当前位置:文档之家› 2010版PKPM参数的介绍

2010版PKPM参数的介绍

2010版PKPM参数的介绍
2010版PKPM参数的介绍

2010版PKPM结构计算参数的介绍

马恒蕾

1.风荷载

1)、承载力设计时风荷载效应放大系数:

高规4.2.2条规定,对风荷载比较敏感的高层建筑,承载力设计时,应按基本风压的1.1倍采用。

高规4.2.8条规定,横风向振动作用明显的高层建筑,应考虑横风向风振的影响。

注意:当结构高宽比较大,结构顶点风速大于临界风速时,可能引起较明显的结构横风向振动,甚至出现横风向振动效应大于顺风向作用效应的情况。结构横风向振动问题比较复杂,与结构的形状、刚度和风速都有一定关系;一般情况下,高度超过200m的或自振周期超过5s的高层建筑,宜通过风洞试验研究确定横风向振动的影响。

2)、舒适度:

高规3.7.6条规定,房屋高度不小于150m的高层混凝土建筑结构应满足风振舒适度要求,风荷载作用下结构的阻尼比为5%;用于舒适度验算的结构阻尼比为2%;用于舒适度验算的风压为0.5KN/m2。

注意:与风荷载有关的两个阻尼比,一个用于计算风荷载,一个用于舒适度验算;计算风荷载,钢结构阻尼比取1%,有填充墙的钢结构取2%,混凝土和砌体结构取5%;验算舒适度,混凝土结构取2%,混合结构根据房屋高度和结构类型取1%~2%;舒适度验算结构参看文件WMASS.OUT,给出顺风向顶点最大加速度,横风向顶点最大加速度。

2.地震作用

1)、“规定水平力”的确定方式:

抗震规范3.4.3条和高规3.4.5条,在规定的水平力作用下,楼层的最大弹性水平位移(或层间位移)大于该楼层两端弹性水平位移(或层间位移)平均值的1.2倍。

抗震规范6.1.3条和高规8.1.3条,设置少量抗震墙的框架结构,在规定的水平力作用下,底层框架部分所承担的地震倾覆力矩大于结构总地震倾覆力矩的50%时,其框架的抗震等级应按框架结构确定,抗震墙的抗震的等级可与其框架的抗震等级相同。(注:底层指计算嵌固端所在的层)。

注意:规定水平力主要用于计算地震作用下的位移比和倾覆力矩(包括框架、短肢墙、框支框架和一般剪力墙的倾覆力矩)统计。

2)、考虑双向地震作用:

抗震规范5.1.1-3条规定,质量和刚度分布明显不对称的结构,应计入双向水平地震作用下的扭转影响。

高规4.3.2条规定,质量与刚度分布明显不对称、不均匀的结构,应计算双向水平地震作用下的扭转影响;其他情况,应计算单向水平地震作用下的扭转影响。考虑双向地震时,构件配筋平均增大5~8%。

注意:考虑双向地震扭转效应,在X和Y方向地震作用的反应分别为S X和S Y,则

;

考虑双向地震时,构件配筋平均增大5%~8%。

3)、计算竖向地震作用:

抗震规范5.1.1条规定,8、9度时的大跨度和长悬臂结构及9度时的高层建筑,应计算竖向地震作用。9度抗震设计时应计算竖向地震作用。

高规10.5.2条规定,8度抗震设计时,连体结构的连接体应考虑竖向地震的影响。

高规4.3.2条规定,高层建筑中的大跨度、长悬臂结构,7度(0.15g)、8度抗震设计时应考虑竖向地震作用;

高规4.3.14条规定,跨度大于24m的楼盖结构、跨度大于12m的转换结构和连体结构,悬挑长度大于5m的悬挑结构,结构竖向地震作用效应标准值宜采用时程分析方法或振型分解反应谱方法进行计算。

抗震规范5.3.1—5.3.4条规定了竖向地震作用的计算方法,可采用简化方法或振型分解反应谱法。

抗震规范5.4.3条,当仅计算竖向地震作用时,各类结构构件承载力抗震调整系数均应采用1.0。

4)、计算水平地震作用:

抗震规范5.1.6条规定,6度时不规则建筑、建造于Ⅳ类场地上较高的高层建筑,7度和7度以上的建筑结构,应进行多遇地震作用下的截面抗震验算。

注意:不计算地震作用6度以下(6度不规则和Ⅳ类场地高层除外);计算水平地震作用7~8度地区(7度半长悬臂大跨度高层除外);计算水平和规范简化方法竖向地震;计算水平和反应谱方法竖向地震(长悬臂大跨度计算精度高);其中

9度地区高层建筑;

8度地区以下高层建筑:

楼盖>24米,连体结构>12米,转换结构>8米,悬挑梁>5米,悬挑板>2米。

5)、偶然偏心:

高规3.3.3条规定,计算单向地震作用时应考虑偶然偏心的影响。

程序中考虑了四种偏心方式:X向地震:沿Y轴正向偏移5%,沿Y轴负向偏移5%;沿X轴正向偏移5%,沿X轴负向偏移5%。

6)、明显不对称结构:

抗震规范5.1.1-3条说明:不对称不均匀的结构是“不规则结构”一种,同一建筑单元同一平面内质量、刚度分布不对称,或虽在本层平面内对称,但沿高度分布不对称的结构,需考虑扭转影响的结构,具有明显的不规则性。

不规则结构的判定建议:

位移比 1.2为规则结构;1.2位移比为不规则结构(B级1.3);1.35位移比 1.5为特别不规则结构(B级1.4);位移比 1.5为严重不规则结构(不允许)。

注意:应在刚性楼板假定下计算位移比。

3.地震作用调整

1)、斜交抗侧立构件:

抗震规范5.1.1-2条规定,有斜交抗侧立构件的结构,当相交角大于15度时,应分别计算各抗侧立构件方向的水平地震作用。

高规3.3.2条规定,有斜交抗侧立构件的结构,当相交角度大于15度时,应分别计算各抗侧立构件方向的水平地震作用。

程序允许输入最多5组地震方向,附加地震数可在0~5之间取值,并填入相应角度,逆时针方向为正。

2)、0.2调整:

抗震规范6.2.13-1条和高规8.1.4条规定,侧向刚度沿竖向分布基本均匀的框架-剪力墙结构和框架-核芯筒结构,任一层框架部分承担的地震剪力,不应小于结构底部总地震剪力的20%和按框架-剪力墙结构、框架-核芯筒结构极短的框架部分各楼层地震剪力中最大值1.5倍二者的较小值。

注意:这是对框剪和框筒结构多道设防的要求;程序按规范要求进行0.2(钢结构0.25)调整,需要指定调整的楼层分段数和楼层范围;不是全楼所有的梁都需要0.2调整,而是与框架柱连接的梁端要0.2调整,其他梁不用调。

4.设计内力调整

1)、托墙梁刚度放大系数:

