当前位置:文档之家› 2010版pkpm中Satwe参数设置规范对照版(绝对经典)

2010版pkpm中Satwe参数设置规范对照版(绝对经典)

2010版pkpm中Satwe参数设置规范对照版(绝对经典)
2010版pkpm中Satwe参数设置规范对照版(绝对经典)

SATWE设计参数的合理

设计参数的合理选取

1、抗震等级的确定:钢筋混凝土房屋应根据烈度、结构类型和房屋高度的不同分别按《抗规》6.1.2条或《高规》4.8条确定本工程的抗震等级。但需注意以下几点:

(1)上述抗震等级是“丙”类建筑,如果是“甲”、“乙”、“丁”类建筑则需按规范要求对抗震等级进行调整。

(2)接近或等于分界高度时,应结合房屋不规则程度及场地、地基条件慎重确定抗震等级。

(3)当转换层〉=3及以上时,其框支柱、剪力墙底部加强部的抗震墙等级宜按《抗规》6.1.2条或《高规》4.8条查的抗震等级提高一级采用,已为特一级时可不调整。

(4)短肢剪力墙结构的抗震等级也应按《抗规》6.1.2条或《高规》4.8条查的抗震等级提高一级采用……但注意对多层短肢剪力墙结构可不提高。

(5)注意:钢结构、砌体结构没有抗震等级。计算时可选“5”,不考虑抗震构造措施。

2、振型组合数的选取:在计算地震力时,振型个数的选取应是振型参与质量要达到总质量90%以上所需要振型数。但要注意以下几点:

(1)振型个数不能超过结构固有的振型总数,因一个楼层最多只有三个有效动力自由度,所以一个楼层也就最多可选3个振型。如果所选振型个数多于结构固有的振型总数,则会造成地震力计算异常。

(2)对于进行耦联计算的结构,所选振型数应大于9个,多塔结构应更多些,但要注意应是3的倍数。

(3)对于一个结构所选振型的多少,还必需满足有效质量系列化大于90%.在WDISP.OUT文件里查看。

3、主振型的判断;

(1)对于刚度均匀的结构,在考虑扭转耦联计算时,一般来说前两个或前几个振型为其主振型。

(2)对于刚度不均匀的复杂结构,上述规律不一定存在,此时应注意查看SATWE文本文件“周期、振型、地震力”WZQ.OUT.程序输出结果中,给出了输出各振型的基底剪力总值,据此信息可以判断出那个振型是X向或Y向的主振型,同时可以了解没个振型对基底剪力的贡献大小。

4、地震力、风力的作用方向:结构的参考坐标系建立以后,所求的地震力、风力总是沿着坐标系的方向作用。但设计者注意以下几种情况:(1)设计应注意查看SATWE文本文件“周期、振型、地震力”WZQ.OUT.输出结果中给出了地震作用的最大方向是否与设计假定一致,对于大于15度时,应将此方向输入重新计算。

(2)对于有有斜交抗侧力构件的结构,当大于等于15度时,应分别计算各抗力构件方向的水平地震力。此处所指交角是指与设计输入时,所选择坐标系间的夹角。

(3)对于主体结构中存在有斜向放置的梁、柱时,也要分别计算各抗力构件方向的水平地震力。

5、周期折减系数:《高规》4.3.17条规定:当非承重墙体为填充砖墙时,高层建筑结构的计算自振周期折减系数,可按下列规定取值。

(1)框架结构0.6—0.7;框架—剪力墙结构0.7—0.8;剪力墙结构 0.9—1.0;短肢剪力墙结构 0.8—0.9.

(2)请大家注意:周期折减是强制性条文,但减多少则不是强制性条文,这就要求在折减时慎重考虑,既不能太多,也不能太少,因为折减不仅影响结构内力,同时还影响结构的位移。

6、活荷载质量调整系数:该参数即为荷载组合系数。可按《抗规》5.1.3条取值。注意该调整系数只改变楼层质量,不改变荷载总值,即对竖向荷载作用下的内力计算无影响,

7、关于柱长计算系数《混规》7.3.11条规定了三种情况下柱计算长度的选取,设计者应根据实际情况区别对待。

程序默认是7.3.11-2情况。

8、关于阻尼比:不同的结构有不同的阻尼比,设计者应区别对待:钢筋混凝土结构:0.05小于12层钢结构:0.03大于12层钢结构:0.035钢结构:0.05

第一节结构模型输入及参数设置

1、总信息:

1.1水平力与整体坐标系夹角:0

根据抗规(GB50011-2001)5.1.1条规定,“一般情况下,应允许在建筑结构的两个主轴方向分别计算水平地震作用并进行抗震验算,各方向的水平地震作用应由该方向的抗侧力构件承担;有斜交抗侧力构件的结构,当相交角度大于15度时,应分别计算各抗侧力构件方向的水平地震作用”。

当计算地震夹角大于15度时,给出水平力与整体坐标系的夹角(逆时针为正),程序改变整体坐标系,但不增加工况数。同时,该参数不仅对地震作用起

作用,对风荷载同样起作用。

通常情况下,当Satwe文本信息“周期、振型、地震力”中地震作用最大方向与设计假定大于15度(包括X、Y两个方向)时,应将此方向重新输入到该参数进行计算。

注意事项:(1)为避免填入该角度后图形旋转带来的不便,也可以将最不利地震作用方向在多方向水平地震参数中输入。

(2)本参数不是规范要求的,供设计人员选用。

(3)本参数也可以考虑最大风力作用的方向,但需要用户自行设定多个角度进行计算,比较多次计算结构取最不利值。

1.2混凝土容重:26

本参数用于程序近似考虑其没有自动计算的结构面层重量。同时由于程序未自动扣除梁板重叠区域的结构荷载,因而该参数主要近似计算竖向构件的面层重量。

通常对于框架结构取26;框架-剪力墙结构取27;剪力墙结构,取28。

注意事项:如果结构分析是不想考虑混凝土构件自重荷载,可以填0。

1.3钢容重:78

一般情况下取78,当考虑饰面设计时可以适当增加。

1.4裙房层数:按实际填入

1.混凝土高规(JGJ3-2002)第4.8.6条规定:与主楼连为整体的裙楼的

抗震等级不应低于主楼的抗震等级,主楼结构在裙房顶部上下各一层应

适当加强抗震措施。

2.同时抗规(GB50011-2001)6.1.10条条文说明要求:带有大底盘的高层

抗震墙(筒体)结构,抗震墙的底部加强部位可取地下室顶板以上H/8,

向下延伸一层,大底盘顶板以上至少包括一层。裙房与主楼相连时,加

强部位也宜高出裙房一层。

3.本参数必须按实际填入,使程序根据规范自动调整抗震等级,裙房层数

包括地下室层数。

1.5转换层所在层号:按实际填入

该参数为程序决定底部加强部位及转换层上下刚度比的计算和内力调整提供信息。输入转换层号后,程序可以自动判读框支柱、框支梁及落地剪力墙的抗震等级和相应的内力调整。

同时当转换层号大于等于三层时,程序自动对落地剪力墙、框支柱抗震等级增加一级。自动实现0.2Q0或0.3Q0的调整。

本参数必须按实际填入,转换层层号包括地下室层数。指定转换层层号后,框支梁、柱及转换层的弹性楼板还应在特殊构件定义中指定。

1.6嵌固端所在层号

嵌固端确定:

①判断地下一层侧向刚度是否大于地上一层侧向刚度2倍(一般建筑

短向墙长增加有限,较难满足);

②当满足顶板嵌固要求,可指定地下室顶板为嵌固端,此时软件按规

范要求对该层柱、梁内力放大,嵌固端以下柱配筋直接按一层柱纵向钢筋计算值的1.1倍配置;

③满足地下室顶板嵌固要求时,可不将地库建入模型,此时一层与二

层的侧向刚度比不宜小于1.5;

④当不满足地下室顶板嵌固时,可指定地下室底板或地下一层、二层

为嵌固端,此时软件对指定嵌固端及地下室顶板均按嵌固端的要求包络设计;

建议:实际工程中均如实输入地下室层数,嵌固均选为底板(输入1),此时计算结果偏安全,同时设计时构造上仍将地下室顶板(板厚,配筋,混凝土标号)满足嵌固要求;

1.7地下室层数:按实际填入

程序据此信息决定底部加强区范围和内力调整,内力组合计算时,其控制高度扣除了地下室部分;对I、II、III、即抗震结构的底层内力调整系数乘在地下室的上一层;剪力墙的底部加强部位扣除了地下室部分。

程序据该参数扣除地下室的风荷载,并对地下室的外围墙体进行土、水压力作用的组合,有人防荷载时考虑水平人防荷载。

本参数必须按实际填入,当地下室局部层数不同时,以主楼地下室层数输入。

1.8墙元细分最大控制长度:

2.0;

该参数用于墙元细分形成一系列小壳元时,为确保设计精度而给定的壳元边长限值。该限值对精度有影响但不敏感。

对于尺寸较大的剪力墙,可取2.0,对于框支结构和其他的复杂结构、短肢剪力墙等,可取1.0~1.5。

这是剪力墙计算“精度和速度”取舍的一个选择。选择“内部节点”,那么剪力墙侧边的节点将作为内部节点而凝聚掉,但这样速度快,精度稍有降低;

作为“外部节点”,那么剪力墙侧边的节点也将作为出口节点,这样墙元的变形协调性好,计算准确,但速度慢。

所以程序建议规则的结构可以选择“内部节点”,复杂的结构还是选择“外部节点”进行计算。

1.9强制刚性楼板假定:按照需要勾选

计算楼层位移比,结构层间位移比和周期比时应勾选;计算结构内力与配筋计算时不应勾选。

注意事项:对于复杂结构,如不规则坡屋顶、体育馆看台、工业厂房,或者柱、墙不在同一标高,或者没有楼板,楼层开大洞等情况,如果采用强制刚性楼板假定,结构分析会严重失真。对这类结构可以查看位移的<详细输出>,或观察结构的动态变形图,考察结构的扭转效应。

