当前位置:文档之家› Xenics红外相机在第二近红外小动物活体荧光成像方面的应用-4

Xenics红外相机在第二近红外小动物活体荧光成像方面的应用-4

Xenics红外相机在第二近红外小动物活体荧光成像方面的应用-4
Xenics红外相机在第二近红外小动物活体荧光成像方面的应用-4

Xenics液氮制冷相机在第二近红外小动物活体荧光成像方面的应用

1、应用背景介绍

癌症作为四大不治症之一,一直以来都是全球各国希望攻克的难题。World Cancer2014报告指出:全球范围内每年癌症新增病例高达1400万,死亡病例高达820万,而2010年全球在癌症上投入的资金为1.16万亿美金,为全球生产总值的2%。

影像方法一直以来都是癌症研究、药物开发,以及一般医疗行业重要的辅助研究手段;传统的获取影像的方法主要包括X-Ray成像、可见光成像以及核磁成像。X-Ray 成像主要是通过X光探测器来探测穿透人体组织后的X光影像,主要包括DR、CT、PET 等设备,但是X光成像由于有辐射,对人体有伤害,且这些成像技术的空间分辨率有限,很难实现微小病灶的早期检测,进而影响早期治疗。同样,由于这些设备的时间分辨率有限,不适合外科医生长期手术使用;可见光成像主要通过探测400nm—700nm范围内的可见光来获取影像信息,但是可见光无法获得被探测人和物内部的信息;MRI也是医疗行业一个有力的手段,但是MRI设备拍摄时间长、费用昂贵,无法在术中使用。

图1:CT、PET探测设备

基于上述背景,越来越多的生命科学工作者开始了其他影像方法对癌症检测价值的研究。近红外成像由于能够获得更高的空间分辨率和更高的时间分辨率,获得了越来越多研究者的喜爱。同时,由于更深的探测深度,以斯坦福大学为首的众多科研院所和高

校开始了第二近红外成像的研究。

图2:红外成像探测深度VS 可见光成像探测深度

2、第二近红外荧光成像研究原理

近红外成像,由于时空分辨率都比Micro-CT和PET高,又没有辐射,同时可以在手术中使用等,被广泛研究。近红外成像主要分为第1近红外(0.75um—0.9um)成像和第2近红外(1.1um--1.4um)成像,而第2近红外成像由于可以获得更深的探测深度(1 - 3毫米),更高的空间分辨率(~ 30毫米),更高的时间分辨率(< 200 ms 每帧),更受期待。

图3:可见光成像、红外成像,以及可见光和红外成像融合图

小动物体内的荧光基团,在激光的照射下,会辐射出比激发光波长更长的光子信号,辐射出来的光子穿透组织到达体表,被能够探测到900nm-1700nm近红外谱段的InGaAs材料的液氮制冷相机获取并成像,通过对荧光信息成像的分析,进而获取小动物体内血管、肿瘤等信息;

图4:利用荧光成像原理,对小白鼠的头部进行成像

图5:几种荧光剂的激发、发射图谱

3、成像方案

方案1:采用非晶硅材料的可见光相机和InGaAs材料的红外相机,同时、同视场获取两幅图像,通过软件完成两幅图像的融合。

方案2:采用可见光可扩展短波红外相机,1台相机完成可见光和红外的成像,同时省去了分光装置,避免了由于光路引起的视场不相同问题;由于荧光基团发出的光信号非

常微弱,同时需要穿透小动物的组织,透出皮肤表层的光信号非常微弱,所以在相机的选择上一般为灵敏度较高、暗电流较低的相机产品。

图6:成像方案图

4、结果分析(通过数据分析,证明了方法的有效性)

通过上述方案在第2近红外小动物活体成像,可以获得非常清晰的图像;相比较传统的X-ray、CT、PET、MRI等成像技术,第2近红外相机可以获得更高的时空分辨率;

而相比较第1近红外成像,第2近红外可以获取更深的探测深度。

第2近红外成像同Micro-CT成像对比

第2近红外成像可以看清楚更多的毛细血管,并且可以区分的最细的毛细血管的直径为

35.4um;第2金红外成像所需要的时间为300ms;Micro-CT成像无法看清楚100um

以下的毛细血管,成像时间需要2h;

图7:第2近红外成像同Micro-CT成像对比

第2近红外同第1近红外对比分析:

第2近红外可以探测到更深的深度,同时可以看清楚更细小的毛细血管。

图8:第2近红外成像同第1近红外成像对比

5、关键成像器件

Xenics 公司Cougar 液氮制冷相机Cougar-640,以其77K 的深度制冷温度,优越的低暗噪声,超高的灵敏度,在第二近红外小动物活体成像方面有非常好的发挥;

Cougar-640 综述特性: 相机参数:

关于XenICs:XenICs公司是全球领先的红外相机和探测器的提供商。创建于2000年,从国际知名的IMEC(比利时的微电子研究中心,半导体业界的指标性研究机构)孵化而来,是ISO:9001认证公司,总部位于比利时鲁汶,并在全球各大洲皆有分公司。XenICs公司技术实力雄厚,专注于InGaAs 材料芯片的设计,能根据客户需求进行产品定制。

其产品线丰富,具有短、中、长波红外相机,线阵和面阵红外相机。其中的杰出产品有:中波红外相机Onca系列,深度液氮制冷短波红外相机Cougar 系列,市面上唯一的高速红外相机Cheetah系列,新型T2SL材料、唯一

