当前位置:文档之家› 知识点20 隐函数及参数方程的求导

知识点20 隐函数及参数方程的求导

知识点20 隐函数及参数方程的求导
知识点20 隐函数及参数方程的求导

隐函数求导公式

第5节:隐函数的求导公式 教学目的:掌握由一个方程和方程组确定的隐函数求导公式,熟练计算隐函数的导函数。 教学重点:由一个方程确定的隐函数求导方法。 教学难点:隐函数的高阶导函数的计算。 教学方法:讲授为主,互动为辅 教学课时:2 教学内容: 一、一个方程的情形 在第二章第六节中我们已经提出了隐函数的概念,并且指出了不经显化直接由方程 ),(y x f =0 (1) 求它所确定的隐函数的方法。现在介绍隐函数存在定理,并根据多元复合函数的求导法来导出隐函数的导数公式. 隐函数存在定理 1 设函数),(y x F 在点 ),(00y x P 的某一邻域内具有连续的偏导数,且0),(00=y x F ,, 0),(00≠y x F y ,则方程),(y x F =0在点),(00y x 的某一邻域内恒能唯一确定一个单值连续且具有连续导数的函数)(x f y =,它满足条件)(00x f y =,并有 y x F F dx dy -= (2) 公式(2)就是隐函数的求导公式 这个定理我们不证。现仅就公式(2)作如下推导。 将方程(1)所确定的函数)(x f y =代入,得恒等式 0))(,(≡x f x F , 其左端可以看作是x 的一个复合函数,求这个函数的全导数,由于恒等式两端求导后仍然恒等,即得 ,0=??+??dx dy y F x F

由于y F 连续,且0),(00≠y x F y ,所以存在(x 0,y 0)的一个邻域,在这个邻域内0≠y F ,于是得 .y x F F dx dy -= 如果),(y x F 的二阶偏导数也都连续,我们可以把等式(2)的两端看作x 的复合函数而再一次求导,即得 dx dy F F y F F x dx y d y x y x ???? ??-??+???? ??-??= 22 .23 2222y x yy y x xy y xx y x y x yy y xy y x yz y xx F F F F F F F F F F F F F F F F F F F F +--=???? ??-----= 例 1 验证方程012 2 =-+y x 在点(0,1)的某一邻域内能唯一确定一个单值且有连续导数、当x =0时,1=y 的隐函数)(x f y =,并求这函数的一阶和二阶导数在x =0的值。 解 设=),(y x F 12 2-+y x ,则y F x F y x 2,2==,02)1,0(,0)1,0(≠==y F F .因此 由定理1可知,方程012 2 =-+y x 在点(0,1)的某邻域内能唯一确定一个单值且有连续导数、当x =0时,1=y 的隐函数)(x f y =。 下面求这函数的一阶和二阶导数 y x F F dx dy -==y x -, 00 ==x dx dy ; 22dx y d =,1) (3 32222y y x y y y x x y y y x y -=+-=---='-- 10 2 2-==x dx y d 。 隐函数存在定理还可以推广到多元函数.既然一个二元方程(1)可以确定一个一元隐函

隐函数与参数方程求导法则

5.3 隐函数与参数方程求导法则 一、隐函数求导法则 表示函数f (对应关系)有多种不同的方法,其中有这样一种方法,自变量x 与因变量y 的对应关系f 是由二元方程F (x ,y )=0所确定。 定义 设有两个非空数集A 与B.若A x ∈?,F (x ,y)=0对应唯一一个B y ∈,则称此对应关系f (或写为y=f (x))是二元方程F(x ,y)=0确定的隐函数。 由隐函数的定义看到,二元方程F(x ,y)=0确定的隐函数y=f (x)(A x ∈,B y ∈)必是二元方程F(x ,y)=0的解,因此,A x ∈,有 F[x ,f(x)]=0 (或F[x ,f(x)]≡0 ). 例如,二元方程F(x ,y)=2x-3y-1=0在R 确定(从中解得)一个隐函数。 事实上,R x ∈?,由二元方程对应唯一一个312-= x y R ∈,且 F (x , 312-x )=2x-33 12-x -1≡0. 二元方程F(x ,y)=x 2+y 2-a 2=0(a>0)在A=[-a ,a]确定两个连续的(B 1=[0 ,+∞)与 B 2=(-∞ ,0])隐函数。 事实上,],[a a x -∈?,由二元方程对应唯一一个1y =],0[122+∞=∈-B x a ,且 0),(),(221≡--=x a x F y x F 与]0,(2222-∞=∈--=B x a y ,且 0),(),(222≡--=x a x F y x F 于是,二元方程F(x ,y)=x 2+y 2-a 2=0在A=[-a ,a]确定了两个连续的隐函数。 ],0[221a x a y ∈-= 与]0,[222a x a y -∈--=。 这两个隐函数的图像是以原点为心以a 为半径的在区间],[a a -的上半圆周与下半圆周,如图5.5 由此可见,所谓隐函数就是对应关系f 不明显的隐含在二元方程之中,相对隐函数来

