当前位置:文档之家› 变分法简介(简单_明了_易懂)

变分法简介(简单_明了_易懂)

变分法简介(简单_明了_易懂)
变分法简介(简单_明了_易懂)

§1 变分法简介

作为数学的一个分支,变分法的诞生,是现实世界许多现象不断探索的结果,人们可以追寻到这样一个轨迹:

约翰·伯努利(Johann Bernoulli ,1667-1748)1696年向全欧洲数学家挑战,提出一个难题:“设在垂直平面内有任意两点,一个质点受地心引力的作用,自较高点下滑至较低点,不计摩擦,问沿着什么曲线下滑,时间最短?”

这就是著名的“最速降线”问题(The Brachistochrone Problem )。它的难处在于和普通的极大极小值求法不同,它是要求出一个未知函数(曲线),来满足所给的条件。这问题的新颖和别出心裁引起了很大兴趣,罗比塔(Guillaume Francois Antonie de l'Hospital 1661-1704)、雅可比·伯努利(Jacob Bernoulli 1654-1705)、莱布尼茨(Gottfried Wilhelm Leibniz,1646-1716)和牛顿(Isaac Newton1642—1727)都得到了解答。约翰的解法比较漂亮,而雅可布的解法虽然麻烦与费劲,却更为一般化。后来欧拉(Euler Lonhard ,1707~1783)和拉格朗日(Lagrange, Joseph Louis ,1736-1813)发明了这一类问题的普遍解法,从而确立了数学的一个新分支——变分学。

有趣的是,在1690年约翰·伯努利的哥哥雅可比·伯努利曾提出著名的悬链线问题 (The Hanging Chain Problem)向数学界征求答案,即,固定项链的两端,在重力场中让它自然垂下,问项链的曲线方程是什么。在大自然中,除了悬垂的项链外,我們还可以观察到吊桥上方的悬垂钢索,挂着水珠的蜘蛛网,以及两根电线杆之间所架设的电线,这些都是悬链线(catenary )。

伽利略(Galileo, 1564~1643)比贝努利更早注意到悬链线,他猜测悬链线是抛物线,从外表看的确象,但实际上不是。惠更斯(Huygens, 1629~1695)在1646年(当时17岁),经由物理的论证,得知伽利略的猜测不对,但那时,他也求不出答案。到1691年,也就是雅可比·伯努利提出悬链线问题的第二年,莱布尼兹、惠更斯(以62岁)与约翰·伯努利各自得到了正确答案,所用方法是诞生不久的微积分,具体说是把问题转化为求解一个二阶常微分方程

解此方程并适当选取参数,得

)(21ax ax e e a

y -+= (1) 即为悬链线。

悬链线问题本身和变分法并没有关系,然而这和最速降线问题一样都是贝努利兄弟间的相互争强好胜、不断争吵的导火索,虽然雅可比·贝努利在解决悬链线问题时略占下风,但他随后所证明的“悬挂于两个固定点之间的同一条项链,在所有可能的形状中,以悬链线的重心最低,具有最小势能”,算是扳回了一局,俩兄弟扯平了!之所以提到悬链线问题,有两方面考虑,其一,这是有关数学史上著名的贝努利家族内的一个趣闻,而这是一个在变分法乃至整个数学物理领域有着巨大贡献的家族,其二,有关悬链线的得几个结论,可以用变???????='=+=0)0()0()(10222y y y dx dy a dx y d

分法来证明!

现实中很多现象可以表达为泛函极小问题,我们称之为变分问题。求解方法通常有两种:古典变分法和最优控制论。我们这儿要介绍的基本属于古典变分法的范畴。

1.1 变分法的基本概念

1.1.1 泛函的概念

设S 为一函数集合,若对于每一个函数S t x ∈)(有一个实数J 与之对应,则称J 是定义在S 上的泛函,记作))((t x J 。S 称为J 的容许函数集。

例如,在],[10x x 上光滑曲线y(x)的长度可定义为

?

'+=1021x x dx y J (2) 考虑几个具体曲线,取1,010==x x ,

若x x y =)(,则 ?=+==1

0211)())((dx x J x y J 若y(x)为悬链线,则

??-----=+=-+=+10101

22

24)(1)2(e e dx e e dx e e e e J x x x x x x 对应],[101x x C 中不同的函数y(x),有不同曲线长度值J ,即J 依赖于y(x),是定义在

函数集合],[101x x C 上的一个泛函,此时我们可以写成

))((x y J J =

我们称如下形式的泛函为最简泛函

?=f

t t dt t x t x t F t x J 0))(),(,())((& (3) 被积函数F 包含自变量t ,未知函数x (t)及导数x &(t)。如,上述曲线长度泛函即为一最简泛

函。

1.1.2 泛函极值问题

考虑上述曲线长度泛函,我们可以提出下面问题:

在所有连接定点),(),(1100y x B y x A 和的平面曲线中,试求长度最小的曲线。 即,求{}

1100101)(,)(],,[)()()(y x y y x y x x C x y x y x y ==∈∈,使 ?'+=1

021))((x x dx y x y J

取最小值。此即为泛函极值问题的一个例子。以极小值为例,一般的泛函极值问题可表述为,

称泛函))((t x J 在S t x ∈)(0取得极小值,如果对于任意一个与)(0t x 接近的S t x ∈)(,都有))(())((0t x J t x J ≥。所谓接近,可以用距离ε<))(),((0t x t x d 来度量,而距离可以定义为

|})()(||,)()({|m ax ))(),((0000t x t x t x t x t x t x d f

t t t &&--=≤≤

泛函的极大值可以类似地定义。其中)(0t x 称为泛函的极值函数或极值曲线。

1.1.3 泛函的变分

如同函数的微分是增量的线性主部一样,泛函的变分是泛函增量的线性主部。作为泛函的自变量,函数)(t x 在)(0t x 的增量记为

)()()(0t x t x t x -=δ

也称函数的变分。由它引起的泛函的增量记作

))(())()((00t x J t x t x J J -+=?δ

如果J ?可以表为

))(),(())(),((00t x t x r t x t x L J δδ+=?