(2)对于错层或带夹层的结构,总是伴有大量的越层柱,如采用强制刚性楼板假定,所有越层柱将受到楼层约束,造成计算结构失真。

1.10强制刚性楼板假定时保留弹性板面外刚度:

PKPM2010强制地下室楼面板(包括自定义的弹性板)为刚性楼板,即只考虑平面内刚度,不考虑平面外刚度,因此在计算地下室墙柱内力时(板柱结构)必须勾选此项;

注意:弹性板6一般用于板柱结构,对普通梁板结构会造成梁上漏载

1.11墙元侧向节点:内部

墙元刚度矩阵凝聚计算的控制参数。对于多层结构或者复杂高层建筑需提高计算精度时,选择出口节点;对于一般高层建筑,可选择内部节点。

选择出口节点,只把因墙元细分而在其内部形成的节点凝聚掉,四边上的节点均作为出口节点,墙元的变形协调性较好,但计算量大;选择内部节点,墙元仅保留上下两边的节点作为出口节点,墙元的其它节点作为内部节点被凝聚掉,故墙元两侧的变形不协调,精度稍差,但效率高。

1.12结构材料信息:钢筋混凝土结构

根据该参数确定地震作用和风荷载计算所遵照的规范。不同结构的地震影响系数取值不同,不同结构体系的风振系数不同,结构基本周期也不同,影响风荷计算。

结构材料信息分应按实填写。其中底框结构按砌体结构填写。

1.13结构体系:按照实际结构体系填写

规范规定不同体系的结构内力调整及配筋要求不同,程序根据该参数对应规范中相应的调整系数。当结构体系定义为短肢剪力墙时,对墙肢高度和厚度之比小于8的短肢剪力墙,程序对其抗震等级自动提高一级。(短肢剪力墙见高规7.1.2)

结构体系应在给出的多种体系中选最接近实际的一种按实填写。

1.14荷载计算信息:模拟施工加载3

程序给出4种模拟施工加载方式,通常情况下应选择模拟施工加载3。

一次性加载:整体刚度一次加载,适用于多层结构、有上传荷载的情况;

模拟施工加载1:整体刚度分次加载,可提高计算效率,但与实际不相符;

模拟施工加载2:整体刚度分次加载,但分析时将竖向构件的刚度放大10倍,是一种近似方法,改善模拟施工加载1的不合理处,是结构传给基础的荷载比较合理;

模拟施工加载3:分层刚度分次加载,比较接近实际情况。

操作要点:

●不计算恒活荷载:仅用于研究分析。

●一次性加载:主要用于多层结构、钢结构和有上传荷载(例如吊柱)的结构。

●模拟施工加载1:适用于多高层结构。

●模拟施工加载2:仅可用于框筒结构向基础软件传递荷载(不要传递刚度)●模拟施工加载3:适用于多高层无吊车结构,更复合工程实际情况,推荐使

用。

1.15风荷载计算信息:计算风荷载

除完全的地下结构,均应计算风荷载;若建筑立面复杂,风荷载计算应选计算水平荷载及特殊风荷载。

1.16地震作用计算信息:计算水平地震作用

一般应计算水平地震作用

规范规定:

●《抗震规范》3.1.2条规定,“抗震设防烈度为6度时,除本规范有具体规

定外,对乙丙丁类建筑可不进行地震作用计算。”

●《抗震规范》5.1.6条规定,“6度时的建筑(不规则建筑及建造于Ⅳ类场地

上较高的高层建筑除外),以及生土房屋和木结构房屋等,应允许不进行截面抗震验算,但应符合有关的抗震措施要求。”“6度时不规则建筑及建造于Ⅳ类场地上较高的高层建筑,7度和7度以上的建筑结构(生土房屋和木结构房屋等除外),应进行多遇地震作用下的截面抗震验算。”

●《抗震规范》5.1.1条规定,“8、9度时的大跨度和长悬臂结构及9度时的

高层建筑,应计算竖向地震作用。”

●《高规》4.3.2条规定,“8度、9度抗震设计时,高层建筑中的大跨度和长

悬臂结构应考虑竖向地震作用;”“9度抗震设计时应计算竖向地震作用。”

●《高规》10.2.6条规定,“8度抗震设计时转换构件尚应考虑竖向地震的影

响。”

●《高规》10.5.2条规定,“8度抗震设计时,连体结构的连接体应考虑竖向

地震的影响。”

程序实现:这是地震作用控制采纳数,程序设有三个选项,其含义如下:●不计算地震作用:即不计算地震作用。

●计算水平地震作用:计算X、Y两个方向的地震作用

●计算水平和竖向地震作用:计算X、Y和Z三个方向的地震作用。

注意事项:8(9)度地区大跨度结构一般指看度不小于24m(18m),长悬臂构件指悬臂板不小于2(1.5)m,悬臂梁不小于6(4.5)m。

1.17结构所在地区:全国。

目前山东省没有地方规定,按国家规范执行。广东、上海等地区的工程按要求选择。

1.18“规定水平力”的确定方式

楼层剪力差方法(规范方法)

2、风荷载信息:

如果“总信息”页中选择了“不计算风荷载”,可以不设置本页参数

2.1地面粗糙度类别:根据具体情况选择

荷载规范(GB5009-2001)、高规(JGJ3-2002)3.2.3条规定:A类:近海海面,海岛、海岸、湖岸及沙漠地区;

B类:指田野、乡村、丛林、丘陵及中小城镇和大城市郊区; C类:指有

密集建筑群的城市市区;

D类:指有密集建筑群且房屋较高的城市市区。

按实际选择,应注意靠近海边的建筑。

2.2修正后的基本风压:按荷载规范

荷载规范(GB5009-2001)7.1.2条规定:一般按照50年一遇的风压采用,但不得低于0.3KN/m2。对于高层建筑、高耸结构及对风荷载敏感的结构,基本风压应适当提高。

对于门式刚架,规程(CECS102:2002)规定基本风压按荷载规范的规定值乘以1.05。

一遇风压值采用;

风荷载作用面的宽度,程序按计算简图的外边线的投影距离计算,因此当结构顶层带多个小塔楼而没有设置多塔楼时,会造成风载过大,或漏掉塔楼的风荷载。

因此一定要进行多塔楼定义,否则风荷载会出现错误。另外,顶层女儿墙高度大于

1米时应修正顶层风载,在程序给出的风荷上加上女儿墙风荷。

这里风荷载的计算是一种简化输入,假定迎风面、背风面受荷面积相同,每层风荷载作用于各刚性块的形心上,楼层所有节点平均分配风荷载,忽略了侧向风影响,也不能计算屋顶的风吸力和风压力。所以,对于平面、立面不规则的结构(如空旷结构、大悬挑结构、体育场馆、较大面积的错层结构、需要计算屋面风荷载的结构等),应考虑特殊风荷载的输入,目的是更真实的反应结构受力的情况。

注意事项:当没有100年一遇的风压资料时,可近似将50年一遇的基本风压乘以1.1增大系数。

2.3结构基本周期:分两次计算 ???

目的是计算风荷载的风振系数。荷载规范(GB5009-2001)7.4.1条:对于高度大于30m且高宽比大于1.5的房屋和基本周期大于0.25s的各种高耸结构及大跨度屋盖结构,均应考虑风压脉动对结构顺风向的风振的影响。

高规(JGJ3-2002)3.2.6条给出近似值:

规则框架T=(0.08-0.10)N;

框剪结构、框筒结构T=(0.06-0.08)N;

剪力墙、筒中筒结构T=(0.05-0.06)N。

N为房屋层数。另外荷载规范7.4.1条,附录E也给出近似计算方法,程序中给出的基本周期是采用近似方法计算得到的。

首先按默认值试算,然后将试算的结构基本周期结果填入,作为本结构的基本周期,并与近似计算值相比较。

2.4风荷载作用下结构的阻尼比:5%

2.5承载力设计时风荷载效应放大系数:

感的高层建筑,承载力设计时应按基本风压的1.1倍采用);

2.6用于舒适度验算的风压: ???