0.85~2.35μm波段范围的Xeva-2.35相机。

活体动物光学成像系统在活体荧光成像中的应用

活体动物光学成像系统在活体荧光成像中的应用 第一部分技术原理 一、技术简介 随着活体动物光学成像技术在国内外的普及和应用,越来越多的科研人员希望能通过该技术来观察活体动物体内肿瘤细胞的生长以及对药物治疗的反应,希望能观察到荧光标记的多肽、抗体、小分子药物在体内的分布和代谢情况。NightOWL ⅡLB 983 NC320活体动物光学成像系统正是为满足这样的应用需求而设计的。该系统通过荧光光路的特殊设计,实现了对激发光的能量控制和调节,提高了活体荧光成像的稳定性和灵敏度,并且该系统操作简单、费用低廉、不涉及放射性,是不错的进行活体荧光成像的仪器。与传统技术相比,活体荧光成像技术不需要杀死动物,可以对同一个动物进行长时间反复跟踪成像,既可以提高数据的可比性,避免个体差异对试验结果的影响。更重要的是,该技术可以得到直观的成像图片,了解标记物在动物体内的分布和代谢情况,避免了传统的体外实验方法的诸多缺点,特别是在药物制剂学、药物临床前研究中有不可估量的应用前景。 NightOWL ⅡLB 983 NC320活体荧光体内成像技术的基本原理是激发光源通过特殊的光路设计使其能量稳定、强度合适的激发光使荧光基团达到较高的能量水平,然后发射出较长波长的散射光,该散射光可以穿透实验动物的组织并且可由仪器cooling slow scaning CCD以光子数量化检测到光强度,同时反应出标记物的数量。 二、标记原理 活体荧光成像技术有三种标记方法:荧光蛋白标记、荧光染料标记和量子点标记。荧光蛋白适用于标记肿瘤细胞、病毒、基因等。通常使用的是GFP、EGFP、RFP(DsRed)等。荧光染料标记和体外标记方法相同,常用的有Cy3、Cy5、Cy5.5及Cy7,可以标记抗体、多肽、小分子药物等。量子点标记作为一种新的标记方法,是有机荧光染料的发射光强的20倍,稳定性强100倍以上,具有荧光发光光谱较窄、量子产率高、不易漂白、激发光谱宽、颜色可

小动物近红外二区荧光活体影像系统

仪器名称:小动物近红外二区荧光活体影像系统 百购生物网为您提供 型号:Series II 900/1700 简介: 针对传统活体荧光成像技术面临的低组织穿透深度(<3毫米)和低空间分辨率(~毫米)、高自发荧光背景等瓶颈,苏州影睿光学科技有限公司的研究团队历经多年潜心研究,于2012年推出了第一款基于近红外二区荧光(NIR-II,900-1700nm)的小动物活体影像商业化系统(Series II 900/1700),实现了高组织穿透深度(>1.5cm)、高时间分辨率(50ms)和高空间分辨率(25μm)的活体荧光成像。 Series II 900/1700可针对不同的研究体系,在小动物活体水平进行实时、无创、动态、定性和定量的影像研究,包括肿瘤早期检测、肿瘤发展、转移和治疗过程、药物筛选、靶向药物和靶向治疗、干细胞活体示踪及其再生医学研究等。影睿光学拥有世界领先的量子点制备和应用专利技术、活体荧光影像设备,以及强大的数据处理和分析功能,为用户提供完整的科研产品及解决方案。 目前,影睿光学Series II 900/1700系统已成功销往美国埃默里大学,并与美国哈弗大学医学院、美国康奈尔大学、美国埃默里大学、北京大学、复旦大学附属华山医院、南京大学附属鼓楼医院、中国科学院北京动物研究所、中国科学院上海药物研究所等数十家国内外优秀研究机构建立了良好的商业伙伴及合作关系。

技术优势: 荧光活体成像解决方案:近红外二区荧光成像

活体组织对近红外二区荧光(1000-1700nm)具有更低的吸收和散射效应,以及可以忽略的自发荧光背景,因此,在活体荧光成像中,与传统荧光(400-900nm)相比,近红外二区荧光具有更高的穿透深度、更高的时间和空间分辨率,以及更高的信噪比。 近红外二区荧光探针解决方案:Ag2S 量子点

红外成像系统性能参数测试系统

红外成像系统性能参数测试系统 摘要:经过近几十年的发展,红外成像系统经历数次变革,已经由最初的点源和线阵扫描型发展到现在的第三代红外焦平面凝视型系统,目前国外对红外成像系统实验室测试的性能参数多达十六七项。本文对其最主要的信号传递函数(SITF)、噪声等效温差(NETD)和三维噪声模型、调制传递函数(MTF)、最小可分辨温差(MRTD)五个参数进行研究,阐述了它们的定义、物理意义和测量方法。 关键字:红外成像系统性能参数定义测量方法 1 红外成像系统性能参数测试研究的意义 基于光电图像的测量,是以图像的获取及其处理为手段,来确定被测对象的诸如空间、时间、温度、速度以及功能等等有关参数或者特性的一种测量方法。把图像当作检测和传递的手段或载体加以利用,是一种建立在光学成像技术基础上并融入了计算机技术、光电子学数字图像处理技术以及光机电一体化的综合测量技术,其目的在于从图像中提取有用的信号。由于其具有非接触、高灵敏度和高准确度等特点,在信息科学、生命科学、工农业生产和制造业、航空航天、国防军事、科学研究以及人们的日常生活等领域中得到了广泛应用,是当代先进测试技术之一[1]~[3]。 自然界中凡是温度高于绝对零度的物体,就会一直向外辐射能量。通过探测并收集这些辐射能,再现物体的辐射起伏,进而显示出物体的特征信息,这样的成像系统就是红外成像系统。红外成像系统利用景物本身各部分辐射的差异获取被测对象的细节,可以穿透烟、雾、霾以及雪等不利因素以及识别伪装,具有较强的抗干扰和全天时远距离观察目标的能力,这些特点使红外成像系统广泛应用于军事领域。现代军事应用中,要求红外系统不仅具有高灵敏度、大视场、高空间分辨率、高帧频、适装性好的特点,为了适应恶劣的环境条件,还同时要求具有很好的结构稳定性和温度特性等。传统的红外光学系统的结构形式有反射式、折射式和折反式,它们共同的特点是结构简单,这往往不能满足现代军用特殊条件下的高质量的成像要求,需要增加辅助器件,就使得结构变得复杂,更加促使了人们开发新型的结构[4]。 世界各国都以巨额投资竞相开展这一领域的研究工作。经过近几十年的发展,红外成像系统经历数次变革,已经由最初的点源和线阵扫描型发展到现在的第三代红外焦平面(IRFPA)凝视型系统。同时,红外成像系统的性能测试技术也必须适应红外焦平面成像技术的发展,因此,对红外成像系统的性能评估也变