其中L 为x δ的线性项,而r 是x δ的高阶项,则称L 为泛函在)(0t x 的变分,记作 ))((0t x J δ。用变动的)(t x 代替)(0t x ,就有))((t x J δ。

(4) 这是因为当变分存在时,增量

)),(()),(())(())((x t x r x t x L t x J x t x J J αδαδαδ+=-+=?

根据L 和r 的性质有

)),(()),((x t x L x t x L δααδ= 0)),((lim )),((lim 00==→→x x x t x r x t x r δαδαδααδαα 所以

α

αδαδααα)()(lim )(00x J x x J x x J -+=+??→= )(),()

,(),(lim 0x J x x L x x r x x L δδααδαδα==+=→

1.2 泛函极值的相关结论

1.2.1 泛函极值的变分表示

利用变分的表达式(4),可以得到有关泛函极值的重要结论。

泛函极值的变分表示:若))((t x J 在)(0t x 达到极值(极大或极小),则

0))((0=t x J δ (5)

证明:对任意给定的x δ,)(0x x J αδ+是变量α的函数,该函数在0=α处达到极值。根据函数极值的必要条件知

变分原理与变分法

第一章 变分原理与变分法 1.1 关于变分原理与变分法(物质世界存在的基本守恒法则) 一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples : ① 光线最短路径传播; ② 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); ③ CB AC EB AE +>+ Summary : 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的(映射)关系 特征描述法:{ J :R x R D X ∈=→?r J )(|} Examples : ① 矩阵范数:线性算子(矩阵)空间数域 ‖A ‖1 = ∑=n i ij j a 1 max ;∑=∞=n j ij i a A 1max ;21 )(11 2 2∑∑===n j n i ij a A ② 函数的积分: 函数空间数域

D ?=?n b a n f dx x f J )( Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。 Discussion : ① 判定下列那些是泛函: )(max x f f b x a <<=; x y x f ??) ,(; 3x+5y=2; ?+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 i. 梁的弯曲应变能: ?=∏l b dx dx w d EJ 02 22)(21 ii. 弹性地基贮存的能量: dx kw l f ?=∏0 221 iii. 外力位能: ?-=∏l l qwdx 0 iv. 系统总的势能: 00 0;})({2 2122202 1===-+=∏?dx dw w x dx qw kw dx w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使 系统势能泛函取最小值。 ② 最速降线问题 问题:已知空间两点A 和B ,A 高于B ,要求在两点间连接一条曲线,使 得有重物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法: i. 通过A 和B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii. 建立泛函: x

有限差分法、有限单元和有限体积法简介

有限差分法、有限单元法和有限体积法的简介 1.有限差分方法 有限差分方法(Finite Difference Method,FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 2.有限元方法 有限元方法(Finite Element Method,FEM)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。 在数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的

有限元法与有限差分法的主要区别

有限元法与有限差分法的主要区别 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式.考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等.目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成.在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等.根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0.插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有La g range插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等.对于有限元方法,其基本思路和解题步骤可归纳为(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件的插值函