“托墙梁”不同于规范中的“转换梁”,仅指转换梁与剪力墙直接连接共同工作的梁段,不包含剪力墙洞口下的梁段。

对梁上托剪力墙的情况,剪力墙的下边缘应与转换梁的上表面变形协调;但计算模型的情况是,剪力墙的下边缘与转换梁的中性轴变形协调,失去本应存在的变形协调性。与实际情况相比,计算模型的刚度偏柔了。为了再现真实的刚度,托墙梁刚度放大系数取100左右,会使转换层附近构件超筋的情况缓解。为保证设计的冗余度,托墙梁刚度放大系数不宜取值太大。通常应在计算结果不理想时,梁刚度逐步放大,见好就收。

注意:程序自动搜索框支转换结构中的托墙梁;洞口将梁分为三段,上部有剪力墙的为托墙梁;“框支柱调整上限”由用户设定,缺省值为5。

2)、梁刚度放大系数:

混凝土规范5.2.4条的表5.2.4规定,梁受压区有效翼缘计算宽度可按表5.2.4所列情况中的最小值取用;也可采用梁刚度增大系数法近似考虑,刚度增大系数应根据梁有效翼缘尺寸与梁截面尺寸的相对比例确定。

梁刚度放大有两种方式:按新混凝土规范5.2.4条自动放大;用户统一输入全楼“中梁刚度放大系数”。

注意:在“特殊构件”中修改梁的刚度放大系数。

3)、新旧软件对约束边缘构件设置的对比:

旧版软件:

程序自动判断结构底部加强部位设置约束边缘构件;不能分塔指定;约束边缘构件楼层一律设置约束边缘构件。

新版软件:

自动判断底部加强部位和加强层及上下层;可分塔交互指定;案轴压比限值判断约束边缘构件或构造边缘构件,即执行高规7.2.14条的规定,按轴压比限值判断边缘构件属性。

5.结构整体性能控制

1)、位移比、位移角:

抗震规范5.5.1条和高规4.6.3条规定弹性层间位移角的限值:钢筋混凝土框架1/550;

高规4.3.5条规定,结构平面布置应减少扭转的影响。在考虑偶然偏心影响的地震作用下,楼层竖向构件的最大水平位移和层间位移,A级高度高层建筑均不宜大于该楼层平均值的1.2倍,不应大于该楼层平均值的1.5倍(B级高度高层建筑不应大于该楼层平均值的1.4倍)。

高规3.4.5条,当楼层的最大层间位移角不大于本规程3.7.3条规定的限值的0.4倍时,该楼层竖向构件的最大水平位移和层间位移与该楼层平均值的比值可适当放松,但不应大于1.6。

注意:位移比是反映结构抗扭特性和规则性的重要指标,计算位移比应按规范规定采用刚性楼板假定;位移比计算应考虑偶然偏心影响;位移角计算不考虑偶然偏心影响。

2)、周期折减系数:

高规3.3.16条规定,计算各振型地震影响系数所采用的结构自振周期应考虑非承重墙体的刚度影响予以折减。

高规3.3.17条规定,折减系数取值:

框架结构可取0.6~0.7;框架—剪力墙结构可取0.7~0.8;框架—核芯筒结构可取0.8~0.9;剪力墙结构可取0.8~1.0。对于其他结构体系或采用其他非承重墙体时,可根据工程情况确定周期折减系数。

注意:以上折减系数是按实心粘土砖墙体确定的,如采用轻质砌体或柔性连接的填充墙,折减系数应作调整;对于自振周期小于特征周期的结构,由于其位于振型分解反应谱曲线的平台段,周期折减有可能对计算结果没有影响。

3〉、周期比调整:

调整原则一:增大结构周边刚度

包括增大周边柱、剪力墙的截面或数量;增大周边梁的高度、楼板的厚度;在楼板外伸段凹槽处设置连接梁或连接板;加强转角窗周边构件的强度;减小周边剪力墙洞口。

调整原则二:减小结构中心刚度

包括给结构中部剪力墙开洞;在中心核芯筒开结构洞再填充。

4〉、层刚度比控制:

高规3.5.2条规定,抗震设计时,对框架结构,楼层与上部相邻楼层的侧向刚度比不宜小于0.7;与上部相邻三层侧向刚度比的平均值不宜小于0.8;对框架—剪力墙和板柱—剪力墙结构、剪力墙结构、框架—核芯筒结构、筒中筒结构,楼层与上部相邻楼层侧向刚度比不宜小于0.9;楼层层高大于相邻上部楼层层高的1.5倍时,不应小于1.1;底部嵌固层不应小于1.5。

5)、层刚度比计算:

高规3.5.2条规定,楼层侧向刚度比计算修改为考虑层高修正的楼层侧向刚度比,侧向刚度比均采用地震力比地震层间位移比值的算法。

注意:新版软件仅提供“地震剪力与地震层间位移的比值”选项;软件同时采用“剪切刚度”和“地震剪力与地震层间位移的比值”的算法计算,并以后者判断薄弱层;对1、2层转换结构软件按“剪切刚度”计算刚度比,对3层以上转换结构软件按“剪弯刚度”计算刚度比。

6)、层间受剪承载力比:

抗震规范3.4.4-2条规定,平面规则而竖向不规则建筑结构,楼层承载力突变时,薄弱层抗侧力结构的受剪承载力不应小于相邻上一楼层的65%。

高规4.4.3条规定,A级高度高层建筑的楼层层间抗侧力结构的受剪承载力不宜小于其上一层受剪承载力的80%,不应小于其上一层受剪承载力的65%。

注意:层间受剪承载力的计算与混凝土强度、实配钢筋面积等因素有关。

7)、剪重比:

抗震规范5.2.5条说明,只要底部总剪力不满足要求,则结构各楼层的剪力均需调整,不能仅调整不满足的楼层。当各层的地震剪力需要调整时,原先计算的倾覆力矩、内力和位移均需要相应调整。

注意:底部总剪力不满足要求时,不能仅调整不满足要求的楼层,全楼各楼层都需要调整,不能仅调整地震剪力,倾覆力矩、内力和位移都需要调整;地下室可以不考虑剪重比控制。

8)、结构质量比验算:

高规3.5.6条规定,楼层质量沿刚度宜均匀分布,楼层质量不宜大于相邻下部楼层质量的1.5倍。

新版软件增加此项计算及结果输出。

hortonworks测试环境离线安装与配置

目录 目录 0 1.基础环境 (2) 2.准备工作 (3) 2.1配置环境 (4) 2.1.1配置hosts文件 (4) 2.1.2 SSH无密码登入 (4) 2.1.3 NTP 时间同步 (5) 2.1.4 SELinux & iptables 关闭 (6) 2.2Java环境安装 (7) 2.2.1 安装JDK (7) 2.2.2 配置环境变量 (7) 3.Ambari安装配置 (9) 3.1配置本地源 (9) 3.1.1 建立本地资源库 (9) 3.1.2 配置repo文件 (10) 3.1.3 配置Media源 (12) 3.1.4 安装必要工具 (12) 3.1.5 配置Media的http源 (12) 3.1.6 安装ambari-server服务 (17)

3.1.7 安装ambari客户端 (46) 3.2ambari服务器配置与管理 (20) 4.常见问题 (50) 4.1mapreduce (50) 4.2oozie安装 (51)