根据《高规》3.7.6条,在高层混凝土建筑大于150m时按10年一遇(无锡:0.30);

2.7考虑风振影响:

大于30m且高宽比大于1.5的房屋和基本自震周期T1大于0.25s的高耸结构以及大跨度屋盖结构,均须勾选此项(《荷载规范》7.4.1);

2.8体型分段数:1

一般情况下分段数为1。高层立面复杂时,可考虑体型系数分段。程序自动扣除地下室高度,不必将地下室单独分段。

2.8体型分段最高层号:结构最高层号

当体型分段数为1时,即结构最高层号。其它情况按分段的最高层号填入。

2.9体型系数:按荷载规范7.3节和高规

3.2.5条

高规(JGJ3-2002)3.2.5条:

1)圆形和椭圆形平面,Us=0.8;

2)正多边形及三角形平面,Us=0.8+1.2/(n的平方根),其中n为正多边形边数;

3)矩形、鼓形、十字形平面Us=1.3;

4)下列建筑的风荷载体形系数Us=1.4;

i:V形、Y形、弧形、双十字形、井字形平面;

ii:L形和槽形平面;

iii:高宽比H/Bmax大于4、长宽比L/Bmax不大于1.5的矩形、鼓形平面。

5)须更细致进行风荷载计算的场合,按附录A采用。

荷载规范(GB5009-2001)7.3.2条和高规(JGJ3-2002)3.2.7条:多栋高层建筑间距较近时,宜考虑风力相互干扰的群体效应。根据国内学者的研究,当相邻建筑物的间距小于3.5倍的迎风面宽度且两建筑物中心线的连线与风向成45度角时,群楼效应明显,其增大系数一般为1.25-1.5,最大到1.8。

目前多栋高层建筑间距较近时,如多塔结构,可取群楼效应增大系数1.25执行。

2.10设缝多塔被风面体型系数:0.5

应用于设缝多塔结构。由于遮挡造成的风荷载折减值通过该系数来指定。当缝很小时,可取0.5。

3、地震信息:

3.1规则性信息:不规则

抗规(GB50011-2001)3.4.2条规定了不规则的类型:

平面不规则的类型:扭转不规则(位移比超标)、凹凸不规则(结构平面凹进大于30%)、楼板局部不连续(楼板的尺寸和平面刚度急剧变化)竖向不规则的类型:侧向刚度不规则(刚度比超标、立面收进超过25%)、竖向抗侧力构件不连续(带转换层结构)、楼层承载力突变(层间受剪承载力小于相邻上一楼层的80%)。

目前该参数对结构计算不起作用。

3.2设计地震分组、设防烈度、场地类别:按实填写

由设计地震分组和场地类别确定场地特征周期,由设防烈度、特征周期、结构自振周期及阻尼比确定结构的水平地震影响系数,从而进行地震作用计算。

3.3框架抗震等级、剪力墙抗震等级、钢框架抗震等级:按规范要求填写

按照抗规(GB50011-2001)6.1.2条或高规(JGJ3-2002)4.8的规定采用。抗震等级确定应注意如下几点:

1)框架-剪力墙结构,当框架承受的地震倾覆力矩大于结构总地震倾覆力矩的50%时,框架部分的抗震等级按框架结构确定;

2)裙房与主楼相连,除应按裙房本身确定外,不应低于主楼的抗震等级(主楼为带转换层高层结构时,裙房的抗震等级按主楼的高度,框架-剪力墙结构的剪力墙查表)。

3)当地下室顶板作为上部结构的嵌固部位时,地下一层的抗震等级应与上部结构相同,地下一层以下可根据情况采用三级或四级。

4)无上部结构的地下室或地下室中无上部结构的部分,可根据情况采用三级或四级。

5)乙类建筑时,应按照提高一度的设防烈度查表确定抗震等级。

设置在底盘屋面的上层塔楼内,否则,应采取增大构件内力,提高抗震等级等有效的抗震措施。

对于复杂高层建筑,因可能带来结构不同部位的抗震等级不同。如带转换层的高层建筑,底部加强部位和非底层加强部位以及地下二层以下抗震等级不一致,程序给出两种指定方式。

但无论采用何种方式,程序以手工修改的抗震等级为最优级别进行计算。

第一种方式:在该两项填入底部加强部位剪力墙和框架的抗震等级,然后在特殊构件补充定义中,人工调整非加强部位(包括地下二层及以下楼层)的抗震等级。此时应注意,填入的抗震等级为按照高规(JGJ3-2002)表4.8.2、4.8.3查出的抗震等级,对于转换层在3层及以上时,其框支柱、剪力墙底部加强部位抗震等级的提高有程序自动完成,不必再人工干预底部加强部位的柱、墙抗震等级。

第二种方式:在该两项填入非底部加强部位剪力墙和框架的抗震等级,然后在特殊构件补充定义中,人工调整加强部位和地下二层及以下楼层的抗震等级,这时注意底部加强部位人工调整的框支梁、柱及剪力墙的抗震等级应为提高以后的最终等级。

另外,对于转换层在3层及以上时底部加强部位的剪力墙的抗震等级,无论程序自动调整还是人工调整,抗震等级提高均指落地剪力墙,非落地剪力墙不必提高,参见高规(JGJ3-2002)10.2.5条条文说明。

短肢剪力墙结构输入剪力墙抗震等级时,应按照剪力墙结构查表给出,程序自动提高一级计算。

3.4 抗震构造措施的抗震等级

该项主要针对抗震措施的抗震等级与抗震构造措施的抗震等级不一致时设定。抗震措施即注意事项的第一条,由抗震设防标准确定;抗震构造措施需根据特殊情况(《抗规》3.3.2、3.3.3)进行调整,否则应选择不改变;

3.5中震(大震)不屈服设计:不选

属于结构性能设计的范围,目前规范没有规定。程序处理的原则为:地震

影响系数按中震(大震)采用;地震分项系数为1.0;取消强柱弱梁、强剪弱弯调整;材料强度取标准值;等等。

不同于中震(大震)弹性设计,这时应采用中震(大震)的地震影响系数,将抗震等级改为四级(不进行相关调整)。

程序实现:该参数用于实现基于性能的抗震设计,选择该项可以对结构进行中震或大震不屈服设计,程序执行以下操作:

(1)取消地震组合内力调整(不做强柱弱梁、强剪弱弯调整)。

(2)荷载作用分项系数取1.0(组合值系数不变)。

γ取1.0。

(3)抗震承载力调整系数

RE

(4)钢筋和混凝土材料强度取标准值。

操作要点:进行中震或大震不屈服设计时选择此项,还应按抗震等级修改(多遇地震影响系数最大值),一般

σ中震取2.8倍小震值,大震取4.5~6倍的

max

小震值。

注意事项:基于性能的抗震设计还有中震(或大震)弹性设计,此时不选择<中震(或大震)的不屈服做结构设计>,但地震最大影响系数取为中震(或大震)值,构件抗震等级取“不考虑“(取消地震组合内力调整,即强柱弱梁、强剪弱弯调整)。

3.6斜交抗侧力构件方向附加地震数及相应角度:按需要填写

这里填入的参数主要是针对非正交的平面不规则结构中,除了两个正交方向外,还要补充计算的方向角数。注意该参数仅对地震作用计算有关,与风荷载计算无关。

时,应计算抗侧力构件方向的水平地震作用。抗侧力构件方向一般就是结构的较大侧向刚度方向,也就是地震力作用不利方向,所以在此应输入沿平面布置中局部柱网的主轴方向。同时,输入时应选择对称的多方向地震,如45度和-45度(逆时针方向为正),因为风荷载计算没有考虑多方向不对称的输入易造成对

称结构的配筋不对称。

相应角度:就是除0、90这两个角度外需要计算的其他角度,个数要与“斜交抗侧力构件方向附加地震数”相同,且不得大于90和小于0。这样程序计算的就是填入的角度再加上0度和90度这些方向的地震力。

操作要点:当建筑结构中有斜角抗侧力构件,且其与主轴方向相交角度大于15°时,应输入斜交构件的数量和角度。

注意事项:(1)程序内定斜交抗侧力构件方向附加地震数取值范围是0~5。初始值为0。

(2)程序计算的斜交地震方向是成组出现的,例如,在<附加地震数>中输入“2”,在<相应角度>中输入“30,60”,则程序自动增加30°和120°、60°和150°两组工况计算水平地震作用。

(3)可以在此输入最大地震作用方向,避免模型旋转带来的不便。

(4)考虑多方向地震作用并没有改变风力的方向。

3.7考虑偶然偏心:勾选

抗规(GB50011-2001)5.2.3条对平面规则的结构采用增大边榀结构地震内力的方式考虑该扭转影响,这对高层建筑不尽合理。根据高规(JGJ3-2002)3.3.3条,由于施工、使用、地震地面运动的扭转分量等因素所引起的偶然偏心的不利影响,计算单向地震作用是,应考虑偶然偏心(5%Li)的影响。

同时,高规(JGJ3-2002)3.3.3条条文说明规定当计算双向地震作用时,可不考虑质量的偶然偏心影响。当设计者同时指定考虑偶然偏心和双向地震作用时,程序仅对无偏心的地震作用效应进行双向地震作用,无论左偏心还是右偏心均不做双向地震作用计算。

因此,无论是否考虑双向地震作用,均应勾选本参数。

3.8双向地震作用:勾选

抗规(GB50011-2001)5.1.1条和高规(JGJ3-2002)3.3.2条规定质量和

刚度明显不对称的结构应计入双向地震作用的影响。位移比超过1.2时,必须考虑双向地震作用。

程序计算双向地震的扭转效应方法见PKPM08用户手册,X、Y方向的地震作用均有不同程度的放大,比高规(JGJ3-2002)5.2.3条的要求严格。

程序隐含“考虑双向地震作用”是不考虑偶然偏心的,自动按二者最不利计算,因此,所有结构计算均应选上考虑双向地震作用。

操作要点:当建筑结构的质量和刚度明显不对称、不均匀时,应选择该项。初始值为不选择

注意事项:(1)不对称不均匀的结构是不规则结构的一种,指同一平面内质量、刚度布置不对称,或虽在本层内对称,但沿高度分布不对称的结构。

(2)从计算公式可以看出,考虑双向水平地震作用,意味着对X和Y方向地震作用予以放大,构件配筋也会相应增大。

(3)允许同时考虑偶然偏心和双向地震作用,程序按规范要求分别计算,不进形叠加,取不利结果。

3.9计算振型个数:15

抗震规范(GB50011-2001)5.2.2条条文说明规定振型个数一般取振型参与质量达到总质量的90%所需的振型数,同时高规(JGJ3-2002)3.3.10条规定不考虑扭转藕联振动的结构,规则结构取3,当建筑较高、结构沿竖向刚度不均匀是可取5-6;高规(JGJ3-2002)3.3.11条规定考虑扭转转藕联振动的结构,一般情况可取9-15,多塔结构每个塔楼的振型数不小于9个。