分子轨道理论的发展及其应用

分子轨道理论的发展及其应用 北京师范大学段天宇学号201111151097 摘要:分子轨道理论是目前发展最成熟,应用最广泛的化学键理论之一。本文简述了分子轨道理论的基本思想及发展历程,列举了其在配位化学、矿物学、气体吸附领域的应用实例,并对其前景作出展望。 0 前言 化学键是化学学科领域中最为重要的概念之一。通常,化学键被定义为存在于分子或晶体中或两个或多个原子间的,导致形成相对稳定的分子或晶体的强相互作用。从二十世纪初期至今,科学家们为了解释化学键现象相继提出了价键理论、分子轨道理论、配位场理论等化学键理论。其中分子轨道理论(Molecular Orbital Theory)具有容易计算、计算结果得到实验支持的优势,并不断得到完善与拓展,因而自二十世纪五十年代以来,已经逐渐确立了其主导地位[1]。目前,作为相对最为成熟的化学键理论,分子轨道理论的应用已经涵盖了化学研究的几乎全部领域中。 1 分子轨道理论发展 1926至1932年,Mulliken和Hund分别对分子中的电子状态进行分类,得出选择分子中电子量子数的规律,提出了分子轨道理论[2]-[3]。分子轨道理论认为,电子是在整个分子中运动,而不是定域化的。他们还提出了能级相关图和成键、反键轨道等重要概念。 1929年,Lennard-Jones提出原子轨道线性组合(Linear Combination of Atomic Orbitals)的理论[4]。后来,原子轨道线性组合的思想被应用于分子轨道理论中,成为分子轨道理论的基本原理。这一原理指出,原子轨道波函数通过线性组合,即各乘以某一系数相加得到分子轨道波函数。这种组合要遵循三个基本原则,即:组合成分子轨道的原子轨道必须对称性匹配;组成分子轨道的原子轨道须能级相近;原子轨道达到最大程度重叠以降低组成分子轨道的能量。其中,最重要的是对称性匹配原则,对称性相同的原子轨道组合成能量低于自身的成键分子轨道,对称性相反的原子轨道组合成高于自身的反键分子轨道。 1931-1933年,Huckel提出了一种计算简便的分子轨道理论(HMO)[5],是分子轨道理论的重大进展。HMO理论的基本思想是,把两电子间的相互作用近似地当做单电子的平均位场模型处理,导出单电子运动方程: Hψ=Eψ 其中H是该电子的Hamilton算符,ψ是该电子所占据的分子轨道波函数,E为轨道能量。同时,ψ是由原子轨道φk线性组合得到,即 ψ=c1φ 1 +c2φ 2 +?+c kφ k 代入运动方程,利用变分法得到久期方程式 H ij?ES ij=0 其中H和S分别为Hamilton算符和重叠积分的矩阵元,求解久期方程式即可求得分子轨道能量E。这种方法计算简便,发表之处即得到运用,尤其是对于共轭分子性质的讨论取得巨大成功,后来发展成为分子轨道理论的重要分支。 HMO理论虽然简单有效,但只能进行定性讨论,而不能进行严格的定量计算。这个问题的解决,得益于1951年,Roothaan在的Hartree-Fock方程[6]-[7] h fψ k =E kψ k (h f为Hartree-Fock算符)的基础上,将分子 轨道ψ k 写成原子轨道线性组合的形式,得到 Hartree-Fock-Roothaan方程(HFR方程)[8] h f C k=E k C k 而1950年,Boys提出利用Gauss函数研究原子

变分原理及变分法

第一章 变分原理与变分法 1.1 关于变分原理与变分法(物质世界存在的基本守恒法则) 一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples : ① 光线最短路径传播; ② 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); ③ CB AC EB AE +>+ Summary : 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的(映射)关系 特征描述法:{ J :R x R D X ∈=→?r J )(|} Examples : ① 矩阵数:线性算子(矩阵)空间 ‖A ‖1 = ∑=n i ij j a 1 max ;∑=∞=n j ij i a A 1 max ;21 )(11 2 2 ∑∑===n j n i ij a A

② 函数的积分: 函数空间 数域 D ?=?n b a n f dx x f J )( Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。 Discussion : ① 判定下列那些是泛函: )(max x f f b x a <<=; x y x f ??) ,(; 3x+5y=2; ?+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 i. 梁的弯曲应变能: ?=∏l b dx dx w d EJ 02 22)(21 ii. 弹性地基贮存的能量: dx kw l f ?= ∏02 2 1 iii. 外力位能: ?-=∏l l qwdx 0 iv. 系统总的势能: 00 0;})({221222 021 ===-+=∏?dx dw w x dx qw kw dx w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使系 统势能泛函取最小值。 ② 最速降线问题 问题:已知空间两点A 和B,A 高于B ,要求在两点间连接一条曲线,使得 有重物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法: i. 通过A 和B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii. 建立泛函: x

变分法的发展与应用

变分法的发展与应用 应用数学11XX班XXX 104972110XXXX 摘要:变分法是研究泛函卡及值的数学分支,其基本问题是求泛函(函数的雨数)的极值及相应的极值函数。变分法是重要的数学分支,与诸如微分方程、数学物理、极小曲面用论、微分几何、黎曼几何、积分力‘程、拓扑学等许多数学分支或部门均有密切联系。变分法有着广泛的应用:变分法构成了物理学中的种种变分原理,成为物理学理论不可缺少的组成部分,是研究力学、弹性理论、电磁学、相对论、量子力学等许多物理学分支的重要工具;变分法通过“直接方法”而成为近似计算的有效于段,为微分方程边值问题的数值解法开辟了一条途径,形成了有限元方法的基础之一。近年来,变分法又在经济、电子工程和图像处理等领域得以广泛应用。因此研究变分法的思想演化过程,无论从数学史还足从科学史的角度来说,都具有十分重要的理论价值和现实意义。 关键词:起源;发展;应用 1.引言 变分法是17世纪末发展起来的一门数学分支,是处理函数的函数的数学领域,和处理数的函数的普通微积分相对。它最终寻求的是极值函数:它们使得泛函取得极大或极小值。变分法起源于一些具体的物理问题学问题,最终由数学家研究解决。变分法在科学与技术的各个领域尤其是在物理学中有着十分重要的作用,它提供了有限元方法的数学基础,它是求解边界值问题的强有力工具。它们在材料学中研

