当前位置:文档之家› 历年初三数学中考代数几何综合题及答案

历年初三数学中考代数几何综合题及答案

历年初三数学中考代数几何综合题及答案
历年初三数学中考代数几何综合题及答案

中考数学代数几何综合题

Ⅰ、综合问题精讲:

代数几何综合题是初中数学中覆盖面最广、综合性最强的题型,近几年中考试题中的综合题大多以代数几何综合题的形式出现,其解题关键点是借助几何直观解题,运用方程、函数的思想解题,灵活运用数形结合,由形导数,以数促形,综合运用代数和几何知识解题.

Ⅱ、典型例题剖析

【例1】(2005,温州,12分)如图,已知四边形ABCD 内接于⊙O,A 是?BDC

的中点,AE⊥AC 于A ,与⊙O 及CB 的延长线分别交于点F 、E ,且??BF

AD =,EM 切⊙O 于M 。 ⑴ △ADC∽△EBA ;⑵ AC2=12 BC·CE; ⑶如果AB =2,EM =3,求cot∠CAD 的值。

解:⑴∵四边形ABCD 内接于⊙O,∴∠CDA=∠ABE,

∵??BF

AD =,∴∠DCA=∠BAE, ∴△CAD∽△AEB

⑵ 过A 作AH⊥BC 于H(如图)

∵A 是?BDC 中点,∴HC=HB =12

BC , ∵∠CA E =900,∴AC 2=CH·CE=12

BC·CE ⑶∵A 是?BDC

中点,AB =2,∴AC=AB =2, ∵EM 是⊙O 的切线,∴EB·EC=EM 2

∵AC 2=12

BC·CE,BC·CE=8 ② ①+②得:EC(EB +BC)=17,∴EC 2=17

∵EC 2=AC 2+AE 2,∴AE=17-22=13

∵△CAD∽△ABE,∴∠CAD=∠AEC,

∴cot∠CAD=cot∠A EC =AE AC =132

点拨:此题的关键是树立转化思想,将未知的转化为已知的.此题表现的非常突出.如,将∠CAD 转化为∠AEC 就非常关键.

【例2】(2005,自贡)如图 2-5-2所示,已知直线y=2x+2分

别与x 轴、y 轴交于点A 、B ,以线段AB 为直角边在第一象限内

作等腰直角△ABC ,∠BAC=90○。过C 作CD ⊥x 轴,D 为垂足.

(1)求点 A 、B 的坐标和AD 的长;

(2)求过B 、A 、C 三点的抛物线的解析式。

解:(1)在y=2x+2中

分别令x=0,y=0.

得 A(l,0),B(0,2).

易得△ACD≌△BAO,所以 AD=OB=2.

(2)因为A(1,0),B(0,2),且由(1),得C(3,l).设过过B、A、C三点的抛物线为2

y ax bx c

=++

所以

5

6

17 2

6 93

1

2

a

a b c

c b

a b c

c

?

=

?

++=

??

??

==-

??

??

++=

?=

?

?

?

,解得

所以2

517

2

66

y x x

=-+

点拨:此题的关键是证明△ACD≌△BAO.

【例3】(2005,重庆,10分)如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q 从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q

移动的时间为t秒.

(1) 求直线AB的解析式;(2) 当t为何值时,△APQ与△AOB相似?

(3) 当t为何值时,△APQ的面积为

5

24

个平方单位?

解:(1)设直线AB的解析式为y=k x+b

由题意,得

b=6

80

k b

?

?

+=

?

解得

3

4

6

k

b

?

=-

?

?

?=

?

所以,直线AB的解析式为y=-

4

3

x+6.

(2)由AO=6, BO=8 得AB=10

所以AP=t,AQ=10-2t

1°当∠APQ=∠AOB时,△APQ∽△AOB.

所以

6

t=

10

2

10t

-

解得t=

11

30

(秒)

2° 当∠AQP=∠AOB 时,△AQP∽△AOB.

所以 10t =6210t - 解得 t =13

50(秒) (3)过点Q 作QE 垂直AO 于点E .

在Rt△AOB 中,Sin∠BAO=AB BO =5

4

在Rt△AEQ 中,QE =AQ·Sin∠BAO=(10-2t )·54=8 -58t 所以,S △APQ =21AP·QE=

21t ·(8-5

8t )

=-254t +4t =5

24 解得t =2(秒)或t =3(秒).

(注:过点P 作PE 垂直AB 于点E 也可,并相应给分)

点拨:此题的关键是随着动点P 的运动,△APQ 的形状也在发生着变化,所以应分情况:

①∠APQ =∠AOB =90○②∠APQ =∠ABO .这样,就得到了两个时间限制.同时第(3)问

也可以过P 作 PE ⊥AB . 【例4】(2005,南充,10分)如图2-5-7,矩形ABCD 中,

AB =8,BC =6,对角线AC 上有一个动点P (不包括点A 和点C ).设

AP =x ,四边形PBCD 的面积为y .

(1)写出y 与x 的函数关系,并确定自变量x 的范围.

(2)有人提出一个判断:“关于动点P ,⊿PBC 面积与⊿PAD

面积之和为常数”.请你说明此判断是否正确,并说明理由.

解:(1)过动点P 作PE ⊥BC 于点E .

在Rt⊿ABC 中,AC =10, PC =AC -AP =10-x .

∵ PE ⊥BC ,AB ⊥BC ,∴⊿PEC ∽⊿ABC .

故 AC

PC AB PE =,即.548,10108x PE x PE -=-= ∴⊿PBC 面积=.5122421x BC PE -=?

又⊿PCD 面积=⊿PBC 面积=.5

1224x -

即 y x 524

48-=,x 的取值范围是0<x <10.

(2)这个判断是正确的.

理由: 由(1)可得,⊿PAD 面积=.5

12x

⊿PBC 面积与⊿PAD 面积之和=24.

点拨:由矩形的两边长6,8.可得它的对角线是10,这样PC =10-x ,而面积y 是一个不规则的四边形,所以可以把它看成规则的两个三角形:△PBC 、△PCD .这样问题就非常容易解决了.