荧光成像的原理和方法

荧光成像的原理与方法 荧光成像在基因组学和蛋白质组学等生物学领域应用中的独特优势: 高灱敏度:灱敏度进超比色法,在大部分应用中其灱敏度近乎放射性同素。 多组样品一次成像:将不同样品(如:对照、处理)通过不同发射波长的荧光素标记(如 Cy3或 Cy5等)可以同时检测多样品荧光信号。 稳定性高:较放射性同位素相比,荧光素标记的抗体、杂交探针、PCR引物等的信号稳定性优势明显,可稳定存在数月以上,这使需要大规模标记并多阵列之间的标准化比较成为了可能。 低毒性成本低:多数情况下,荧光标记和检测的全过程试验用手套即可对实验者提供足够的保护。易于运输和实验后处理,多数情况下实验成本低于放射性同位素。 商业可获得性:许多重要的荧光标记型生物大分子如各种单抗、多抗、CAT等及荧光标记用试剂盒都可以方便获得,同时一些公司提供荧光标记的外包服务。 荧光信号的产生及信号捕获原理: 荧光物质被特定外界能量激发(如激光等高能射线),引起其电子轨道向高能轨道跃迁, 并最终释放能量回归基态的过程中会产生可被检测的荧光信号。当然不是所有的物质都能被激发产生荧光,只有当该物质与激发光具有相同的频率并在吸收该能量后具有高的荧光效率而非将能量消耗于分子间碰撞过程中,其荧光信号才可被光学设备所检测(Fig.1)。 Fig.1 ①激发能②无辐射弛豫能③荧光发射能。三种荧光素(绿色:fluorescein;黄色:DNA-bound TOTO TM;红色:DNA-bound EB)的激发光波长(a)和发射光波长(b)。 荧光成像系统的组件和工作原理: 荧光物质被激发后所发射的荧光信号的强度在一定范围内是与荧光素存在的量成线性关系的,这是荧光成像系统应用于生物学研究的理论基础,激光扫描系统的性能指标主要有:系统分辨率、线性范围、均一性、灱敏度。 为了实现荧光信号的激发、捕获和放大的检测过程,按照顺序荧光成像系统主要包括以下组件:激发源(Excitation resource)、激光传输组件(Light delivery optics)、荧光收集组件(Light collection optics)、发射滤镜(Emission filter)和信号检测放大组件(Detection and amplification)(Fig.2)。在荧光成像系统工作的过程中,每个组件的性能都关系着最终荧光信号的收集和检测结果。

Xenics红外相机在第二近红外小动物活体荧光成像方面的应用-4

Xenics液氮制冷相机在第二近红外小动物活体荧光成像方面的应用 1、应用背景介绍 癌症作为四大不治症之一,一直以来都是全球各国希望攻克的难题。World Cancer2014报告指出:全球范围内每年癌症新增病例高达1400万,死亡病例高达820万,而2010年全球在癌症上投入的资金为1.16万亿美金,为全球生产总值的2%。 影像方法一直以来都是癌症研究、药物开发,以及一般医疗行业重要的辅助研究手段;传统的获取影像的方法主要包括X-Ray成像、可见光成像以及核磁成像。X-Ray 成像主要是通过X光探测器来探测穿透人体组织后的X光影像,主要包括DR、CT、PET 等设备,但是X光成像由于有辐射,对人体有伤害,且这些成像技术的空间分辨率有限,很难实现微小病灶的早期检测,进而影响早期治疗。同样,由于这些设备的时间分辨率有限,不适合外科医生长期手术使用;可见光成像主要通过探测400nm—700nm范围内的可见光来获取影像信息,但是可见光无法获得被探测人和物内部的信息;MRI也是医疗行业一个有力的手段,但是MRI设备拍摄时间长、费用昂贵,无法在术中使用。 图1:CT、PET探测设备 基于上述背景,越来越多的生命科学工作者开始了其他影像方法对癌症检测价值的研究。近红外成像由于能够获得更高的空间分辨率和更高的时间分辨率,获得了越来越多研究者的喜爱。同时,由于更深的探测深度,以斯坦福大学为首的众多科研院所和高

校开始了第二近红外成像的研究。 图2:红外成像探测深度VS 可见光成像探测深度 2、第二近红外荧光成像研究原理 近红外成像,由于时空分辨率都比Micro-CT和PET高,又没有辐射,同时可以在手术中使用等,被广泛研究。近红外成像主要分为第1近红外(0.75um—0.9um)成像和第2近红外(1.1um--1.4um)成像,而第2近红外成像由于可以获得更深的探测深度(1 - 3毫米),更高的空间分辨率(~ 30毫米),更高的时间分辨率(< 200 ms 每帧),更受期待。 图3:可见光成像、红外成像,以及可见光和红外成像融合图 小动物体内的荧光基团,在激光的照射下,会辐射出比激发光波长更长的光子信号,辐射出来的光子穿透组织到达体表,被能够探测到900nm-1700nm近红外谱段的InGaAs材料的液氮制冷相机获取并成像,通过对荧光信息成像的分析,进而获取小动物体内血管、肿瘤等信息;

红外热成像智能视觉监控系统

红外热成像智能视觉监控系统 “红外热成像智能视觉监控系统”是我司采用国内国际先进厂商监控设备并进行二次开发的“智能监控管理系统”。包括“红外热成像防火图像监控系统”、“嵌入式智能视觉分析安保系统”及“防感应雷系统”三部分。 该系统具有热成像防火检测、防盗入侵检测、非法停车检测、遗弃物检测、物品搬移检测、自动PTZ跟踪、徘徊检测等功能模块,可以很好为场区周界防范提供各种监控管理需求。而且产品具有自学习自适应能力,即使是在各种极端恶劣的环境和照明条件下也可以保持极高的性能——在保持%超高检测率的同时,只有极低的误报率(少于1个/天)。 防火检测: 通过红外热成像防火图像监控系统,工作人员在监控中心可对监控点周边半径1公里至5公里或更大的区域(设置动态轮循状态)进行24小时实时动态系统监控,能在第一时间侦察到地表火情或烟雾,并及时触发联动报警。帮助尽早发现灾情或隐患,及时处理可能突发的火灾及其他异常事件,并且为灾情发生时现场指挥提供依据。 防盗检测: 基于嵌入式智能视觉分析技术的监控跟踪系统,具有入侵检测和自动PTZ跟踪功能模块。支持无人值守、自动检测、报警触发录像、短信自动外发报警等功能。 车辆监控: 支持车容车貌监控、场区路线、远程实时WEB监控、监控录像、视频