究材料平衡中大量使用。微分几何中的测地线的研究也是显然的变分性质的领域。 近年来,变分法在经济、电子工程和图像处理等领域得以广泛应用。因此研究变分法的思想演化过程,无论从数学史还足从科学史的角度来说,都具有十分重要的理论价值和现实意义。 2.变分法的起源 物理学中泛函极值问题的提出促进了变分学的建立和发展,而变分学的理论成果则不断渗透到物理学中。 费马从欧几里得确立的光的反射定律出发提出了光的最小时间原理:光线永远沿用时最短的路径传播。他原先怀疑光的折射定律,但在1661年费马发现从他的光的最小时间原理能够推导出折射定律,不仅消除了早先的怀疑,而且更加坚信他的原理。 受费尔马的影响,约翰伯努利研究了“最速降线”问题:给 定空间中的两个点,a b,其中a比b高,求一条连接两点的曲线使得一个质点从a沿曲线下降到b用时最少。 变分法对于几何的应用在早期主要是对曲面上的测地线和欧氏空间中给定边界的极小曲面(Plateau问题)的研究。但在很长时间内仅限于一些特殊情形,没有重要进展。 3.变分法的发展 18世纪是变分法的草创时期,建立了极值应满足的欧拉方程并据此解决了大量具体问题。19世纪人们把变分法广泛应用到数学物理中去,建立了极值函数的充分条件。20世纪伊始,希尔伯

有限元分析及其应用思考题附答案2012

有限元分析及其应用-2010 思考题: 1、有限元法的基本思想是什么?有限元法的基本步骤有那些?其中“离散”的含义是什 么?是如何将无限自由度问题转化为有限自由度问题的? 答:基本思想:几何离散和分片插值。 基本步骤:结构离散、单元分析和整体分析。 离散的含义:用假想的线或面将连续物体分割成由有限个单元组成的集合,且单元之间仅在节点处连接,单元之间的作用仅由节点传递。当单元趋近无限小,节点无限多,则这种离散结构将趋近于实际的连续结构。 2、有限元法与经典的差分法、里兹法有何区别? 区别:差分法:均匀离散求解域,差分代替微分,要求规则边界,几何形状复杂精度较低; 里兹法:根据描述问题的微分方程和相应的定解构造等价的泛函表达式,求得近似解; 有限元:基于变分法,采用分片近似进而逼近总体的求解微分方程的数值计算方法。 3、一根单位长度重量为q的悬挂直杆,上端固定,下端受垂直向下的外力P,试 1)建立其受拉伸的微分方程及边界条件; 2)构造其泛函形式; 3)基于有限元基本思想和泛函求极值构造其有限元的计算格式(即最小势能原理)。4、以简单实例为对象,分别按虚功原理和变分原理导出有限元法的基本格式(单元刚度矩 阵)。 5、什么是节点力和节点载荷?两者有何区别? 答:节点力:单元与单元之间通过节点相互作用 节点载荷:作用于节点上的外载 6、单元刚度矩阵和整体刚度矩阵各有何特点?其中每个矩阵元素的物理意义是什么(按自 由度和节点解释)? 答:单元刚度矩阵:对称性、奇异性、主对角线恒为正 整体刚度矩阵:对称性、奇异性、主对角线恒为正、稀疏性、带状性。 Kij,表示j节点产生单位位移、其他节点位移为零时作用i节点的力,节点力等于节点位移与单元刚度元素乘积之和。 7、单元的形函数具有什么特点?有哪些性质? 答:形函数的特点:Ni为x,y的坐标函数,与位移函数有相同的阶次。 形函数Ni在i节点的值为1,而在其他节点上的值为0; 单元内任一点的形函数之和恒等于1; 形函数的值在0~1间变化。 8、描述弹性体的基本变量是什么?基本方程有哪些组成? 答:基本变量:外力、应力、应变、位移 基本方程:平衡方程、几何方程、物理方程、几何条件 9、何谓应力、应变、位移的概念?应力与强度是什么关系? 答:应力:lim△Q/△A=S △A→0 应变:物体形状的改变 位移:弹性体内质点位置的变化 10、问题的微分方程提法、等效积分提法和泛函变分提法之间有何关系?何谓“强形 式”?何谓“弱形式”,两者有何区别?建立弱形式的关键步骤是什么?

变分法简介(简单明了易懂)(可编辑修改word版)