1.基础环境 本人配置 操作系统:redhat6.4 内核版本: 内存大小: 处理器: Ambari版本:ambari-1.6.0 HDP版本:HDP-2.1-latest-centos6-rpm.tar.gz HDP-UTILS版本:HDP-UTILS-1.1.0.17-centos6.tar.gz JDK版本:jdk-7u45-linux-x64

Ambari安装的环境路径(选择安装所有服务的情况): 2.准备工作 本次配置使用hdp-m2作为主master节点

2.1配置环境 2.1.1配置hosts文件 所有机器都得执行,使用root用户 1)@ hostname hdp-m2(该命令可用于临时修改主机名) 2)@ vi /etc/hosts(该命令可用于配置主机名和IP的对应信息) 10.242.157.115 hdp-m1 10.242.157.117 hdp-m2 10.242.157.122 hdp-s1 3)@ vi /etc/sysconfig/network(该命令可用于修改网络主机名) 2.1.2SSH无密码登入 所有机器都得执行,使用root用户 @ yum install ssh(安装SSH协议) @ yum install rsync(rsync是一个远程数据同步工具,可通过LAN/WAN快速同步多台主机间的文件) @ service sshd restart (启动服务) 注:如果系统中没有安装SSH,需要进行以上操作。 @ssh-keygen(该命令生成指定公私秘钥的名字,id_dsa及id_dsa.pub)

PKPM SATWE参数设置讲解

SATWE参数设置 一:总信息 1水平力与整体坐标夹角(度):一般为缺省。若地震作用最大的方向大 于15度则回填。 2、混凝土容重(KN/m3):砖混结构25 KN/m3,框架结构26KN/m3。 3、刚才容重(KN/m3):一般情况下为78.0 KN/m3(缺省值)。 4、裙房层数:程序不能自动识别裙房层数,需要人工指定。应从结构最底层起算(包括地下室),例如:地下室3层,地上裙房4层时,裙房层数应填入7。 5、转换层所在层号:应按PMCAD楼层组装中的自然层号填写,例如:地下室3层,转换层位于地上2层时,转换层所在层号应填入5.程序不能自动识别 转换层,需要人工指定。对于高位转换的判断,转换层位置以嵌固端起算,即 以(转换层所在层号-嵌固端所在层号+1)进行判断,是否为3层或3层以上转换。 6、嵌固端所在层号:无地下室时输入1,有地下室时输入(地下室层数 +1)。 7、地下室层数:根据实际情况输入。 8、墙元细分最大控制长度(m):一般为缺省值1。 9、转换层指定为薄弱层:SATWE中转换层缺省不作为薄弱层,需要人工指定。如需将转换层指定为薄弱层,可将此项打勾,则程序自动将转换层号添加 到薄弱层号中,如不打勾,则需要用户手动添加。此项打勾与在“调整信息” 页“指定薄弱层号”中直接填写转换层层号的效果是完全一致的。 10、所有楼层强制采用刚性楼板假定:一般仅在计算位移比和周期比时建 议选择。在进行结构内力分析和配筋计算时不选择。 11、地下室强制采用刚性楼板假定:一般情况不选取,按强制刚性板假定 时保留弹性板面外刚度考虑。特别是对于板柱结构定义了弹性板3、6情况。但已选择对所有楼层墙肢采用刚性楼板假定的话此条无意义。 12、墙梁跨中节点作为刚性楼板从节点:一般为缺省勾选。不勾选的话位 移偏小。 13、计算墙倾覆力矩时只考虑腹板和有效翼缘:应勾选,使得墙的无效翼 缘部分内力计入框架部分,实现框架,短肢墙和普通强的倾覆力矩结果更合理。 14、弹性板与梁变形协调:相当于强制刚性板假定时保留弹性板面外刚度,自动实现梁板边界变形协调,计算结构符合实际受力情况,应勾选。 15、墙元侧向节点信息:这是墙元刚度矩阵凝聚计算的一个控制参数,程 序强制为“出口”,即只把墙元因细分而在其内部增加的节点凝聚掉,四边上 的节点均作为出口节点,使得墙元的变形协调性好,分析结果更符合剪力墙的 实际。 16、结构材料信息:按实际情况填写。 17、结构体系:按实际情况填写。 18、恒活荷载计算信息: 1)一般不允许不计算恒活荷载,也较少选一次性加载模型; 2)模拟施工加载1模式:采用的是整体刚度分层加载模型,该模型应用与各种类型的下传荷载的结构,但不使用与有吊柱的情况;

pkpm结构设计参数

P K P M结构设计参数 P K P M结构设计参数 1.风荷载 风压标准值计算公式为:W K=βzμsμZ W。其中:βz=1+ξυφz/μz在新规范中,基本风压W o略有提高,而建筑的风压高度变化系数μE、脉动增大系数ξ、脉动影响系数υ都存在减小的情况。所以,按新规范计算的风压标准值可能比89规范大,也可能比89规范小。具体的变化包括下面几条: 1)、基本风压::新的荷载规范将风荷载基本值的重现期由原来的30年一遇改为50年一遇:新高规3.2.2条规定:对于B级高度的高层建筑或特别重要的高层建筑,应按100年一遇的风压值采用。 2)、地面粗糙度类别:由原来的A、B、C类,改为A、B、C、D 类。C类是指有密集建筑群的城市市区;D类为有密集建筑群,且房屋较高的城市市区。 3)、风压高度变化系数:A、B、C类对应的风压高度变化系数略有调整。新增加的D类对应的风压高度变化系数最,比C类小20%到50%。 4)、脉动增大系数:A、B、C类对应的脉动增大系数略有调整。新增加的D类对应脉动增大系数比89规范小,约5%到10%。与结构的材料和形式有关。 5)、脉动影晌系数:在89高规中,脉动影响系数仅与地面粗糙度类别有关,对应A、B、C类的脉动影响系数分别为,0.48、0.53和0.63。

在新规范中,脉动影响系数不仅与地面粗糙度类别有关,而且还与建筑的高宽比和总高度有关,其数值都小于89高规。如C类、高度为5O m、高宽比为3的建筑,υ=0.46,比89高规小28%,若为D类,则小37%。6)、结构的基本周期:脉动增大系数ξ与结构的基本周期有关(W o T12)。结构的基本周期可采用结构力学方法计算,对于比较规则的结构,也可以采用近似方法计算:框架结构T=(0.08-1.00)N:框剪结构、框筒结构T=(0.06-0.08)N:剪力墙结构、筒中筒结构T=(0.05-0.06)N。其中N为结构层数。 2.地震作用 1)、抗震设防烈度::新规范改变了抗震设防烈度与设计基本地震加速度值的对应关系,增加了7度(0.15g〉和8度(0.30g)两种情况(见新抗震规范表3.2.2)。 2)、设计地震分组:新规范把直接影响建筑的设计特征周期T g 的设计近震、远震改为设计地震分组,分别为设计地震第一组、第二组和第三组。 3)、特征周期值:比89规范增加了0.05s以上,这在一定程度上提高了地震作用。 4)、地震影响系数曲线:新规范5.1.5条,设计反应谱范围由原来的3s延伸到6s,分上升段、平台段、指数下降段和倾斜下降段四个区段。在5T g以内与89规范相同,从5T g起改为倾斜下降段,斜率为0.02。对于阻尼比不等于0.05的结构,设计反应谱在阻尼比δ等于0.05的基础上调整。