存储、回放查询等功能。满足中心或其他相关单位对车辆运输的监控管理。防雷系统: 考虑到野外环境下系统运行的稳定性,防止外界强电压、大电流浪涌串入系统,损坏系统的设备,造成系统不能正常运行,我们将从视频信号、RS485控制信号、网络信号、电源四个方面做好防雷保护措施,以保证系统较好的抗干扰性。 系统拓扑图: 技术说明详解: ◆前端热成像仪技术详述 1)红外成像原理 自然界中一切温度高于绝对零度(-273.16摄氏度)的物体都不断地辐射着红外线,这种现象称为热辐射。红外线是一种人眼不可见的光波,无论白天黑夜,物体都会辐射红外线,但红外线不论强弱,人们都看不到。红外热像仪就是利用红外探测器、光学成像物镜接收被测目标的红外辐射信号(一切物体,只要其温度高于绝对零度,就会有红外辐射),经过红外光学系统红外探测器的光敏源上利用电子扫描电路对被测物的红外热像进行扫描转换成电信号,经放大处理、转换或标准视频信号通过电视屏或监测器显示红外热图像。利用这种原理制成的仪器为红外热成像仪。下图为一个典型的红外热成像系统工作原理图: 红外热成像系统,产生的图像是热图像,这种热像图与物体表面的热分布场相对应,实质上是被测目标物体各部分红外辐射的热像分布图,由于信

小动物活体成像技术

小动物活体成像技术 关键词:动物成像分子影像学光学成像2010-04-20 00:00来源:互联网点击次数:5089 1、背景和原理 1999年,美国哈佛大学Weissleder等人提出了分子影像学(molecular imaging)的概念——应用影像学方法,对活体状态下的生物过程进行细胞和分子水平的定性和定量研究。 传统成像大多依赖于肉眼可见的身体、生理和代谢过程在疾病状态下的变化,而不是了解疾病的特异性分子事件。分子成像则是利用特异性分子探针追踪靶目标并成像。这种从非特异性成像到特异性成像的变化,为疾病生物学、疾病早期检测、定性、评估和治疗带来了重大的影响。 分子成像技术使活体动物体内成像成为可能,它的出现,归功于分子生物学和细胞生物学的发展、转基因动物模型的使用、新的成像药物的运用、高特异性的探针、小动物成像设备的发展等诸多因素。目前,分子成像技术可用于研究观测特异性细胞、基因和分子的表达或互作过程,同时检测多种分子事件,追踪靶细胞,药物和基因治疗最优化,从分子和细胞水平对药物疗效进行成像,从分子病理水平评估疾病发展过程,对同一个动物或病人进行时间、环境、发展和治疗影响跟踪。 2、分子成像的优点 分子成像和传统的体外成像或细胞培养相比有着显著优点。首先,分子成像能够反映细胞或基因表达的空间和时间分布,从而了解活体动物体内的相关生物学过程、特异性基因功能和相互作用。第二,由于可以对同一个研究个体进行长时间反复跟踪成像,既可以提高数据的可比性,避免个体差异对试验结果的可影响,又不需要杀死模式动物,节省了大笔科研费用。第三,尤其在药物开发方面,分子成像更是具有划时代的意义。根据目前的统计结果,由于进入临床研究的药物中大部分因为安全问题而终止,导致了在临床研究中大量的资金浪费,而分子成像技术的问世,为解决这一难题提供了广阔的空间,将使药物在临床前研究中通过利用分子成像的方法,获得更详细的分子或基因述水平的数据,这是用传统的方法无法了解的领域,所以分子成像将对新药研究的模式带来革命性变革。其次,在转基因动物、动物基因打靶或制药研究过程中,分子成像能对动物的性状进行跟踪检测,对表型进行直接观测和(定量)分析; 3、分类 分子成像技术主要分为光学成像、核素成像、磁共振成像和超声成像、CT成像五大类。 (1) 光学成像 活体动物体内光学成像(Optical in vivo Imaging)主要采用生物发光(bioluminescence)与荧光(fluorescence)两种技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,而荧光技术则采用荧光报告基团(GFP、RFP, Cyt及dyes等)进行标记。利用一套非常灵敏的光学检测仪器,让研究人员能够直接监控活体生物体内的细胞活动和基因行为。通过这个系统,可以观测活体动物体内肿瘤的生长及转移、感染性疾病发展过程、特定基因的表达等生物学过程。传统的动物实验方法需要在不同的时间点宰杀实验动物以获得数据, 得到多个时间点的实验结果。相比之下,可见光体内成像通过对同一组实验对象在不同时间点进行记录,跟踪同一观察目标(标记细胞及基因)的移动及变化,所得的数据更加真实可信。

使用红外热成像仪检测中存在的问题及对策

使用红外热成像仪检测中存在的问题及对策 开封供电公司变电运行部运行部赵阳 摘要:随着”三集五大”体系建设和变电设备“状态检修”的大力推进,传统的传统的变电设备检修和运行模式发生了根本性改变,能够实时、有效、动态地评价设备健康状况成为确保设备安全、稳定运行的前提,红外成像仪是目前变电运行人员检测运行设备健康状况的有力保证,可以有效的避免因设备发热而造成的非计划停电,为提高供电可靠率做出了贡献 关键词:变电红外热成像仪检测规范存在的问题对策 引言:本文针对当前变电设备红外成像检测技术的应用中存在问题及改进方法进行了思考以及对红外测温未来发展的展望。由于这种技术无需对所测设备停电,即可准确发现安全隐患,所以更要充分利用好、发挥好红外成像检测这一高科技手段,夯实变电设备“状态检修”基础,确保运行的可控、在控、预控。 一目前在使用中所存在的问题: (1)重设备,轻人员,培训工作不到位。 目前,红外成像设备已基本覆盖到重要的生产班组,极大提高了生产一线的技术装备水平,然而,好的检测设备必须得到正确和规范的应用,才可能发挥其最好的性能,不能只重视检测设备的配置,而忽略了对人员进行必要的培训,目前对红外成像仪方面培训的主要方