? §1 变分法简介 作为数学的一个分支,变分法的诞生,是现实世界许多现象不断探索的结果,人们可以追寻到这样一个轨迹: 约翰·伯努利(Johann Bernoulli ,1667-1748)1696 年向全欧洲数学家挑战,提出一个难题:“设在垂直平面内有任意两点,一个质点受地心引力的作用,自较高点下滑至较低点,不计摩擦,问沿着什么曲线下滑,时间最短?” 这就是著名的“最速降线”问题(The Brachistochrone Problem )。它的难处在于和普通的极大极小值求法不同,它是要求出一个未知函数(曲线),来满足所给的条件。这问题的新颖和别出心裁引起了很大兴趣,罗比塔(Guillaume Francois Antonie de l'Hospital 1661-1704)、雅可比· 伯努利( Jacob Bernoulli 1654-1705)、莱布尼茨( Gottfried Wilhelm Leibniz,1646-1716)和牛顿(Isaac Newton1642—1727)都得到了解答。约翰的解法比较漂亮,而雅可布的解法虽然麻烦与费劲,却更为一般化。后来欧拉(Euler Lonhard , 1707~1783)和拉格朗日(Lagrange, Joseph Louis ,1736-1813)发明了这一类问题的普遍解法,从而确立了数学的一个新分支——变分学。 有趣的是,在 1690 年约翰·伯努利的哥哥雅可比·伯努利曾提出著名的悬链线问题(The Hanging Chain Problem)向数学界征求答案,即,固定项链的两端,在重力场中让它自然垂下,问项链的曲线方程是什么。在大自然中,除了悬垂的项链外,我們还可以观察到吊桥上方的悬垂钢索,挂着水珠的蜘蛛网,以及两根电线杆之间所架设的电线,这些都是悬链线(catenary )。 伽利略(Galileo, 1564~1643)比贝努利更早注意到悬链线,他猜测悬链线是抛物线, 从外表看的确象,但实际上不是。惠更斯(Huygens, 1629~1695)在 1646 年(当时 17 岁),经由物理的论证,得知伽利略的猜测不对,但那时,他也求不出答案。到 1691 年,也就是雅可比·伯努利提出悬链线问题的第二年,莱布尼兹、惠更斯(以 62 岁)与约翰·伯努利各自得到了正确答案,所用方法是诞生不久的微积分,具体说是把问题转化为求解一个二阶常微分方程 ? d 2 y ? dx 2 a 1+ ( dy )2 dx ? y (0) = y ? ? ? 解此方程并适当选取参数,得 y '(0) = 0 即为悬链线。 y = 1 2a (e ax + e -ax ) (1) 悬链线问题本身和变分法并没有关系,然而这和最速降线问题一样都是贝努利兄弟间的相互争强好胜、不断争吵的导火索,虽然雅可比·贝努利在解决悬链线问题时略占下风,但他随后所证明的“悬挂于两个固定点之间的同一条项链,在所有可能的形状中,以悬链线的重心最低,具有最小势能”,算是扳回了一局,俩兄弟扯平了!之所以提到悬链线问题,有两方面考虑,其一,这是有关数学史上著名的贝努利家族内的一个趣闻,而这是一个在变分法乃至整个数学物理领域有着巨大贡献的家族,其二,有关悬链线的得几个结论,可以用变 = 0

变分法简介(简单_明了_易懂)

§1 变分法简介 作为数学的一个分支,变分法的诞生,是现实世界许多现象不断探索的结果,人们可以追寻到这样一个轨迹: 约翰·伯努利(Johann Bernoulli ,1667-1748)1696年向全欧洲数学家挑战,提出一个难题:“设在垂直平面内有任意两点,一个质点受地心引力的作用,自较高点下滑至较低点,不计摩擦,问沿着什么曲线下滑,时间最短?” 这就是著名的“最速降线”问题(The Brachistochrone Problem )。它的难处在于和普通的极大极小值求法不同,它是要求出一个未知函数(曲线),来满足所给的条件。这问题的新颖和别出心裁引起了很大兴趣,罗比塔(Guillaume Francois Antonie de l'Hospital 1661-1704)、雅可比·伯努利(Jacob Bernoulli 1654-1705)、莱布尼茨(Gottfried Wilhelm Leibniz,1646-1716)和牛顿(Isaac Newton1642—1727)都得到了解答。约翰的解法比较漂亮,而雅可布的解法虽然麻烦与费劲,却更为一般化。后来欧拉(Euler Lonhard ,1707~1783)和拉格朗日(Lagrange, Joseph Louis ,1736-1813)发明了这一类问题的普遍解法,从而确立了数学的一个新分支——变分学。 有趣的是,在1690年约翰·伯努利的哥哥雅可比·伯努利曾提出著名的悬链线问题 (The Hanging Chain Problem)向数学界征求答案,即,固定项链的两端,在重力场中让它自然垂下,问项链的曲线方程是什么。在大自然中,除了悬垂的项链外,我們还可以观察到吊桥上方的悬垂钢索,挂着水珠的蜘蛛网,以及两根电线杆之间所架设的电线,这些都是悬链线(catenary )。 伽利略(Galileo, 1564~1643)比贝努利更早注意到悬链线,他猜测悬链线是抛物线,从外表看的确象,但实际上不是。惠更斯(Huygens, 1629~1695)在1646年(当时17岁),经由物理的论证,得知伽利略的猜测不对,但那时,他也求不出答案。到1691年,也就是雅可比·伯努利提出悬链线问题的第二年,莱布尼兹、惠更斯(以62岁)与约翰·伯努利各自得到了正确答案,所用方法是诞生不久的微积分,具体说是把问题转化为求解一个二阶常微分方程 解此方程并适当选取参数,得 )(21ax ax e e a y -+= (1) 即为悬链线。 悬链线问题本身和变分法并没有关系,然而这和最速降线问题一样都是贝努利兄弟间的相互争强好胜、不断争吵的导火索,虽然雅可比·贝努利在解决悬链线问题时略占下风,但他随后所证明的“悬挂于两个固定点之间的同一条项链,在所有可能的形状中,以悬链线的重心最低,具有最小势能”,算是扳回了一局,俩兄弟扯平了!之所以提到悬链线问题,有两方面考虑,其一,这是有关数学史上著名的贝努利家族内的一个趣闻,而这是一个在变分法乃至整个数学物理领域有着巨大贡献的家族,其二,有关悬链线的得几个结论,可以用变???????='=+=0)0()0()(10222y y y dx dy a dx y d