Ⅲ、综合巩固练习

(100分 90分钟)

1、如图2-5-8所示,在直角坐标系中,△ABC 各顶点坐标分别为

A (0, 3 ),

B (-1,0)、

C (0,1)中,若△DEF 各顶点坐

标分别为D ( 3 ,0)、E (0,1)、F (0,-1),则下列判断

正确的是( )

A .△DEF 由△ABC 绕O 点顺时针旋转90○得到;

B .△DEF 由△AB

C 绕O 点逆时针旋转90○得到;

C .△DEF 由△ABC 绕O 点顺时针旋转60○得到;

D .△DEF 由△ABC 绕O 点顺时针旋转120○得到

2.如图2-5-9,已知直线 y=2x +1与x 轴交于A 点,与y 轴交

于B 点,直线y=2x —1与x 轴交于C 点,与y 轴交于D 点,试

判断四边形ABCD 的形状.

3.如图2-5-10所示,在矩形ABCD 中,BD=20,AD >AB ,设∠ABD=α,已知sin α是方

程25z 2-35z+ 12=0的一个实根.点E 、F 分别是BC 、DC 上的点,EC+CF=8,设BE=x ,

△AEF 面积等于y.

⑴ 求出y 与x 之间的函数关系式;

⑵ 当E 、F 两点在什么位置时y 有最小值?并求出这个最小值.

4.(10分)如图2-5-11所示,直线y=-43

x+ 4与x 轴、y 轴分别交于点M 、N . (1)求M 、N 两点的坐标;

(2)如果点P 在坐标轴上,以点P 为圆心,125 为半径的圆与直线y=-43

x+ 4相切,求点P 的坐标.

5.(10分)如图2-5-12所示,已知等边三角形ABC 中,AB=2,点P 是AB 边上的任意一点(点P 可以与点A 重合,但不与点B 重合),过点P 作PE ⊥BC .垂足为E ;过点E 作EF ⊥AC ,垂足为F ;过点F 作FQ ⊥AB ,垂足为Q .设BP=x ,AQ=y .

⑴ 写出y 与x 之间的函数关系式;

⑵ 当BP 的长等于多少时,点P 与点Q 重合;

⑶ 当线段 PE 、FQ 相交时,写出线段PE 、EF 、FQ 所围成三角形的周长的取值范围(不必写出解题过程)

6.(12分)如图2-5-13所示,已知A 由两点坐标分另为(28,0)和(0,28),动点P 从A 点开始在线段AO 上以每秒3个长度单位的速度向原点O 运动,动直线 EF 从 x 轴开

中考数学复习检测第2部分专题突破专题十解答题突破—代数几何综合题(涉及二次函数)

2019-2020年中考数学复习检测第2部分专题突破专题十解答题突破—代数几何综合题(涉及二次函数) 类型一以几何图形为背景的综合题 【例1】(xx·苏州一模)如图1①,四边形ABCD中,AD∥BC,DC⊥BC,AD =6 cm,DC=8 cm,BC=12 cm.动点M在CB上运动,从C点出发到B点,速度每秒2 cm;动点N在BA上运动,从B点出发到A点,速度每秒1 cm.两个动点同时出发,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒). (1)求线段AB的长. (2)当t为何值时,MN∥CD? (3)设三角形DMN的面积为S,求S与t之间的函数关系式. (4)如图1②,连接BD,是否存在某一时刻t,使MN与BD互相垂直?若存在,求出这时的t值;若不存在,请说明理由. 图1

【例2】(xx·吉林)如图2,在等腰直角三角形ABC中,∠BAC=90°,AC=8 2 cm,AD⊥BC于点D,点P从点A出发,沿A→C方向以 2 cm/s的速度运动到点C停止,在运动过程中,过点P作PQ∥AB交BC于点Q,以线段PQ为边作等腰直角三角形PQM,且∠PQM=90°(点M,C位于PQ异侧).设点P的运动时间为x(s),△PQM与△ADC重叠部分的面积为y(cm2) 图2 备用图 (1)当点M落在AB上时,x=____________; (2)当点M落在AD上时,x=____________; (3)求y关于x的函数解析式,并写出自变量x的取值范围.

1.(xx·宁夏)如图3,在矩形ABCD中,AB=3,AD=4,动点Q从点A出发,以每秒1个单位的速度,沿AB向点B移动;同时点P从点B出发,仍以每秒1个单位的速度,沿BC 向点C移动,连接QP,QD,PD.若两个点同时运动的时间为x秒 (0<x≤3),解答下列问题: (1)设△QPD的面积为S,用含x的函数关系式表示S;当x为何值时,S有最大值?并求出最小值; 图3 (2)是否存在x的值,使得QP⊥DP?试说明理由. 2.(xx·梅州)如图4,在Rt△ABC中,∠ACB=90°,AC=5 cm,∠BAC=60°,动点M 从点B出发,在BA边上以每秒2 cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒 3 cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN. 图4 (1)若BM=BN,求t的值; (2)若△MBN与△ABC相似,求t的值; (3)当t为何值时,四边形ACNM的面积最小?并求出最小值.

中考数学几何综合圆的综合大题压轴题

圆的综合大题 1.如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF. (1)证明:AF平分∠BAC; (2)证明:BF=FD; (3)若EF=4,DE=3,求AD的长. 2.如图,AB是⊙O的直径,过点B作⊙O的切线BM,点P在右半圆上移动(点P与点A,B不重合),过点P作PC⊥AB,垂足为C;点Q在射线BM上移动(点M在点B的右边),且在移动过程中保持OQ∥AP. (1)若PC,QO的延长线相交于点E,判断是否存在点P,使得点E恰好在⊙O上?若存在,求出∠APC的大小;若不存在,请说明理由; (2)连接AQ交PC于点F,设,试问:k的值是否随点P的移动而变化?证明你的结论.

