当前位置:文档之家› 富氧燃烧技术及工业应用实例分析-2014.2.

富氧燃烧技术及工业应用实例分析-2014.2.

富氧燃烧技术及工业应用实例分析-2014.2.
富氧燃烧技术及工业应用实例分析-2014.2.

一.膜法富氧燃烧技术简介

富氧是应用物理或化学方法将空气中的氧气进行收集,使收集后气体中的富氧含量≥21%。

现有的富氧方式主要有:

(1)增压增氧方式

增压增氧主要用在飞机上,通过增加机舱内的压力,使空气密度增加,由于空气中含氧量的比例是一定的(氧在空气中的体积比为20 95%),空气密度增加后,空气中氧的绝对质量也增加,从而达到增加氧的目的。

(2)制氧机制氧方式

制氧机制氧广泛用在各个领域,制氧机有3大类:第一是利用空气为原料,通过物理的方法,把氧气从空气里分离出来。在1个大气压下,液态氧的沸点是-183℃,而液态氮的沸点是-196℃,当控制液态空气的沸点在-183℃以下高于-196℃时,液态氮首先蒸发,留下来的是液态氧,这种方法可制得纯度很高的氧气,再用很大的压力(一般150个大气压)压入钢瓶贮存起来,供工厂、医院使用,贮存在钢瓶的氧气还可向氧气袋充氧,供个人或旅行者使用。平时我们所见的氧气瓶供氧、氧气袋供氧都是使用这种方法制出的氧气。第二种是常压(或叫低压)制氧方法,所需压缩空气的压力在1MPa以内,这是近十几年发展起来的制氧方法,也叫膜制氧方法。膜制氧方法的原理可参见文献。第三种是PSA分子筛制氧方法,PSA分子筛制氧是使用一种变压吸附制氧设备,这种设备主要由空气净化系统,PSA氧氮分离系统,氧气缓冲、检测系统等组成。

(3)化学制氧方式

化学制氧是利用含氧化合物为原料,通过与催化剂的反应,制出氧气。使用的含氧化合物必须具备两个条件:一是这种含氧化合物是较不稳定的,在加热时容易分解放出氧气;二是这种含氧化合物里含氧的百分比是比较高的,能分解放出较多的氧气。一般用氯酸钾(分子式是KClO3),它含氧的百分比达40%,在氯酸钾里加入少量黑色的二氧化锰(MnO2)粉末,氯酸钾会迅速分解,有多量的氧气放出。氯酸钾分解放出的氧气常用“排水集气法”收集,供试验、呼吸等使用。氧立得就是利用这种原理制氧的。

二.富氧燃烧

用比通常空气(含氧21%)含氧浓度高的富氧空气进行燃烧,称为富氧燃烧。它是一项高效节能的燃烧技术,在玻璃工业、冶金工业及热能工程领域均有应用与用普通空气燃烧有以下优点:

1.高火焰温度和黑度

2.加快燃烧速度,促进燃烧安全。

3.降低燃料的燃点温度和减少燃尽时间。

4.降低过量空气系数,减少燃烧后的烟气量。

富氧燃烧: oxygen enriched combustion

变压吸附制氧设备在富氧助燃特点:

①节能效果显著

应用于各个燃烧领域均能大幅提高燃烧热效率,如在玻璃行业中平均节油(气)为20%-40%,在工业锅炉、加热炉、炼铁断和水泥厂机立窑等应用节能量为20%-50%,显著提高热能使用效率。

②有效延长炉龄

燃烧环境的优化使得炉内温度分布更加合理,有效延长窑炉、锅炉的使用寿命。

③有利于提高产品产量、质量

在玻璃行业燃烧状况的改善使得熔化率提高、升温时间缩短、产量提高;次品率降低、成品率提高。

④环保效果突出

烟气中携带的固体未燃尽物充分燃烧,排烟黑度降低,燃烧分解和形成的可燃有害气体充分燃烧,减少有害气体的产生。排烟量明显降低,减少热污染。

三.膜法制氧系统

膜分离空分技术是八十年代国外新兴的高科技技术,属高分子材料科学,工业发达国家称膜法富氧技术为资源性的创造性技术,它是第三代最具发展应用前景的气体分离技术。许多发达国家都投入了大量人力物力来研究膜法富氧技术,日本曾在以气、油、煤为燃料的不同场合进行了富氧应用试验,

得出如下结论:

用23%的富氧助燃可节能10-25%;

用25%的富氧助燃可节能20-40%;

用27%的富氧助燃则节能高达30-50%等。

气体膜分离原理

膜分离制氧设备是利用具有特殊选择分离性的高分子聚合纤维材料作为分离元件,在一定驱动力作用下,使双元或多元组份因透过膜的速率不同而达到分离或特定组份富集的目的。

当混合气体在一定的驱动力(膜两侧的压力差或压力比)作用下,渗透速率相当快的气体如水汽、氧气、氢气、氦气、硫化氢、二氧化碳等透过膜后,在膜的渗透侧被富集,而渗透速率相对慢的气体如氮气、氩气、甲烷和一氧化碳等被滞留在膜的滞留侧被富集从而达到混合气体分离的目的。

膜法制氧性能指标:

富氧浓度:27-30%制氧规模:10-15000 m3/h设备能耗:0.1-0.15 kw/h /立方

设备组成:

1、离心风机

2、过滤系统

3、真空泵

4、膜分离系统

5、汽水分离系统

6、控制系统

7、稳压系统

膜法制氧、富氧助燃节能装置型号规格

系统流程:

富氧助燃技术及装置介绍

富氧助燃技术是用于各种工业锅炉、窑炉的节能集成技术。富氧技术是采用高分子膜法制取27-30%的富氧空气,即利用空气中各组分透过高分子膜时的渗透速率不同,在压力差驱动下,使空气中的氧气优先通过,获得氧气浓度和流量均十分稳定的富氧空气。膜法富氧技术为资源的创造性技术,它是第三代最具发展应用前景的气体分离技术。

膜法富氧技术的主要优点:流程简单、体积小、无相变、能耗低、操作方便和安全、灵活性高、膜组件寿命长且免维护。当富氧浓度在30%左右、流量50,000 NM3/H以下时,投资、运行及维护等费用远远低于深冷法或PSA法。

助燃技术是采用独特的喷嘴喷射技术,确保不与普通空气混合的条件下,使富氧空气高速进入燃料燃烧区这一局部,获得与整体增氧基本相同的效果,而没有任何副作用,如同好钢要加在刀刃上一样,富氧应加在最需氧的地方,使燃料在此能用最少的氧气来充分及时完全地燃烧。对于各种类型的燃料锅炉,采用专用的富氧喷嘴,选用梯度燃烧、对称燃烧、α型燃烧、S型燃烧、四角燃烧、分级燃烧和独特的射流技术等助燃技术,达到局部增氧助燃的节能目的。

富氧助燃技术的主要优点:

1.提高燃烧区的火焰温度、火焰黑度、辐射热并降低排烟黑度;

2.加快燃烧速度,促进燃烧完全,从而根治污染;

3.降低燃料的燃点温度和燃尽时间;

4.减少燃烧后的烟气量;

5.增加热量利用率,节能效果明显;

6.降低空气过剩系数,从而达到节能降耗、稳定炉况等目的。

四.工业锅炉富氧燃烧应用

锅炉类型众多,如链条炉、往复炉、抛煤机锅炉、煤粉炉、循环流化床锅炉、沸腾炉、加热炉、热媒炉、燃油炉、燃气炉、快装炉等,对于锅炉是利用局部增氧助燃技术来强化原有锅炉的火焰特性,既要使燃料在炉膛的停留时间更长,又要使燃料在尽可能少的助燃风下更充分、更完全地燃烧。节能率一般在5%-18%之间,约一年时间可以收回投资。