高中数学典型例题详解和练习- 求分段函数的导数

求分段函数的导数 例 求函数?????=≠=0 ,00 ,1sin )(2 x x x x x f 的导数 分析:当0=x 时因为)0(f '存在,所以应当用导数定义求)0(f ',当 0≠x 时,)(x f 的关系式是初等函数x x 1 sin 2,可以按各种求导法同求它的导数. 解:当0=x 时,01sin lim 1 sin lim ) 0()(lim )0(0200 ===-='→?→?→?x x x x x x f x f f x x x 当 ≠x 时, x x x x x x x x x x x x x x x f 1 cos 1sin 2)1cos 1(1sin 2)1(sin 1sin )()1sin ()(22222-=-+='+'='=' 说明:如果一个函数)(x g 在点0x 连续,则有)(lim )(0 0x g x g x x →=,但如 果我们不能断定)(x f 的导数)(x f '是否在点00=x 连续,不能认为 )(lim )0(0 x f f x →='. 指出函数的复合关系 例 指出下列函数的复合关系. 1.m n bx a y )(+=;2.32ln +=x e y ; 3.)32(log 322+-=x x y ;4.)1sin(x x y +=。 分析:由复合函数的定义可知,中间变量的选择应是基本函数的结构,解决这类问题的关键是正确分析函数的复合层次,一般是从最外层开始,由外及里,一层一层地分析,把复合函数分解成若干个常

见的基本函数,逐步确定复合过程. 解:函数的复合关系分别是 1.n m bx a u u y +==,; 2.2,3,ln +===x e v v u u y ; 3.32,log ,322+-===x x v v u y u ; 4..1,sin ,3x x v v u u y +=== 说明:分不清复合函数的复合关系,忽视最外层和中间变量都是基本函数的结构形式,而最内层可以是关于自变量x 的基本函数,也可以是关于自变量的基本函数经过有限次的四则运算而得到的函数,导致陷入解题误区,达不到预期的效果. 求函数的导数 例 求下列函数的导数. 1.43)12(x x x y +-=;2.2 211x y -= ; 3.)3 2(sin 2π +=x y ;4.21x x y +=。 分析:选择中间变量是复合函数求导的关键.必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成的,分清其间的复合关系.要善于把一部分量、式子暂时当作一个整体,这个暂时的整体,就是中间变量.求导时需要记住中间变量,注意逐层求导,不遗漏,而其中特别要注意中间变量的系数.求导数后,要把中间变量转换成自变量的函数.

作业11隐函数与参数方程求导

1、填空题 1)设函数()x y y =由方程() x y x y x sin ln 3 2 +=+确定,则()= '0y 1 2)设()()???-=-=13t e f y t f x π,其中()t f 可导,且()00≠'f ,则= =0 t dx dy 3 3)设()0,0>>? ? ? ????? ????? ??=b a a x x b a b y b a x ,则=dx dy ()??? ? ????? ??-+??? ??---1ln a b x a b x b a x a b a b a b x a b a b 2、求下列方程所确定的隐函数()x y 的导数 1)xy x y e += 解:方程两边关于x 求导得:()1 11xy xy xy ye y e y xy y xe -'''+=+?=-。 2)()tan cos y x x y =+ 解:方程两边关于x 求导得:()()2 tan sec 1sin y x y x y x y ''+=-++?。 ()()2sin sec sin tan x y y x y x y x -+-'=++ 3 ()0a =>上任意一点处的切线在坐标轴上的截距和为常数 a 。 证明:方程两边关于x 0y y ''+=?=()00,x y 为曲线上 任意一点,此点处切线方程为)00y y x x -=-,其对应截距式方程为 1= a == 4、求下列函数的导数dx dy 1) y xe =