目前Satwe软件对所有结构均考虑扭转转藕联振动计算。因此振型数按以下原则选取,并同时满足地震作用有效质量系数要大于等于0.9且不小于3个,振型数应为3的倍数。

当结构按侧刚计算时,单塔楼考虑耦联时应大于等于9;复杂结构应大于等于15;多塔结构的振型个数应大于等于9倍的塔楼数。(注意各振型的贡献由于扭转分量的影响而不服从随频率增加面递减的规律)。

当结构按总刚计算时,采用的振型数不宜小于按铡刚计算的2倍,存在长梁或跨层柱时应注意低阶振型可能是局部振型,其阶数低,但对地震作用的贡献却较小。

注意事项:(1)通常振型数取值应不小于3,且为3的倍数。

(2)必须保证有效质量系数大于0.9,否则计算振型数量不够,说明后续振型产生的地震效应被忽略了,地震作用偏小,结构设计不安全。

(3)振型数也不能取的太多,不能多于结构有质量贡献的自由度总数(每个刚性板取3个,每个弹性节点取2个)。例如全部为刚性楼板的结构,振型数不能超过楼层数的3倍,否则可能出现异常。

(4)当结构楼层数较多或结构层刚度突变较大时,如高层、错层、越层、多塔、楼板开大洞、顶部有小塔楼、有转换层、有弹性板等复杂结构,振型数应相对多取

3.10活载折减系数:0.5

按照抗规(GB50011-2001)5.1.3条和高规(JGJ3-2002)3.3.6条执行。

1.楼面活荷载按照实际情况计算时取1.0;按等效均布活荷载计算时。藏书库、

档案库、库房取0.8;硬钩吊车悬吊物重力取0.3,软钩吊车悬吊物重力取0;

其它情况取0.5。

3.11周期折减系数:0.9

周期折减的目的是为了充分考虑非承重填充墙刚度对结构自振周期的影响,因为周期小的结构,其刚度较大,相应吸收的地震力也较大。若不做周期折减,则结构偏于不安全。

列规定取值:框架结构0.6-0.7;框架-剪力墙结构0.7-0.8;剪力墙结构0.9-1.0。

实际取值时可根据填充墙的数量和刚度大小取上限或下限。当非承重墙体为空心砖或砌块时,可按下列规定取值:框架 0.6~0.7;框剪 0.7~0.8 ;框筒0.8~0.9;剪力墙 0.8~1.0;

应注意短肢剪力墙结构的周期折减可按照框架-剪力墙取值。

当结构的第一自振周期T1≤Tg时,不需进行周期折减,因为此时地震影响系数由程序自动取结构自振周期与特征周期的较大值进行计算。

注意事项:

(1)以上折减系数是按实心粘土砖做填充墙确定的,如采用轻质填充材料,折减系数应按实际情况不折减或少折减。

(2)周期折减不改变结构的自振特性,只改变地震影响系数。

3.12结构阻尼比:5%

尼比取0.05;抗规(GB50011-2001)8.2.2条、高层民用钢结构规程(JGJ99-98)

0.035,超过12层的钢结构可采用0.02,罕遇地震分析,阻尼比采用0.05。

操作要点:根据规范规定和工程实际情况输入结构的阻尼比,通常钢筋混凝土结构可取初始值0.05,钢结构可取0.02,混合结构取0.03。

3.13特征周期:按照规范执行。

抗规(GB50011-2001)5.1.4条给出了场地特征周期和水平地震影响系数。场地特征周期根据设计地震分组确定;水平地震影响系数由设防烈度确定。

3.14 用于12层以下规则混凝土框架结构薄弱层验算的地震影响系数最大值

即原版PKPM的“罕遇地震影响系数最大值”,根据抗规5.4.1-1确定,程序

展讯系列各芯片组的参数方案

展讯系列各芯片组的参数

SC6600IGSM/GPRS入门级多媒体基带芯片 SC6600IGSM/GPRS基带芯片是壹款面向入门级多媒体手机市场的具有音乐播放、视频播放和拍照摄像功能的多媒体基带壹体化手机核心芯片。该芯片于提升集成度的同时增强了芯片的可靠性设计,降低了生产成本,且可帮助客户缩短新产品的上市时间。 SC6600I基带芯片图示 SC6600I主要功能 芯片内核?ARM7TDMI?核(主频速度达78MHz) 多媒体支持?内置30万像素数码相机控制器,可直接连接至数字CMOS图像传感器 ?支持MPEG4QVGA@15fps视频播放 ?内置MP3播放器 ?64和弦铃声(MIDI格式) LCD显示功能?内置LCD控制器 ?支持双彩屏 ?支持262KTFT/OLED显示模块 ?支持240x320分辨率LCD显示模式 存储接口?外接存储器接口(SDRAM,NAND,NOR) ?内置NANDflash控制器 ?支持NANDbooting ?支持NAND+SDRAMMCP,SDRAM运行速率可达72MHz 外围设备接口?USB1.1接口 ?MMC和SD卡接口 ?4UART接口(传输速率达1.152Mbps) ?PCM音频接口 ?IrDA(传输速率达115kbps,1.152Mbps) ?SPI接口 ?I2C接口 ?I2S接口 ?GPIO接口 ?支持蓝牙/WLAN/A-GPS接口 ?1.8/3.0SIM卡接口 ?8-channelDMAs ?JTAG接口(用于测试和内部电路校准) ?实时时钟

模拟参数?各种支持IF/NZIF/ZIF架构的RF接口 ?带LDO调节器的芯片集成电源管理 软/硬件支持?GSM/GPRS标准(版本 V8.2.012/1999),GSM850/GSM900/DCS1800/PCS1900 ?GPRS多时隙Class10 ?PTT(PushtoTalk)功能 ?FR,EFR,AMR ?录音和语音识别 ?A5/1和A5/2加密算法 其他功能?工作环境温度:-25至+65摄氏度 ?低耗电设计,输入输出:3.0V,芯片核:1.8V ?12×12mm2265-ballLFBGA封装 SC6600DGSM/GPRS入门级多媒体基带芯片 SC6600DGSM/GPRS基带芯片为客户设计入门级GSM/GPRS多媒体手机提供了高效的解决方案。它将多媒体处理器和电源管理电路集成于4频段GSM/GPRS基带芯片上。该芯片于提升集成度的同时增强了芯片的可靠性设计,降低了生产成本,且可帮助客户缩短新产品的上市时间。 SC6600D基带芯片图示 SC6600D主要功能 芯片内核?ARM9EJ-S?核(主频速率达192MHz) 多媒体支持?内置MPEG-4,2D图像处理器,JAVA加速器 ?内置5M像素数码相机控制器,可直接连接数字CMOS图像传感器 ?内置ISP,支持处理BayerRGB图像数据,支持视频功能 ?支持MIDI/MP3/AAC/AAC+/WMA音频格式 ?支持MPEG4/H.263视频,速率达3Mbpsbit ?电视视频输出(PAL/NSTCTV输出) ?3D立体声环绕效果 LCD显示参数?内置LCD控制器,支持RGB和MCU接口 ?支持双彩屏 ?可支持262KTFTLCD显示模块 ?可支持240x320分辨率LCD显示模块

PKPM SATWE参数设置讲解

SATWE参数设置 一:总信息 1水平力与整体坐标夹角(度):一般为缺省。若地震作用最大的方向大 于15度则回填。 2、混凝土容重(KN/m3):砖混结构25 KN/m3,框架结构26KN/m3。 3、刚才容重(KN/m3):一般情况下为78.0 KN/m3(缺省值)。 4、裙房层数:程序不能自动识别裙房层数,需要人工指定。应从结构最底层起算(包括地下室),例如:地下室3层,地上裙房4层时,裙房层数应填入7。 5、转换层所在层号:应按PMCAD楼层组装中的自然层号填写,例如:地下室3层,转换层位于地上2层时,转换层所在层号应填入5.程序不能自动识别 转换层,需要人工指定。对于高位转换的判断,转换层位置以嵌固端起算,即 以(转换层所在层号-嵌固端所在层号+1)进行判断,是否为3层或3层以上转换。 6、嵌固端所在层号:无地下室时输入1,有地下室时输入(地下室层数 +1)。 7、地下室层数:根据实际情况输入。 8、墙元细分最大控制长度(m):一般为缺省值1。 9、转换层指定为薄弱层:SATWE中转换层缺省不作为薄弱层,需要人工指定。如需将转换层指定为薄弱层,可将此项打勾,则程序自动将转换层号添加 到薄弱层号中,如不打勾,则需要用户手动添加。此项打勾与在“调整信息” 页“指定薄弱层号”中直接填写转换层层号的效果是完全一致的。 10、所有楼层强制采用刚性楼板假定:一般仅在计算位移比和周期比时建 议选择。在进行结构内力分析和配筋计算时不选择。 11、地下室强制采用刚性楼板假定:一般情况不选取,按强制刚性板假定 时保留弹性板面外刚度考虑。特别是对于板柱结构定义了弹性板3、6情况。但已选择对所有楼层墙肢采用刚性楼板假定的话此条无意义。 12、墙梁跨中节点作为刚性楼板从节点:一般为缺省勾选。不勾选的话位 移偏小。 13、计算墙倾覆力矩时只考虑腹板和有效翼缘:应勾选,使得墙的无效翼 缘部分内力计入框架部分,实现框架,短肢墙和普通强的倾覆力矩结果更合理。 14、弹性板与梁变形协调:相当于强制刚性板假定时保留弹性板面外刚度,自动实现梁板边界变形协调,计算结构符合实际受力情况,应勾选。 15、墙元侧向节点信息:这是墙元刚度矩阵凝聚计算的一个控制参数,程 序强制为“出口”,即只把墙元因细分而在其内部增加的节点凝聚掉,四边上 的节点均作为出口节点,使得墙元的变形协调性好,分析结果更符合剪力墙的 实际。 16、结构材料信息:按实际情况填写。 17、结构体系:按实际情况填写。 18、恒活荷载计算信息: 1)一般不允许不计算恒活荷载,也较少选一次性加载模型; 2)模拟施工加载1模式:采用的是整体刚度分层加载模型,该模型应用与各种类型的下传荷载的结构,但不使用与有吊柱的情况;