锅炉热效率分析

1、锅炉热效率提高:

公式:η2=100-∑q=〔q2+q3+q4+q5+q6〕

式中:η2—锅炉反平衡热效率 %

q2—排烟热损失%

q3—气体不完全燃烧热损失%

q4—固体不完全燃烧热损失%

q5—散热损失%

q6—灰渣物理热损失%

从锅炉热平衡热效率公式中可看出,锅炉热效率的高低取决于它的五种热损失的大小,分别是1、排烟损失q2,2、气体不完全燃烧热损失q3,3、固体不完全燃烧热损失q4,4、散热损失q5,5、灰渣物理热损失q6。其中排烟损失q2和固体不完全燃烧热损失q4,是正转链条锅炉热损失的最大两项,它们之和占总损失的80%以上。

2、排烟热损失q2

从公式中可看出,排烟热损失q2的大小,取决于排烟温度的高低和排出烟气量的大小,改造后的富氧燃烧锅炉,可减少一次风的风量,使过剩空气系数合理,这样就能减少烟气的大量排出。烟气带走的热量就大大的降低,排烟热损失就小。

3、气体不完全燃烧热损失q3

气体不完全燃烧损失q3,从公式中可看出,主要取决于排烟处烟气容积和可燃气体,改造后的富氧燃烧锅炉,可燃气体得到充分燃烧,炉膛温度高,用普通空气助燃,约五分之四的氮气不但不参与助燃,还要带走大量的热量。一般氧浓度每增加1%,烟气量约下降2~4.5%,所以气体不完全燃烧损失q3也就小。从而能提高燃烧效率。

4、固体不完全燃烧热损失q4

固体不完全燃烧损失q4,取决于炉渣、漏煤、飞灰的量和含碳量。

燃油或燃气锅炉(助汽炉、加热炉、热媒炉等)

局部增氧助燃技术用于燃油或燃气的锅炉加热炉、注气炉,其特点差不多,一般均

采用对称燃烧技术。每支油枪或气枪对称配2 、4、6或8支富氧喷嘴。富氧喷嘴的位置在某一同心园上,距离和角度一般主要根据火焰中心的长短及大小确定,,采用对称燃烧技术使燃料在炉膛中心强化燃烧,提高火焰温度,且由于辐射热与火焰温度和水冷壁管温度的四次方之差成正比,使得辐射热显著增加,而富氧量、线速和富氧喷嘴的尺寸等则需要根据燃料量和燃料特性通过系统综合优化来定。

对称燃烧对富氧喷嘴的要求:不改变火焰形状、强化火焰、提高温度。

链条锅炉、煤粉锅炉

采用s型燃烧技术或α型燃烧技术及四角燃烧,富氧喷嘴一般可以加在炉排底下、后拱、前拱、侧墙或四角等。目的是强化原有锅炉的火焰特性,使燃料和烟气在炉膛中

的停留时间更长,从而充分彻底完全地燃烧,放出更多的有效热量。然后通过现场整体调节优化达到节能目的。

(图1)

(图2)

(图3)

五.水泥窑炉富氧燃烧应用

水泥窑主要分立窑和回转窑两大类。将富氧助燃技术用于水泥窑,其意义正如武汉工业大学硅酸盐研究中心的李娟等老师等所介绍:富氧燃烧不仅能使燃料的燃烧时间大大缩短,有利于提高燃料的完全燃烧程度,而且还能提高火焰温度和黑度,从而改善窑内的传热条件,使窑的产量提高,热耗下降。这一措施经计算在技术上是可行的;山东建材学院的陈绍龙和周庆明老师在机械立窑上通过初步试验也证明:富氧燃烧对燃料的燃烧速度和燃尽度的提高作用十分明显,为缩短烧成时间,提高煅烧产质量提供了必

要保证和可能;上海焦化厂设计院的计虎掌高工则对采用富氧空气助燃煤矸石生产水泥进行了简要的技术经济分析;我们通过多年的调研和分析后也认为,富氧助燃技术,用于水泥窑的节能减排同样意义重大。

1 富氧燃烧缩短燃料完全燃烧所需的时间

随着富氧浓度的提高,煤粉的燃烧时间缩短。如富氧的浓度提高到25%时,煤粉的燃烧时间可缩短16%左右。在空间尺寸不变的情况下,由于煤粉燃尽时间的缩短,煤粉燃尽的程度自然提高,这就减少了煤粉的不完全燃烧所造成的热量损失,达到节能的目的。另外CO、NOx 等有害气体生成量也相应减少,有利于环保。

2 富氧燃烧提高了窑内气流对物料的辐射传热速率

在水泥回转窑内火焰向物料传热的主要方式是辐射传热,而窑内气流对物料的辐射传热速率又主要取决于气流的温度和气流的黑度,二者越高,辐射传热量就越多,这可以通过富氧燃烧来达到此目的。由于空气中氧气的浓度提高,相应可减少空气量,使得进入燃烧室的N2量下降,火焰的总体积下降(即火焰的体积流量下降)。在燃料的加入量不变的情况下,火焰的温度相应提高,提高的程度主要取决于空气中氧气的浓度。

如某厂水泥回转窑的台时产量为26t/ h。煤耗为0.25kg/ kg熟料,每小时烧煤量6500kg,燃烧带的过剩空气系数为1.1。燃煤的理论空气量为6Nm3/kg(煤)。

由此看出,需含O2为21%的空气量:

V =26000×0.25×6×1.1 =42900 Nm3/ h

在此空气中的含氧量=42900×21%=9009Nm3 / h。当空气中氧气的浓度提高至25%时,所需的空气量则减少了16%。进入燃烧室的N2量相应下降2 0 %,使得火焰的总体积下降,在燃料的加入量不变的情况下,火焰温度提高,提高的程度主要取

决于空气中氧的浓度,当空气中氧气的浓度达到25%时,经计算,火焰温度可提高100℃左右。另外因入窑空气量减少,使得火焰中CO2与H2O的体积百分比浓度升高。火焰的黑度也相应增大。

根据计算得知,当助燃空气中氧含量为25%时,CO2的体积百分浓度提高17.5%,水蒸汽的体积百分浓度相应提高17.7%,由于CO2与H2O的浓度均增加许多,火焰的黑度相应增大,当空气中氧气的浓度为21%时,火焰的黑度经计算为0.2104,当空气中氧气的浓度为25%时,火焰的黑度经计算为0.2245,增加的程度约6.7%。火焰对物料的辐射传热量提高的程度经计算应为20.4%, 回转窑其他各带的辐射传热量都相应提高,提高的幅度不会相差很大。

3. 稳定火焰形状,提高火焰温度

研究表明火焰形状和长度影响到熟料中C3S 矿物的晶粒发育大小和活性,因此,在烧高强优质熟料时,必须调整火焰长度适中,且要求火焰形状稳定。通入富氧以后,燃料燃烧更加稳定,所以火焰的稳定性能得到加强。干法窑窑头火焰温度控制,视窑型大小而异,对于2000t/d 以下的窑型一般控制在1650~1850℃之间,对于大型窑如5000t/d 以上窑型,火焰温度控制在1750~1950℃的较高范围内比较有利,采用高温烧成有利于熟料质量的提高和碱分的充分挥发,可获得低碱熟料。采用富氧燃烧技术,可使燃烧反应更加剧烈,从而提高火焰温度。