式还是以产品说明书为主,没有专业的培训教材和权威的培训师资,虽然厂家的技术人员会不定期到各基层单位组织测温培训,但由于运行人员倒班的原因,造成了一线人员缺乏热像仪的操作技能培训,同时,昂贵的机器也需要专业的使用和维护技巧,没有经过专业培训,在使用红外线成像器材时就不可避免要出现:保养不当、充电电池报废、昂贵的红外线镜头被划损等等现象,既造成了经济损失,也影响了测温工作的正常开展。 对策:(1)建立完善的红外成像检测制度,对红外检测工作的准备、风险预控、规范、安全注意事项等进行详细的规定。同时根据各站所管辖的一、二次设备详细列表并建立测温表单,以表单的形式使测温制度和规范落到实处;(2)加强红外热成像仪使用技术的培训,考虑到运行人员工作的特殊性,可以首先由相关厂家的技术人员对各个部门的技术专责进行培训并考核,然后由各个部门的专责负责对各个集控站,变电站站长进行培训,最后由各个集控站,变电站站长在现场向各自站运行人员进行现场培训,由各个部门专责不定期到各站检查培训效果并加以考核,同时将培训和考核结果与每个月的绩效工资挂钩。制定针对红外测温的奖罚措施,这样才能从根本上保证运行人员“愿意学,学的会” 2、重测温,轻分析,技术标准不到位 目前,能够娴熟掌握红外成像分析软件的运行人员寥寥无几,怕麻烦、图省事,直接把测温照片复制粘贴,往缺陷上报系统上一传了

【CN110033491A】一种相机标定方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910299209.5 (22)申请日 2019.04.15 (71)申请人 南京工程学院 地址 211167 江苏省南京市江宁科学园弘 景大道1号 (72)发明人 郝飞 王宗荣 史晶晶 王帆  陈德林 胡运涛 汪海洋 张汝祥  (74)专利代理机构 南京纵横知识产权代理有限 公司 32224 代理人 董建林 范青青 (51)Int.Cl. G06T 7/80(2017.01) (54)发明名称一种相机标定方法(57)摘要本发明公开了相机标定技术领域的一种相机标定方法。旨在解决现有技术中基于一维标定杆标定精度较低,基于三维标定模板标定存在自遮挡问题,基于棋盘格形二维标定模板标定需进行角点检测而无法获取更高的标定精度,基于单个圆形图案作为特征的二维标定模板标定存在“原理性误差”。所述方法包括如下步骤:根据预制的标定模板采集标定模板图像;提取标定模板图像中的特征点,求解相机内参数及镜头畸变参数;根据相机内参数和镜头畸变参数构建多维向量;利用镜头畸变参数对所述标定模板图像进行去畸变处理并构建新的多维变量,直至相邻两次多维变量的欧式距离小于设定值,输出最后一次 相机内参数及畸变参数。权利要求书1页 说明书6页 附图5页CN 110033491 A 2019.07.19 C N 110033491 A

权 利 要 求 书1/1页CN 110033491 A 1.一种相机标定方法,其特征在于,所述方法包括如下步骤: 将预制的标定模板置于待标定相机的视场内,采集标定模板图像;所述标定模板为二维标定模板,标定模板上分布有多个圆形,多个圆形以标定模板的中心点为环心围成多个直径不同的环形阵列; 提取标定模板图像中圆形的特征点,求解相机内参数及镜头畸变参数;所述特征点为圆形的圆心; 根据相机内参数和镜头畸变参数构建多维向量; 利用镜头畸变参数对所述标定模板图像进行去畸变处理,重复相机内参数及畸变参数的求解过程,并构建新的多维变量,直至相邻两次多维变量的欧式距离小于设定值,输出最后一次相机内参数及畸变参数。 2.根据权利要求1所述的相机标定方法,其特征在于,所述特征点的提取方法包括: 对标定模板图像中的圆形进行边缘检测,利用最小二乘法拟合圆环透视投影后产生的两个椭圆; 连接两个椭圆圆心的直线与每个椭圆形成两个交点,采用交比不变原理求解特征点像点的像素坐标。 3.根据权利要求2所述的相机标定方法,其特征在于,所述特征点的提取方法还包括:对标定模板图像进行预处理,所述预处理包括灰度化处理和或滤波处理。 4.根据权利要求1所述的相机标定方法,其特征在于,所述相机内参数包括:主点坐标的两个分量、横向和纵向缩放因子; 所述相机内参数的求解方法包括: 在标定模板图像上标定四个圆形的特征点,利用四个特征点之间的几何约束和定量关系建立关于相机内参数的四元方程组,所述方程组为无约束非线性方程组; 求解无约束非线性方程组,得到相机内参数。 5.根据权利要求1所述的相机标定方法,其特征在于,所述求解镜头两个畸变参数包括如下步骤: 标定一组特征,所述特征包括标定模板图像中满足调和共轭的三个特征点和一个无穷远点; 根据调和比建立关于两个畸变参数的超定方程组; 运用最小二乘法求解超定方程组,得到镜头两个畸变参数。 6.根据权利要求1至中5任一项所述的相机标定方法,其特征在于,所述设定值≤10-5。 2