(完整)参数方程高考真题专题训练

高考真题专题训练——参数方程专题(6.11-6.12) 1、(2012课标全国Ⅰ,理23,10分)在直角坐标系xOy 中,曲线C 1的参数方程为 2cos 22sin x y α α =?? =+?(α为参数)M 是C 1上的动点,P 点满足2OP OM =u u u v u u u u v ,P 点的轨迹为曲线C 2 (Ⅰ)求C 2的方程 (Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3 πθ=与C 1的异于极点的交点 为A ,与C 2的异于极点的交点为B ,求AB . 2、(2012课标全国Ⅱ,理23,10分)已知曲线1C 的参数方程是)(3sin y 2cos x 为参数??? ???==,以坐 标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线2C 的坐标系方程是2=ρ,正方形ABCD 的顶点都在2C 上,且,,,A B C D 依逆时针次序排列,点A 的极坐标为(2,)3π (1)求点,,,A B C D 的直角坐标; (2)设P 为1C 上任意一点,求2 2 2 2 PA PB PC PD +++的取值范围。 3、(2013课标全国Ⅰ,理23,10分)选修4—4:坐标系与参数方程 已知曲线C 1的参数方程为45cos , 55sin x t y t =+??=+?(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴 建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ. (1)把C 1的参数方程化为极坐标方程; (2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).

4,(2013课标全国Ⅱ,理23,10分)已知动点P ,Q 都在曲线C :2cos , 2sin x t y t =??=?(t 为参数)上, 对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点. (1)求M 的轨迹的参数方程; (2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 5、(2014课标全国Ⅰ,理23,12分)已知曲线C :22 149x y +=,直线l :222x t y t =+??=-?(t 为参 数)(Ⅰ)写出曲线C 的参数方程,直线l 的普通方程; (Ⅱ)过曲线C 上任一点P 作与l 夹角为o 30的直线,交l 于点A ,求||PA 的最大值与最小值. 6、(2014课标全国Ⅱ,理23,10分)在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ??∈????. (Ⅰ)求C 的参数方程; (Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.

SATWE参数

1)水平力与整体坐标夹角:采取隐含值0,当大于15°根据《抗规》5.1.1-2重算。 2)混凝土容重:隐含值25。一般按结构类型取值:框架结构25.5;框剪结构26;剪力墙 结构重度27。) 3)钢材容重:隐含值78。 4)裙房层数:根据实际情况。 5)转换层所在层号:按自然层号填输,含地下室的层数。(该指定只为程序决定底部加强 部位及转换层上下刚度比的计算和内力调整提供信息,同时,当转换层号大于等于三层时,程序自动对落地剪力墙、框支柱抗震等级增加一级,对转换层梁、柱及该层的弹性板定义仍要人工指定。) 6)嵌固端所在层号:1:判断地下一层侧向刚度是否大于地上一层侧向刚度2倍,当满足 顶板嵌固要求可指定地下室顶板为嵌固端,此时一层二层侧向刚度比不宜小于1.5;2:当不满足地下室顶板嵌固时,可指定地下室底板或地下一、二层为嵌固端。实际工程中如实输入地下室层数,嵌固均选地板(输入1结果偏安全)。 7)地下室层数:根据实际情况。 8)墙元细分最大控制长度:可取2.0,对于框支结构和其他复杂结构、短肢剪力墙可取 1.0~1.5。 9)弹性板细分最大控制长度: 10)对所有楼层强制采用刚性楼板假定:计算楼层位移比,结构层间位移比和周期比时应勾 选;计算结构内力与配筋计算时不应勾选。 11)地下室强制采用刚性楼板假定:PKPM2010强制地下室楼面板(包括自定义的弹性板)

为刚性楼板.因此必须勾选此项。 12)墙梁跨中节点作为刚性楼板从节点:因此必须勾选此项。 13)计算墙倾覆力矩时只考虑腹板和有效翼缘:默认不勾选。 14)弹性板与梁变形协调:勾选。 1)结构材料信息:据实填写。 2)结构体系:据实填写。 3)恒活荷载计算信息:一次性加载:整体刚度一次加载,适用于多层结构、有上传荷载的 情况;模拟施工加载1:整体刚度分次加载,可提高计算效率,但与实际不相符;模拟施工加载2:整体刚度分次加载,但分析时将竖向构件的刚度放大10倍,是一种近似方法,改善模拟施工加载1的不合理处,是结构传给基础的荷载比较合理;模拟施工加载3:分层刚度分次加载,比较接近实际情况。一次性加载:主要用于多层结构、钢结构和有上传荷载(例如吊柱)的结构。模拟施工加载1:适用于多高层结构。模拟施工加载2:仅可用于框筒结构向基础软件传递荷载(不要传递刚度)模拟施工加载3:适用于多高层无吊车结构,更复合工程实际情况,推荐使用。 4)风荷载计算信息:计算水平风荷载。 5)地震作用计算信息:计算水平和竖向地震作用。《抗规》3.1.2,“抗震设防烈度为6度时, 除本规范有具体规定外,对乙丙丁类建筑可不进行地震作用计算。”《抗规》5.1.6,“6度时的建筑(不规则建筑及建造于Ⅳ类场地上较高的高层建筑除外),以及生土房屋和木结构房屋等,应允许不进行截面抗震验算,但应符合有关的抗震措施要求。”“6度时不规则建筑及建造于Ⅳ类场地上较高的高层建筑,7度和7度以上的建筑结构(生土房屋和木结构房屋等除外),应进行多遇地震作用下的截面抗震验算。”《抗规》5.1.1,“8、9度时的大跨度和长悬臂结构及9度时的高层建筑,应计算竖向地震作用。”《高规》4.3.2,“8度、9度抗震设计时,高层建筑中的大跨度和长悬臂结构应考虑竖向地震作用;”“9度抗震设计时应计算竖向地震作用。”《高规》10.2.6,“8度抗震设计时转换构件尚应考虑竖向地震的影响。”《高规》10.5.2,“8度抗震设计时,连体结构的连接体应考虑竖向地震的影响。”注意事项:8(9)度地区大跨度结构一般指看度不小于24m(18m),长悬臂构件指悬臂板不小于2(1.5)m,悬臂梁不小于6(4.5)m。 6)结构所在地区:全国。 7)规定水平力的确定方式:楼层剪力差方法(规范方法)。

PKPM如何调整参数和选用(完整版)

2010版SATWE计算参数选用 一、2010版计算参数的选用(PKPM及SATWE): 免责声明:炒饭个人总结,仅用作参考。以下内容需与PKPM2010版satwe说明书结合使用。参数在PKPM中如何实现需参考satwe说明书。 1、总信息: A、“水平力与整体坐标夹角”,此参数一般不做修改。而是将周期计算结果中输出的“地震作用最大的方向角”填到“斜交抗侧力构件方向附加地震数,相应角度”。 B、PM里的“混凝土容重”框架取26,剪力墙取27。(现在版本软件PM与SATWE的“混凝土容重”联动),故在PM中布置楼面恒载时一般不勾选“自动计算现浇板厚”,恒载输入数值为“人工计算板自重+装修荷载重”。 C、“钢材容重”暂时默认78,未研究。 D、“裙房层数”此参数仅用来判定底部加强区:即对剪力墙和框剪结构PKPM总是将裙房以上一层作为加强区判定的一个条件。框架结构均可输入0,其他结构未研究。此参数包含地下室层数。(如3层地下室,4层裙房,此参数应输入7。) E“转换层所在层号”含地下室层数,详见2010satwe说明书,未深入研究。 F、“嵌固端所在层数”自然地面为嵌固端时填“1”,地下室顶板作为嵌固端时填“地下室层数+1”。 G、“地下室层数”按实际输入。 H、“墙元细分最大控制长度”取“1”。影响计算精度,对含剪力墙的结构有影响。 I、“对所有楼层强制采用刚性楼板假定”仅在计算位移比和周期比时勾选,其他不勾选。J、“地下室强制采用刚性楼板假定”勾选。 K、“墙梁跨中节点作为刚性楼板从节点”此参数本人尚不能合理选择,只把网上比较后的结果贴出来。勾选该参数后,结构周期减小,连梁内力增大,内力平衡校核轴力。 L、“计算墙倾覆力矩时只考虑腹板和有效翼缘”勾选。对于L型、T型等截面形式,垂直于地震作用方向的墙段称为翼缘,平行于地震作用方向的墙段称为腹板,翼缘可以区分为有效翼缘和无效翼缘两部分。无效翼缘内力计入框架,这对于结构中框架、短肢墙、普通墙的倾覆力矩指标计算,通常更为合理。 M、“弹性板与梁变形协调”勾选。梁细分后弯矩变的平缓,计算结果更加合理。 N、“结构材料信息”如实填写 O、“结构体系”如实填写 P、“恒活荷载计算信息”《PKPM从入门到精通》推荐使用模拟施工加载3。但本人尚未弄明白。 Q、“风荷载计算信息”大部分工程选择计算水平风荷载即可。 R、“地震作用计算信息”一般选择计算水平地震作用。结合抗规5.1.1和高规4.3.2确定是否计算竖向地震作用。高规比抗规对此条的要求严一个等级。 S、“规定水平力”一般选“规范方法”。规范方法适用于大多数结构,节点地震作用CQC组合方法适用于极不规则结构,即楼层概念不清晰,剪力差无法做的结构。 2、风荷载信息: 地震区无论是高层还是多层均应输入风荷载,体形复杂的高层建筑应考虑不同方向风荷载作用,结合“水平力与整体坐标夹角”进行多次计算取大值。 A、“地面粗糙度”简单来说海边A类,郊区B类,城市C类,大城市D。 B“修正后的基本风压”许昌一般建筑取0.4(n=50)。