4.加快反应速度,提高升温速率

优质熟料形成要求在窑内过渡带升温阶段要求快速升温,促进熟料的矿物形成和烧结,通入富氧空气以后,可加快燃烧反应速度,提高回转窑内的升温速率。

5. 促进燃料完全燃烧,稳定窑内煅烧温度

提高氧浓度可使化学反应更加彻底,缩短了燃料燃尽时间,促进燃料完全燃烧,同时还能稳定窑内的煅烧温度,以保证熟料矿物的烧结。

6. 降低过量空气系数,保持窑内微氧化气氛研究表明窑尾废气中氧浓度控制在2%~3%左右为较好,即保持微氧化气氛操作,若过剩空气系数控制过低,二次风不足,易导致还原气氛产生,窑内的还原气氛会将熟料中的某些矿物质还原(例如Fe2O3 成分被CO 还原成FeO)影响熟料液相成分和黏度,影响熟料烧结,易产生大量黄心熟料,影响到熟料质量的提高。提高氧浓度可降低过量空气系数,同时保持窑内的微氧化氛围,为优质熟料的生产创造条件。

总之,富氧燃烧用于水泥窑,可改善煤的燃烧条件,缩短燃烧所需的时间,实现燃料的完全燃烧,同时也可使传热速率大幅度提高,因此有利于水泥生产。此外,采用富氧燃烧,可使废气排放量及CO、NOx 等有害气体的产生量下降,有利于节能减排。但富氧空气的引入不可避免地会改变水泥的原有工况条件,因而在操作及设备方面必须作相应的调整,以满足水泥回转窑生产中所要求的火焰及温度场要求。

(1)分解炉系统增加富氧

分解炉系统是新型干法水泥生产工艺的重要组成部分,它承担预分解系统中繁重的燃烧、换热和碳酸盐分解任务。这些任务能否在高效状态下顺利完成,主要取决于生料与燃料能否在炉内很好的分散、混合和均布;燃料能否在炉内迅速的完全燃烧,并把燃烧热及时的传递给物料;生料中的碳酸盐组分能否迅速的吸热、分解,逸出的二氧化碳能否及时排除等。在分解炉内生料与高温气流之间传热快,物料在炉系统内停留时问短,化学反应迅速,对热工制度的波动较为敏感。热工制度不稳定,轻者会打乱正常的生产秩序,严重时则会造成预热器系统的粘结堵塞,甚至威胁设备安全。碳酸盐分解是一个强吸热反应,耗量为:碳酸镁为815kJ/kg,碳酸钙为1656kJ/kg,

由于生料中含有大量的碳酸盐,因此分解窑系统就需要大量热,应用富氧燃烧技术有利于提高分解炉系统的热效率,稳定分解炉热工制度,提高碳酸盐的分解效率和质量。

①降低燃料着火温度和燃尽温度,提高着火速度理论上,着火是由缓慢的氧化状态转变到反应能自动加速到高速燃烧状态的瞬间过程,相对应的温度称为着火温度,它反映了煤粉着火的难易程度。燃尽温度是煤粉基本燃尽时的温度,燃尽温度越低,表明燃尽时间越短,煤粉就越容易燃尽,残炭中的可燃剩余量就越少。从图1 可以看出,随着氧的体积分数的增加,煤粉燃烧的着火温度Ti 和燃尽温度Th均呈下降趋势,因此可以说明,富氧可使煤粉的着火提前并燃烧充分。从图2 可以看出在氧的体积分数较低时,随着氧的体积分数的增加,煤粉着火时刻的燃烧速度增加较快,因此,在氧的体积分数较低时,增加氧的体积分数,会使煤粉的燃烧强度得到加强,提高煤粉的着火速度。

②加快反应速度,缩短燃料燃烧时间煤粉被加热后,挥发份在300-400℃时即迅速析出并点燃、燃烧,且能在很短时间内燃尽。而煤粒中残留焦炭的燃烧最为缓慢,占据了整个燃煤反应的绝大部分时间。分解炉内,由于碳酸钙分解速度快,其吸热反应控制了分解炉炉温;炉内煤粉燃烧大多在850-900℃较低温度下进行。反应动力学研究表明,水泥分解炉内煤粉燃烧属动力控制的一级反应,反应速度方程为:ω=Aexp (-E/RT)·PO2式中:A——频率因子E/R——活化能PO2——O2 分压T——温度即燃烧速度取决于化学反应能力,并与燃料性质、温度等有很大关系,与燃烧气体氧气分压成正比,而和气流相对速度关系较小。增加氧浓度,提高炉内温度能够加快化学反应速度。燃料的燃烧时间与氧浓度的关系如图4-3 所示。增加空气中氧气的浓度,如氧的浓度能提高到25 %,则煤粉的燃烧时间可大大缩短,为此,按无灰碳粒燃烧的计算公式进行估算。设:τ1 为当空气中氧气的浓度为21%时,碳粒完全燃烧所

需的时间;τ2为空气中氧气的浓度为25%时,碳粒完全燃烧所需的时间。

τ1=ρxδ2/(8m D×0.21×1.428)τ2=ρx/δ2/(8mD×0.25×1.428)(1)

(2)式中,ρx 为碳粒的密度(kg/ m),δ为碳粒的颗粒直径(m);D 为氧气的扩散系数(m/s);m为碳与氧的化学当量比(0.375);1.428 为氧气在标准状态下的密度(kg/ Nm3)。由(1)/(2),得τ2=0.84τ1

由此得出结论,如氧气的浓度提高至25%时,煤粉的燃烧时间可缩短16%。

③加快火焰传播速度,提高火焰温增加氧浓度可以加快化学反应速度,从而加快了火焰的传播速度,增强火焰稳定性,提高了火焰温度。

④促进燃料完全燃烧,提高炉膛温度,强化炉内传热提高氧浓度可使化学反应更加彻底,缩短了燃料燃尽时间,促进燃料完全燃烧,减少了不完全燃烧所造成的热量损失,达到节能的目的。图4 为燃料燃尽率与氧浓度的关系。由于燃料的燃烧工况得到了良好的改善,提高了炉膛温度,同时强化了物料与气流的热传递,使得分解炉系统的热工制度更加稳定。

⑤降低过量空气系数,减少烟气排放量和排烟损失由于空气中含79%氮,阻碍氧分子向碳表面吸附层的扩散和燃烧产物从碳表面的气体边界层排出,且氮分子不可能与燃料中可燃物反应,以及空气通过燃料层阻力等诸多因素。因此,必须以过剩空气使燃料燃烧获得足够的氧量,而使煤充分燃烧,这样就必须加大3次风量,但是在水泥生产工艺中若风速过大,系统阻力加大并且缩短燃料、物料及气流在系统各部位的停留时间,影响整个系统的热效率和热工制度。采用富氧空气以后,氮气的浓度降低,阻碍氧分子向碳表面吸附层的扩散和燃烧产物从碳表面的气体边界层排出的能力必然减弱,所以所需得过量空气必然减少,因而降低过量空气系数,同时减少烟气排放量和排烟损失。

中国高新技术产业园区发展研究

中国高新技术产业园区发展研究 摘要:由于科学技术和世界经济的不断发展,促使了电子信息、生物工程等高科技逐渐成为一种推动世界发展和社会发展的动力。而当今的国际竞争中高新技术产业的竞争最为激烈,很多发达国家都选择高科技来帮助提升国家科技水平以及综合国力。中国高新技术产业园的发展已经有着很大的成就,但发展的同时也产生了很多的问题。文章从以下几方面开展中国高新技术产业园区发展研究这一课题,首先是对我国高新技术产业园区发展时产生的问题和不足进 行了研究,然后根据现今的发展状况提出要不断发展的战略,最后对文章进行总结性概述。 关键词:中国;高新技术产业园区;发展研究 20世纪70年代之后,我国渐渐地开始以经济建设为中心进行发展,不断进行经济方面的变革,不断推动改革开放。面对国际发展新趋势,为了能和国际竞争新形势以及新技术革命发展相协调,我国经济技术开发区和高新技术产业园区就应运而生了,经过近些年不断的发展,这些高新技术?a业园区已经成为我国经济发展的重要源泉。但是因为一些因素的影响,这些高新技术产业园区在发展的过程中也产生了很多的问题。在这种背景下我们就提出了中国高新技术产业园区发展研究这一课题,下面将对其进行详细的分析和探讨。 一、对现今中国高新技术产业园区发展产生的问题进行