一种多相机视觉测量系统的全局标定方法

一一第39卷一第5期一吉首大学学报(自然科学版)V o l.39一N o.5一一一一2018年9月J o u r n a l o f J i s h o uU n i v e r s i t y(N a t u r a l S c i e n c eE d i t i o n)S e p t.2018一一 文章编号:10072985(2018)05003808 一种多相机视觉测量系统的全局标定方法? 黄东兆,赵前程 (湖南科技大学机械设备健康维护湖南省重点实验室,湖南湘潭411201) 一一摘一要:提出了一种基于双平面靶标的多相机全局标定方法,要求两靶标之间为刚性联接,绕同一根轴旋转,但它们之间的相对位姿关系可以是未知的.该方法不仅适用于立体视觉测量系统,也适用于基于单目视觉的多相机测量系统,应用于四轮定位仪中多相机相对位姿关系的出厂标定,标定精度满足出厂要求. 关键词:多相机测量系统;全局标定;视觉测量;单目视觉 中图分类号:T P391.7一一一一一一一文献标志码:A D O I:10.13438/j.c n k i.j d z k.2018.05.009 单个相机都受一定的视野范围限制,为了满足高精度二宽视野的工业测量任务,通常需要用多个相机组建一个具有更大视觉空间范围的测量系统.对每个相机进行内参标定,只能在单个相机坐标系下建立视觉测量模型.由于各相机坐标系彼此独立,因此所有相机的测量结果需要统一到其中一个相机坐标系或一个全局坐标系中来表达.统一的过程被称为多相机测量系统位姿关系的全局标定.通常使用 金规校准 (需1个制作精确的标准件作为参考基准)与 银规校准 (需1个经过坐标测量机标定后的标准件作为参考基准)对多相机系统进行全局标定,但在日常搬运中要防止标准件不受损害是相当困难的.因此,张广军[1]提出了使用双电子经纬仪或单电子经纬仪加靶标进行全局标定的方法.该方法精度高,但电子经纬仪价格昂贵,普适性受限.其他一些方法[23]无需贵重仪器,但仅适用于立体视觉测量系统,不能应用于单目视觉系统.多相机测量系统全局标定的本质是确定系统中相机两两之间的相对位姿关系[4],只要任意两相机间的相对位姿关系确定了,就完成了多相机系统的全局标定.笔者提出了一种基于双平面靶标的两相机相对位姿关系的标定方法,在阐述其原理的基础上通过仿真标定与实际标定实验来验证其可行性. 1一基于双平面靶标的两相机间相对位姿关系的标定方法 1.1原理 多相机全局标定装置如图1所示,两靶标之间为刚性联接.两相机的位姿关系的标定如图2所示. 图1一多相机全局标定装置 F i g.1一 G l o b a lM u l t i-C a m e r aC a l i b r a t i o nD e v i c e 图2一两相机间相对位姿关系的标定 F i g.2一T w o-C a m e r aC a l i b r a t i o n f o rR e l a t i v eP o s eR e l a t i o n ?收稿日期:20180322 基金项目:国家自然科学基金资助项目(51345009);湖南省自然科学基金资助项目(13J J4082) 作者简介:黄东兆(1978 ),男,安徽桐城人,湖南科技大学讲师,博士,主要从事机器视觉测量二数控技术等研究.

小动物活体成像技术_浙江大学汇总

小动物活体成像技术 李冬梅万春丽李继承 摘要:随着小动物成像技术的发展,活体小动物非侵袭性成像在临床前研究中发挥着越来越重要的作用。本文围绕五种小动物成像专用设备,综述其特点及主要应用,比较各种设备的优势和劣势,总结小动物活体成像设备的发展趋势。 关键词:小动物;活体;成像技术 Small living animal imaging technology LI Dong-Mei1 WAN Chun-li 2 LI Ji-Cheng 1 (1Medical college of Zhejiang university,2Shanghai sciencelight biology sci&tech Co.,Ltd.)Abstract: With the development of small animal imaging technology, non-invasive imaging in small living animal models has gained increasing importance in pre-clinical research. Based on five kinds of small animal imaging special equipments, this article reviews their characteristics and illustrates their main applications. Meanwhile, this article also compares the advantages and limitations of these equipments and summarizes the trends of small living animal imaging equipments. Key words: small animal;living; imaging technology 动物模型是现代生物医学研究中重要的实验方法与手段,有助于更方便、更有效地认识人类疾病的发生、发展规律和研究防治措施,同时大鼠、天竺鼠、小鼠等小动物由于诸多优势在生命科学、医学研究及药物开发等多个领域应用日益增多。近年来各种影像技术在动物研究中发挥着越来越重要的作用,涌现出各种小动物成像的专业设备,为科学研究提供了强有力的工具。 动物活体成像技术是指应用影像学方法,对活体状态下的生物过程进行组织、细胞和分子水平的定性和定量研究的技术。动物活体成像技术主要分为光学成像(optical imaging)、核素成像(PET/SPECT)、核磁共振成像(magnetic resonance imaging ,MRI)、计算机断层摄影(computed tomography,CT)成像和超声(ultrasound)成像五大类。 活体成像技术是在不损伤动物的前提下对其进行长期纵向研究的技术之一。成像技术可以提供的数据有绝对定量和相对定量两种。在样本中位置而改变,这类技术提供的为绝对定量信息,如CT、MRI和PET提供的为绝对定量信息;图像数据信号为样本位置依赖性的,如可见光成像中的生物发光、荧光、多光子显微镜技术属于相对定量范畴,但可以通过严格设计实验来定量[1]。其中可见光成像和核素成像特别适合研究分子、代谢和生理学事件,称为功能成像;超声成像和CT则适合于解剖学成像,称为结构成像,MRI介于两者之间。 1 可见光成像 体内可见光成像包括生物发光与荧光两种技术[2]。生物发光是用荧光素酶基因标记DNA,利用其产生的蛋白酶与相应底物发生生化反应产生生物体内的光信号;而荧光技术则采用荧光报告基因(GFP、RFP)或荧光染料(包括荧光量子点)等新型纳米标记材料进行标记,利用报告基因产生的生物发光、荧光蛋白质或染料产生的荧光就可以形成体内的生物光源。前者是动物体内的自发荧光,不需要激发光源,而后者则需要外界激发光源的激发[3]。 1.1 生物发光:哺乳动物生物发光,一般是将萤火虫荧光素酶(Firefly luciferase)基因整合到需观察细胞的染色体DNA上,以表达荧光素酶,培养出能稳定表达荧光素酶的细胞株,当细胞分裂、转移、分化时,荧光素酶也会得到持续稳定的表达[4]。标记后的荧光素酶