解:方法一、 22cos 1x x e x y e xe -'= 方法二、y xe = ()21 ln ln ln sin 12 y x x x =++- 两边关于x 求导得:()() 22 cos 111 1sin 1x x y y x x -'=+ +- ()()2 2 cos 111sin 1x x y xe x x ?-'?=++?-? 2)()()x y y x sin cos = 解:()()x y y x sin cos =两边取对数得: y x x y sin ln cos ln = 两边关于x 求导得:y y x y x y x y '?+=-'cot sin ln tan cos ln y x x y x y y cot cos ln sin ln tan -+= ' 5、求下列参数方程所确定函数的导数 dx dy 1)()32 ln 1x t t y t t ?=-+??=+?? 解: () ()()()()322323211ln 111t t dy t t t t dx t t t '++===++'-+-+ 2)()?? ?=-=θ θθθcos sin 1y x 解:()()()θ θθθθθθθθθcos sin 1sin cos sin 1cos ---='-'=dx dy 6、求三叶玫瑰线()()03sin >=a a r θ上对应于4 π θ=点处的切线方程(直角坐标形式)。 解:?? ?====θ θθθθθsin 3sin sin cos 3sin cos a r y a r x ,θθθθθ θθθsin 3sin cos 3cos 3cos 3sin sin 3cos 3a a a a dx dy -+=

函数与导数练习题(有答案)

函数与导数练习题(高二理科) 1.下列各组函数是同一函数的是 ( ) ①()f x = ()g x =()f x x = 与()g x =; ③0()f x x =与01 ()g x x = ;④2()21f x x x =--与2()21g t t t =--. A 、①② B 、①③ C 、③④ D 、①④ 2.函数2 4 ++= x x y 的定义域为 . 3.若)(x f 是一次函数,14)]([-=x x f f 且,则)(x f = . 4.如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上单调递减,那么实数a 的取值范围是( ) A 、3a -≤ B 、3a -≥ C 、a ≤5 D 、a ≥5 5.下列函数中,在()0,2上为增函数的是( ) A .12 log (1)y x =+ B .2 log y =C .2 1log y x = D .2 log (45)y x x =-+ 6.)(x f y =的图象关于直线1-=x 对称,且当0>x 时,,1 )(x x f =则当2-

复合函数求导练习题重点讲义资料

复合函数求导练习题 一.选择题(共26小题) 1.设,则f′(2)=() A.B.C.D. 2.设函数f(x)=g(x)+x+lnx,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线方程为() A.y=4x B.y=4x﹣8 C.y=2x+2 D. 3.下列式子不正确的是() A.(3x2+cosx)′=6x﹣sinx B.(lnx﹣2x)′=ln2 C.(2sin2x)′=2cos2x D.()′= 4.设f(x)=sin2x,则=() A.B.C.1 D.﹣1 5.函数y=cos(2x+1)的导数是() A.y′=sin(2x+1)B.y′=﹣2xsin(2x+1) C.y′=﹣2sin(2x+1)D.y′=2xsin(2x+1) 6.下列导数运算正确的是() A.(x+)′=1+B.(2x)′=x2x﹣1C.(cosx)′=sinx D.(xlnx)′=lnx+1 7.下列式子不正确的是() A.(3x2+xcosx)′=6x+cosx﹣xsinx B.(sin2x)′=2cos2x C.D. 8.已知函数f(x)=e2x+1﹣3x,则f′(0)=() A.0 B.﹣2 C.2e﹣3 D.e﹣3 9.函数的导数是() A. B. C.D. 10.已知函数f(x)=sin2x,则f′(x)等于() A.cos2x B.﹣cos2x C.sinxcosx D.2cos2x 11.y=e sinx cosx(sinx),则y′(0)等于() A.0 B.1 C.﹣1 D.2

12.下列求导运算正确的是() A. B. C.((2x+3)2)′=2(2x+3)D.(e2x)′=e2x 13.若,则函数f(x)可以是() A.B.C.D.lnx 14.设 ,则f2013(x)=() A.22012(cos2x﹣sin2x)B.22013(sin2x+cos2x) C.22012(cos2x+sin2x)D.22013(sin2x+cos2x) 15.设f(x)=cos22x,则=() A.2 B.C.﹣1 D.﹣2 16.函数的导数为() A.B. C.D. 17.函数y=cos(1+x2)的导数是() A.2xsin(1+x2) B.﹣sin(1+x2) C.﹣2xsin(1+x2)D.2cos(1+x2) 18.函数y=sin(﹣x)的导数为() A.﹣cos(+x)B.cos(﹣x)C.﹣sin(﹣x)D.﹣sin(x+) 19.已知函数f(x)在R上可导,对任意实数x,f'(x)>f(x);若a为任意的正实数,下列式子一定正确的是() A.f(a)>e a f(0)B.f(a)>f(0)C.f(a)<f(0)D.f(a)<e a f(0)20.函数y=sin(2x2+x)导数是() A.y′=cos(2x2+x)B.y′=2xsin(2x2+x) C.y′=(4x+1)cos(2x2+x)D.y′=4cos(2x2+x) 21.函数f(x)=sin2x的导数f′(x)=() A.2sinx B.2sin2x C.2cosx D.sin2x 22.函数的导函数是() A.f'(x)=2e2x B. C.D.