3.已知:如图1,把矩形纸片ABCD折叠,使得顶点A与边DC上的动点P重合(P不与点D,C重合),MN为折痕,点M,N分别在边BC,AD上,连接AP,MP,AM,AP与MN相交于点F.⊙O过点M,C,P. (1)请你在图1中作出⊙O(不写作法,保留作图痕迹); (2)与是否相等?请你说明理由; (3)随着点P的运动,若⊙O与AM相切于点M时,⊙O又与AD相切于点H.设AB为4,请你通过计算,画出这时的图形.(图2,3供参考) 4.在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B作⊙O的切线BF交CD的延长线于点F. (I)如图①,若∠F=50°,求∠BGF的大小; (II)如图②,连接BD,AC,若∠F=36°,AC∥BF,求∠BDG的大小.

5.如图,在⊙O中,半径OD⊥直径AB,CD与⊙O相切于点D,连接AC交⊙O 于点E,交OD于点G,连接CB并延长交⊙于点F,连接AD,EF. (1)求证:∠ACD=∠F; (2)若tan∠F= ①求证:四边形ABCD是平行四边形; ②连接DE,当⊙O的半径为3时,求DE的长. 6.如图,⊙O的直径AB为10cm,弦BC为6cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE. (1)求AC、AD的长; (2)试判断直线PC与⊙O的位置关系,并说明理由.

初三数学几何综合练习题

初三数学几何综合练习题 1. 在厶ABC中,/ C=90 ° AC=BC,点D在射线BC上(不与点B、C重合),连接AD,将AD绕点D顺时针旋转90。得 到DE,连接BE. (1) 如图1,点D在BC边上. ①依题意补全图1; ②作DF丄BC交AB于点F,若AC=8, DF =3,求BE的长; (2) 如图2,点D在BC边的延长线上,用等式表示线段 (直 AB、BD、BE之间的数量关系 接写出结论)? 图1

2. 已知:Rt△ A B C'和Rt△ ABC 重合,/ A'C'B= / ACB=90° / BA'C'= / BAC=30 ° 现将Rt△ A B C '绕点B 按逆时针方向旋转角a (60°< a 90° ,设旋转过程中射线 C 'C和线段AA相交于点D,连接BD . (1)当a=60°时,A'过点C,如图1所示,判断BD和A A之间的位置关系,不必证明; (2)当a=90°时,在图2中依题意补全图形,并猜想(1 )中的结论是否仍然成立,不必证明; (3)如图3,对旋转角a ( 60°< aV 90 °,猜想(1)中的结论是否仍然成立;若成立,请证明你的结论;若不成立,请说明理由?

3 .如图1已知线段BC=2,点B关于直线AC的对称点是点D,点E为射线CA上一点,且ED=BD,连接DE, BE. (1) 依题意补全图1,并证明:△ BDE为等边三角形; (2) 若/ ACB=45 °点C关于直线BD的对称点为点F,连接FD FB^A CDE绕点D 顺时针旋转%度(0 v av 360°得到△ CDE',点E的对应点为E',点C的对应点为点C. ①如图2,当a=30°时,连接BC'.证明:EF =BC'; ②如图3,点M为DC中点,点P为线段C E'上的任意一点,试探究:在此旋转过程中,线段PM长度的取值范围?

代数几何综合题含答案

代数几何综合题 代数几何综合题是初中数学中覆盖面最广、综合笥最强的题型,近几年的中考试题很多以代数几何综合题的形式出现,其命题的主要结合点是方程与几何、函数与几何等,解代数几何综合题最常用的数学方法是数形结合,由形导数,以数促形。 例1、如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (x ,0)()x <0,连结BP ,过P 点作P C P B ⊥交过点A 的直线a 于点C (2,y ) (1)求y 与x 之间的函数关系式; (2)当x 取最大整数时,求BC 与PA 的交点Q 的坐标。 解:(1) P C P B B O P O ⊥⊥, ∴∠+∠=?∠+∠ ∴∠=∠C P A O P B P B O O P B C P A P B O 90, A (2,0),C (2,y )在直线a 上 ∴∠=∠=? B O P P A C 90 ∴??B O PP A C ~ ∴ =P O A C B O P A ,∴=+||||||x y x 2 2 , x y x y x <<∴= -002 2,,∴=-+y x x 122 (2) x <0,∴x 的最大整数值为-1 , 当x =-1时,y =- 32,∴=CA 3 2

B O a B O Q C A Q O Q A Q B O C A //~,,∴∴=?? 设Q 点坐标为()m ,0,则A Q m =-2 ∴-=∴=m m m 2232 8 7 , ∴Q 点坐标为()8 7 0, 说明:利用数形结合起来的思想,考查了相似三角形的判定及应用。关键是搞清楚用坐标表示的数与线段的长度的关系。 练习 1.如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO. (1)求证:CD ∥AO ;(3分) (2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3分) (3)若AO +CD =11,求AB 的长。(4分) B

代数几何综合题(含答案)

代数几何综合题 x<0,连 1、如图,已知平面直角坐标系中三点A(2,0),B(0,2),P(x,0)() ⊥交过点A的直线a于点C(2,y) 结BP,过P点作PC PB (1)求y与x之间的函数关系式; (2)当x取最大整数时,求BC与PA的交点Q的坐标。 2.如图,从⊙O外一点A作⊙O的切线AB、AC,切点分别为B、C,⊙O的直径BD为6,连结CD、AO. (1)求证:CD∥AO; (2)设CD=x,AO=y,求y与x之间的函数关系式,并写出自变量x的取值范围; (3)若AO+CD=11,求AB的长. B

3.如图,A 、B 两点的坐标分别是(x 1,0)、(x 2,O),其中x 1、x 2是关于x 的方程x 2 +2x+m-3=O 的两根,且x 1<0

1、已知抛物线)0(22 >--=m m x x y 与y 轴的交于C 点,C 点关于抛物线对称轴的对称点为C ′。 (1)求抛物线的对称轴及C 、C ′的坐标(可用含m 的代数式表示); (2)如果点Q 在抛物线的对称轴上,点P 在抛物线上,以点C 、C ′、P 、Q 为顶点的四边形是平行四边形,求Q 点和P 的坐标(可用含m 的代数式表示); (3)在(2)的条件下,求出平行四边形的周长。 2、如图,抛物线)0(2≠++=a c bx ax y 与x 轴、y 轴分别相交于 A (-1,0)、 B (3,0)、 C (0,3)三点,其顶点为 D . (1)求:经过A 、B 、C 三点的抛物线的解析式; (2)求四边形ABDC 的面积; (3)试判断△BCD 与△COA 是否相似若相似写出证明过程;若不相似,请说明理由. A B D C o x y