光声成像与近红外光学成像的完美结合

1,光声成像结合近红外光学,两种成像模式的融合: 近红外超声成像技术的原理:当近红外脉冲激光照射到生物组织上,生物组织吸收光能量而产生热膨胀,在脉冲间隙释放能量发生收缩。伴随着热胀冷缩的过程会产生高频超声波,吸收光能量的多少决定了产生的超声波的强度。因为不同的组织对近红外光的吸收不同,于是就会产生不同强度的超声波,这个技术对于血管成像十分理想,因为血红蛋白是近红外超声成像内源性的造影剂。利用这个技术,在肿瘤学的研究中可以用来区分正常组织和病变组织(因为癌症组织的血管十分丰富)。另外,光声成像技术检测的是超声信号(该技术克服了纯光学成像技术在成像深度与分辨率上不可兼得的不足),反映的是光能量吸收的差异(补充纯超声成像技术在对比度和功能性方面的缺陷),结合近红外光学和超声这两种成像技术各自的优点,能实现对组织体较大深度的高分辨率、高对比度、高灵敏度的结构成像和功能成像的结合,并且能对感兴趣区域(肿瘤部位)做断层成像,效果要优于小动物CT。并且近红外成像由于其穿透力较深和组织背景低等特点,特别适合于体内的成像;并且该系统所配备的近红外实时成像系统,可实时指导小动物乃至大动物的手术操作,在造影剂的辅佐下,可完成靶向部位的探测成像,指导手术的细微操作。因此,该成像平台不仅可以完成无标记的组织结构和功能成像(光声部分),又可在造影剂的增强效果下完成手术的导航(近红外光学部分),是科研定量研究和转化医学的结合产物。近红外超声成像平台是近年来发展起来的一种无损医学成像方法,它结合了纯光学成像的高对比度特性和纯超声成像的高穿透深度特性,可以提供高分辨率和高对比度的组织成像。并可对组织进行3D定量分析,可完成多波长激发的断层扫描,可实时指导动物模型的手术操作过程,它是近几年来新兴的无损医学成像方法,也是动物模型研究中不可或缺的工具之一。 目前应用近红外超声技术的文章多在国际前沿杂志上发表,如nature等,它代表了新型的小动物成像发展的趋势,也给小动物成像带来了技术上的革新。所以能够购买此平台将会大大提高科研技术水平,缩短与国际领先实验室的技术差距。 近红外光学部分在染料、探针或造影剂的选择上与光声成像是兼容的,因为光声成像的波长就是在近红外区域,所以从实验设计上来讲,就能够做到完全与光声成像同步。不需要设计和增加额外的探针或造影剂,就能够实时同步确证的实验,从而节约了研究成本,也能够确保数据对比的可靠性。 近红外光学部分具有实时光学成像的特点,可以持续对研究对象进行成像并录制成连续动态的电影,观察探针或造影剂在体内分布的时间分布。这种实时成像同时还具有开放的特点,即不需要专业暗室,动物也不需要进行麻醉,只要将近红外光学探头对准动物即可。这种简单易用的操作,不需要特殊试验条件的特点使得近红外光学更具有较强的实用性。由于它具有实时成像、实时录影的特点,因此对于某些吸收较快、清除较快的探针具有特别重要的现实意义。任何一个时间段的荧光信号变化都能够被完全捕获下来,不会漏掉某

相机标定方法

摄像机标定的方法和具体的步骤 1.理想的摄像机成像模型 在不考虑畸变的情况下,建立如图所示的摄像机模型。 物体到图像之间的转化,经历了下面四个坐标系的转换: 1.三维世界坐标系 O X Y Z w w w w 这是基于不存在误差的基础上建立的坐标系,是一个理想的模型。这是后两个模型 的参考,可以作为对比的基础。 2.摄像机坐标系Oxyz 该坐标系的原点是摄像机的光心,CCD像平面到原点的距离为f,即理想成像系统 的有效焦距,坐标系的轴与光轴重合。 3.摄像机图像坐标系'O XY O,X轴、该二维坐标系定义在CCD像平面上,其中光轴与像平面的交点定义为原点' Y轴分别平行于x、y轴。 4.计算机像平面坐标系Ouv 在这一坐标系中,原点在图像的左上角。这是一个建立在CCD像平面中的二维坐标 系,u轴和v轴组成坐标系,前者为水平轴,后者为垂直轴,方向向右、向下。 上面我们讨论的四个坐标系中,只有最后一个坐标系的单位是像素。前三者的单位 都是毫米。 一被测点P,其三维坐标为(x,y,z) ,摄像机坐标系为(x,y,z),其经过拍摄后, w w w

在摄像机图像坐标系中的坐标为(X,Y),最后得到计算机像面坐标系的坐标(u,v),这四步的变换过程如下图所示: 一、刚体变换(从世界坐标系到摄像机坐标系) 在刚体变换过程中世界坐标系中的一点到摄像机坐标系中的点,可以由一个旋转矩阵R以及一个平移矩阵t来描述,则存在如下刚体变换公式: 其中R为3X3的旋转矩阵(),t是一个三维平移向量,化为其次坐标形式有:

二、透视投影(相机坐标系到理想图像物理坐标系) 根据针孔模型下透镜成像焦距f,物距u和相距v的关系,以及下图可得:(注意此时的点M是摄像机坐标系的点) y是理想图像物理坐标系坐标)将上面的关系式化成其次坐标式为:(注意:x, u u 三、畸变校正 在上面所有的坐标系公式推导的过程中,我们遵循的是线性摄像机模型,但是实际的摄像机由于镜头制作工艺等原因,使摄像机获取的原始图像是含有畸变的,畸变的图像的像点、投影中心、空间点不存在共线关系,所以如果要想直接运用线性模型来描述三维世界空间的点与像点之间的关系,必须先对畸变的图像进行校正。 畸变模型矫正公式为: y为针孔线性模型计算出来的图像点坐标的理想值,(x,y)是实际的图像点的坐(x,) u u

在活体成像中荧光色素标记细胞的方法举例

本实验技术来源于SciMall科学在线 在活体成像中荧光色素标记细胞的方法举例 活体光学成像(Optical in vivo Imaging)主要采用生物发光(bioluminescence)技术与荧光(fluores cence)技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,今天,生物发光标记物可以标记到任何一种基因上,使对基因功能的全面细致研究成为现实。而荧光技术则采用荧光报告基团(GFP、RF P, Cyt及dyes等)进行标记,利用荧光蛋白在外源光源或是内源发光照射下被激发产生的荧光作为检测信号。研究人员能够利用一套非常灵敏的光学检测仪器直接监控活体生物体内的细胞活动和基因行为。 该技术可被广泛应用于标记细胞或基因的示踪及检测;基因治疗在活体动物体内直接的观察和检测;基因组、蛋白组学、药学及生物技术在活体动物内的研究;药物及化学合成药物的药物代谢及毒理学监测;食品菌落生长成像;皮肤医学中皮肤疾病的体内成像;法医鉴定;微孔板成像,例如:免疫分析、报告基因、基因探针和嗜菌作用分析等;荧光团的体内成像,例如:Alzheimer疾病研究中结合嗪的β-淀粉沉淀物分析;转基因植物中通过报告基因对生理周期节奏的研究;凝胶成像分析等等。 但在研究过程中,研究者们必须事先用基因技术进行荧光素酶基因标记,或者某种荧光报告基团标记。目前活体光学成像系统的知名制造商,如Berthold、GE、Xenogen、Photometrics、Carestream Health 等,不仅为客户提供先进的仪器,也提供具体实验所需的整套解决方案,包括试剂、实验手册、特殊用途的质粒、细胞株、转基因动物、细胞处理和动物处理设施等配套技术支持。出色的多任务处理能力,人性化的整体设计,便捷精确的操作系统,使实验室影像分析领域进入了一个全新的时代 下面以研究干细胞活体移植后的存活率为例,简介一两种内源性荧光色素标记的实验方法,以供参考。 一、用荧光色素DiD标记间充质干细胞 1. 先用胰蛋白酶消化待标记材料,使之成为一定密度的悬浮液; 2. 从细胞培养箱中取出间充质干细胞,吸取含原有培养基的细胞悬浮液进行标记; 3. 用10 ml Mg/Ca-free PBS (不含钙镁离子的磷酸缓冲液)清洗细胞,吸去PBS,钙镁离子会影响胰蛋白