(完整版)函数与导数经典例题(含答案)

函数与导数 1. 已知函数3 2 ()4361,f x x tx tx t x R =+-+-∈,其中t R ∈. (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0t ≠时,求()f x 的单调区间; (Ⅲ)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点. 【解析】(19)本小题主要考查导数的几何意义、利用导数研究函数的单调性、曲线的切线方程、 函数的零点、解不等式等基础知识,考查运算能力及分类讨论的思想方法,满分14分。 (Ⅰ)解:当1t =时,3 2 2 ()436,(0)0,()1266f x x x x f f x x x '=+-==+- (0) 6.f '=-所以曲线()y f x =在点(0,(0))f 处的切线方程为6.y x =- (Ⅱ)解:2 2 ()1266f x x tx t '=+-,令()0f x '=,解得.2 t x t x =-=或 因为0t ≠,以下分两种情况讨论: (1)若0,,2 t t t x <<-则 当变化时,(),()f x f x '的变化情况如下表: x ,2t ? ?-∞ ?? ? ,2t t ?? - ??? (),t -+∞ ()f x ' + - + ()f x 所以,()f x 的单调递增区间是(), ,,;()2t t f x ? ?-∞-+∞ ? ??的单调递减区间是,2t t ?? - ??? 。 (2)若0,2 t t t >-< 则,当x 变化时,(),()f x f x '的变化情况如下表: x (),t -∞ ,2t t ??- ?? ? ,2t ?? +∞ ??? ()f x ' + - + ()f x

隐函数的求导方法总结

百度文库- 让每个人平等地提升自我 河北地质大学 课程设计(论文)题目:隐函数求偏导的方法 学院:信息工程学院 专业名称:电子信息类 小组成员:史秀丽 角子威 季小琪 2016年05月27日

摘要 (3) 一.隐函数的概念 (3) 二.隐函数求偏导 (3) 1.隐函数存在定理1 (3) 2.隐函数存在定理2 (4) 3.隐函数存在定理3 (4) 三. 隐函数求偏导的方法 (5) 1.公式法 (5) 2.直接法 (6) 3.全微分法 (6) 参考文献 (8)

摘要 本文讨论了一元隐函数,多元隐函数的存在条件及相关结论,总结出隐函数求偏导的方法和全微分法等方法和相应实例,目的是更好的计算隐函数的求导 关键字:隐函数 偏导数 方法 一.隐函数的概念 一般地,如果变量y x 和满足方程()0,=y x F ,在一定条件下,当x 取某区间的任一 值时,相应地总有满足这方程的唯一的y 值存在,那么就说方程()0,=y x F 在该区间内确 定了一个隐函数。例如,方程013 =-+y x 表示一个函数,因为当变量x 在()∞+∞-, 内取值时,变量y 有确定的值与其对应。如等时时321,10=-===y x y x 。 二.隐函数求偏导 1.隐函数存在定理1 设函数0),(=y x F 在P (x 。,y 。)在某一领域内具有连续偏导数, 且0),(= y x F ,0),(≠ y x F y ,则方程0),(=y x F 在点(x 。,y 。)的某一领域内恒能唯一确定一个连续且具有连续导数的函数)(x f y =,它满足条件)( x f y =,并有 y x y F F d d x - =。 例1:验证方程2x -2 y =0在点(1,1)的某一邻域内能唯一确定一个具有连续导数,且当x=1时y=1的隐函数y=)(x f ,并求该函数的导数dx dy 在x=1处的值。 解 令),(y x F =2x -2 y ,则 x F =2x ,y F =-2y ,)1,1(F =0,)1,1(y F =-2≠0 由定理1可知,方程2x -2y =0在点(1,1)的某一邻域内能唯一确定一个连续可导的隐函数,当x=1时,y=1的隐函数为y=x ,且有 dx dy =y x F F -=y x 22=y x

高中数学导数典型例题

高中数学导数典型例题 题型一:利用导数研究函数的单调性、极值、最值 1. 已知函数32()f x x ax bx c =+++ 过曲线()y f x =上的点(1,(1))P f 的切线方程为y=3x +1 。 (1)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (2)在(1)的条件下,求函数)(x f y =在[-3,1]上的最大值; (3)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围 2. 已知).(323 2)(23R a x ax x x f ∈--= (1)当41||≤ a 时, 求证:)x (f 在)1,1( -内是减函数; (2)若)x (f y =在)1,1( -内有且只有一个极值点, 求a 的取值范围. 题型二:利用导数解决恒成立的问题 例1:已知322()69f x x ax a x =-+(a ∈R ) . (Ⅰ)求函数()f x 的单调递减区间; (Ⅱ)当0a >时,若对[]0,3x ?∈ 有()4f x ≤恒成立,求实数a 的取值范围.