详细的分析和研究 我国的高新技术产业园区在最开始发展的时候,因为有着政府的支持以及相关政策的帮助,因而初期时走的是“以地为资、以地养区”的发展道路。通过土地以及相关政策等来实现产业的不断发展,但是同时却使得高新技术产业园区出现产业集约度不够的现象,具体分析就是高新区单位土地产出率较低,以及高新产品附加值不高,还有就是企业的利润率不断下降,这就使得政策过度,使得空间扩张速度较快,进一步使得高新技术企业所需的创新动力不充足,企业的竞争力降低。现今我国高新技术产业园区发展产生的问题还可以从以下几个方面分析,首先是在发展的时候对竞争水平出现了忽视情形,而对竞争模式进行了高度重视,这就造成政绩冲动,进而出现了低水平重复和竞争的盲目与无秩序;其次是由于高新技术企业在进行引资的时候,对远期效应不重视,而注重近期效益,这就造成在创新创业软环境建设时的不可持续性,使得企业随着政策的变化而变化,进一步就造成了高新技术产业园区的“空洞化”;然后是不断地扩张高新技术产业园区的规模,这就造成了土地的浪费和过度使用,使得土地的使用率下降,进一步造成就没必要空间扩张的出现。 在产业结构上,高新技术产业园区的结构相似较多,但是它们之间的优势不明显。在刚刚开始发展的时候,大多数

富氧燃烧技术

富氧燃烧技术在工业锅炉上的应用 一、概述 通常空气中氧的含量为20.93%、氮为78.1%及少量惰性气体等,在昆明地区空气中氧的含量约为20.8%,在燃烧过程中只占有空气总量的1/5左右的氧参与燃烧,而占空气总量约4/5的氮和其他惰性气体非但不助燃,反而将随烟气带走大量的热能。人们把含氧量大于20.93%的空气叫做富氧空气。富氧空气参与燃烧给燃烧提供了足够的氧气,使可燃物充分燃烧,减少了固体不完全燃烧的排放,减少了氮和其他惰性气体随烟气带走的热能。将具有明显的节能和环保效应。 目前富氧可以通过深冷分离法、变压吸附法及膜分离法获得。膜法富氧技术是近年发展的非常适合各种锅炉、窖炉做助燃用途的高新技术,它具有流程简单、体积小、自身能耗低、使用寿命长、投资较少等特点,被工业发达国家称之为“资源的创造性技术”。 二、膜法富氧原理 膜法富氧是利用空气中各组分透过富氧膜时的渗透速率不同,在压力差驱使下,使空气中的氧气优先通过而得到富氧空气。膜法富氧助燃系统包括空气过滤器、鼓风机、富氧膜组件、水环真空泵、真空表、调节阀、气水分离器、除湿增压电控系统、富氧预热器和喷嘴。 三、富氧燃烧分析 助燃空气中氧浓度越高,燃料燃烧越完全,但富氧浓度太高,会导致火焰温度太高而降低炉膛受热面的寿命,同时制氧投资等费用增高,综合效益反而下降,因此国内外研究均表明,助燃空气富氧浓度一般在26~30%时为最佳。 1、据测试氧含量增加4-5%,火焰温度可升高200-300℃。火焰温度的升高,促进整个炉膛温度的上升,炉堂受热物质更容易获得热量,热效率大幅提高。 2、燃料在空气中燃烧与在纯氧中的燃烧速度相差甚大,如氢气在空气中的燃烧速度最大为280cm/s,在纯氧中为1175cm/s,是在空气中的4.2倍,天然气则高达10.7倍。富氧助燃,可以使燃烧强度提高、燃烧速度加快,从而获得较好的热传导,使燃料燃烧的更完全。 3、燃料的燃点温度不是一个常数,它与燃烧状况、受热速度、富氧用量、环境温度等密切相关,如CO在空气中为609℃,在纯氧中仅388℃,所以用富氧助燃能降低燃料燃点,提高火焰强度、减小火焰尺寸、增加释放热量等。 4、用普通空气助燃,约五分之四的氮气不但不参与助燃,还要带走大量的热量。一般氧浓度每增加1%,烟气量约下降2~4.5%,从而能提

富氧燃烧在生物质锅炉的应用

富氧燃烧技术在生物质锅炉的应用的探讨摘要: 根据生物质锅炉燃烧特点、燃料特性,结合富氧燃烧技术特点,阐述了对生物质锅炉利用富氧燃烧技术解决飞灰含碳量高、炉膛负压不稳定、燃烧过程空气需求量大、排烟量大等瓶颈问题,提出见解和分析。 前言: 在世界能源消费中,生物质能源约占16%左右,而在欠发达地区则占63%以上。全球大概有25亿人生活所用的能源90%以上都是生物质能源。中国是人口最多的国家,同时又处在一个经济的快速发展的时期,能源的需求和消费尤为巨大。日益短缺的化石燃料资源,以及燃烧化石燃料造成大气污染,已成为人们关注和忧虑的焦点。 21世纪,中国将会面对环境保护和经济增长的双重压力。因此,转变能源生产和消费结构的模式,开发和利用生物质能和其他可再生能源和清洁能源,建立新的可持续发展的能源利用体系,为保障和促进可持续发展和环境保护有着深远的意义。

生物质能是人类在远古时代就开始利用的能源,中东战争所造成的世界能源危机使人们开始关注和重视开发和利用可再生能源。人们清醒的认识到石油和煤等化石燃料不可再生和所造成的环境等一系列问题使人类的可持续发展遇到了前所未有的重大问题。使用化石燃料会产生“酸雨”,“臭氧耗破坏”,“温室效应”和其他环境问题,人类的生存和发展正面临着巨大的挑战。而为了解决因为使用化石能源所造成的一系列问题,人类正积极探索和研究可再生清洁能源以替代化石燃料。2014年4月18日李克强主持召开新一届国家能源委员会首次会议,明确了国家能源发展战略: “节约、清洁、安全”三大能源战略方针。 “节能优先、绿色低碳、立足国内、创新驱动”四大能源战略。加快构建低碳、高效、可持续的现代能源体系。 二、生物质锅炉运行分析; 据统计,现在生物质能消费占世界总能耗的16%左右,位于煤,石油,天然气之后,位居第四。其中,发展中国家占总生物质能的生物能源的使用量的75%,发达国家占25%左右,部分国家生物能源的使用量甚至占能源使用总量的60%。