机油参数的意义

机油参数的意义 倾点 油品在规定的试验条件下,被冷却的试样能够流动的最低温度。 凝点 油品在规定的试验条件下,被冷却的试样油面不再移动时的最高温度。同一油品的倾点比凝点略高几度。过去常用凝点,现在国际通用倾点来衡量润滑油等低温流动性的常规指标。倾点或凝点偏高,油品的低温流动性就差。 闪点Flash Point 闪点是代表油品加热后所逸出的蒸气与火焰接触发生瞬间闪火时的最低温度。闪点越低,机油越有可能在高温下被烧掉,闪点越高,机油的耐温度也会比较好。 总碱值TBN (total base number) 在规定条件下,中和存在于1克油样中全部碱组分(含强碱与弱碱)所需要的酸量,换算成等当量的碱量,以mgKOH/g表示。通常所说的碱值即指总碱值。机油用久以后会变成酸性,而酸会逐步腐蚀引擎的内部,所以机油一般都呈碱性。TBN就是代表机油的碱值,值数越高代表机油能中和的酸越多(此项数字却不可以代表机油的耐用度,因为机油变酸的快慢,速度会受引擎工作的影响)…不过可以做一个参考指标。 硫酸盐灰份Sulfated Ash, % 油品试样在规定条件下燃烧后所剩下的固体物质,此时的残渣被称为硫酸盐灰分, 用百分含量表示。数字越高,代表机油有可能会比较容易产生油泥。 运动粘度Kinetic viscosity 运动粘度表明一种流体抵抗流动或者说是内部摩擦的能力的度量值。运动粘度会随温度变化而变化,因此,在给出运动粘度的数值时,通常必须注明其测试温度。 30的机油100℃cTs运动粘度是9.3~12.5mm2/s HTHS≥2.9 40的机油100℃cTs运动粘度是12.5~16.3mm2/s 2.9

CDH-HDP-MAPR-DKH-星环组件比较

一、组件比较:

二、组件简介:

1、Hadoop 简介:集群基础组件,分为存储(HDFS)和计算(Mapreduce)两大部分。apache社区开源。技术来源于2、Hbase 简介:键-值非关系型数据库,apache 3、Zookeeper 4、Spark 简介:内存计算框架,伯克利首先提出,现已开源。 5、Hive 简介:基于HDFS的SQL工具,facebook开发,后开源。 6、Hue 简介:图形化集群工具,cloudera开发,后开源。 7、Impala 简介:基于HDFS的SQL工具,cloudera开发,后开源。 8、Sqoop 简介:用于关系型数据库与NOSQL数据库之间的数据导入导出。Cloudera开发,已开源。 9、Flume 简介:用于数据流的导入, Cloudera开发,已开源。 10、Oozie 简介:工作流系统,用于提交、监控集群作业。Cloudera开发,已开源。 11、Solr 简介:基于Lucene的全文搜索服务器。已开源。 12、Isilon 简介:基于OneFs操作系统的存储产品,美国赛龙公司开发,后属于EMC,一种集群存储方案。 13、K-V store indexer 简介:为HBase到solr的索引中间件,为NGDATA公司开发,已开源。

14、Cloudera Manager 简介:CDH集群安装管理工具。Cloudera开发。 15、kafka 简介:消息队列组件。已经开源。 16、Storm 简介:流数据处理组件。 17、Elasticsearch 简介:基于Lucene的全文搜索服务器。已开源。 18、ESSQL 简介:基于Elasticsearch的SQL工具,大快开发。 19、DK-NLP 简介:自然语言处理组件。大快开发,已开源。 20、DK-SPIDER 简介:分布式爬虫组件。大快开发。 21、DKM 简介:集群安装管理工具。大快开发。 22、DK-DMYSQL 简介:分布式MYSQL组件,大快改写。 23、Apache Falcon 简介:Falcon 是一个面向Hadoop的、新的数据处理和管理平台,设计用于数据移动、数据管道协调、生命周期管理和数据发现。 24、Apache Knox 简介:Apache knox是一个访问hadoop集群的restapi网关,它为所有rest访问提供了一个简单的访问接口点。 25、Apache Phoenix

PKPM如何调整参数和选用(完整版)

2010版SATWE计算参数选用 一、2010版计算参数的选用(PKPM及SATWE): 免责声明:炒饭个人总结,仅用作参考。以下内容需与PKPM2010版satwe说明书结合使用。参数在PKPM中如何实现需参考satwe说明书。 1、总信息: A、“水平力与整体坐标夹角”,此参数一般不做修改。而是将周期计算结果中输出的“地震作用最大的方向角”填到“斜交抗侧力构件方向附加地震数,相应角度”。 B、PM里的“混凝土容重”框架取26,剪力墙取27。(现在版本软件PM与SATWE的“混凝土容重”联动),故在PM中布置楼面恒载时一般不勾选“自动计算现浇板厚”,恒载输入数值为“人工计算板自重+装修荷载重”。 C、“钢材容重”暂时默认78,未研究。 D、“裙房层数”此参数仅用来判定底部加强区:即对剪力墙和框剪结构PKPM总是将裙房以上一层作为加强区判定的一个条件。框架结构均可输入0,其他结构未研究。此参数包含地下室层数。(如3层地下室,4层裙房,此参数应输入7。) E“转换层所在层号”含地下室层数,详见2010satwe说明书,未深入研究。 F、“嵌固端所在层数”自然地面为嵌固端时填“1”,地下室顶板作为嵌固端时填“地下室层数+1”。 G、“地下室层数”按实际输入。 H、“墙元细分最大控制长度”取“1”。影响计算精度,对含剪力墙的结构有影响。 I、“对所有楼层强制采用刚性楼板假定”仅在计算位移比和周期比时勾选,其他不勾选。J、“地下室强制采用刚性楼板假定”勾选。 K、“墙梁跨中节点作为刚性楼板从节点”此参数本人尚不能合理选择,只把网上比较后的结果贴出来。勾选该参数后,结构周期减小,连梁内力增大,内力平衡校核轴力。 L、“计算墙倾覆力矩时只考虑腹板和有效翼缘”勾选。对于L型、T型等截面形式,垂直于地震作用方向的墙段称为翼缘,平行于地震作用方向的墙段称为腹板,翼缘可以区分为有效翼缘和无效翼缘两部分。无效翼缘内力计入框架,这对于结构中框架、短肢墙、普通墙的倾覆力矩指标计算,通常更为合理。 M、“弹性板与梁变形协调”勾选。梁细分后弯矩变的平缓,计算结果更加合理。 N、“结构材料信息”如实填写 O、“结构体系”如实填写 P、“恒活荷载计算信息”《PKPM从入门到精通》推荐使用模拟施工加载3。但本人尚未弄明白。 Q、“风荷载计算信息”大部分工程选择计算水平风荷载即可。 R、“地震作用计算信息”一般选择计算水平地震作用。结合抗规5.1.1和高规4.3.2确定是否计算竖向地震作用。高规比抗规对此条的要求严一个等级。 S、“规定水平力”一般选“规范方法”。规范方法适用于大多数结构,节点地震作用CQC组合方法适用于极不规则结构,即楼层概念不清晰,剪力差无法做的结构。 2、风荷载信息: 地震区无论是高层还是多层均应输入风荷载,体形复杂的高层建筑应考虑不同方向风荷载作用,结合“水平力与整体坐标夹角”进行多次计算取大值。 A、“地面粗糙度”简单来说海边A类,郊区B类,城市C类,大城市D。 B“修正后的基本风压”许昌一般建筑取0.4(n=50)。