例2:已知函数222()2()21x x f x e t e x x t =-++++,1()()2g x f x '= . (1)证明:当t <时,()g x 在R 上是增函数; (2)对于给定的闭区间[]a b ,,试说明存在实数 k ,当t k >时,()g x 在闭区间[]a b , 上是减函数; (3)证明: 3()2 f x ≥. 例3:已知3)(,ln )(2-+-==ax x x g x x x f (1)求函数)(x f 在)0](2,[>+t t t 上的最小值 (2)对(0,),2()()x f x g x ?∈+∞≥恒成立,求实数a 的取值范围 题型三:利用导数研究方程的根 例4:已知函数a x ax x f 313)(23-+-=. (I)讨论函数)(x f 的单调性; (Ⅱ)若曲线()f x 上两点A 、B 处的切线都与y 轴垂直,且线段AB 与x 轴有公共点,求实 数a 的取值范围.

函数导数习题(含答案)

函数、导数部分 1、已知函数()x f y =,[]b a x ,∈,那么集合()()[]{}(){} 2,,,,=∈=x y x b a x x f y y x 中元素的个数为 1或0 2、将函数()x x f 2=的图象向左平移一个单位得到图象1C ,再将1C 向上平移一个单位得图 象2C ,作出2C 关于直线x y =对称的图象3C ,则3C 对应的函数的解析式为 ()11log 2--=x y 3、函数x x x y sin cos -=在下面的哪个区间上是增函数( B ) A. ?? ? ??23,2ππ B. ()ππ2, C. ??? ??25,23ππ D. ()ππ3,2 4、设()x x x f s i n =,1x 、?? ? ???-∈2,22ππx ,且()1x f >()2x f ,则下列结论必成立的是(D ) A. 1x >2x B. 1x +2x >0 C. 1x <2x D. 2 1x >2 2x 5、方程2log 2=+x x 和2log 3=+x x 的根分别是α、β,则有( A ) 6、方程0122 =++x ax 至少有一个负的实根的充要条件是 a ≤ 1 7、在同一坐标系中,函数1+=ax y 与1 -=x a y (a >0且a ≠1)的图象可能是 C 8、函数()()()b x b x a ax x f +-+-+=34812 3 的图象关于原点中心对称,则()x f (B ) A. 在[]34,34-上为增函数 C. 在[)+∞,34上为增函数,在(] 34,-∞-上为减函数 B. 在[]34,34-上为减函数 D. 在(]34,-∞-上为增函数,在[)+∞,34上为减函数 9、设(){}12,2 ++==bx x y y x M ,()(){}b x a y y x P +==2,,(){}φ==P M b a S ,, 则S 的面积是π

隐函数地求导方法总结材料

地质大学 课程设计(论文)题目:隐函数求偏导的方法 学院:信息工程学院 专业名称:电子信息类 小组成员:史秀丽 角子威 季小琪 2016年05月27日

摘要 (3) 一.隐函数的概念 (3) 二.隐函数求偏导 (3) 1.隐函数存在定理1 (3) 2.隐函数存在定理2 (4) 3.隐函数存在定理3 (4) 三. 隐函数求偏导的方法 (5) 1.公式法 (5) 2.直接法 (6) 3.全微分法 (6) 参考文献 (8)

摘要 本文讨论了一元隐函数,多元隐函数的存在条件及相关结论,总结出隐函数求偏导的方法和全微分法等方法和相应实例,目的是更好的计算隐函数的求导 关键字:隐函数 偏导数 方法 一.隐函数的概念 一般地,如果变量y x 和满足方程()0,=y x F ,在一定条件下,当x 取某区间的任一 值时,相应地总有满足这方程的唯一的y 值存在,那么就说方程()0,=y x F 在该区间确定 了一个隐函数。例如,方程013 =-+y x 表示一个函数,因为当变量x 在()∞+∞-, 取值时,变量y 有确定的值与其对应。如等时时321,10=-===y x y x 。 二.隐函数求偏导 1.隐函数存在定理1 设函数0),(=y x F 在P (x 。,y 。)在某一领域具有连续偏导数, 且0),(= y x F ,0),(≠ y x F y ,则方程0),(=y x F 在点(x 。,y 。)的某一领域恒能唯一确定一个连续且具有连续导数的函数)(x f y =,它满足条件)( x f y =,并有 y x y F F d d x - =。 例1:验证方程2x -2 y =0在点(1,1)的某一邻域能唯一确定一个具有连续导数,且当x=1时y=1的隐函数y=)(x f ,并求该函数的导数dx dy 在x=1处的值。 解 令),(y x F =2x -2 y ,则 x F =2x ,y F =-2y ,)1,1(F =0,)1,1(y F =-2≠0 由定理1可知,方程2x -2y =0在点(1,1)的某一邻域能唯一确定一个连续可导的隐函数,当x=1时,y=1的隐函数为y=x ,且有 dx dy =y x F F -=y x 22=y x 故 1=x dx dy = ) 1,(!y x =1