中国干燥技术现状及发展趋势讲解

中国干燥技术现状及发展趋势 摘要: 对中国干燥技术、干燥理论研究及技术创新的发展现状作了评述; 对干燥技术在各行业的应用现状作了全面介绍; 对干燥技术的可持续发展道路与发展趋势作了分析与探讨。 关键词: 干燥技术; 理论研究; 技术创新; 应用现状; 发展道路 1 干燥技术现状 第一届全国干燥会议于1975 年6 月23 日至30 日在南京召开, 至今已30 年了。 30 多年来, 我国干燥技术研究队伍不断壮大。目前我国从事干燥技术研究的大专院校、科研院所大约有50 多家, 领域涉及化工、医药、染料、轻工、 林业、食品、粮食、造纸、硅酸盐、水产等行业。全国共有设备制造厂600 多家, 企业自身也已拥有一支强有力的干燥科研开发队伍。通过广泛开展干燥技术基础研究、工艺研究及工业化应用研究, 使得我国干燥技术正在走近国际先进水平, 而在某些技术领域已经达到国际先进水平。30 多年来, 我国干燥技术学术交流活跃。中国化工学会化学工程委员会干燥技术专业组主办的全国干燥技术会议已举办10 届, 共发表论文665篇。这是我国规模最大、涉及行业最广的干燥技术交流盛会。除此之外, 中国农业机械学会加工机械分会干燥技术专业委员会举办过农产品干燥技术研讨会9 届; 中国林学会木材工业分会木材干燥学组举办过全国木材干燥学术讨论会10 届, 共发表论文537 篇; 中国制冷学会举办过全国真空冷冻学术讨论会10 届, 冻干技术交流活跃; 全国微波能应用学术会议由中国电子学会微波分会、中国电子学会真空电子学分会主办, 也已达10 届, 微波干燥是会议内容之一。 30 年来, 中国的许多干燥技术已得到了工业化应用, 主要有喷雾干燥、流态化干燥( 普通流化床,振动流化床, 内加热流化床, 流化床喷雾造粒干燥) 、蒸汽回转干燥、气流干燥、回转圆筒干燥、旋转快速干燥、圆盘干燥、带式干燥、双锥回转真空干燥、桨叶式干燥、冷冻干燥、微波及远红外干燥、粮食干燥等。常规干燥设备基本可以满足生产需要,有部分机型已达到国际当代水平并出口到国外。干燥单元的重要性不仅在于它对产品生产过程的效率和总能耗有较大的影响, 还在于它往往是生产过程的最后工序, 操作的好坏直接影响产品质量, 从而影响市场竞争力和经济效益。我国有许多产品, 就纯度而言已经达到甚至超过国外产品, 只是因为干燥技术不如国外, 堆积密度、粒度、色泽等物性指标上不去, 在国际市场竞争中处于劣势, 有的售价仅为国外同类产品的三分之一。目前我国某些大型石化干燥装备还依赖进口。椐估计, 我国生产的干燥设备种类仅为国外的30%~40% 。由此可见, 我国干

富氧燃烧技术富氧燃烧技术与污染物排放

富氧燃烧技术富氧燃烧技术与污染物排放富氧燃烧是一种新兴的燃烧技术。富氧燃烧能够显著提高燃烧效率和火焰温度,但由于制氧成本较高的问题,在上世纪80年代经历黄金成长期之后,发展速度放缓。而后随着制氧方法的进步,尤其是富氧膜技术的进展,富氧燃烧技术近20年来逐渐推广。而且,富氧燃烧也便于在现有锅炉设备上改造实现,具有可预期的良好发展前景。 与普通的空气燃烧相比,富氧燃烧技术可以显著节约能源,其对环境的影响方面也具有不同特点。其中既有有利的一面,也有不利的一面。本文主要从较为常见的碳排放、粉尘污染、二氧化硫和氮氧化物的排放四个方面来讨论富氧燃烧对环境的影响。 1 富氧燃烧对碳排放的影响 在对CO2排放限制越发严苛的当代社会,节能减排是全社会关注的焦点。常规的燃烧方式都存在着不足之处,局部缺氧会产生不完全燃烧,火焰温度偏低也会产生不完全燃烧,浪费燃料,而作为粉尘排放的未燃烧燃料也会造成大气污染。

富氧燃烧针对缺氧区,局部增氧,可使燃料燃点降低,燃烧速度增快,燃料燃烧更 __,而火焰温度则会提高。根据维恩位移定律,辐射强度与温度的四次方成正比,可使热能的利用率大幅提升。 同时,富氧燃烧可以减少鼓风机进风量和高温烟气的排放量,可降低热能损失。空气中氧气的含量占20.94%,而不助燃的氮气占78.097%。在燃烧过程中,氮气带走了大量热量,采用富氧燃烧后可减少进风量,即减少了热能的流失,并且由于风量的下降,可以使用功率更小的风机。 假设燃料完全燃烧,空气含氧量φ=21%,理论氧气量为Vo,过量空气系数a=1.2,实际空气量为Va,则 Va=a 根据以上公式,设某工况理论氧气量为1 m3/s,可列表1。 对某煤种燃烧的分析,当助燃空气含氧率从21%升高至30%时,理论空气量减少30.0%,理论烟气量减少28.8%,损失减少16.3%。据介绍,日本将23%的富氧用于化铁炉,节能高达26.7%;美国在铸造炉上使用23%~24%的富氧,平均节能44%;国内的武汉钢厂采用富

(完整版)【前瞻产业研究院】张江高科技园规划案例

张江高科技园规划案例 项目情况 张江高科技园区约36平方公里,园区规划范围内可建设用地约17.1平方公里,已建用地总面积约12.3平方公里,占可开发建设用地的72%;已建成各类建筑1350万平方米,其中,办公、研収、商业等公共建筑430万平方米,工业建筑440万平方米,居住建筑450万平方米。

2009年,上海市政府“南汇撤销、并入浦东”的方案正式获国务院批准。2011年11月,张江高科技园区抓住两区合并机遇,扩大园区规模为75.9平方公里,主要包括上海市张江高科技园区北区和中区、张江南区、康桥工业区、上海国际医学园区、合庆工业园区、张江光电子产业园和银行卡产业园。其中,核心区总占地25平方公里,由各功能区组合而成。2014年12月29日,国务院决定上海市自贸区扩区至张江片区,面积37.2平方公里,东至外环线、申江路,南至外环线,西至罗山路,北至龙东大道。 产业情况 以产业链带动园区产业发展,通过设计和制造整合产业链发展,形成设计+代工的产业整合发展模式。目前,已经形成了较为完善的生物医药创新链和集成电路产业链。其中,在集成电路产业方面,目前张江已经成为国内最集中、技术水平最高、产业能级最优的集成电路研发与制造一体化产业基地。园区内已经形成以芯片设计、晶圆制造业为龙头的“设计+代工”的产业模式,包括设计、制造、封装测试及设备制造在内的国内最完整的集成电路产业链。在生物医药产业方面,园区形成了包括现代中药、化学药、生物制药和医疗器械在内的生物医药产业体系,探索形成药物研发与临床应用的医药产业发展模式。已经发展成为国内医药研发机构最集中、创新服务能力最强、新药创制潜力最大的生物医药基地之一。

富氧燃烧技术及工业应用实例分析-2014.2.