中考数学几何综合题汇总.doc

如图 8,在Rt ABC中,CAB 90,AC 3 , AB 4 ,点 P 是边 AB 上任意一点,过点 P 作PQ AB 交BC于点E,截取 PQ AP ,联结 AQ ,线段 AQ 交BC于点D,设 AP x ,DQ y .【2013徐汇】 (1)求y关于x的函数解析式及定义域;( 4 分) (2)如图 9,联结CQ,当CDQ和ADB相似时,求x的值;( 5 分) (3)当以点C为圆心,CQ为半径的⊙C和以点B为圆心,BQ为半径的⊙B相交的另一个交点在边 AB 上时,求 AP 的长.( 5 分) C Q D E A P B (图 8) C Q D E A (图 9) P B C A B (备用图) 【2013 奉贤】如图,已知AB是⊙O的直径,AB=8,点C在半径OA上(点C与点O、A不重合),过点 C作 AB的垂线交⊙ O于点 D,联结 OD,过点 B 作 OD的平行线交⊙ O于点 E、交射 线CD于点 F. (1)若 ⌒ ED BE⌒ ,求∠ F 的度数; (2)设CO x, EF y,写出y 与x之间的函数解析式,并写出定义域;

(3)设点 C 关于直线 OD 的对称点为 P ,若△ PBE 为等腰三角形,求 OC 的长. 第 25 题 【 2013 长宁】△ ABC 和△ DEF 的顶点 A 与 D 重合,已知∠ B = 90 . ,∠ BAC = 30 . , BC=6,∠ FDE = 90 , DF=DE=4. (1)如图①, EF 与边 、 分别交于点 ,且 . 设 DF a ,在射线 上取 AC AB G 、H FG=EH DF 一点 P ,记: DP xa ,联结 CP. 设△ DPC 的面积为 y ,求 y 关于 x 的函数解析式,并写 出定义域; (2)在( 1)的条件下,求当 x 为何值时 PC // AB ; ( 3)如图②,先将△ DEF 绕点 D 逆时针旋转,使点 E 恰好落在 AC 边上,在保持 DE 边与 AC 边完 全重合的条件下, 使△ DEF 沿着 AC 方向移动 . 当△ DEF 移动到什么位置时, 以线段 AD 、FC 、BC 的长度为边长的三角形是直角三角形. 图① 图② 【 2013 嘉定】已知 AP 是半圆 O 的直径,点 C 是半圆 O 上的一个动点 (不与点 A 、P 重合),联结 AC ,以直线 AC 为对称轴翻折 AO ,将点 O 的对称点记为 O 1 ,射线 AO 1 交半圆 O 于 点 B ,联结 OC . (1)如图 8,求证: AB ∥ OC ; (2)如图 9,当点 B 与点 O 1 重合时,求证: AB CB ;

中考数学综合练习题

42.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连结AF,BE相交于点P (1)若AE=CF, ①求证:AF=BE,并求∠APB的度数; ②若AE=2,试求AP?AF的值; (2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径的长. 43.合作学习 如图,矩形ABOD的两边OB,OD都在坐标轴的正半轴上,OD=3,另两边与反比例函数 的图象分别相交于点E,F,且DE=2,过点E作EH⊥x轴于点H,过点F作FG⊥EH 于点G。回答下列问题: ①该反比例函数的解析式是什么? ②当四边形AEGF为正方形时,点F的坐标是多少? (1)阅读合作学习内容,请解答其中的问题; (2)小亮进一步研究四边形AEGF的特征后提出问题:“当AE>EG时,矩形AEGF与矩形DOHE能否全等?能否相似?” 针对小亮提出的问题,请你判断这两个矩形能否全等?直接写出结论即可;这两个矩形能否相似?若能相似,求出相似比;若不能相似,试说明理由. 44.九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲乙两组,进行了四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘 制成如下统计图. 根据统计图,解答下列问题: (1)第三次成绩的优秀率是多少?并将条形统计图补充完整;

(2)已求得甲组成绩优秀人数的平均数,方差,请通过计算说明,哪一组成绩优秀的人数较稳定? 45.一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式进行拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人? (2)若用餐的人数有90人,则这样的餐桌需要多少张? 46.在棋盘中建立如图所示的直角坐标系,三颗棋子A,O,B的位置如图,它们的坐标分别是(-1,1),(0,0)和(1,0). (1)如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴; (2)在其它格点位置添加一颗棋子P,使A,O,B,P成为一个轴对称图形,请直接写出棋子P的位置的坐标(写出2个即可). 47.如图,在平面直角坐标系中,A是抛物线上的一个动点,且点A在第一象限内.AE⊥轴于点E,点B坐标为(0,2),直线AB交轴于点C,点D与点C关于轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为,△BED的面积为 .

一次函数的与几何图形综合的题目(含答案)

一次函数与几何图形综合专题讲座 思想方法小结 : (1)函数方法. 函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题. (2)数形结合法. 数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用. 知识规律小结 : (1)常数k ,b 对直线y =kx +b (k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交; 当b =0时,直线经过原点; 当b ﹤0时,直线与y 轴的负半轴相交. ②当k ,b 异号时,即-k b >0时,直线与x 轴正半轴相交; 当b =0时,即- k b =0时,直线经过原点; 当k ,b 同号时,即-k b ﹤0时,直线与x 轴负半轴相交. ③当k >O ,b >O 时,图象经过第一、二、三象限; 当k >0,b =0时,图象经过第一、三象限; 当b >O ,b <O 时,图象经过第一、三、四象限; 当k ﹤O ,b >0时,图象经过第一、二、四象限; 当k ﹤O ,b =0时,图象经过第二、四象限;