halcon单相机标定详细说明

相机标定 1 相机标定基本原理 1.1 相机成像模型 目前大多数相机模型都是基于针孔成像原理建立的,因为针孔成像原理简单,并且能满足建模的要求。除此之外还有基于应用歪斜光线追踪法和近轴光线追踪法的成像模型[1]。针孔成像虽然已经展示出了相机的成像原理,但是由于针孔成像是理想的物理模型,没有考虑相机本身的尺寸、镜头与相机轴心的偏斜等因素的影响,因此精度很低,不能满足工业机器视觉的要求。为了使相机模型能高精度的反应相机的实际成像过程,需要再针孔成像模型的基础上考虑镜头畸变等的因素。 图1 针孔成像 基于针孔成像原理建立的相机的成像模型,如下图所示。在相机的成像模型中,包含有几个坐标系分别是世界坐标系、相机坐标系、图像坐标系,相机的成像过程的数学模型就是目标点在这几个坐标系中的转化过程。 图2 针孔成像模型 (1)世界坐标系(X w,Y w,Z w),就是现实坐标系,是实际物体在现实世界中的数学描述,是一个三维的坐标空间。 (2)摄像机坐标系(X c, Y c),以针孔相机模型的聚焦中心为原点,以摄像机光学轴线为Z c轴 (3)图像坐标系:分为图像像素坐标系和图像物理坐标系 为了便于数学描述将图像平面移动到针孔与世界坐标系之间。如下图所示。

图3 将相机平面移至针孔与目标物体之间后的模型 1.2 坐标系间转换 从世界坐标系到相机坐标系: P(X c ,Y c ,Z c )=R(α,β,γ)?P(X w ,Y w ,Z w )+T 每一个世界坐标的对象都可以通过旋转和平移转移到相机坐标系上。将目标点旋转θ角度,等价于将坐标系方向旋转θ。如下图所示,是二维坐标的旋转变换,对于三维坐标而言,旋转中绕某一个轴旋转,原理实际与二维坐标旋转相同。如果,世界坐标分别绕X ,Y 和Z 轴旋转α,β,γ,那么旋转矩阵分别为R (α),R (β),R (γ) 图4 坐标旋转原理 R (α)=[10 00cosα ?sinα0sinαcosα] (1-1) R (β)=[cosβ 0sinβ0 10?sinβ 0cosβ ] (1-2)

专家解答体内荧光成像技术难点

专家解答体内荧光成像技术难点 1.如何解决组织吸收问题 来自斯坦福大学放射学系助理教授Jianghong Rao领导的研究小组在进行“Examining protease involvement in tumor metastasis and cell migration”(肿瘤转移与细胞迁移过程中涉及的蛋白酶)这一项研究中遇到了一个难题:利用标准的荧光分子标记观测深部组织,激发荧光的光源必须能穿透具有强吸收力和光散射的组织,并且当标记分子发出光时,也要能通过同样的组织块,从而被检测到。 为了解决这个难题,研究人员采用了一种称为生物发光共振能量转移(Bioluminescence Resonance Energy Transfer,BRET)的方法进行组织成像。不同于利用生物体外激发光源的能量转移方法,BRET主要依赖于生物发光的荧光素酶来提供荧光标记需要的能量转移。一般而言,进行BRET实验的研究人员是将与荧光素酶与荧光蛋白相交联,后者会吸收生物荧光,并重新发出光,但是由于这些BRET交联物的光仍然有大部分会被吸收和散射掉,因此剩下的信号依然很弱。 Rao改进了这一方法,他将荧光素酶交联在quantum dots (QDs),而不是荧光蛋白上,这就将发出的光线变成了依然是长波长,但吸收和散射不强的光。为了能对深部组织进行成像,Rao等人又将luciferase-QD这个结构连接上了一个配体——这个配体与目的分子相连。这样当将底物,复合体(包括荧光素酶的荧光基团)注入小鼠的尾静脉的时候,BRET标记就能发出两种特殊的光:蓝色的生物荧光和红色的quantum-dot光,这样就能更清楚的观测组织。 这里Rao用于解决组织吸收问题的是一类新型的荧光探针,即量子点Qdot或称为半导体纳米晶体,所谓Qdot,指的是准零维(quasi-zero-dimensional)的纳米材料,由少量的原子所构成。粗略地说,量子点三个维度的尺寸都在100纳米(nm)以下,外观恰似一极小的点状物,其内部电子在各方向上的运动都受到局限,所以量子局限效应(quantum confinement effect)特别显著。 这种纳米材料对于体内光学成像来说有着得天独厚的光学特点,这就是吸收性高、量子产量高、发射谱带窄、斯托克司频移大以及光褪色抗性强等,能够发射不同波长光谱,可以为单一波长所激发,适用于在一个实验中检测多靶点,因此非常适合活细胞成像和动态研究,甚至有人认为这种纳米荧光是纳米技术的真正代表,给荧光技术带来革命性的突破。 其具体特点如下: ·QDs的发射谱单一而且很“窄”。其半峰宽(FWHM)大都在40nm以下,更好的可以达到30nm甚至十几个nm,因此,QDs作为探针,可以很方便的区别于背景信号或者其它探针的信号。 ·QDs的激发谱很宽,可以在低于发射谱的广泛区间内任意选择激发波长。这个属性使得对设备(光源)的选择变得更加方便,而不必受限于特殊激光器。QDs的这个特点还可以让我们在同一固定激发波长下,同时激发不同颜色的QDs,从而使需要实时观测多种目标分子运

相关主题
文本预览
相关文档 最新文档