隐函数的求导方法情况总结

河北地质大学 课程设计(论文)题目:隐函数求偏导的方法 学院:信息工程学院 专业名称:电子信息类 小组成员:史秀丽 角子威 季小琪 2016年05月27日

摘要 (3) 一.隐函数的概念 (3) 二.隐函数求偏导 (3) 1.隐函数存在定理1 (3) 2.隐函数存在定理2 (4) 3.隐函数存在定理3 (4) 三. 隐函数求偏导的方法 (6) 1.公式法 (6) 2.直接法 (6) 3.全微分法 (6) 参考文献 (8)

摘要 本文讨论了一元隐函数,多元隐函数的存在条件及相关结论,总结出隐函数求偏导的方法和全微分法等方法和相应实例,目的是更好的计算隐函数的求导 关键字:隐函数 偏导数 方法 一.隐函数的概念 一般地,如果变量y x 和满足方程()0,=y x F ,在一定条件下,当x 取某区间的任一 值时,相应地总有满足这方程的唯一的y 值存在,那么就说方程()0,=y x F 在该区间内确 定了一个隐函数。例如,方程013 =-+y x 表示一个函数,因为当变量x 在()∞+∞-, 内取值时,变量y 有确定的值与其对应。如等时时321,10=-===y x y x 。 二.隐函数求偏导 1.隐函数存在定理1 设函数0),(=y x F 在P (x 。,y 。)在某一领域内具有连续偏导数, 且0),(=οοy x F ,0),(≠οοy x F y ,则方程0),(=y x F 在点(x 。,y 。)的某一领域内恒能唯一确定一个连续且具有连续导数的函数)(x f y =,它满足条件)(οοx f y =,并有 y x y F F d d x - =。 例1:验证方程2 x -2 y =0在点(1,1)的某一邻域内能唯一确定一个具有连续导数,且当x=1时y=1的隐函数y=)(x f ,并求该函数的导数dx dy 在x=1处的值。 解 令),(y x F =2x -2 y ,则 x F =2x ,y F =-2y ,)1,1(F =0,)1,1(y F =-2≠0 由定理1可知,方程2 x -2 y =0在点(1,1)的某一邻域内能唯一确定一个连续可导的隐函数,

显函数.隐函数.参数方程求导总结

显函数.隐函数.参数方程求导总结 我在大学以前的函数求导的学习中,学到的都是显函数的求导。显函数这种函数的表达方式的特点是:等号的左端是因变量的符号,而右端是含有自变量的式子当自变量取定义域内任一值时,由这式子能确定对应的函数值。在这些显函数的求导时,我们都是利用公式。 如:()sin cos x x '=` ()x x e e ' =` ()2 1arcsin 1x x '= -等等。刚开始的时候是一 些很明显的函数。如:sin y x =. 2 455y x x =++ x y e =等。而后来的我 们又学习了一些复合函数。如 x y e = 1 sin y x =等。这时我们就必须 设()y f u =,而()u x ?=则复合函数()y f x ?=????的导数为dy dy du dx du dx =,或()( )()y x f u x ? '''=。 等到了大学我们就碰到了像 3 10x y +-= 这样的,而当变量x 和y 满足一个方程(),y f x y =这种形式时称为隐函数。而对于隐函数的求导一种方法是化成显函数,也就是隐函数的显化。这样就可以用显函 数的求导方法了。例如310x y =-=可以化为3 1y x =-。但实际问题中, 有时需要计算隐函数的导数,因此,我们学习了不管隐函数能否显化,都能直接由方程算出它所确定的隐函数的导数来,下面通过具体例子来说明这种方法: 例 方程0y e xy e +-=所确定的隐函数的导数dy dx 。 解 方程两边分别对x 求导

( )()0y d e xy e dx '+-= y dy dy e y x dx dx ++= 从而y dy y dx x e =-+ y x e +=() 例 方程1sin 02x y y -==所确定的隐函数的二阶导数22 d y dx 。 解 方程两边对x 求导 ()1cos 02x y y '??' -+= ??? 11cos 02dy dy y dx dx -+= 22cos dy dx y = - 方程两边再对x 求导 ()()223 22sin 4sin 2cos 2cos dy dx d y y y dx y y --== -- 之后我们又学习了参数方程,而参数方程的解法不同于显函数隐函数。但也有相同的地方,下面通过具体例子来说明这种方法: 例 已知参数方程为sin cos x t y t =?? =?(t 为参数),求dy dx 。 解 由公式()()cos sin cos sin dy dt t dx dt t t dy dy dt t dx dt dx t t '=== =- ' 例 已知参数方程2 21t x y t ?=?=-?(t 为参数),求2 2 d y dx 。 解 由公式 ()()2 2 11dy dt dx t dt t dy dy dt dx dt dx t '-====- '