当b <O ,b <O 时,图象经过第二、三、四象限. (2)直线y =kx +b (k ≠0)与直线y =kx (k ≠0)的位置关系. 直线y =kx +b (k ≠0)平行于直线y =kx (k ≠0) 当b >0时,把直线y =kx 向上平移b 个单位,可得直线y =kx +b ; 当b ﹤O 时,把直线y =kx 向下平移|b |个单位,可得直线y =kx +b . (3)直线b 1=k 1x +b 1与直线y 2=k 2x +b 2(k 1≠0 ,k 2≠0)的位置关系. ①k 1≠k 2?y 1与y 2相交; ②?? ?=≠2 12 1b b k k ?y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2) ; ③???≠=21 21,b b k k ?y 1与y 2平行; ④?? ?==2 121, b b k k ?y 1与y 2重合. 例题精讲: 1、直线y =-2x +2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC =OB (1) 求AC (2) 在OA 的延长线上任取一点P ,作PQ ⊥BP ,交直线AC 于Q ,试探究BP 与PQ 的数量关系, 并证明你的结论。 (3) 在(2)的前提下,作PM ⊥AC 于M ,BP 交AC 于N ,下面两个结论:①(MQ +AC )/PM x y

初三数学代数几何综合题

代数几何综合题 【题型特征】代数、几何知识相结合的综合题是以几何知识为主体,以代数知识为工具(背景),来确定图形的形状、位置、大小(坐标)的问题.解答时往往需要从代数几何的结合点或在几何图形中寻找各元素之间的数量关系或在代数条件中探讨各个量的几何模型,进行数与形之间的互相转化,使问题得到解决. 为了讲解方便,我们将代数几何综合题按题目叙述的背景分为:坐标系、函数为背景的代数几何综合题和以几何图形为背景的代数几何综合题. 【解题策略】几何图形为背景的代数几何综合题,建立函数表达式的常见思路是:利用图形的面积公式建立函数表达式;或利用勾股定理或解直角三角形知识建立函数表达式;或利用相似三角形的线段成比例建立函数表达式. 类型一坐标系、函数为背景 典例1(2015·湖南怀化)如图(1),在平面直角坐标系中,AB=OB=8,∠ABO=90°,∠yOC=45°,射线OC以每秒2个单位长度的速度向右平行移动,当射线OC经过点B时停止运动,设平行移动x秒后,射线OC扫过Rt△ABO的面积为y. (1)求y与x之间的函数表达式; (2)当x=3秒时,射线OC平行移动到O'C',与OA相交于点G,如图(2),求经过G,O,B三点的抛物线的表达式; (3)现有一动点P在(2)中的抛物线上,试问点P在运动过程中,是否存在三角形POB的面积S=8的情况?若存在,求出点P的坐标,若不存在,请说明理由. (1)

(2) 【全解】 (1)∵AB=OB,∠ABO=90°, ∴△ABO是等腰直角三角形. ∴∠AOB=45°. ∵∠yOC=45°, ∴∠AOC=(90°-45°)+45°=90°. ∴AO⊥CO. ∵C'O'是CO平移得到, ∴AO⊥C'O'. ∴△OO'G是等腰直角三角形. ∵射线OC的速度是每秒2个单位长度, ∴OO'=2x. ∴其以OO'为底边的高为x. ∴点G的坐标为(3,3). 设抛物线表达式为y=ax2+bx,

中考数学压轴题精选(几何综合题)

中考数学压轴题(几何综合题) 1、如图1,△ABC中,∠ACB=90°,AC=4厘米,BC=6厘米,D是BC的中点.点E从A 出发,以a厘米/秒(a>0)的速度沿AC匀速向点C运动,点F同时以1厘米/秒的速度从C出发,沿CB匀速向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,过点E作AC的垂线,交AD于点G,连接EF,FG.设它们运动的时间为t秒(t>0).(1)当t=2时,△ECF∽△BCA,求a的值; (2)当a=1 2 时,以点E、F、D、G为顶点的四边形是平行四边形,求t的值; (3)当a=2时,是否存在某个时间,使△DFG是直角三角形?若存在,请求出t的值; 若不存在,请说明理由. 解:(1)∵t=2,∴CF=2厘米,AE=2a厘米, ∴EC=(4-2a ) 厘米. ∵△ECF∽△BCA.∴EC CF CB AC = ∴422 64 a - =.∴ 1 2 a=. (2)由题意,AE=1 2 t厘米,CD=3厘米,CF=t厘米. ∵EG∥CD,∴△AEG∽△ACD.∴EG AE CD AC =, 1 2 34 t EG =.∴EG= 3 8 t. ∵以点E、F、D、G为顶点的四边形是平行四边形,∴EG=DF. 当0≤t<3时,3 3 8 t t =-, 24 11 t=. 当3<t≤6时,3 3 8 t t=-, 24 5 t=. 综上 24 11 t=或 24 5 (3)由题意,AE=2t厘米,CF=t厘米,可得:△AEG∽△ACD AG=5 2 t厘米,EG= 3 2 t,DF=3-t厘米,DG=5- 5 2 t(厘米). G D B A C F E (第27题) D B A C 备用图 图1

初三数学综合题专项训练

A B C D E F G 初三数学简答题专项训练1 班级 学号 姓名 得分 1、如图,△ABC 中,∠ABC =90°,BD ⊥AC 于D ,CE 平分∠ACB ,FG//AC 交BC 于G . 求证:(1)△EBD ∽△GCD ;(2)ED ⊥DG . 2、如图,在△ABC 中,AB =8,BC =16,AC =12,AD//BC ,点E 在AC 边上,∠DEA =∠B ,DE 的延长线交BC 边于F . (1)求DF 的长;(2) 设DE =x ,BF=y ,求y 与x 之间的函数解析式,并写出定义域. 3、如图,矩形ABCD 中,AB = 4,BC = 3,E 在边CD 上(与点C 、D 不重合),AF ⊥AE 交边CB 的延长线于F ,联结EF ,交边AB 于点G .设DE = x ,BF = y . (1)求y 关于x 的函数解析式,并写出函数的定义域;(2)如果AD = BF ,求证:△AEF ∽△DEA ; (3)当点E 在边CD 上移动时,△AEG 能否成为等腰三角形?若能,求出DE 的长;若不能,说明理由. 初三数学简答题专项训练2 G C B E A F E F D C B A