最新PKPM设计参数分析详解

P K P M设计参数分析详 解

第7章 SATWE应用详解 在PKPM系列设计软件中,用于结构分析计算的主要有SATWE、TAT、PK、PMSAP,目前结构设计人员最常用的是有限元分析软件SATWE。本章主要详细叙述SATWE 的使用方法,包括计算参数的取值设置,特殊荷载的设定,计算分析方法的选择,计算结果分析,控制参数的调整,以及结构设计优化等。之所以突出介绍SATWE,其原因如下: 1.SATWE软件使用普遍,用户广泛。 2.SATWE软件功能强大,采用墙元模型,可以完成复杂多高层结构的计算 分析工作,而且操作简单,适应性强。 3.SATWE软件参数较多,可以设置的项目也很多,计算输出的内容十分丰 富,一旦学会了SATWE软件的使用,再去学PK、TAT、PMSAP等就是一 件非茶馆容易的事了。 第7.1节设计参数设置详解 PM建模完成后就进入结构计算分析阶段,SATWE软件可以直接读取建模数据,但是在计算之前还需要做一些前期处理工作,例如补充设置计算分析参数,定义特殊构件和特殊荷载等。点击选择SATWE软件的第一项进入“接PM生成SATWE数据”屏幕弹出图示对话框,如图所示。 软件的参数设置是否正确直接关系到软件分析结果的准确性,这也是学好用好软件的关键一步。本节主要介绍SATWE软件设计参数的取值设置。详细叙述分别如下: 7.1.1总信息 结构总信息共有17个参数,其含义及取值原则如下:

7.1.1.1水平力与整体坐标的夹角(度) 这一参数主要是为了考虑水平力(地震最不利作用与最大风力作用)方向与模型坐标主轴存在较大夹角的影响。一般设计人员实现很难预估算出结构的最不利地震作用方向,因此可以先取初始值00,SATWE计算后会在计算书中输出结构最不利方向角,如果这个角度与主轴夹角大于±15°,就应将该角度输入重新计算,以考虑最不利地震作用个方向的影响。 7.1.1.2混凝土容重(KN/m3) 程序钢筋混凝土容重初始值为25.0 KN/m3,以用于一般工程,考虑抹灰装修荷载可以取到26~28 KN/m3。 7.1.1.3钢材容重(KN/m3) 程序钢材容重初始值为78.0 KN/m3,适合于一般工程,考虑钢构件表面装饰和防火涂层重量时,应按实际情况修改此参数。 7.1.1.4裙房层数 对带裙房的高层结构应输入裙房(含地下室)层数,作为带裙房的塔楼结构剪力墙底部加强区高度的判断依据。初始值为0。 7.1.1.5转换层所在层号 为了实现规范对转换构件地震内力放大的规定,如结构有转换层则必须输入转换层号,程序不能自动搜索转换构件和自动判断转换层,须由设计人员指定,程序允许输入多个转换层号,数字之间以逗号或者空格隔开,初始值为0。注意如果结构带有地下室,则转换层号应从地下室起算。 7.1.1.6地下室层数

2010版PKPM计算参数选用

2010版SATWE计算参数选用 (内部参考资料) 一、2010版计算参数的选用(PKPM及SATWE): 1、总信息:A、“水平力与整体坐标夹角”,该参数为地震力、 风荷载作用方向与整体坐标的夹角。此参数一般情况下不需 要修改,水平力与整体坐标夹角不仅改变地震作用的方向而 且同时改变风荷载作用的方向,如果平面是十字形、L形等 不规则平面建议输入水平力夹角,对比计算结果取最不利 者,其它情况可以将周期计算结果中输出的“地震作用最大 的方向角”填到“斜交抗侧力构件方向附加地震数,相应角 度”。B、PM里的“混凝土容重”一般考虑取25kN/m3,主 要是现浇板重自动计算,进行现浇板配筋采用,而SATWE 里的“混凝土容重”一般考虑取26.5kN/m3,主要是用来计 算结构中的梁、柱、墙等构件自重荷载,考虑抹灰荷载用的 (现在版本软件PM与SATWE的“混凝土容重”是联动)。C、 “裙房层数”“转换层所在层号”均包含地下室层数。“裙房 层数”仅用作底部加强区高度的判断。通过“转换层所在层 号”和“结构体系”两项参数来区分不同类型的带转换层结 构;部分框支剪力墙结构需要同时填上述两项,否则程序不 执行高规的针对部分框支剪力墙结构的规定。“嵌固端所在 层号”注意嵌固端和嵌固端所在层号的区别,举例说明假如 嵌固端为地下室顶板,则嵌固端所在层号为地上一层。理论

上讲嵌固端以下不参与计算(徐培福)。D、“墙元细分最大控制长度”一般控制在1米以内,软件隐含值即为1米,设计上部结构时不允许采用2米,2米只能用在计算位移等参数时采用,配筋及内力只能用1米,尽量细分网格。很长剪力墙无法计算,剪力墙开洞不能盲目,开洞不能留小墙垛,因为墙需剖分,太短墙无法剖分。墙长与厚度之比大于4时,按照墙输入。跨高比大于5的连梁按框架梁输入,不用开洞处理。关于网格剖分对斜板影响,板必须角点共面,如果不共面无法计算,不共面的斜板程序自动去掉,对梁配筋影响较大,注意观察结构轴侧简图,可以加虚梁解决多点不共面问题。“墙元侧向节点信息”程序强制为“出口”节点,内部节点计算结果是结构柔,其与实际不符,“出口”计算结果准确。E、“对所有楼层强制采用刚性楼板假定”和“强制刚性楼板假定时保留弹性板面外刚度”:“对所有楼层强制采用刚性楼板假定”仅用于位移比和周期比计算,在计算内力和配筋时不选择;SATWE对地下室楼层总是强制采用刚性楼板假定;SATWE在进行强制刚性楼板假定时,位于楼面标高处(上下200mm范围内)的所有节点强制从属于同一刚性板;对于跃层柱要用降低标高处理。“强制刚性楼板假定时保留弹性板面外刚度”主要用于板-柱剪力墙体系(弹性板3、6),板-柱剪力墙体系必须勾选;虚梁截面为100x100,虚梁主要是为导荷用的,刚性梁不要定义为100x100,

2010版pkpm中Satwe参数设置规范对照版(绝对经典)