新版本SATWE前处理参数的设置技巧

水平力与整体坐标夹角:PMCAD模型是否在SATWE模型里旋转,风力迎风面积不是最大需旋转。混凝土容重:剪力墙结构取27,框架结构取26. 裙房层数:裙房屋顶层在SATWE模型中的层号,模型第一层为1,无裙房为0。 转换层所在层号:转换层在模型第一层为1,无转换层为0。 嵌固端所在层号:基础嵌固为1;1层地下室,顶板为嵌固部位,填2. 强制刚性楼板假定:位移结果文件,必须选此项;配筋计算,不能选此项。 强制刚性楼板保留抗弯刚度:一般不选;选此项层间位移角会变小。 墙梁跨中节点作为刚性楼板从节点:默认选,影响连梁剪力,选此项连梁剪力会变小。 恒活荷载计算信息:填“模拟施工加载3”;模型有转换桁架时,还需填 “一次性加载”,否则桁架内力偏小。 “规定水平力”的确定方法:选楼层剪力差方法,抗规P272

(1)注意箍筋强度HPB300,HPB235 (2)墙水平分布筋间距:一般200。 (3)墙竖向分布筋配筋率:填~,影响墙暗柱配筋 (4)结构底部NSW层的墙竖向分布配筋率:填~,影响墙暗柱配筋

(1)修正后的基本风压:一般为50年基本风压,荷载规范修正系数 (2)X,Y结构基本周期:大于相对应的平动系数X>,Y>的周期 振型号周期转角平动系数 (X+Y) 扭转系数 1 ( + ) 2 ( + ) (3)风荷载作用下结构的阻尼比:混凝土,房屋钢结构,钢结构混合结构~ (4)承载力设计时风荷载效应放大系数:高规4.2.2,大于60米,取 (5)舒适度验算风压/阻尼比(%):高规3.7.6 10年一遇风压阻尼比混凝土,混合结构~(6)是否考虑风振: 高层考虑,多层按荷载规范7.4.1高度大于30m且高宽比大于的房屋

2010版PKPM计算参数选用

2010版SATWE计算参数选用 (内部参考资料) 一、2010版计算参数的选用(PKPM及SATWE): 1、总信息:A、“水平力与整体坐标夹角”,该参数为地震力、 风荷载作用方向与整体坐标的夹角。此参数一般情况下不需 要修改,水平力与整体坐标夹角不仅改变地震作用的方向而 且同时改变风荷载作用的方向,如果平面是十字形、L形等 不规则平面建议输入水平力夹角,对比计算结果取最不利 者,其它情况可以将周期计算结果中输出的“地震作用最大 的方向角”填到“斜交抗侧力构件方向附加地震数,相应角 度”。B、PM里的“混凝土容重”一般考虑取25kN/m3,主 要是现浇板重自动计算,进行现浇板配筋采用,而SATWE 里的“混凝土容重”一般考虑取26.5kN/m3,主要是用来计 算结构中的梁、柱、墙等构件自重荷载,考虑抹灰荷载用的 (现在版本软件PM与SATWE的“混凝土容重”是联动)。C、 “裙房层数”“转换层所在层号”均包含地下室层数。“裙房 层数”仅用作底部加强区高度的判断。通过“转换层所在层 号”和“结构体系”两项参数来区分不同类型的带转换层结 构;部分框支剪力墙结构需要同时填上述两项,否则程序不 执行高规的针对部分框支剪力墙结构的规定。“嵌固端所在 层号”注意嵌固端和嵌固端所在层号的区别,举例说明假如 嵌固端为地下室顶板,则嵌固端所在层号为地上一层。理论

上讲嵌固端以下不参与计算(徐培福)。D、“墙元细分最大控制长度”一般控制在1米以内,软件隐含值即为1米,设计上部结构时不允许采用2米,2米只能用在计算位移等参数时采用,配筋及内力只能用1米,尽量细分网格。很长剪力墙无法计算,剪力墙开洞不能盲目,开洞不能留小墙垛,因为墙需剖分,太短墙无法剖分。墙长与厚度之比大于4时,按照墙输入。跨高比大于5的连梁按框架梁输入,不用开洞处理。关于网格剖分对斜板影响,板必须角点共面,如果不共面无法计算,不共面的斜板程序自动去掉,对梁配筋影响较大,注意观察结构轴侧简图,可以加虚梁解决多点不共面问题。“墙元侧向节点信息”程序强制为“出口”节点,内部节点计算结果是结构柔,其与实际不符,“出口”计算结果准确。E、“对所有楼层强制采用刚性楼板假定”和“强制刚性楼板假定时保留弹性板面外刚度”:“对所有楼层强制采用刚性楼板假定”仅用于位移比和周期比计算,在计算内力和配筋时不选择;SATWE对地下室楼层总是强制采用刚性楼板假定;SATWE在进行强制刚性楼板假定时,位于楼面标高处(上下200mm范围内)的所有节点强制从属于同一刚性板;对于跃层柱要用降低标高处理。“强制刚性楼板假定时保留弹性板面外刚度”主要用于板-柱剪力墙体系(弹性板3、6),板-柱剪力墙体系必须勾选;虚梁截面为100x100,虚梁主要是为导荷用的,刚性梁不要定义为100x100,

2010版pkpm中Satwe参数设置规范对照版(绝对经典)

SATWE设计参数的合理 设计参数的合理选取 1、抗震等级的确定:钢筋混凝土房屋应根据烈度、结构类型和房屋高度的不同分别按《抗规》6.1.2条或《高规》4.8条确定本工程的抗震等级。但需注意以下几点: (1)上述抗震等级是“丙”类建筑,如果是“甲”、“乙”、“丁”类建筑则需按规范要求对抗震等级进行调整。 (2)接近或等于分界高度时,应结合房屋不规则程度及场地、地基条件慎重确定抗震等级。 (3)当转换层〉=3及以上时,其框支柱、剪力墙底部加强部的抗震墙等级宜按《抗规》6.1.2条或《高规》4.8条查的抗震等级提高一级采用,已为特一级时可不调整。 (4)短肢剪力墙结构的抗震等级也应按《抗规》6.1.2条或《高规》4.8条查的抗震等级提高一级采用……但注意对多层短肢剪力墙结构可不提高。 (5)注意:钢结构、砌体结构没有抗震等级。计算时可选“5”,不考虑抗震构造措施。 2、振型组合数的选取:在计算地震力时,振型个数的选取应是振型参与质量要达到总质量90%以上所需要振型数。但要注意以下几点: (1)振型个数不能超过结构固有的振型总数,因一个楼层最多只有三个有效动力自由度,所以一个楼层也就最多可选3个振型。如果所选振型个数多于结构固有的振型总数,则会造成地震力计算异常。 (2)对于进行耦联计算的结构,所选振型数应大于9个,多塔结构应更多些,但要注意应是3的倍数。

(3)对于一个结构所选振型的多少,还必需满足有效质量系列化大于90%.在WDISP.OUT文件里查看。 3、主振型的判断; (1)对于刚度均匀的结构,在考虑扭转耦联计算时,一般来说前两个或前几个振型为其主振型。 (2)对于刚度不均匀的复杂结构,上述规律不一定存在,此时应注意查看SATWE文本文件“周期、振型、地震力”WZQ.OUT.程序输出结果中,给出了输出各振型的基底剪力总值,据此信息可以判断出那个振型是X向或Y向的主振型,同时可以了解没个振型对基底剪力的贡献大小。 4、地震力、风力的作用方向:结构的参考坐标系建立以后,所求的地震力、风力总是沿着坐标系的方向作用。但设计者注意以下几种情况:(1)设计应注意查看SATWE文本文件“周期、振型、地震力”WZQ.OUT.输出结果中给出了地震作用的最大方向是否与设计假定一致,对于大于15度时,应将此方向输入重新计算。 (2)对于有有斜交抗侧力构件的结构,当大于等于15度时,应分别计算各抗力构件方向的水平地震力。此处所指交角是指与设计输入时,所选择坐标系间的夹角。 (3)对于主体结构中存在有斜向放置的梁、柱时,也要分别计算各抗力构件方向的水平地震力。 5、周期折减系数:《高规》4.3.17条规定:当非承重墙体为填充砖墙时,高层建筑结构的计算自振周期折减系数,可按下列规定取值。 (1)框架结构0.6—0.7;框架—剪力墙结构0.7—0.8;剪力墙结构 0.9—1.0;短肢剪力墙结构 0.8—0.9.

选修4-4坐标系与参数方程_知识点总结知识讲解

选修4-4坐标系与参数方程_知识点总结

坐标系与参数方程 知识点 (一)坐标系 1.平面直角坐标系中的坐标伸缩变换 设点(,)P x y 是平面直角坐标系中的任意一点,在变换(0):(0) x x y y λλ?μμ'=>?? '=>?g g 的作用下,点 (,)P x y 对应到点(,)P x y ''',称?为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系的概念 (1)极坐标系 如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. 注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系. (2)极坐标 设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ. 一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数. 特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示. 如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.