班级 学号 姓名 得分 4、如图,△ABC 中,AB =6,BC =4,D 、E 分别在边BC 、BA 的延长线上,∠ADC =∠BAC ,∠E =∠DAC . (1)设AC =x ,DE =y ,求y 关于x 的函数解析式,并写出定义域; (2)△AED 能否与△ABC 相似?如果能够,请求出cos B 的值;如果不能,请说明理由. 5、已知A (6,0),B (0,8),C (-4,0). M 从点C 出发,沿CA 方向以每秒2个单位的速度运动,点N 从点A 出发,沿AB 方向以每秒5个单位的速度运动. MN 交y 轴于P . 两点同时开始出发,当M 到达点A 时,运动停止. 设运动时间为t 秒. O 为原点. (1)当t 为何值时,MN ⊥AB ; (2)在点M 从点C 到点O 的运动过程中(不包括O 点),PN MP 是否为定值,若是,请求出这个定值;反之,请说明理由;(3)在整个运动过程中,△BPN 是否可能为等腰三角形?若能,求出相应的t 的值;反之,请说明理由. 6、如图1,△ABC 中,AI 、BI 分别平分∠BAC 、∠ABC . CE 平分∠ACD ,交BI 延长线于E ,联结CI . 设∠BAC =2α。 (1)用α表示∠BIC 和∠E ,那么∠BIC =_______ ,∠E =_______; (2)若AB =1,且△ABC 与△ICE 相似,求AC 长; (3)如图2,延长AI 交EC 延长线于F . 当△ABC 形状、大小变化时,写出并证明图中始终与△ABI 相似的三角形. 初三数学简答题专项训练3 班级 学号 姓名 得分 A B D C E I 图1 F A B D C E I 图2 A B C D E

中考数学代数几何综合题2

中考数学代数几何综合题2 Ⅰ、综合问题精讲: 代数几何综合题是初中数学中覆盖面最广、综合性最强的题型,近几年中考试题中的综合题大多以代数几何综合题的形式显现,其解题关键点是借助几何直观解题,运用方程、函数的思想解题,灵活运用数形结合,由形导数,以数促形,综合运用代数和几何知识解题. Ⅱ、典型例题剖析 【例1】(2005,温州,12分)如图,已知四边形ABCD 内接于⊙O,A 是BDC 的中点,AE⊥AC 于A ,与⊙O 及CB 的延长线分别交于点F 、E ,且BF AD =,EM 切⊙O 于M 。 ⑴ △ADC∽△EBA ;⑵ AC2=1 2 BC·CE; ⑶假如AB =2,EM =3,求cot∠CAD 的值。 解:⑴∵四边形ABCD 内接于⊙O,∴∠CDA=∠ABE, ∵BF AD =,∴∠DCA=∠BAE, ∴△CAD∽△AEB ⑵ 过A 作AH⊥BC 于H(如图) ∵A 是BDC 中点,∴HC=HB =1 2 BC , ∵∠CAE=900,∴AC 2 =CH·CE=12 BC·CE ⑶∵A 是BDC 中点,AB =2,∴AC=AB =2, ∵EM 是⊙O 的切线,∴EB·EC=EM 2 ① ∵AC 2 =12 BC·CE,BC·CE=8 ② ①+②得:EC(EB +BC)=17,∴EC 2 =17 ∵EC 2 =AC 2 +AE 2 ,∴AE=17-22=13 ∵△CAD∽△ABE,∴∠CAD=∠AEC, ∴cot∠CAD=cot∠AEC =AE AC =13 2 点拨:此题的关键是树立转化思想,将未知的转化为已知的.此题表现的专门突出.如,将∠CAD 转化为∠AEC 就专门关键. 【例2】(2005,自贡)如图 2-5-2所示,已知直线y=2x+2分 别与x 轴、y 轴交于点A 、B ,以线段AB 为直角边在第一象限内 作等腰直角△ABC ,∠BAC=90○ 。过C 作CD ⊥x 轴,D 为垂足. (1)求点 A 、B 的坐标和AD 的长; (2)求过B 、A 、C 三点的抛物线的解析式。

二次函数与几何综合(有答案)中考数学压轴题必做(经典)

二次函数与几何综合
题目背景
07 年课改后,最后一题普遍为抛物线和几何结合(主要是与三角形结合)的 代数几何综合题,计算量较大。几何题可能想很久都不能动笔,而代数题则可以 想到哪里写到哪里,这就让很多考生能够拿到一些步骤分。因此,课改之后,武 汉市数学中考最后一题相对来说要比以前简单不少,而这也符合教育部要求给学 生减轻负担的主旨,因此也会继续下去。要做好这最后一题,主要是要在有限的 时间里面找到的简便的计算方法。要做到这一点,一是要加强本身的观察力,二 是需要在平时要多积累一些好的算法,并能够熟练运用,最后就是培养计算的耐 心,做到计算又快又准。
题型分析
题目分析及对考生要求 (1)第一问通常为求点坐标、解析式:本小问要求学生能够熟练地掌握待定系 数法求函数解析式,属于送分题。 (2)第二问为代数几何综合题,题型不固定。解题偏代数,要求学生能够熟练 掌握函数的平移,左加右减,上加下减。要求学生有较好的计算能力,能够把题 目中所给的几何信息进行转化,得到相应的点坐标,再进行相应的代数计算。 (3)第三问为几何代数综合,题型不固定。解题偏几何,要求学生能够对题目 所给条件进行转化,合理设参数,将点坐标转化为相应的线段长,再根据题目条 件合理构造相似、全等,或者利用锐角三角函数,将这些线段与题目构建起联系, 再进行相应计算求解,此处要求学生能够熟练运用韦达定理,本小问综合性较强。
在我们解题时,往往有一些几何条件,我们直接在坐标系中话不是很好用, 这时我们需要对它进行相应的条件转化,变成方便我们使用的条件,以下为两种 常见的条件转化思想。 1、遇到面积条件:a.不规则图形先进行分割,变成规则的图形面积;b.在第一 步变化后仍不是很好使用时,根据同底等高,或者等底同高的三角形面积相等这 一性质,将面积进行转化;c.当面积转化为一边与坐标轴平行时,以这条边为底, 根据面积公式转化为线段条件。 2、遇到角度条件:找到所有与这些角相等的角,以这些角为基础构造相似、全 等或者利用锐角三角函数,转化为线段条件。
二次函数与三角形综合
【例1】. (2012 武汉中考)如图 1,点 A 为抛物线 C1:y= x2﹣2 的顶点,点 B 的坐标为(1,
0)直线 AB 交抛物线 C1 于另一点 C