变分原理

变分原理 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,或称最小作用原理。 例如:实际上光的传播遵循最小能量原理: 在静力学中的稳定平衡本质上是势能最小的原理。 一、举一个例子(泛函) 变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方法),是计算泛函驻值的数学理论。 在理论上和实践上均需要放宽解的条件。因此,引入弱解以及边值问题的弱的形式即变分形式。在讨论二阶椭圆边值问题时的Lax-Milgram 定理。 Poisson 方程的Neumann 问题 设Ω是单连通域,考察Poisson 方程的Neumann 问题 (N) ??? ? ??? =??=?-Γ,g n u f u u ,在Ω内,,使得求函数 这里)(),(2/12Γ∈Ω∈-H g L f ,且满足 01 ,=+Γ Ω ? g f d x 其中的对偶积表示)()(,2/12/1Γ?Γ??-ΓH H . 问题(N )的解,虽然是不唯一的,但是,若把问题(N )局限于商空间)(V 1Ω=H 内求解,且赋予商范数 ΩΩ∈Ω=,1) (/)(1 1i n f ?v v H v R H ,V v ∈? 可以得到唯一解。实际上,由定理5.8推出R H v /)(1?Ω等价于半范Ω→,1?v v . 定义双线性泛函R V V →?: V v u v v u u v u v u B ∈∈∈???=?,?,?,?),,()?,?( 和线性泛函 V v v v u g fdx v l ∈∈?+→Γ Ω??,?,,?:. 其右端与v v ?∈无关。因此v ?中的元素仅仅相差一个任意常数,同时,可以判定'V l ∈,实际上 ,,2/1,2/1,0,0)?(ΓΓ -Ω Ω +≤v g v f v l

Matlab建模教程-变分法简介

§1 变分法简介 作为数学的一个分支,变分法的诞生,是现实世界许多现象不断探索的结果,人们可以追寻到这样一个轨迹: 约翰·伯努利(Johann Bernoulli ,1667-1748)1696年向全欧洲数学家挑战,提出一个难题:“设在垂直平面内有任意两点,一个质点受地心引力的作用,自较高点下滑至较低点,不计摩擦,问沿着什么曲线下滑,时间最短?” 这就是著名的“最速降线”问题(The Brachistochrone Problem )。它的难处在于和普通的极大极小值求法不同,它是要求出一个未知函数(曲线),来满足所给的条件。这问题的新颖和别出心裁引起了很大兴趣,罗比塔(Guillaume Francois Antonie de l'Hospital 1661-1704)、雅可比·伯努利(Jacob Bernoulli 1654-1705)、莱布尼茨(Gottfried Wilhelm Leibniz,1646-1716)和牛顿(Isaac Newton1642—1727)都得到了解答。约翰的解法比较漂亮,而雅可布的解法虽然麻烦与费劲,却更为一般化。后来欧拉(Euler Lonhard ,1707~1783)和拉格朗日(Lagrange, Joseph Louis ,1736-1813)发明了这一类问题的普遍解法,从而确立了数学的一个新分支——变分学。 有趣的是,在1690年约翰·伯努利的哥哥雅可比·伯努利曾提出著名的悬链线问题 (The Hanging Chain Problem)向数学界征求答案,即,固定项链的两端,在重力场中让它自然垂下,问项链的曲线方程是什么。在大自然中,除了悬垂的项链外,我們还可以观察到吊桥上方的悬垂钢索,挂着水珠的蜘蛛网,以及两根电线杆之间所架设的电线,这些都是悬链线(catenary )。 伽利略(Galileo, 1564~1643)比贝努利更早注意到悬链线,他猜测悬链线是抛物线,从外表看的确象,但实际上不是。惠更斯(Huygens, 1629~1695)在1646年(当时17岁),经由物理的论证,得知伽利略的猜测不对,但那时,他也求不出答案。到1691年,也就是雅可比·伯努利提出悬链线问题的第二年,莱布尼兹、惠更斯(以62岁)与约翰·伯努利各自得到了正确答案,所用方法是诞生不久的微积分,具体说是把问题转化为求解一个二阶常微分方程 解此方程并适当选取参数,得 )(21ax ax e e a y -+= (1) 即为悬链线。 悬链线问题本身和变分法并没有关系,然而这和最速降线问题一样都是贝努利兄弟间的相互争强好胜、不断争吵的导火索,虽然雅可比·贝努利在解决悬链线问题时略占下风,但他随后所证明的“悬挂于两个固定点之间的同一条项链,在所有可能的形状中,以悬链线的重心最低,具有最小势能”,算是扳回了一局,俩兄弟扯平了!之所以提到悬链线问题,有两方面考虑,其一,这是有关数学史上著名的贝努利家族内的一个趣闻,而这是一个在变分法乃至整个数学物理领域有着巨大贡献的家族,其二,有关悬链线的得几个结论,可以用变 ???????='=+=0)0()0()(102 2 2y y y dx dy a dx y d

第六章能量泛函的转换形式及其应用(16K)