3.极坐标和直角坐标的互化 (1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示: (2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是 (,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式 如表: 点M 直角坐标(,)x y 极坐标(,)ρθ 互化公式 cos sin x y ρθ ρθ=?? =? 222 tan (0) x y y x x ρθ?=+? ?=≠?? 在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角. 4.常见曲线的极坐标方程 曲线 图形 极坐标方程 圆心在极点,半径为r 的圆 (02)r ρθπ=≤< 圆心为(,0)r ,半径为r 的圆 2cos ()2 2 r π π ρθθ=- ≤< 圆心为(,)2r π ,半径为r 的 圆 2sin (0)r ρθθπ=≤< 圆心为(,)2r π ,半径为r 的 圆 2sin (0)r ρθθπ=≤<

SATWE参数选取原则(第三版)

SATWE参数选取原则(第三版) SATWE 2010版(2013年10月版本) 一、总信息: 1. 水平力与整体坐标夹角:取0度;(如周期计算结果中显示最大地震力方向与主坐标夹角 大于15°,应在斜交抗侧力构件中输入角度,此处不必改动) 2. 混凝土容重:框架、框架-剪力墙取26;剪力墙及框筒结构取27;计算地下室底板配筋时 取0; 3. 钢材容重:78; 4. 裙房层数:按实际计算层数输入(应计入地下室的层数); 5. 转换层所在层号:此参数为针对“部分框支剪力墙结构”及“底层带托柱转换层的筒体” 而设置。对于部分构件的局部转换,只需要在特殊构件定义中设置转换构件即 可,不必在此设置转换层号;此层号为PMCAD中的自然层号,包括地下室; (转换层自动默认为薄弱层)

6. 嵌固端层号:若嵌固端在基础上就为“1”,若嵌固端为地下室顶板则为“地下室层数+1”。 7. 地下室层数:除了对风荷载作用、地震作用及内力调整有关系外,该参数对高位转换的判 别影响很大,应准确输入该参数(应注意地下室层数的判断); 8. 对所有楼层采用刚性楼板假定:除内力及配筋计算以外,均勾选“是”; 注:进行内力和配筋计算时,部分特殊的结构应在特殊构件定义中修改弹性板的类型,如板柱结构应定义弹性板6、厚板结构应定义弹性板3、楼面开大洞时应 定义弹性膜。 9. 地下室强制采用刚性楼板假定;地下室有跃层构件或开大洞时,可取消勾选; 10.墙梁跨中节点作为刚性楼板从节点:一般勾选,若连梁抗剪超限,可不勾选进行计算; 11.计算墙倾覆力矩时只考虑腹板和有效翼缘:一般应勾选;(砼规中9.4.3条有相关承载力计 算内容,程序参照此条考虑到倾覆力矩上,此条对倾覆力矩比有轻微影响)12.弹性板与梁变性协调:替代上个版本的“强制刚性楼板假定时保留楼板平面外刚度”,应 勾选; 13.结构材料信息:按实际类型填写; 14.结构体系:按实际填写;仅设置少量剪力墙的框架结构应按框架结构填写,底层带托柱转 换层的筒体仍按框筒或筒中筒结构输入,选砌体结构和底框结构无效; 15.恒活荷载计算信息:一般采用模拟施工加载3,如遇到有转换层、跃层柱、长悬挑或吊柱 等情况时,应注意修改加载的次序和层数。有吊柱的结构、钢结构及体育场馆 等应采用模拟施工加载1。计算基础时,尤其是框剪、框筒结构时,采用模拟 施工加载2;(如有特殊结构,勾选“自定义施工顺序”进行人工排序) 16.风荷载计算信息:一般结构选择“计算水平风荷载”即可,对于一些空旷建筑、体育馆及 轻钢屋面等结构选择“计算特殊风荷载”; 17.地震作用计算信息:一般建筑“计算水平地震作用”即可。对于规范规定的需要考虑竖向 地震的建筑按以下原则选择:多层建筑选择“计算水平和规范简化方法竖向地 震”,高层建筑选择“计算水平和反应谱方法竖向地震”; 18.特征值求解方式:在选择“计算水平和反应谱方法竖向地震”时此项方可激活,一般情况 不需考虑。“整体求解”考虑三向振动的耦联,但有效质量系数不易达到90%, 应增加振型数;“独立求解”不能体现耦联关系,但易满足有效质量系数的要 求; 19.“规定水平力”的确定方式:一般工程均选择“楼层剪力差方法”; 20.结构所在地区:按项目所在地区填写,分为全国、上海和广东;

pkpm七个重要参数

一、轴压比:主要为限制结构的轴压比,保证结构的延性要求,规范对墙肢和柱均有相应限值要求,见抗规6.3.7和6.4.6,高规 6.4.2和7.2.14及相应的条文说明。轴压比不满足要求,结构的延性要求无法保证;轴压比过小,则说明结构的经济技术指标较差,宜适当减少相应墙、柱的截面面积。 轴压比不满足时的调整方法: 1、程序调整:SATWE程序不能实现。 2、人工调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。 二、剪重比:主要为限制各楼层的最小水平地震剪力,确保周期较长的结构的安全,见抗规 5.2.5,高规3.3.13及相应的条文说明。这个要求如同最小配筋率的要求,算出来的水平地震剪力如果达不到规范的最低要求,就要人为提高,并按这个最低要求完成后续的计算。 剪重比不满足时的调整方法: 1、程序调整:在SATWE的“调整信息”中勾选“按抗震规范5.2.5调整各楼层地震内力”后,SATWE按抗规5.2.5自动将楼层最小地震剪力系数直接乘以该层及以上重力荷载代表值之和,用以调整该楼层地震剪力,以满足剪重比要求。 2、人工调整:如果还需人工干预,可按下列三种情况进行调整: 1)当地震剪力偏小而层间侧移角又偏大时,说明结构过柔,宜适当加大墙、柱截面,提高刚度。 2)当地震剪力偏大而层间侧移角又偏小时,说明结构过刚,宜适当减小墙、柱截面,降低刚度以取得合适的经济技术指标。 3)当地震剪力偏小而层间侧移角又恰当时,可在SATWE的“调整信息”中的“全楼地震作用放大系数”中输入大于1的系数增大地震作用,以满足剪重比要求。 三、刚度比:主要为限制结构竖向布置的不规则性,避免结构刚度沿竖向突变,形成薄弱层,见抗规3.4.2,高规4.4.2及相应的条文说明;对于形成的薄弱层则按高规5.1.14予以加强。 刚度比不满足时的调整方法: 1、程序调整:如果某楼层刚度比的计算结果不满足要求,SATWE自动将该楼层定义为薄弱层,并按高规5.1.14将该楼层地震剪力放大1.15倍。 2、人工调整:如果还需人工干预,可按以下方法调整: 1)适当降低本层层高,或适当提高上部相关楼层的层高。 2)适当加强本层墙、柱和梁的刚度,或适当削弱上部相关楼层墙、柱和梁的刚度。 四、位移比:主要为限制结构平面布置的不规则性,以避免产生过大的偏心而导致结构产生较大的扭转效应。见抗规3.4.2,高规 4.3.5及相应的条文说明。 位移比不满足时的调整方法: 1、程序调整:SATWE程序不能实现。 2、人工调整:只能通过人工调整改变结构平面布置,减小结构刚心与形心的偏心距;调整方法如下: 1)由于位移比是在刚性楼板假定下计算的,最大位移比往往出现在结构的四角部位;因此应注意调整结构外围对应位置抗侧力构件的刚度;同时在设计中,应在构造措施上

pkpm及SATWE参数设置个人总结

一、pkpm参数设置 1、材料信息的定义 本层信息里设置混凝土钢筋的强度等级,局部不同的可以在材料强度里特殊定义(也可以在后续SATWE里定义特殊构件的时候定义) 2、设计参数 注意:

(1)、有地下室的按地下室情况如实填写,当无地下室的时候,第一层为地梁,柱子像下伸,这一层计算的时候也定义为地下室(2)、计算指标的时候地下室一般不组装,计算地下室的梁柱配筋的时候再组装 (1)、混凝土容重:如果输楼板荷载的时候没有考虑抹灰找平层等,此处一般输27,若输荷载时考虑了,则可输25; (2)、钢截面净毛面积比值:钢构件截面净面积与毛面积的比值。净面积是构件去掉螺栓孔之后的截面面积,毛面积就是构件总截面面积。软件默认取值为0.5,经验值0.85,轻钢结构最大可以取到0.95,框架的可以取到0.9(当然这些和钢材的厚度负差、钢构件上面的开孔面积、焊接质量等等都有关系)

(1)计算阵型个数,取3的倍数,一般取楼层数的3倍;也可以在后续SATWE参数里不按阵型个数计算,按达到有效质量系数多少来计算(规范规定至少90%) (2)周期折减系数,考虑隔墙对刚度的影响,隔墙越多,对刚度贡献越大,周期越小,折减系数就越小,根据《高规》第4章最后一页确定 其他参数如实填写

二、SATWE参数设置(V3.2为例) 前面pkpm设置了的参数会自动读取到SATWE里,因此可以在这里设置前面未设置的参数,检查前面已经设置了的参数。 1、总信息 (1)水平力与整体坐标夹角:第一次计算不输入,计算后,地震作用最大的方向角度大于15°后,填入该度数再重新计算。

(2)如实填写

PKPM2010版-参数设置讲解

设计参数遍览——针对PKPM08版修改 注:本文所述参数均以2010/03/04版本PKPM程序为准,其他版本程序可作参考。 一、结构模块PMCAD PMCAD模块是后续模块TAT-8、TA T、SAT-8、SA TWE、JCCAD的基础,因此其数据的合理程度将直接影响到后续模块数据、计算的合理性。它的数据检查发现的问题应消除,不能带入后续模块。这里需要定义的设计参数不多,也比较简单,要在后续模块里检查是否已准确传入。楼板计算也在该模块完成。 主菜单①建筑模型与荷载输入——设计参数 1 设计参数 1.1 总信息