函数求导习题

函数求导习题 一 函数全导 t z dt dv v z dt du u z dt dz dt dw w z dt dv v z dt du u z dt dz t w w t v v t u u w v u f z dt dv v z dt du u z dt dz t v v t u u v u f z ??+??+ ??= =??+ ??+ ??= ====??+??====,公式简化为 特别t w ) (),(),(),,,()(),(),,( t t e te t t u ve t z dt dv v z dt du u z dt dz dt dz t v e u t uv z t t t t cos sin cos cos )sin (,cos ,,sin 1 +-=+-+=??+ ??+??===+=解:求全导例

t Lnt t t t xy xy xy xy xy t e tLnt t t tLnt t t Lnt tLnt t t yz y e t yz z e yz ye t yz ye dt dz z u dt dy y u dt dx x u dt du dt du t z t Ln y t x yz e u 1 1 2 12 12 ) sin cos )(cos(cos )1)( sin(cos ) sin )(cos(1)) cos()sin(()1)(sin(,cos ),(,1),sin(2=-+-=-+++- =??+ ??+??==== =此处注意解:求全导 例 下面给出一个抽象函数的例子 ] ) () ()()()(2[]) () ()()()() ()([ 2)()()(1)(1)()(,,,,)(),(),,(32 ` ``2 2 ` `` 1` 2 `` ` 2 ` 2` 12 2 t t t t t t f t t t t t t t t f dt du t t y x t y t q dt dy y q dt dx x q dt dq x y t x t t x y t t p dt dy y p dt dx x p dt dp f q u f p u dt dq q u dt dp p u dt du y x t q x y t p dt du f t y t x y x t x y t f u ψψ?ψ??ψ?ψ??ψψ?ψ?ψ?ψ?-+ +-+=+-+=??+ ??+ ??= + +-=??+??+??==??=????+ ??=+====+=代入解:令均可微求全导 其中设例

(完整版)导数求导练习题

1.若f (x )=sin α-cos x ,则f ′(α)等于 A .sin α B .cos α C .sin α+cos α D .2sin α 2.f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值等于 A .319 B .316 C .313 D .310 3.函数y =x sin x 的导数为 A .y ′=2x sin x +x cos x B .y ′= x x 2sin +x cos x C .y ′=x x sin +x cos x D .y ′= x x sin -x cos x 4.函数y =x 2cos x 的导数为 A .y ′=2x cos x -x 2sin x B .y ′=2x cos x +x 2sin x C .y ′=x 2cos x -2x sin x D .y ′=x cos x -x 2sin x 5.若y =(2x 2-3)(x 2-4),则y ’= . 6. 若y =3cosx -4sinx ,则y ’= . 7.与直线2x -6y +1=0垂直,且与曲线y =x 3+3x 2-1相切的直线方程是______. 8.质点运动方程是s =t 2(1+sin t ),则当t =2 时,瞬时速度为___________. 9.求曲线y=x3+x2-1在点P (-1,-1)处的切线方程.

1.函数y =2 2x a x +(a >0)的导数为0,那么x 等于 A .a B .±a C .-a D .a 2 2.函数y =x x sin 的导数为 A .y ′=2 sin cos x x x x + B .y ′= 2 sin cos x x x x - C .y ′=2 cos sin x x x x - D .y ′=2cos sin x x x x + 3.若2 1,2x y x +=-则y ’= . 4.若423 335 ,x x y x -+-=则y ’= . 5.若1cos ,1cos x y x += -则y ’= . 6.已知f (x )= 3 54 33 7x x x x ++,则f ′(x )=___________. 7.已知f (x )=x x ++-1111,则f ′(x )=___________. 8.已知f (x )=x x 2cos 12sin +,则f ′(x )=___________. 9.求过点(2,0)且与曲线y =x 1 相切的直线的方程. 10.质点的运动方程是23 ,s t t =+求质点在时刻t=4时的速度.