112 第六章 能量泛函的转换形式及其应用 §6.1 总位能泛函转换形式及其应用 由§4.1节中的(4-16)式,定义了总位能泛函,即 ??σ --ε=∏S i i V i i ij S u T V u F A d d ])([P (4-16) 该泛函为单变量变分原理,其自变量要求满足位移应变关系及位移边界条件,即 )(2 1 ,,i j j i ij u u += ε 0=-i i u u 所以,这种变分原理是有条件的,并可以进一步证明总位能原理是极小值原理,解的收敛性得到保证。这种原理是目前广为流行的绝大部分有限元素模型的基础,比较理想的情形是“保续元”的建立,而放松某些边界协调条件则构成了有限元素法中的“非保续元”。 【例1】 梁元素的总位能泛函及其变换。 图6-1所示的一维梁,承受横向分布载荷 )(x p ,简支端(L x =)作用一集中力矩M , 梁的另一端为固持。显然,其边界条件为 0=x :0)0()0(='=w w L x =:0)(=L w ,及M L M =)( 6-1) 总位能泛函根据定义可写为 V U +=∏p (6-2) 其中 ?''= L x w EJ U 02 d )(2 1 (应变能) (6-3) )(d 0 L w M x w p V L '+-=? (外力位能) (6-4) 上面各式中,w 表示挠度,它是坐标x 的函数,而w '与w ''分别代表x w d d 及2 2d d x w 。 现在对总位能取一阶变分, )(δd δd δδδδ0 p L w M x w p x w w EJ V U L L '--''''=+=∏?? (6-5) 当弯曲刚度EJ 沿长度不变时,可将它放在积分号之前,再利用Green 公式,可得 [][]?? +'''-'''=''''L L L L x w EJw w w EJ w w EJ x w w EJ 0 )4(000d δδδd δ (6-6) 将(6-6)式代入(6-5)式中,利用条件(6-1)式,整理后可得 图6-1 一维弯曲梁

改进的整体变分法在图像修复中的应用[1]

2007,43(27)ComputerEngineeringandApplications计算机工程与应用 A B 图1破损区域及其邻域示 1引言 图像修复是指对数字图像中丢失、破损的部分进行还原修 复,是一项出现很早的工艺技术,近年来图像修复技术有了长足的发展。Criminisi等[1]提出了基于纹理的图像修复方法,在未受损图像中寻找与受损模块最为匹配的修复模块并填充到受损区域内,从而实现图像的修复。Bertalmio等[2]人首先提出了基于偏微分方程的图像修补算法,利用待修补区域的边缘信息,将待修补区域外的信息沿梯度的垂直方向扩散到修补区域内,取得了很好的效果。Chan等[3]成功地将整体变分法思想应用于图像修复中。 本文在前人的研究基础上,对整体变分法作了进一步改进,经过计算机仿真试验,改进后的方法和原方法结果相比,所得图像的修复效果更加完善。 2图像修复的整体变分算法 基于整体变分的图像恢复算法由Rudin等[4]提出,本文为 简明描述整体变分法[5-7]在图像修复中的应用,先给出破损区域及其邻域示意图(图1)。其中B为图像破损部分(空信息),A为破损区域的边缘部分,!=A∪B。 在图像修复中,噪声污染的图像uo大多满足加性关系 uo(x )=u(x)+n(x),其中n(x)为均值为0,方差为δ2 的高斯白噪声。通过正则化方法处理得: min 1 2‖u-uo ‖2 +"2 R(u#$)(1) 用TV= ! %|&u|dxdy (整体变分)代替R(u)得到新的能量函数如下: g[u]=12‖u-uo‖2+" 2! %|&u|dxd# ’ y(2) 其中&u表示梯度, "为拉格朗日乘子。同时又有约束条件:12 ‖u-uo‖2=δ2(3) 所以整体变分法对图像的修复过程实际上是在约束条件(3)限制下,最小化图像能量函数(2)的过程。 改进的整体变分法在图像修复中的应用 周密,彭进业,赵健,田艳艳,史晶ZHOUMi,PENGJin-ye,ZHAOJian,TIANYan-yan,SHIJing 西北大学信息科学与技术学院,西安710127SchoolofInformationandTechnology,NorthwestUniversity,Xi’an710127,ChinaE-mail:zm2318283@sohu.com ZHOUMi,PENGJin-ye,ZHAOJian,etal.Improvedtotalvariationmethodforimageinpainting.ComputerEngineeringandApplications,2007,43(27):88-90.Abstract:Animprovedimageinpaintingmethodbasedonthetotalvariationalgorithmispresentedinthispaper.Therelativitycoefficientisintroducedaccordingtothesurroundinginformationofthedamagedarea.Withthehelpoftherelativitycoefficient,wegraduallydiffusethesurroundinginformationtothedamagedareaandrestorethedamagedarea.Arangeofexperimentsshowthatthenewmethodiseffectivefortheimageinpainting,andtheedgeofthedamagedareabecomesmorenatural.Keywords:imageprocessing;imageinpainting;totalvariation;relativitycoefficient摘要:提出了一种改进的整体变分法并且将其应用于图像修复中。在修复的过程中考虑图像破损区域外部参考像素和待修补点的相关度,再利用图像破损区外部参考像素信息从破损区域的边缘逐步地向破损区域内部进行扩散,从而达到图像修复的目的。仿真试验表明,改进后的算法与原方法相比图像边缘过渡更加自然,修复效果得到改善。关键词:图像处理;图像修复;整体变分;相关度系数文章编号:1002-8331(2007)27-0088-03文献标识码:A中图分类号:TP391 基金项目:国家部委基础研究项目;陕西省自然科学基金(theNaturalScienceFoundationofShaanxiProvinceofChinaunderGrantNo.2006F42)。作者简介:周密,硕士研究生,主要研究方向为数字图像处理;彭进业,博士,教授,博导,主要从事图像处理研究;赵健,博士,副教授,硕导,主要从 事图像处理研究;田艳艳,硕士研究生,主要研究方向为图像处理;史晶,硕士研究生,主要研究方向为图像处理。 88