1.1.1 结构体系:按结构布置的实际状况确定。分为框架结构、框剪结构、框筒结构、筒中筒结构、剪力墙结构、短肢剪力墙结构、复杂高层结构、砌体结构、底框结构、配筋砌体、板柱剪力墙、异形柱框架和异形柱框剪,共13种类型。确定结构类型即确定与其对应的有关设计参数,进入后续模块尚需调整。 1.1.2 结构主材:钢筋混凝土、钢和混凝土、有填充墙钢结构、无填充墙钢结构和砌体。一般按结构的实际情况确定,选定结构材料即确定结构设计的相关规范。型钢混凝土和钢管混凝土结构属于钢筋混凝土结构,而非钢结构。 1.1.3 结构重要性系数:对安全等级为一级或设计使用年限为100年及以上的结构构件,不应小于1.1;对安全等级为二级或设计使用年限为50年的结构构件,不应小于1.0;对安全等级为三级或设计使用年限为5年及以下的结构构件,不应小于0.9;在抗震设计中,不考虑结构构件的重要性系数。参考《混凝土结构设计规范》(GB50010-2002)3. 2.2条。 1.1.4 底框层数:仅在结构体系为底框结构才显亮,可填1、2、3或4;若选择其他结构体系则变灰。参考《建筑抗震设计规范》(GB50011-2010)第7章多层砌体房屋和底部框架砌体房屋。 1.1.5 地下室层数:当用TA T、SATWE计算时,对地震力、风力作用、地下人防等因素有影响。程序按地下室层数结合层底标高判断楼层是否为地下室,例如此处设置4,则层底标高最低的4层判断为地下室。可选择范围为1~12。 1.1.6 与基础相连的构件最大底标高(m):该标高是程序自动生成基础支座信息的控制参数。当在【楼层组装】对话框中选中了左下角“生成与基础相连的墙柱支座信息”并确定退出对话框时,程序会自动根据此参数将各标准层上底标高低于此参数的构件所在的节点设置为支座。 1.1.7 梁钢筋的砼保护层厚度(mm):根据《混凝土规范》9.2章确定。 1.1.8 柱钢筋的砼保护层厚度(mm):根据《混凝土规范》9.2章确定。 1.1.9 框架梁端负弯矩调幅系数:默认值0.85。可直接采用也可修改。

参数方程讲义

坐标系与参数方程 一、知识点梳理 (一)平面直角坐标系中的伸缩变化 伸缩变换:设点),(y x P 是平面直角坐标系中的任意一点, 在变换? ??>?='>?=').0(,y y 0), (x,x :μμλλ?的作用下,点),(y x P 对应到点),(y x P ''',称 ?为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。 (二)极坐标系与极坐标 1定义:在平面内取一个定点O ,叫做极点,引一条射线Ox ,叫做极轴,再选一个长度单位和角度的正方向(通常取逆时针方向)。对于平面内的任意一点M ,用ρ表示线段OM 的长度,θ表示从Ox 到OM 的角,ρ叫做点M 的极径,θ叫做点M 的极角,有序数对(ρ, θ)就叫做点 M 的极坐标,这样建立的坐标系叫做极坐标 系。 2极坐标有四个要素:(1)极点;(2)极轴;(3)长度单位; 图1

(4)角度单位及它的方向。 3极坐标与直角坐标的不同点是,直角坐标系中,点与坐标是一一对应的,而极坐标系中,点与坐标是一多对应的.即一个点的极坐标是不惟一的。 4极坐标与直角坐标互化公式(以坐标原点为极点) (1)互化背景:把直角坐标系的原点作为极点,X 轴的正半轴作为极轴,并在两种坐标系中取相同长度的单位,如图所示: (2)互化公式:设M 是坐标平面内任意一点,它的直角 坐标是),(y x ,极坐标是),(θρ,于是极坐标与直角坐标的互化 公式如图一: (图一)

(图二) 5极坐标方程定义:用坐标系中的点与原点的距离以及该点与原点的连线与坐标轴的夹角来表示点的方法。 (三)常见曲线的极坐标方程

(四)参数方程 1参数方程的定义: 在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即 ?? ?==) () (t f y t f x

Satwe参数的设置--绝对很详细_史上最全

最全Satwe参数设定 1、总信息: 水平力与整体坐标系夹角:0 根据抗规(GB50011-2001)5.1.1条规定,“一般情况下,应允许在建筑结构的两个主轴方向分别计算水平地震作用并进行抗震验算,各方向的水平地震作用应由该方向的抗侧力构件承担;有斜交抗侧力构件的结构,当相交角度大于15度时,应分别计算各抗侧力构件方向的水平地震作用”。 当计算地震夹角大于15度时,给出水平力与整体坐标系的夹角(逆时针为正),程序改变整体坐标系,但不增加工况数。同时,该参数不仅对地震作用起作用,对风荷载同样起作用。 通常情况下,当Satwe文本信息“周期、振型、地震力”中地震作用最大方向与设计假定大于15度(包括X、Y两个方向)时,应将此方向重新输入到该参数进行计算。 混凝土容重:26 本参数用于程序近似考虑其没有自动计算的结构面层重量。同时由于程序未自动扣除梁板重叠区域的结构荷载,因而该参数主要近似计算竖向构件的面层重量。 通常对于框架结构取25-26;框架-剪力墙结构取26;剪力墙结构,取26-27。 1.3钢容重:78 一般情况下取78,当考虑饰面设计时可以适当增加。 1.4裙房层数:按实际填入 混凝土高规(JGJ3-2002)第4.8.6条规定:与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级,主楼结构在裙房顶部上下各一层应适当加强抗震措施。 同时抗规(GB50011-2001)6.1.10条条文说明要求:带有大底盘的高层抗震墙(筒体)结构,抗震墙的底部加强部位可取地下室顶板以上H/8,向下延伸一层,大底盘顶板以上至少包括一层。裙房与主楼相连时,加强部位也宜高出裙房一层。 本参数必须按实际填入,使程序根据规范自动调整抗震等级,裙房层数包括地下室层数。 1.5转换层所在层号:按实际填入

PKPM-SATWE参数信息设置

SATWE 计算参数选择 总信息 1水平力与整体坐标夹角(度):0 初始值为0,satwe可以自动计算出这个最不利方向角,并在wzq.out中输出。如果这个角大于15度,可根据把这个角度作为地震作用的方向角重新进行计算,以体现最不利地震作用的影响。 地震沿着不同的方向作用,结构地震反应的大小一般也不同。结构地震反应是地震作用方向角的函数(逆时针为正)。 2混凝土容重:26kN/m2 在自重荷载有利的情况下,要取25kN/m2 3钢材容重:78 kN/m2 4裙房层数:按实际情况。 高规及抗规规定:与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级,主楼结构在裙房顶部上下各一层应适当加强抗震措施;因此该数必须给定。 5转换层所在层号:按实际情况。 抗规3.4.3规定;高规10.2.6规定 6地下室层数:按实际情况。 7墙元细分最大控制长度:1 程序限定1.0-5.0之间,隐含值为2.0,该值对分析精度略有影响,但不敏感,对于一般工程,可取隐含值,对于框支剪力墙结构,可取的略小一些,取1.5或1.0。 8对所有楼板采用刚性楼板假定: 位移计算(周期计算)必须在刚性楼板假定条件下计算得到,而构件设计(配筋)应采用弹性楼板计算。9后面三个基本按默认

10结构体系:按实际情况。 剪力墙结构与框剪结构细分要看规定水平力框架柱及短肢墙地震倾覆力矩百分比(抗规)是否大于50% 11恒活荷载计算信息:一般选择“模拟施工方法3” 当计算框架-剪力墙等柱墙混用的结构的基础时选择“模拟施工方法2”。如有竖吊构件(如吊柱),必须选择“一次性加载。 5.1.9、高层建筑进行重力荷载作用效应分析时,柱、墙轴向变形宜考虑施工过程的影响。施工过程的模拟可根据需要采用适当的简化方法。 “模拟施工方法1”加载:就是按一般的模拟施工方法,对于高层结构一般都采用这种方法计算。但这是在"基础嵌固约束"假定前提下的计算结果,未能考虑基础的不均匀沉降对结构构件内力的影响。若结构地基无不均匀沉降,上述分析结果更能较准确地反映结构的实际受力状态,但若结构地基有不均匀沉降,上述分析结果会存在一定的误差,尤其对于框剪结构,外围框架柱受力偏小,而剪力墙核心筒受力偏大,并给基础设计带来一定的困难。 “模拟施工方法2”加载:在模拟施工方法1的基础上将竖向构件(墙、柱)的侧向刚度增大10倍的情况下,再进行结构计算,采用这种方法计算出的传给基础的力比较均匀合理,可以避免墙的轴力远远大于柱的轴力的不合理的情况,由于竖向刚度放大,使水平梁的两端的竖向位移差减少,从而使其剪力减少,这样就削弱了楼面荷载因刚度不均而导致的内力重分配,所以这种方法更接近于手算。 12风荷载计算信息:选择“计算风荷载”。 13地震作用计算信息:一般选择“计算水平地震力”。 当满足下面规定时,选择“计算水平与竖向地震力”。多层建筑: 《抗规》5.1.1.4、8、9度时的大跨度和长悬臂结构及9度时的高层建筑,应计算竖向地震作用。 高层建筑: (强规)3.3.2、高层建筑结构应按下列原则考虑地震作用:…… 3、8度、9度抗震设计时,高层建筑中的大跨度和长悬臂结构应考虑竖向地震作用; 4、9度抗震设计时应计算竖向地震作用。

相关主题
文本预览
相关文档 最新文档