SATWE设计参数的合理 设计参数的合理选取 1、抗震等级的确定:钢筋混凝土房屋应根据烈度、结构类型和房屋高度的不同分别按《抗规》6.1.2条或《高规》4.8条确定本工程的抗震等级。但需注意以下几点: (1)上述抗震等级是“丙”类建筑,如果是“甲”、“乙”、“丁”类建筑则需按规范要求对抗震等级进行调整。 (2)接近或等于分界高度时,应结合房屋不规则程度及场地、地基条件慎重确定抗震等级。 (3)当转换层〉=3及以上时,其框支柱、剪力墙底部加强部的抗震墙等级宜按《抗规》6.1.2条或《高规》4.8条查的抗震等级提高一级采用,已为特一级时可不调整。 (4)短肢剪力墙结构的抗震等级也应按《抗规》6.1.2条或《高规》4.8条查的抗震等级提高一级采用……但注意对多层短肢剪力墙结构可不提高。 (5)注意:钢结构、砌体结构没有抗震等级。计算时可选“5”,不考虑抗震构造措施。 2、振型组合数的选取:在计算地震力时,振型个数的选取应是振型参与质量要达到总质量90%以上所需要振型数。但要注意以下几点: (1)振型个数不能超过结构固有的振型总数,因一个楼层最多只有三个有效动力自由度,所以一个楼层也就最多可选3个振型。如果所选振型个数多于结构固有的振型总数,则会造成地震力计算异常。 (2)对于进行耦联计算的结构,所选振型数应大于9个,多塔结构应更多些,但要注意应是3的倍数。

(3)对于一个结构所选振型的多少,还必需满足有效质量系列化大于90%.在WDISP.OUT文件里查看。 3、主振型的判断; (1)对于刚度均匀的结构,在考虑扭转耦联计算时,一般来说前两个或前几个振型为其主振型。 (2)对于刚度不均匀的复杂结构,上述规律不一定存在,此时应注意查看SATWE文本文件“周期、振型、地震力”WZQ.OUT.程序输出结果中,给出了输出各振型的基底剪力总值,据此信息可以判断出那个振型是X向或Y向的主振型,同时可以了解没个振型对基底剪力的贡献大小。 4、地震力、风力的作用方向:结构的参考坐标系建立以后,所求的地震力、风力总是沿着坐标系的方向作用。但设计者注意以下几种情况:(1)设计应注意查看SATWE文本文件“周期、振型、地震力”WZQ.OUT.输出结果中给出了地震作用的最大方向是否与设计假定一致,对于大于15度时,应将此方向输入重新计算。 (2)对于有有斜交抗侧力构件的结构,当大于等于15度时,应分别计算各抗力构件方向的水平地震力。此处所指交角是指与设计输入时,所选择坐标系间的夹角。 (3)对于主体结构中存在有斜向放置的梁、柱时,也要分别计算各抗力构件方向的水平地震力。 5、周期折减系数:《高规》4.3.17条规定:当非承重墙体为填充砖墙时,高层建筑结构的计算自振周期折减系数,可按下列规定取值。 (1)框架结构0.6—0.7;框架—剪力墙结构0.7—0.8;剪力墙结构 0.9—1.0;短肢剪力墙结构 0.8—0.9.

pkpm七个重要参数

一、轴压比:主要为限制结构的轴压比,保证结构的延性要求,规范对墙肢和柱均有相应限值要求,见抗规6.3.7和6.4.6,高规 6.4.2和7.2.14及相应的条文说明。轴压比不满足要求,结构的延性要求无法保证;轴压比过小,则说明结构的经济技术指标较差,宜适当减少相应墙、柱的截面面积。 轴压比不满足时的调整方法: 1、程序调整:SATWE程序不能实现。 2、人工调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。 二、剪重比:主要为限制各楼层的最小水平地震剪力,确保周期较长的结构的安全,见抗规 5.2.5,高规3.3.13及相应的条文说明。这个要求如同最小配筋率的要求,算出来的水平地震剪力如果达不到规范的最低要求,就要人为提高,并按这个最低要求完成后续的计算。 剪重比不满足时的调整方法: 1、程序调整:在SATWE的“调整信息”中勾选“按抗震规范5.2.5调整各楼层地震内力”后,SATWE按抗规5.2.5自动将楼层最小地震剪力系数直接乘以该层及以上重力荷载代表值之和,用以调整该楼层地震剪力,以满足剪重比要求。 2、人工调整:如果还需人工干预,可按下列三种情况进行调整: 1)当地震剪力偏小而层间侧移角又偏大时,说明结构过柔,宜适当加大墙、柱截面,提高刚度。 2)当地震剪力偏大而层间侧移角又偏小时,说明结构过刚,宜适当减小墙、柱截面,降低刚度以取得合适的经济技术指标。 3)当地震剪力偏小而层间侧移角又恰当时,可在SATWE的“调整信息”中的“全楼地震作用放大系数”中输入大于1的系数增大地震作用,以满足剪重比要求。 三、刚度比:主要为限制结构竖向布置的不规则性,避免结构刚度沿竖向突变,形成薄弱层,见抗规3.4.2,高规4.4.2及相应的条文说明;对于形成的薄弱层则按高规5.1.14予以加强。 刚度比不满足时的调整方法: 1、程序调整:如果某楼层刚度比的计算结果不满足要求,SATWE自动将该楼层定义为薄弱层,并按高规5.1.14将该楼层地震剪力放大1.15倍。 2、人工调整:如果还需人工干预,可按以下方法调整: 1)适当降低本层层高,或适当提高上部相关楼层的层高。 2)适当加强本层墙、柱和梁的刚度,或适当削弱上部相关楼层墙、柱和梁的刚度。 四、位移比:主要为限制结构平面布置的不规则性,以避免产生过大的偏心而导致结构产生较大的扭转效应。见抗规3.4.2,高规 4.3.5及相应的条文说明。 位移比不满足时的调整方法: 1、程序调整:SATWE程序不能实现。 2、人工调整:只能通过人工调整改变结构平面布置,减小结构刚心与形心的偏心距;调整方法如下: 1)由于位移比是在刚性楼板假定下计算的,最大位移比往往出现在结构的四角部位;因此应注意调整结构外围对应位置抗侧力构件的刚度;同时在设计中,应在构造措施上