中考数学几何综合题汇总

如图8,在ABC Rt ?中,?=∠90CAB ,3=AC ,4=AB ,点P 是边AB 上任意一点,过点P 作AB PQ ⊥交BC 于点E ,截取AP PQ =,联结AQ ,线段AQ 交BC 于点D ,设x AP =,y DQ =.【2013徐汇】 (1)求y 关于x 的函数解析式及定义域; (4分) (2)如图9,联结CQ ,当CDQ ?和ADB ?相似时,求x 的值; (5分) (3)当以点C 为圆心,CQ 为半径的⊙C 和以点B 为圆心,BQ 为半径的⊙B 相交的另一 个交点在边AB 上时,求AP 的长. (5分) 【2013奉贤】如图,已知AB 是⊙O 的直径,AB =8, 点C 在半径OA 上(点C 与点O 、A 不重合),过点C 作AB 的垂线交⊙O 于点D ,联结OD ,过点B 作OD 的平行线交⊙O 于点E 、交射线CD 于点F . (1)若 ,求∠F 的度数; (2)设,,y EF x CO ==写出y 与x 之间的函数解析式,并写出定义域; (图8) C A B D E P Q C A B D E P Q (图9) (备用图) C A B BE ED =⌒ ⌒

第25题 (3)设点C 关于直线OD 的对称点为P ,若△PBE 为等腰三角形,求OC 的长. 【2013长宁】△ABC 和△DEF 的顶点A 与D 重合,已知∠B =?90. ,∠BAC =?30. ,BC=6,∠ FDE =?90,DF=DE=4. (1)如图①,EF 与边AC 、AB 分别交于点G 、H ,且FG=EH . 设a DF =,在射线DF 上取一点P ,记:a x DP =,联结CP. 设△DPC 的面积为y ,求y 关于x 的函数解析式,并写出定义域; (2)在(1)的条件下,求当x 为何值时 AB PC //; (3)如图②,先将△DEF 绕点D 逆时针旋转,使点E 恰好落在AC 边上,在保持DE 边与AC 边完全重合的条件下,使△DEF 沿着AC 方向移动. 当△DEF 移动到什么位置时,以线段 AD 、FC 、BC 的长度为边长的三角形是直角三角形. 【2013嘉定】已知AP 是半圆O 的直径,点C 是半圆O 上的一个动点(不与点A 、P 重合),联结AC ,以直线AC 为对称轴翻折AO ,将点O 的对称点记为1O ,射线1AO 交半圆O 于点B ,联结OC . (1)如图8,求证:AB ∥OC ; (2)如图9,当点B 与点1O 重合时,求证:CB AB =; 图① 图②

初三中考数学 综合练习题

中考数学试卷 一、选择题(本大题10小题,每小题3分,共30分) 1.(3分)(?广东)在1,0,2,﹣3这四个数中,最大的数是() A.1B.0C.2D.﹣3 考点:有理数大小比较 分析:根据正数大于0,0大于负数,可得答案. 解答:解:﹣3<0<1<2, 故选:C. 点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键. 2.(3分)(?广东)在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D. 考点:中心对称图形;轴对称图形 分析:根据轴对称图形与中心对称图形的概念求解. 解答:解:A、不是轴对称图形,不是中心对称图形.故此选项错误; B、不是轴对称图形,也不是中心对称图形.故此选项错误; C、是轴对称图形,也是中心对称图形.故此选项正确; D、是轴对称图形,不是中心对称图形.故此选项错误. 故选C. 点评:此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合. 3.(3分)(?广东)计算3a﹣2a的结果正确的是() A.1B.a C.﹣a D.﹣5a 考点:合并同类项. 分析:根据合并同类项的法则,可得答案. 解答:解:原式=(3﹣2)a=a, 故选:B. 点评:本题考查了合并同类项,系数相加字母部分不变是解题关键. 4.(3分)(?广东)把x3﹣9x分解因式,结果正确的是() A.x(x2﹣9)B.x(x﹣3)2C.x(x+3)2D.x(x+3)(x﹣3) 考点:提公因式法与公式法的综合运用. 分析:先提取公因式x,再对余下的多项式利用平方差公式继续分解.

代数几何综合题含答案

代数几何综合题 1、如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (x ,0) ()x <0,连结BP ,过P 点作PC PB ⊥交过点A 的直线a 于点C (2,y ) (1)求y 与x 之间的函数关系式; (2)当x 取最大整数时,求BC 与PA 的交点Q 的坐标。 2.如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO. (1)求证:CD ∥AO ; (2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)若AO +CD =11,求AB 的长. 3.如图,A 、B 两点的坐标分别是(x 1,0)、(x 2,O),其中x 1、x 2是关于x 的方程x 2+2x+m -3=O 的两根,且x 1<0--=m m x x y 与y 轴的交于C 点,C 点关于抛物线对称轴的对称点为C ′。 (1)求抛物线的对称轴及C 、C ′的坐标(可用含m 的代数式表示); (2)如果点Q 在抛物线的对称轴上,点P 在抛物线上,以点C 、C ′、P 、Q 为顶点的四边形是平行四边形,求Q 点和P 的坐标(可用含m 的代数式表示); (3)在(2)的条件下,求出平行四边形的周长。 B

初中数学中考几何综合题[1]

