焊机 1台 水平仪 1台 手枪电钻 1台 线坠 1个 磨光机 2台 卷尺 1把 水平尺 1把 电锤 1台 手锤 1把

电厂电气综合自动化系统的分析

电厂电气综合自动化系统的分析 摘要:随着发电厂发电机组不断扩大容量,不断发展参数,电厂电气综合自动 化程度成为重要发展点,综合自动化系统用来对电气设备进行信息控制、管理、 保护及检测电厂所有电器设备的安全稳定,本文将对以发电厂电气综合自动化系 统运行的可行性分析入手,分析电气综合自动系统在发电厂发电的运作过程中的 现状与应用。 关键词:电厂电气;自动化系统;现状应用 1电厂电气综合自动化概述 1)网络通信层。网络通信层主要包括一些主要管理装置,如网络中继器、网 络交换机、通信管理以及规约转换装置等,其重要作用是进行信息传递与信息管理,为电厂电气系统收集数据信息,方便电气系统的管理与监控。 2)站控层。站控层的主要功能是监控功能,通过选取开放设计的方式能够选 择多种配置模式,使电厂内所有设备的管理监控更加合理化,具有灵活性,保证 整个系统的安全可靠,由此可见,站控层具有重要的作用,是电厂电气系统中最 主要的组成部分。其主要包括通信服务器、操作员站、工程师站、卫星对时装置、服务站以及不间断电源,通过这些设备能够较好地完成监控工作,发挥电厂电气 系统自动化的重要作用。 3)间隔层。间隔层的关键是将间隔层设备采用间隔方式分布在电厂电气系统中,直接将厂用电保护装置放在总开关现场,减少大批量二次线的铺设,使各设 备相对独立。通过此方式能够将原本需要引入其他设备的二次接线取消,如需要 引入到主控室的信号电缆、测量电缆、保护电缆等都可以取消,改为直接依靠主 线控制,不仅能够节约资金还能够降低工作量,不需要实施此部分的维护工作以 及安装调试工作,节省了人力物力财力,具有重要的作用。间隔层的主要设备主 要分为三大类:一是厂用电子系统。厂用电子系统主要包括两种不同型号的厂用电 保护测控装置,10/6kV的厂用电保护测控装置以及400V的厂用电保护测控装置。二是安全自动装置。安全自动装置主要包括直流系统、稳定装置以及调节系统几 大部分。三是机组子系统。机组子系统主要包括保护装置与测控装置,保护装置 主要有母线保护装置、发电组保护装置以及升压变压器保护装置。 2目前我国电厂电气综合自动化的发展现状 随着我国综合自动化水平的提高以及现场总线电气系统自动化的高速发展, 电气系统自动化呈现良好的发展态势,其作为一台完成测量、逻辑判断以及设备 动作记录等一系列操作的微型计算机,在实施过程中需要借助与之相关的软件保 证项目实现。从整体上实现自动化设备在电力电气系统中的广泛运用,不仅能够 对生产与设备安全实施保护,并且还可与主系统及其其他系统的信息交换在通过 设备的通信界面来实现。 通信距离的优越性、通信速率的快速性、抗干扰能力的强大性,使得现场总 线控制技术逐渐成为电力以及工业系统中的中坚力量。,就像Profibus标准在西 门子公司具有的深刻影响力一般,现场总线控制技术在应用过程中也需要不断判 定其实施标准。 发展至今,很多电厂采用了DCS系统,虽能达标和控制其他功能,但应用电 气系统较缺乏。新的关注的热点——以太网络。目前,电厂电器综合自动化系统 倾向于借助微型计算机的力量,在有效利用现场总线系统或者是以太网络技术的 基础上,来为发电厂的通信功能上的技术支持和综合自动化提供应用程序。

光伏电站自动化系统介绍

光伏电站自动化系统区别于传统发电站,是通过太阳能发电。太阳能不仅是一种极具潜力的可再生能源,而且还具有储量无限、获取方便、无污染等优点,以其实用经济性受到人们的广泛关注。 光伏电站的主要组成部分包括光伏电池阵列、汇流箱、低压直流柜、逆变柜、交流低压柜、升压变压器等,其产生的高压交流直接并入电网,能够对光伏电站汇流箱、逆变器、箱变、环境监测仪、升压变电站等设备进行信息采集、存储、分析、处理、故障告警,然后通过绘制的图表、棒图、饼图、趋势曲线呈现电站的运行情况。而且,监控系统数据可以根据用户需求,将指定电站数据转发至当地电力公司数据中心、企业集团数据中心、各省市节能环保中心、住建部数据中心、可再生能源中心数据中心和智慧能源管理分析平台云等各类数据中心。 光伏电站自动化系统拥有先进性、完整性、规范性、扩展性、开放性、集成性、可操作性这7个特点,具体分析如下: 1、先进性:系统采用最先进、应用最广泛的C/S主从分布式体系结构。支持

Unix/Linux/Windows等多种操作系统,具有良好的移植性。 2、完整性: 业务数据完整性:系统能够完成不同厂商不同种类不同型号设备的监测数据统一完整采集; 业务流程完整性:系统能够提供实时数据、周期采样数据、实时报警数据的应用服务。 3、规范性:系统建设遵循有关国家标准、国际标准、电力行业有关标准;界面设计遵循有关界面设计规范。 4、扩展性: 硬件扩展性:系统能够广泛适配新接入监测设备的通信接口; 软件扩展性:软件功能模块可重用、可配置、可拆卸。 5、开放性:系统能够同各类第三方数据中心进行数据信息交换;系统能够与电网调度系统进行数据信息交换。 6、集成性:能够集成环境、安防、电能量、电能质量等监测数据,分类处理,分类存储,统一界面显示监测数据。 7、可操作性:界面友好,操作方便,注重用户体验;各模块界面风格统一、先进的动态图形技术,支持WEB发布浏览功能。

相关主题
文本预览
相关文档 最新文档