有限元分析及其应用思考题

有限元分析及其应用(思考题) 1、有限元法的基本思想是什么?有限元法的基本步骤有那些?其中“离散”的含义是什 么?是如何将无限自由度问题转化为有限自由度问题的? 2、有限元法与经典的差分法、里兹法有何区别? 3、以简单实例为对象,分别按虚功原理和变分原理导出有限元法的基本格式(单元刚度矩 阵)。 4、什么是节点力和节点载荷?两者有何区别? 5、单元刚度矩阵和整体刚度矩阵各有何特点?其中每个矩阵元素的物理意义是什么(按自 由度和节点解释)? 6、单元的形函数具有什么特点?有哪些性质? 7、描述弹性体的基本变量是什么?基本方程有哪些组成? 8、何谓应力、应变、位移的概念?应力与强度是什么关系? 9、问题的微分方程提法、等效积分提法和泛函变分提法之间有何关系?何谓“强形式”? 何谓“弱形式”,两者有何区别?建立弱形式的关键步骤是什么? 10、以平面微元体为例,考虑弹性力学基本假设,推导微分平衡方程。 11、常见的弹性力学问题解法有哪几类?各有何特点或局限?简述求解思路? 12、什么叫外力势能?什么叫应变能?简述势能变分原理。试问势能变分原理代表了弹 性力学的那些方程?同时,附加了什么条件? 13、在三维弹性体中,若系统势能对位移变分为零。试证明一定满足应力平衡方程和应 力边界条件。 14、为了保证有限元解的收敛性,位移函数必须满足那些条件?为什么? 15、位移函数构造为何按Pascal三角形进行?为什么? 16、如何理解有限元解的下限性? 17、何谓刚性位移?何谓常量应变? 18、在按位移法求解有限元法中,为什么说应力解的精度低于位移解的精度? 19 何谓协调单元?何谓非协调单元?为什么有时非协调单元的计算精度还高于协调单元? 20 何谓常应变单元?其位移、应变、应力在单元内、单元边界上有何特性? 21平面矩形单元的位移、应力在单元内、单元边界上有何特性?试说明矩形单元刚度矩阵的计算与坐标原点位置无关。 22谓面积坐标?其特点是什么? 23分析以下几种平面单元的位移在单元公共边界上的连续性:1)常应变三角形单元;2)四节点矩形单元;3)六节点三角形单元;4)四节点直线边界四边形等参单元;5)八节点曲线边界四边形等参单元。 24非节点载荷等效的基本原则是什么? 25试计算三节点三角形边界上不同线性分布载荷的等效节点载荷。(参考教材P58面)26何谓等参单元?等参单元具有哪些特点?使用等参单元应注意什么?在等参单元计算中,数值积分阶次是否越高越好呢?为什么? 27 试证明平行四边形的雅可比矩阵为常数矩阵。 大作业:1若给定某问题的微分方程和边界条件,推导: 1)、迦辽金变分法方程,并建立有限元计算格式; 2)、加权残值法中的最小二乘法,并导出相应的有限元计算格式。 2、编写三节点三角形单元刚度矩阵计算、整体刚度矩阵组装、形成节点载荷、边界条件引 入、线性方程组求解计算程序模块,利用其求解平面应力问题(实例自定)。

有限差分法解薛定谔方程与MATLAB实现

第30卷 第3期高师理科学刊Vol.30No.32010年5月Journal of Science of Teachers ′College and University May 2010 文章编号:1007-9831(2010)03-0068-03 有限差分法解薛定谔方程与 MATLAB 实现 刘晓军(齐齐哈尔大学理学院,黑龙江齐齐哈尔161006) 摘要:介绍了用有限差分法解薛定谔方程,以一维无限深势阱、含位势的一维无限深势阱为例求解,并应用M ATL AB 软件编程计算,模拟画出几率图形. 关键词:有限差分法;薛定谔方程;一维无限深势阱 中图分类号:O413.1文献标识码:A doi :10.3969/j.issn.1007-9831.2010.03.022 在量子力学中求解薛定谔方程是一个重要的问题,但在实际问题中往往很难确定解析解,这样利用数值方法求数值解就有一定的优势和实际意义[1].还可以利用计算机手段给出形象化分析,更有利于理解和应用.根据有限差分法中的二阶微分中心差分算符(其中忽略3x 及更高阶项) [2]222 )()(2)()(d d x x x f x f x x f x f x ++=(1) 可将一维定态薛定谔方程[3])()()()(d d 22 2 2x E x x V x x =+=(2)化为)(])([)(2)()(2)(22x E x V x x x x x x =++= (3)以点x n x n =(N n ....3,2,1=)将坐标分为N 个相等的间隔,当N 充分大时,x 就足够小.将第k 个分点的波函数简记为)(x k k =[4].同时满足条件 00==n ,则式(3)化简为k k k k k E x β2211)(2=++=(4) 式中)()(2222x k V x k + ==β(5)0...000 (000) ..................00...R -0 00...00 (01) 221 =E R R E E R E R R E N N ααααα(6)式(6)为对应的久期方程.式中)(2;)(222 x k V R x R k +==α=(7) 将相对复杂的方程就转化为解久期方程的问题,即使维数再高也是容易求解的. 收稿日期:35 作者简介:刘晓军(),男,黑龙江富裕人,副教授,硕士,从事理论物理与数值模拟研究.:xj @632010-0-01972-E-mail l https://www.doczj.com/doc/391206931.html,

相关主题
文本预览
相关文档 最新文档