页眉内容 中考数学复习--几何综合题 Ⅰ、综合问题精讲: 几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力,这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.解几何综合题,一要注意图形的直观提示;二要注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础;同时,也要由未知想需要,选择已知条件,转化结论来探求思路,找到解决问题的关键. 解几何综合题,还应注意以下几点: ⑴ 注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基 本图形. ⑵ 掌握常规的证题方法和思路. ⑶ 运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用数 学思想方法伯数形结合、分类讨论等). Ⅱ、典型例题剖析 【例1】(南充,10分)⊿ABC 中,AB =AC ,以AC 为直径的⊙O 与AB 相交于点E ,点F 是BE 的中点. (1)求证:DF 是⊙O 的切线.(2)若AE =14,BC =12,求BF 的长. 解:(1)证明:连接OD ,AD . AC 是直径, ∴ AD⊥BC. ⊿ABC 中,AB =AC , ∴ ∠B=∠C,∠BAD=∠DAC. 又∠BED 是圆内接四边形ACDE 的外角, ∴∠C =∠BED . 故∠B =∠BED ,即DE =DB . 点F 是BE 的中点,DF ⊥AB 且OA 和OD 是半径, 即∠DAC =∠BAD =∠ODA . 故OD ⊥DF ,DF 是⊙O 的切线. (2)设BF =x ,BE =2BF =2x . 又 BD =CD =21 BC =6, 根据BE AB BD BC ?=?,2(214)612x x ?+=?. 化简,得 27180x x +-=,解得 122,9x x ==-(不合题意,舍去).

中考数学 相似综合试题及答案

中考数学相似综合试题及答案 一、相似 1.如图,在一个长40 m、宽30 m的矩形小操场上,王刚从A点出发,沿着A→B→C的路线以3 m/s的速度跑向C地.当他出发4 s后,张华有东西需要交给他,就从A地出发沿王刚走的路 线追赶,当张华跑到距B地2 m的D处时,他和王刚在阳光下的影子恰好落在一条直线上. (1)此时两人相距多少米(DE的长)? (2)张华追赶王刚的速度是多少? 【答案】(1)解:在Rt△ABC中: ∵AB=40,BC=30, ∴AC=50 m. 由题意可得DE∥AC, ∴Rt△BDE∽Rt△BAC, ∴ = , 即 = . 解得DE= m. 答:此时两人相距 m. (2)解:在Rt△BDE中: ∵DB=2,DE=, ∴BE=2 m. ∴王刚走的总路程为AB+BE=42 m. ∴王刚走这段路程用的时间为 =14(s). ∴张华用的时间为14-4=10(s), ∵张华走的总路程为AD=AB-BD=40-2=37(m), ∴张华追赶王刚的速度是37÷10≈3.7(m/s). 答:张华追赶王刚的速度约是3.7m/s.

【解析】【分析】(1)在Rt△ABC中,根据勾股定理得AC=50 m,利用平行投影的性质得DE∥AC,再利用相似三角形的性质得出对应边的比相等可求得DE长. (2)在Rt△BDE中,根据勾股定理得BE=2 m,根据题意得王刚走的总路程为42 m,根据时间=路程÷速度求得王刚用的时间,减去4即为张华用的时间, 再根据速度=路程÷时间解之即可得出答案. 2.平面上,Rt△ABC与直径为CE的半圆O如图1摆放,∠B=90°,AC=2CE=m,BC=n,半圆O交BC边于点D,将半圆O绕点C按逆时针方向旋转,点D随半圆O旋转且∠ECD始终等于∠ACB,旋转角记为α(0°≤α≤180°). (1)当α=0°时,连接DE,则∠CDE=________°,CD=________; (2)试判断:旋转过程中的大小有无变化?请仅就图2的情形给出证明; (3)若m=10,n=8,当旋转的角度α恰为∠ACB的大小时,求线段BD的长; (4)若m=6,n= ,当半圆O旋转至与△ABC的边相切时,直接写出线段BD的长. 【答案】(1)90; (2)解:如图3中,

2019届中考数学总复习:代数几何综合问题

2019届中考数学总复习:代数几何综合问题 【中考展望】 代几综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以代几综合题的形式出现.解代几综合题一般可分为“认真审题、理解题意;探求解题思路;正确解答”三个步骤,解代几综合题必须要有科学的分析问题的方法.数学思想是解代几综合题的灵魂,要善于挖掘代几综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程(不等式)的思想等,把实际问题转化为数学问题,建立数学模型,这是学习解代几综合题的关键. 题型一般分为:(1)方程与几何综合的问题;(2)函数与几何综合的问题;(3)动态几何中的函数问题;(4)直角坐标系中的几何问题;(5)几何图形中的探究、归纳、猜想与证明问题. 题型特点:一是以几何图形为载体,通过线段、角等图形寻找各元素之间的数量关系,建立代数方程或函数模型求解;二是把数量关系与几何图形建立联系,使之直观化、形象化.以形导数,由数思形,从而寻找出解题捷径. 解代几综合题要灵活运用数形结合的思想进行数与形之间的相互转化,关键是要从题目中寻找这两部分知识的结合点,从而发现解题的突破口. 【方法点拨】 方程与几何综合问题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明. 函数型综合题主要有:几何与函数结合型、坐标与几何、方程与函数结合型问题,是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象,结合函数的性质、方程等解题.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等. 函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力,有较好的区分度,因此是各地中考的热点题型. 几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力. 1.几何型综合题,常以相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现. 2.几何计算是以几何推理为基础的几何量的计算,主要有线段和弧长的计算,角的计算,三角函数值的计算,以及各种图形面积的计算等. 3.几何论证题主要考查学生综合应用所学几何知识的能力. 4.解几何综合题应注意以下几点: (1)注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系; (2)注意推理和计算相结合,力求解题过程的规范化; (3)注意掌握常规的证题思路,常规的辅助线作法; (4)注意灵活地运用数学的思想和方法. 【典型例题】 类型一、方程与几何综合的问题 1.如图所示,在梯形ABCD中,AD∥BC(BC>AD),∠D=90°,BC=CD=12,∠ABE=45°,若AE =10,则CE的长为_________.

相关主题
文本预览
相关文档 最新文档