PKPM 设计参数

楼层组装—设计参数 a.总信息 1.结构体系(框架,框剪,框筒,筒中筒,剪力墙,断肢剪力墙,复杂高层,砌体,底框)。 2.结构主材(钢筋混凝土,砌体,钢和混凝土)。 3.结构重要性系数(《高层混凝土结构技术规程》4.7.1 ,混凝土规范3.2.3)。4.底框层数,地下室层数按实际选用。 5.梁柱钢筋的混凝土保护层厚度(《混凝土结构设计规范》表3.4.1及表9.2.1)。6.与基础相连的最大楼层号,按实际情况,如没有什么特殊情况,取1。 7.框架梁端负弯矩调幅系数一般取(0.85—0.9)《高层混凝土结构技术规程》5.2.3条文中有说明。 b.材料信息 1.混凝土容重取 26-27,全剪力墙取27,取25时需输入粉刷层荷载。 2.钢材容重取 78。 3.梁柱主筋类别,按设计需要选取。优先采用三级钢,可以节约钢材。 SATWE设计参数 a.总信息 1.水平力与整体坐标夹角(度),通常采用默认值。(逆时针方向为正,当需进行多方向侧向力核算时,可改变次参数) 2.混凝土容重取 26-27,钢材容重取 78。 3.裙房层数,转换层所在层号,地下室层数,均按实际取用。(如果有转换层必须指定其层号)。 4.墙元细分最大控制长度,这是在墙元细分时需要的一个参数,对于尺寸较大的剪力墙,在作墙元细分形成一定的小壳元时,为确保分析精度,要求小壳元的边长不得大于给定限值Dmax,程序限定1.0≤Dmax≤5.0 ,隐含值为Dmax=2.0 , Dmax对分析精度略有影响,但不敏感,对于一般工程,可取Dmax=2.0 ,对于框支剪力墙结构, Dmax可取略小些, 例如Dmax=1.5或1.0 。 5.对所有楼板强制采用刚性楼板假定(在计算结构位移比时选用此项,除了位移比计算,其他的结构分析、设计不应选择此项)。 6.墙元侧向节点信息:这是墙元刚度矩阵凝聚计算的一个控制参数,若选“出口”,则只把墙元因细分而在其内部增加的节点凝聚掉,四边上的节点均作为出口节点,墙元的边形协调性好,分析结果符合剪力墙的实际,但计算量大。若选“内部”则只把墙元上、下边的节点作为出口节点,墙元的其他节点均作为内部节点被凝聚掉,这时,带动口的墙元两侧边中部的节点为变形不协调点。这是对剪力墙的一种简化模拟,其精度略逊于前者,但效率高,实用性好。在为配筋而进行的工程计算中,对于多层,由于剪力墙较少,应选择“出口”,对于高层,由于剪力墙较多,工程规模较大,可选“内部”。 7.结构材料信息(钢筋混凝土结构,钢与混凝土混合结构,有填充墙钢结构,无填充墙钢结构,砌体结构),根据结构材料的不同进行选择。 8.结构体系(框架,框剪,框筒,筒中筒,剪力墙,断肢剪力墙,复杂高层,板柱剪力墙),根据结构体系的不同进行选择。 9.恒活荷载计算信息[不计算恒活荷载(不计算竖向力),一次性加载(按一次加载方式计算竖向力),模拟施工加载1,模拟施工加载2]。 “模拟施工加载1”方式较好地模拟了在钢筋混凝土结构施工过程中,逐层加载,逐层找平

各种品牌机油的特点-Word整理

1、嘉实多:嘉实多机油的主要特点就是当发动机冷启动时的机油流动性比较出色,能够迅速达到诸如液压气门顶等一些发动机内部的偏远位置。 2、壳牌:壳牌的四冲程机油以出色的清洗能力而闻名,很多长时间坚持使用壳牌全合成机油的车辆在打开发动机时几乎都看不见一点油泥。 3、美孚:美孚机油,在各种不同工况下都表现得非常出色的稳定性。 4、道达尔:法国机油,在国内的许多法系车型,包括雪铁龙和标致车型都是采用道达尔公司的机油产品。 5、埃索:它隶属于埃克森美孚集团,这类似于奥迪与大众之间的关系。但与美孚机油相比,它的主要市场其实是在一些工业机械方面。至于民用乘用车市场,则占有率不高。 6、加德士:在民用的乘用车领域,由于产品线少和宣传力度不够等原因,市场占有率较少,更多的重心还是放在了工业用油方面。 7、红线:在国际一些重要的赛场和国内的许多资深的改装玩家中,红线机油的口碑不错,经常被用在大马力、高转速的涡轮增压发动机当

中,并且即便在酷热的夏天长时间保持极限使用也能够提供出色的润滑和密封效果。

8、德国福斯油品集团:福斯机油在国内的主要消费者是大众车系的车主,而宝来和捷达是其中的主要使用车型。福斯的全合成机油其主要特性是发动机会更加顺滑,噪音更低。但高转速时的保护能力一般,长途驾驶时仍不能提供最佳的保证。 9、BP机油:与嘉实多一家公司的,该品牌机油的主要特点是由于添加剂的作用,使得引擎内部的摩擦力得到有效降低,从而提高了发动机响应能力和降低了油耗。 10、昆仑润滑油:隶属于中国石油集团,由于品牌力度不够,所以在国内的市场份额并不高,只能依靠比较低廉的价格获得一些更加重视成本的运输公司的青睐。作为一个普通的用车人,尽管对中国石油的种种表现所不齿,但实事求是的讲,如果您的用车仅仅局限于城市道路普通驾驶,那么昆仑机油实际上也是可以信赖的。 11、长城润滑油:隶属于中国石化。金吉星系列是其主打的产品,涉及的市场范围包括中低端的家庭轿车、重型载重卡车以及一些油轮等等,主要竞争对手为红壳。

大数据平台技术框架选型分析

大数据平台框架选型分析 一、需求 城市大数据平台,首先是作为一个数据管理平台,核心需求是数据的存和取,然后因为海量数据、多数据类型的信息需要有丰富的数据接入能力和数据标准化处理能力,有了技术能力就需要纵深挖掘附加价值更好的服务,如信息统计、分析挖掘、全文检索等,考虑到面向的客户对象有的是上层的应用集成商,所以要考虑灵活的数据接口服务来支撑。 二、平台产品业务流程

三、选型思路 必要技术组件服务: ETL >非/关系数据仓储>大数据处理引擎>服务协调>分析BI >平台监管

四、选型要求 1.需要满足我们平台的几大核心功能需求,子功能不设局限性。如不满足全部,需要对未满足的其它核心功能的开放使用服务支持 2.国内外资料及社区尽量丰富,包括组件服务的成熟度流行度较高 3.需要对选型平台自身所包含的核心功能有较为深入的理解,易用其API或基于源码开发

4.商业服务性价比高,并有空间脱离第三方商业技术服务 5.一些非功能性需求的条件标准清晰,如承载的集群节点、处理数据量及安全机制等 五、选型需要考虑 简单性:亲自试用大数据套件。这也就意味着:安装它,将它连接到你的Hadoop安装,集成你的不同接口(文件、数据库、B2B等等),并最终建模、部署、执行一些大数据作业。自己来了解使用大数据套件的容易程度——仅让某个提供商的顾问来为你展示它是如何工作是远远不够的。亲自做一个概念验证。 广泛性:是否该大数据套件支持广泛使用的开源标准——不只是Hadoop和它的生态系统,还有通过SOAP和REST web服务的数据集成等等。它是否开源,并能根据你的特定问题易于改变或扩展?是否存在一个含有文档、论坛、博客和交流会的大社区? 特性:是否支持所有需要的特性?Hadoop的发行版本(如果你已经使用了某一个)?你想要使用的Hadoop生态系统的所有部分?你想要集成的所有接口、技术、产品?请注意过多的特性可能会大大增加复杂性和费用。所以请查证你是否真正需要一个非常重量级的解决方案。是否你真的需要它的所有特性? 陷阱:请注意某些陷阱。某些大数据套件采用数据驱动的付费方式(“数据税”),也就是说,你得为自己处理的每个数据行付费。因为我们是在谈论大数据,所以这会变得非常昂贵。并不是所有的大数据套件都会生成本地Apache Hadoop代码,通常要在每个Hadoop集群的服务器上安装一个私有引擎,而这样就会解除对于软件提供商的独立性。还要考虑你使用大数据套件真正想做的事情。某些解决方案仅支持将Hadoop用于ETL来填充数据至数据仓库,而其他一些解决方案还提供了诸如后处理、转换或Hadoop集群上的大数据分析。ETL仅是Apache Hadoop和其生态系统的一种使用情形。 六、方案分析