高考数学函数与导数专项练习题

函数与导数 一、填空题 (2017·11)若2x =-是函数2 1` ()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( ) A.1- B.32e -- C.35e - D.1 (2016·12)已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1 x y x += 与()y f x =图像的交点为11(,)x y ,22(,)x y ,…,(,)m m x y ,则1 ()m i i i x y =+=∑ ( ) A .0 B .m C .2m D .4m (2015·5)设函数211log (2)(1) ()2 (1)x x x f x x -+-0时,()()0xf x f x '-<,则使得f (x ) >0成立的x 的取值范围是( ) A .(,1)(0,1)-∞-U B .(1,0)(1,)-+∞U C .(,1)(1,0)-∞--U D .(0,1)(1,)+∞U (2014·8)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2 D .3 (2014·12)设函数()3x f x m π=,若存在()f x 的极值点0x 满足22200[()]x f x m +<,则m 的取值范围 是( ) A .(,6)(6,+)-∞-∞U B .(,4)(4,+)-∞-∞U C .(,2)(2,+)-∞-∞U D .(,1)(4,+)-∞-∞U (2013·8)设3log 6a =,5log 10b =,7log 14c =,则( ) A .c b a >> B .b c a >> C .a c b >> D .a b c >> (2013·10)已知函数32()f x x ax bx c =+++,下列结论中错误的是( ) A .00,()0x f x ?∈=R B .函数()y f x =的图像是中心对称图形

最新函数的单调性与导数练习题

函数的单调性与导数 一、选择题: 1. 使函数13)(2 3 +-=x x x f 是减函数的区间为 A .()+∞,2 B . ()2,∞- C . ()0,∞- D . ()2,0 2. 若函数)(3x x a y -=的减区间为)3 3,33(- ,则a 的范围是 A .0>a B .01<<-a C . 1->a D . 1<<-a 1 3. 函数y =3x -x 3 的单调增区间是 A . ()+∞,0 B . ()1,-∞- C . ()1,1- D . ()+∞,1 4. 若在区间内,则在内),(0)(,0)(,),(' b a a f x f b a ≥> A .0)(>x f B . 0)(=x f C . 0)(k ,则函数)(x f A . 在),(+∞-∞上递增 B . 在),(+∞-k b 上递增 C . 在),(k b --∞上递增 D . 在),(+∞-∞上递减 6. 函数)(x f y =的图象过原点且它的导函数)(x f y '=的图象是如图所 示的一条直线, 则)(x f y =的图象的顶点在 ( ) A . 第一象限 B . 第二象限 C . 第三象限 D . 第四象限 7 .设函数f (x )在定义域内可导,y =f (x )的图象如右图,则导函数f ′(x )的图象可能是( ) 8.对于R 上可导的任意函数f (x ),若满足(x -1)f x '() ≥0,则必有( ) A.f (0)+f (2)<2f (1) B. f (0)+f (2)≤2f (1) C. f (0)+f (2)≥2f (1) D. f (0)+f (2)>2f (1) 9.设)(),(x g x f 分别是定义在R 上的奇函数和偶函数,()0,g x ≠,当0且(3)0,f -=则不等式()/()0f x g x <的解集是 ( ) A .),3()0,3(+∞?- B .)3,0()0,3(?- C .),3()3,(+∞?--∞ D .)3,0()3,(?--∞ 10.设p :f (x )=x 3+2x 2 +mx +1在(-∞,+∞)内单调递增,q :m ≥43,则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 11.设函数()f x 是R 上以5为周期的可导偶函数,则曲线()y f x =在5x =处的切线的斜率为( ) A.15 - B.0 C. 15 D.5 12.下列函数中,在区间(-1,1)上是减函数的是( ) A .y =2-3x 2 B .y =ln x C .y =1x -2 D .y =sin x 二、填空题 13.函数f (x )=x 2-2ln x 的单调减区间是________ 14.若f (x )=-12x 2 +b ln(x +2)在(-1,+∞)上是减函数,则b 的取值范围是___ 15.若函数f (x )=x 3 +bx 2 +cx +d 的单调减区间为[-1,2],则b =________,c =________. 16. 已知函数y =12323-+x x 在区间) ,(0m 上为减函数, 求m 的取值范围_______。 17.若f (x )=-1 2 x 2+b ln(x +2)在(-1,+∞)上是减函数,则b 的取值范围是__ 三.解答题 18.求下列函数的单调区间: (1)y =x -ln x ; (2)y =12x . (3)f (x )=x 3 +3x ; (4)f (x )=sin x (1+cos x )(0≤x ≤2π).(3)f (x )=x 3-3x 2 -9x +1 19.已知函数ax x x f +=3 2)(与c bx x g +=2 )(的图像都过)0,2(P ,且在该点处有公共切线,求 )(),(x g x f 的表达式 20.设函数2e ()x f x x ax a = ++,其中a 为实数.(I )若()f x 的定义域为R ,求a 的取值范围;(II )当() f x 的定义域为R 时,求()f x 的单调减区间.

相关主题
文本预览
相关文档 最新文档