一.膜法富氧燃烧技术简介 富氧是应用物理或化学方法将空气中的氧气进行收集,使收集后气体中的富氧含量≥21%。 现有的富氧方式主要有: (1)增压增氧方式 增压增氧主要用在飞机上,通过增加机舱内的压力,使空气密度增加,由于空气中含氧量的比例是一定的(氧在空气中的体积比为20 95%),空气密度增加后,空气中氧的绝对质量也增加,从而达到增加氧的目的。 (2)制氧机制氧方式 制氧机制氧广泛用在各个领域,制氧机有3大类:第一是利用空气为原料,通过物理的方法,把氧气从空气里分离出来。在1个大气压下,液态氧的沸点是-183℃,而液态氮的沸点是-196℃,当控制液态空气的沸点在-183℃以下高于-196℃时,液态氮首先蒸发,留下来的是液态氧,这种方法可制得纯度很高的氧气,再用很大的压力(一般150个大气压)压入钢瓶贮存起来,供工厂、医院使用,贮存在钢瓶的氧气还可向氧气袋充氧,供个人或旅行者使用。平时我们所见的氧气瓶供氧、氧气袋供氧都是使用这种方法制出的氧气。第二种是常压(或叫低压)制氧方法,所需压缩空气的压力在1MPa以内,这是近十几年发展起来的制氧方法,也叫膜制氧方法。膜制氧方法的原理可参见文献。第三种是PSA分子筛制氧方法,PSA分子筛制氧是使用一种变压吸附制氧设备,这种设备主要由空气净化系统,PSA氧氮分离系统,氧气缓冲、检测系统等组成。

(3)化学制氧方式 化学制氧是利用含氧化合物为原料,通过与催化剂的反应,制出氧气。使用的含氧化合物必须具备两个条件:一是这种含氧化合物是较不稳定的,在加热时容易分解放出氧气;二是这种含氧化合物里含氧的百分比是比较高的,能分解放出较多的氧气。一般用氯酸钾(分子式是KClO3),它含氧的百分比达40%,在氯酸钾里加入少量黑色的二氧化锰(MnO2)粉末,氯酸钾会迅速分解,有多量的氧气放出。氯酸钾分解放出的氧气常用“排水集气法”收集,供试验、呼吸等使用。氧立得就是利用这种原理制氧的。 二.富氧燃烧 用比通常空气(含氧21%)含氧浓度高的富氧空气进行燃烧,称为富氧燃烧。它是一项高效节能的燃烧技术,在玻璃工业、冶金工业及热能工程领域均有应用与用普通空气燃烧有以下优点: 1.高火焰温度和黑度 2.加快燃烧速度,促进燃烧安全。 3.降低燃料的燃点温度和减少燃尽时间。 4.降低过量空气系数,减少燃烧后的烟气量。 富氧燃烧: oxygen enriched combustion 变压吸附制氧设备在富氧助燃特点: ①节能效果显著 应用于各个燃烧领域均能大幅提高燃烧热效率,如在玻璃行业中平均节油(气)为20%-40%,在工业锅炉、加热炉、炼铁断和水泥厂机立窑等应用节能量为20%-50%,显著提高热能使用效率。

富氧燃烧的节能特性及其对环境的影响

基金项目:湛江市2004年重大科技攻关项目(项目编号:2004-3) 富氧燃烧的节能特性及其对环境的影响 郑晓峰,冯耀勋,贾明生 (广东海洋大学工程学院,广东湛江524088) 摘要:本文从富氧燃烧的节能特性及其对环境的影响两方面来探讨富氧燃烧。随着氧气制备技术的低成本化,采用富氧燃烧对于当前来讲可以很好地提高燃烧效率从而达到节能的效果,同时也要注意其对环境的影响。 关键词:富氧燃烧;节能;环境 中图分类号:T K16 文献标识码:B 文章编号:1004-7948(2006)07-0026-03 1引言 迄今为止,人类消费能源的80%是通过燃烧的途径得到的,而燃烧过程的排放物也是造成环境污 染的主要原因。围绕如何提高资源的利用率并在利用的同时尽可能地降低对环境造成的影响,各种高效率、低污染燃烧技术的开发非常活跃,高温空气燃烧、催化燃烧、富氧燃烧等技术已显示了其广阔的应用前景。 富氧燃烧采用比空气中氧含量高的空气来助燃,富氧的极限就是使用纯氧。富氧燃烧可以显著提高燃烧效率和火焰温度,长久以来主要是应用在玻璃熔窑和金属冶炼等需要高温操作的行业。随着膜法制氧技术、变压吸附PSA 法(Pressure Swing Adsorption )等新型制氧技术的成熟和利用,富氧成本将会不断降低,使得富氧燃烧技术的应用领域不断扩大,在燃气发电系统、工业锅炉、生物质能和废弃物能的利用等多方面都具有应用前景。2富氧燃烧节能特性 富氧燃烧具有节能特性主要是由其燃烧特点来决定的,其主要特点如下[1 ~5]: (1)火焰温度大幅度提高,以甲烷燃烧为例(见图1):30%富氧空气时的绝热火焰温度为2500K ,比通常空气燃烧提高近300K;氧浓度大于80%时的火焰温度接近3000K ,层流燃烧速度增大到近3m/s ,而普通空气的层流燃烧速度仅为0145m/s 。通过富氧助燃可以提高燃烧强度,加快燃烧速度,获得较好的热传导,同时温度提高有利于燃烧反应; (2)由于惰性成分的氮气浓度大大降低,无谓的能源消耗大幅度降低,30%~40%的富氧空气燃烧 图1 氧气质量浓度对最高温度、火焰传播速度的影响 就可以降低燃料消费20%~30%,提高了热效率;(3)烟气量大幅度减低,纯氧燃烧时的烟气体积只有普通空气燃烧的1/4,烟气中的CO 2浓度增加,有利于回收CO 2综合利用或封存,实现清洁生产;烟气中高辐射率的CO 2和水蒸气浓度增加,可促进炉内的辐射传热; (4)设备尺寸缩小,燃烧系统的设备投资成本和维护费用降低。3富氧燃烧应用现状 由上述特点可知富氧燃烧作为一项具有良好开发前景的高效节能技术具有很广阔的市场前景。目前在冶金、建材等需要高温工况的行业已有应用,低热值的生物质燃料以及固体废弃物的富氧燃烧也是最近发展的热点。 311富氧燃烧技术在金属冶炼中的应用 目前世界富氧消耗中,钢铁占50%以上[6],各个大型钢铁厂基本上采用了富氧鼓风。现代的钢、铁联合企业都自建有配套的氧气厂,富氧鼓风可以增大处理能力,降低热消耗水平,提高高炉煤气质量[7]。炼钢过程中,由于炼钢方法不一样,富氧使用情况也不同。对于转炉或平炉炼钢法,采用的是 — 62— 节 能EN ER GY CONSERVA TION 2006年第7期 (总第288期)

高新技术园区规划八大案例解读

高新技术园区规划八大案例解读 产业规划园区规划产业市场研究及运营战略一体化服务商 中机系(北京)信息技术研究院 CHINA MACHINERY MARKETING ACADEMY 官方网站:产业规划https://www.doczj.com/doc/376970985.html, 版权声明:该报告知识产权归中机系(北京)信息技术研究院所有,未经允许,不得擅自篡改、挪用、从事盈利性宣传活动,违者将追究法律责任。 长春高新技术产业开发区长德新区(一期)产业发展规划项目背景 长德新区的发展发展环境优越,秉承了长春市、国家战略的长吉图开发开放先导区,以及长东北开放开发先导区的交通区位优势、产业基础优势、区域品牌优势、科技与人力资源优势,以及政策环境优势等。因此,长德新区将继承和发扬现有区域优势,加速地区

山东鲁南高科技化工基地园区规划 山东鲁南高科技化工基地位于滕州市木石镇,包含官桥镇部分区域。基地地处我国规划的七大煤化工基地的苏鲁豫皖煤化工基地,在发展煤化工方面具有政策优势。山东省是我国化工产品消费大省,而且山东地处我国经济发达的东部地区,背靠人口稠密的中部,区位优势明显。加上滕州具有较好的资源条件,特别是煤炭地质储量达到12.93亿吨,具有发展煤基化工产品的天然优势。2000年经山东省批准,在滕州市木石镇成立煤化工高科技工业园。 此规划目标是在2015年之前,建成以甲醇、醋酸、煤基烯烃、合成氨/尿素、生物法环氧乙烷为龙头,涵盖煤基燃料、甲醇深加工、醋酸深加工等产业链,产品涉及煤基燃料、化肥、塑料原料及制品、表面活性剂、胶粘剂、饲料添加剂、电子化学品等,具有鲜明循环经济特征的高科技化工基地。