PKPM2010版-参数设置讲解

设计参数遍览——针对PKPM08版修改 注:本文所述参数均以2010/03/04版本PKPM程序为准,其他版本程序可作参考。 一、结构模块PMCAD PMCAD模块是后续模块TAT-8、TA T、SAT-8、SA TWE、JCCAD的基础,因此其数据的合理程度将直接影响到后续模块数据、计算的合理性。它的数据检查发现的问题应消除,不能带入后续模块。这里需要定义的设计参数不多,也比较简单,要在后续模块里检查是否已准确传入。楼板计算也在该模块完成。 主菜单①建筑模型与荷载输入——设计参数 1 设计参数 1.1 总信息

1.1.1 结构体系:按结构布置的实际状况确定。分为框架结构、框剪结构、框筒结构、筒中筒结构、剪力墙结构、短肢剪力墙结构、复杂高层结构、砌体结构、底框结构、配筋砌体、板柱剪力墙、异形柱框架和异形柱框剪,共13种类型。确定结构类型即确定与其对应的有关设计参数,进入后续模块尚需调整。 1.1.2 结构主材:钢筋混凝土、钢和混凝土、有填充墙钢结构、无填充墙钢结构和砌体。一般按结构的实际情况确定,选定结构材料即确定结构设计的相关规范。型钢混凝土和钢管混凝土结构属于钢筋混凝土结构,而非钢结构。 1.1.3 结构重要性系数:对安全等级为一级或设计使用年限为100年及以上的结构构件,不应小于1.1;对安全等级为二级或设计使用年限为50年的结构构件,不应小于1.0;对安全等级为三级或设计使用年限为5年及以下的结构构件,不应小于0.9;在抗震设计中,不考虑结构构件的重要性系数。参考《混凝土结构设计规范》(GB50010-2002)3. 2.2条。 1.1.4 底框层数:仅在结构体系为底框结构才显亮,可填1、2、3或4;若选择其他结构体系则变灰。参考《建筑抗震设计规范》(GB50011-2010)第7章多层砌体房屋和底部框架砌体房屋。 1.1.5 地下室层数:当用TA T、SATWE计算时,对地震力、风力作用、地下人防等因素有影响。程序按地下室层数结合层底标高判断楼层是否为地下室,例如此处设置4,则层底标高最低的4层判断为地下室。可选择范围为1~12。 1.1.6 与基础相连的构件最大底标高(m):该标高是程序自动生成基础支座信息的控制参数。当在【楼层组装】对话框中选中了左下角“生成与基础相连的墙柱支座信息”并确定退出对话框时,程序会自动根据此参数将各标准层上底标高低于此参数的构件所在的节点设置为支座。 1.1.7 梁钢筋的砼保护层厚度(mm):根据《混凝土规范》9.2章确定。 1.1.8 柱钢筋的砼保护层厚度(mm):根据《混凝土规范》9.2章确定。 1.1.9 框架梁端负弯矩调幅系数:默认值0.85。可直接采用也可修改。

pkpm中要检查的参数

高层建筑结构设计必须检查的计算结果输出信息 1、轴压比:主要为控制结构的延性,规范对墙肢和柱均有相应限值要求,见抗规6.3.7和6.4.6。 2、剪重比:主要为控制各楼层最小地震剪力,确保结构安全性,参见《高规》的表3.3.13;地震规范的表5.2.5同。程序对算出的“楼层最小地震剪力系数”如果不满足规范的要求,将给出是否调整地震剪力的选择。根据规范组的解释,如果不满足,就应调整结构方案,直到达到规范的值为止,而不能简单的调大地震力。(A级高度高层建筑的楼层层间抗侧力结构的受剪承载力不宜小于其上一层受剪承载力的80%,不应小于其上一层受剪承载力的65%,B级高度高层建筑的楼层层间抗侧力结构的受剪承载力不宜小于其上一层受剪承载力的75%。注:楼层层间抗侧力结构受剪承载力是指在所考虑的水平地震作用方向上,该层全部柱及剪力墙的受剪承载力之和。)见wmass.out 3、刚度比:主要为控制结构竖向规则性,以免竖向刚度突变,形成薄弱层。 新抗震规范附录E2.1规定,转换层结构上下层的侧向刚度比不宜大于2。 新高规的4.4.3条规定,抗震设计的高层建筑结构,其楼层侧向刚度不宜小于相临上部楼层侧向刚度的70%或其上相临三层侧向刚度平均值的80% 新高规的5.3.7条规定,高层建筑结构计算中,当地下室的顶板作为上部结构嵌固端时,地下室结构的楼层侧向刚度不应小于相邻上部结构楼层侧向刚度的2倍。新高规的10.2.6条规定,底部大空间剪力墙结构,转换层上部结构与下部结构的侧向刚度,应符合高规附录D 的规定。 D.0.1:底部大空间为一层的部分框支剪力墙结构,可近似采用转换层上、下层结构等效刚度比γ表示转换层上、下层结构刚度的变化,非抗震设计时γ不应大于3,抗震设计时不应大于2 D.0.2:底部为2-5层大空间的部分框支剪力墙结构,其转换层下部框架一剪力墙结构的等效 侧向刚度与相同或相近高度的上部剪力墙结构的等效侧向刚度比γe宜接近1,非抗震设计时不应大于2,抗震设计时不应大于1.3。 上述所有这些刚度比的控制,都涉及到楼层刚度的计算方法。目前,有三种方案可供选择:(1)高规附录E.0.1建议的方法——剪切刚度Ki=GiAi/Hi (2)高规附录E.0.2建议的方法——剪弯刚度Ki=Vi /△i (3)抗震规范3.4.2和3.4.3条文说明中建议的方法 Ki=Vi/△ui 选用方法如下: (1)对于多层(砌体、砖混底框),宜采用刚度1; (2)对于带斜撑的钢结构和底部大空间层数>1层的结构宜采用刚度2; (3)多数结构宜采用刚度3。(所有的结构均可用刚度3) 竖向刚度不规则结构的程序处理: 抗震规范3.4.3条规定,竖向不规则的建筑结构,其薄弱层的地震剪力应乘以1.15的增大系数; 新高规5.1.14条规定,楼层侧向刚度小于上层的70%或其上三层平均值的80%时,该楼层地震剪力应乘1.15增大系数; 新抗震规范3.4.3条规定,竖向不规则的建筑结构,竖向抗侧力构件不连续时,该构件传递给水平转换构件的地震内力应乘以1.25-1.5的增大系数。 1)针对这些条文,程序通过自动计算楼层刚度比, 来决定是否采用1.15的楼层剪力增大系数;并且允许用户强制指定薄弱层位置,对用户指定的薄弱层也采用1.15的楼层剪力增

相关主题
文本预览
相关文档 最新文档