富氧燃烧与普通空气燃烧区别

与用普通空气燃烧相比,富氧燃烧有以下优点: 1.高火焰温度和黑度。 辐射换热是锅炉换热主要的方式之一,按气体辐射特点,只有三原子和多原子气体具有辐射能力,原子气体几乎无辐射能力。所以在常规空气助燃的情况下,无辐射能力的氮气所占比例很高,因此烟气的黑度很低,影响了烟气对锅炉辐射换热面的传热。富氧助燃技术因氮气量减少,空气量及烟气量均显著减少,故火焰温度和黑度随着燃烧空气中氧气比例的增加而显著提高,进而提高火焰辐射强度和强化辐射传热。一般富氧浓度在26%~3l%时最佳。 2.加快燃烧速度,促进燃烧安全。 燃料在空气中和在纯氧中的燃烧速度相差甚大,如氢气在纯氧中的燃烧速度是在空气中的4.2倍,天然气则达到10.7倍左右。故用富氧空气助燃后,不仅使火焰变短,提高燃烧强度,加快燃烧速度,获得较好的热传导,同时由于温度提高了,将有利于燃烧反应完全。 3.降低燃料的燃点温度和减少燃尽时间。 燃料的燃点温度随燃烧条件变化而变化。燃料的燃点温度不是一个常数,如CO在空气中为609℃,在纯氧中仅388℃,所以用富氧助燃能提高火焰强度、增加释放热量等。 4.减少燃烧后的烟气量,减小锅炉体积。 随着富氧空气中含氧量的增加,理论空气需要量减少,烟气量减少。采用纯氧燃烧时烟气量减少近80%,故可以采用体积更小的锅炉和辅助设备,减少工程造价。 5.减少污染物排放。 富氧燃烧烟气量减少,使燃烧废气中的污染物浓度增加,可使废气处理更有效率。同时N2减少可减少热力型NOx生成量。 6.有利于CO2的捕获。 目前CO2捕获主要有3种技术路径:燃烧前捕捉、富氧燃烧捕捉和燃烧后捕捉。燃烧前捕捉主要通过IGCC来实现,其原理是通过化学反应将煤或石油残渣等富碳燃料转化为合成气,由于将现有煤粉锅炉改建为IGCC电厂几乎不可能,因此IGCC技术仅适用于新电厂的建设。富氧燃烧捕捉:富氧燃烧技术的原理是用纯氧燃烧同体燃料,由二氧化碳循环流控制燃烧。富氧燃烧产生的烟气主要由水和二氧化碳组成,采用水分离技术在后端能比较容易地捕集到二氧化碳。富氧燃烧技术适用于新机组,也可应用于某些改造机组。燃烧后捕捉:这种技术目前相对简便,能够适应大型燃煤和燃气机组,通过捕集装置将电厂烟气中的二氧化碳有选择地去除。因此,富氧燃烧是很有前途的CO2分离方法。 但同时富氧燃烧还面临很多问题: 1. 运行方面 由于富氧燃烧,炉膛温度很高,需要采取措施(如烟气再循环)降低炉膛温度。 需要进一步了解富氧燃烧点火,火焰稳定性,耐腐蚀,传热的问题。 2. 污染物控制方面 由于燃烧环境变化,将改变污染物的形成,因此需要更多相关研究。 污染物的变化将影响现有污染物控制装置。 在CO2捕捉与封存之前需要对其他污染物进行脱除。

富氧燃烧技术的应用

生产技术经验 文章编号:1000-2871(2000)02-0026-04 富氧燃烧技术的应用Ξ 戴树业,韩建国,李 宏 (华北制药股份有限公司玻璃分公司,河北 石家庄050041) 摘要:介绍富氧燃烧在燃油玻璃窑炉上的应用及改进经验。 关键词:玻璃窑炉;燃油;富氧燃烧 中图分类号:T Q171.6+25.3 文献标识码:B Application of Oxyboosted Burning T echnology DAI ShuΟye,H AN JianΟguo,LI Hong 1 概述 富氧燃烧就是采用比空气中含氧量高的空气来进行助燃。两方发达国家及前苏联早在70年代就开始这项技术的研究,并在70年代末80年代初取得了良好的效果。象日本松下电气产业公司和大阪煤气公司开发的富氧装置,其所用的膜材料是聚硅氧烷与聚对羟基苯乙烯的交联共聚体,能生产含氧量为28%的富氧空气。美国通用电气公司UOP公司制造的富氧发生器可生产30%浓度的富氧空气。我国80年代中期开始此项技术的研究,中科院大连化物所自1986年起一直从事国家“七五”和“八五”科技攻关项目:卷式富氧膜、组件、装置及其应用和开发的研究,并且研制成功“LT V-PS富氧膜、<100×1000mm卷式组件及装置Ⅰ型”。 我公司现有4台马蹄焰蓄热室窑炉,面积在23~28m2之间,主要生产药用玻璃管,对玻璃的熔制质量要求较高,熔化率低,能耗高。随着市场经济竞争日趋激烈,能源价格上涨,成本不断提高。节能挖潜、降低成本对于耗能大户玻璃行业来说至关重要,而采用新技术是最佳途径。我公司1992年就开始对富氧燃烧进行调研工作,但当时富氧膜成本高,使用周期短,工艺设备不成熟,故障率高,一些厂家的使用效果不理想。以后几年我们一直在关注该技术的发展。随着时间的推移,技术的成熟,我公司于1996年上马富氧燃烧项目。 2 膜法富氧制取技术 众所周知,空气中的主要成分是氧占20.94%,氮占78.09%。而氧气、氮气在特制的高分子膜中的溶解度大小和扩散速率不同。膜法富氧就是利用空气中各组分透过高分子富氧 Ξ收稿日期:1999-09-16

火焰长度与喷嘴的配风以及燃烧室技术

火焰长度与喷嘴的配风以及燃烧室技术 一般燃烧器或喷嘴内的火焰长短、大小都受制于燃烧室(或炉膛)空间尺寸,特别是火焰长度对燃烧室后部构件的安全、可靠上作至关重要,如燃气轮机的涡轮部件、工业炉窑及锅炉的炉壁等。在工业炉及锅炉燃烧器上调整火焰尺寸和形状是为满足不同用户要求必须解决的问题。在高性能航空发动机上长期来开发的短环形燃烧室,实际上就是以短的燃烧室达到增大推重比。为此,人们对火焰长度的研究极为重视.只是它与太多因素有关.至今尚无准确的理论公式来决定火焰长度(特别是强制供风的喷嘴),已有的研究结论是在各种型式和形状的喷嘴(包括喷嘴)的燃烧试验基础,归纳出经验公式。由这些经验关系式可以揭示影响火焰长度的主要因素,提供了调整火焰长度的主要措施。 1、不同燃料与喷嘴的火焰长度经验关系式我们摘录了部分文献中的强制供风(即流动气流)时,采用不同燃料与烧嘴(或喷嘴)在燃烧时的火焰长度的试验关系式度结果。由表可见,影响火焰长度的主要因素是: 1)燃料流量(或压力)或输出功率越大,火焰越长; 2)过量夺气系数A越小,火焰越长; 3)助燃空气旋流有利丁缩短火焰长度; 4)喷嘴喷雾角增大,火焰缩短; 5)内混式喷嘴的火焰长度比外混式的短; 6)气体燃料比燃油的火焰短,重质燃油比轻油的火焰长,煤粉火焰更长。 2、调整火焰长度的方法 一般火焰长度调整是在燃烧器输出功率(或燃料供给应量)及燃料种类不变的条件下,以及空气过量系数也不变(特别是有燃气气氛要求的)的前提下,进行火焰尺寸的调整。根据已有经验,以下方法是行之有效的。 (1)喷嘴方面 1)燃气喷嘴(或烧嘴)的助燃空气旋流比直流时的火焰短;经多扎喷头喷出燃气比单股射流的火焰短;燃料气与助燃空气都经过旋流的火焰更短。总之,促使燃气与宰气尽快均匀混合,有利于缩短火焰长度。 2)燃油喷嘴方面又有如下措施: a.增大喷雾锥角是缩短火焰常用方法,如锅炉用全自动燃油燃烧器采用的压力雾化喷嘴的喷雾角由45°增至60~~90度,则可缩火焰100,200mm。但是必须注意燃油不可碰壁,否则产生严重冒烟和燃烧不完全。 b.采用宅气(蒸汽)雾化喷嘴比压力雾化喷嘴有利于缩短火焰长度。为发展高推重比的航空燃气轮机,所研制的短环形燃烧室采取了许多措施来缩短燃烧室长度,其中法国的三代燃烧室上采用了不同供油喷嘴,即由压力雾化喷嘴改为蒸发管和空气雾化喷嘴,对缩短燃烧室长度足很有效的。当然燃烧室的容积大幅度缩小,还与它们的容热强度提高有关,即燃烧室温度与压力增加,为此还必须在燃烧室火焰筒的冷却技术上采取相应的有力措施。 c.采用内混式比外混式空气(蒸汽)雾化喷嘴的火焰短,约为80%。b和c项的作用是减少燃烧准备的混合和蒸发过程所需要的空间和时间,因此改善喷嘴雾化质量(减小雾滴及煤粉直径)尤为重要。 (2)配风方面 1)增大一次风量,一般可使火焰变短。特别是对于挥发分少的煤燃料,以及重质燃油,增大一次风量是十分必要的。但是燃料喷雾喷嘴的根部风不可太大,或者煤粉与一次风混合物喷出速度要小。文献是在大型燃油燃烧器由烧柴油和烧重油时,将稳焰器上的中心孔结构及盘

富氧燃烧技术的应用

富氧燃烧技术 一、富氧燃烧可以提高燃烧区的火焰温度。 研究表明,火焰温度随着燃烧空气中氧气比例增加而显著提高,详见图1。富氧燃烧可明显提高火焰温度,提高火焰对配合料和玻璃液的加热效果。燃烧过程是空气中的氧参与燃料氧化,并同时发出光和热的过程。热的传递一般通过辐射、传导和对流三种形式进行。这三种形式何种作用最大主要取决于:火焰类型和形状、加入空气中的含氧量及燃烧设备周围的情况等。由于热传递速率与温度的四次方成正比,所以提高燃烧温度将会大大增加热辐射。 火焰温度与氧浓度的关系图 由火焰温度与氧浓度的关系图可知:A)火焰温度随富氧空气氧浓度的提高而增高;B)随氧浓度的继续提高,火焰温度的增加幅度逐渐下降。为有效利用富氧空气,氧浓度不宜选得过高,一般按空气过剩系数m=1~1.5组织火焰时,富氧空气浓度取23~27%为宜,其中空气含氧量从21%增加到23%时,效果最明显;C)空气过剩系数不宜过大,否则,同样浓度的富氧空气助燃,火馅温度较低。通常在组织燃烧时,控制在1.05~1.1,以达到既能获得较高火焰温度又能燃烧完全的效果。 火焰温度与氧浓度的关系图所示的是理论火焰温度值,实际值要低得多。因为普通燃料燃烧后的最终产物都是二氧化碳和水,它们加热到1500℃时会分解为一氧化碳、氧和氢。也就是说,任何碳氢化合物燃料的高温火焰混合物都将出现CO2、

CO、H2、H2O、O2、CH。由于CO2和H2O高温分解反应是吸热反应,所以实际火焰温度比理论火焰温度要低得多。 (2)富氧燃烧改变了燃料与助燃气体的接触方式,降低燃料的燃点温度,可明显缩短火焰根部的黑区,增大有效传热面积。当用重油作燃料时,它先蒸发成气体,主要是氢气和一氧化碳,其燃点温度为500~600℃,当富氧空气参与助燃时,其燃烧条件得到改善,从而降低重油的燃点温度,使火焰变短,火焰强度提高,释放热量增加。尤其是玻璃熔窑燃料燃烧时,通常将燃料喷枪置于助燃空气的下方,由于不能及时混合,在火焰根部常有低温区存在,形成所谓的黑区。黑区的存在减小了火焰在熔窑内的覆盖区域,降低了传热效果。 (3)富氧燃烧可以加快燃烧速度,改善燃料的燃烧条件,使得燃烧在窑内充分完成,减少了在蓄热室内的残余燃烧,因而能充分地利用燃料。下表中示出各种燃料应用空气和氧气助燃的燃烧速度比较情况,由表可见,各种气体燃料在纯氧中的燃烧速度大大加快。由于加入氧气后提高了火焰温度,因此增加了燃烧速度。燃烧速度实际上是一种定性的说法。如乙炔是一种燃烧速度快的燃料,其火焰短而密实;天然气是一种比乙炔燃烧速度相对慢的燃料,其火焰较长,但只要燃烧完全,都可放出很大热量。因此,要使燃料达到完全燃烧,必须使燃料和空气混合均匀或充分接触。富氧空气参与助燃后,能加快燃烧速度,提高燃烧强度、使火焰变短,获得较好的热传导,同时由于提高了燃烧温度,所以有利于燃烧反应完全。另外,因为1摩尔C在不完全燃烧的情况下比完全燃烧时少释放出约70%左右的热量。排出尾气中的CO含量增加,热损失呈直线增加。CO热损失增加,单位蒸汽的热耗也近似直线增加。所以说富氧燃烧促进燃料燃烧完全,是节约热能的重要原因。 (4)富氧燃烧使燃烧所需空气量减少,废气带走的热量下降。排出废气的容积比与燃烧空气中氧浓度(%)的关系如下图所示。通常的燃烧只有占空气总量1/5的氧气参与燃烧,其余约占4/5的氮气非但不助燃,反而要带走燃烧产生的大量热量,从烟气中排出。使用富氧空气的情况下,燃料燃烧完全,自然排出废气减少,排烟热损失也相应减少从而节能。

脉动燃烧器

项目编号2008-014-俄罗斯坦博夫国立技术大学-002 项目有效期2009-12-17 所属国家俄罗斯 所属领域电气机械及器材制造业 项目名称(中文)脉动燃烧发热机 项目名称(外文) 项目内容用途及应用领域: 脉动燃烧发热机用于用于制取有很高热技术特性的热气体,可在固定条件或移动状态也制取热载体。脉动燃烧发热机的主要应用领域: ·在工业及辅助场地对气体进行快速加热 ·干燥热稳性建筑及装饰材料(砂、土、砾石及碎石) ·对各种表面及结构进行加热以进行进一步加工,例如焊接前、准备沥青面层等 ·冬季在打基础前对基坑及壕沟进行加热 ·接触加热及汽化液体 ·熔炼易熔金属 脉动燃烧发热机的应用领域也可以在热载体温度降低的情况下通过将加热体与周围空气混合而得到扩展。这主要是通过脉动加热机特殊构造外壳的喷射效果 达到的。在这种情况下脉动加热机的主要应用领域是:烘干农产品和食品,锯材 此外,它还作为发热机,在各种工艺过程中使用。 工作原理 脉动燃烧发热机的作功是通过燃料燃烧形成脉动工作状态来实现的,燃烧发热机的独特构造保障了这种脉动状态。脉动加热机的主要参数变化在加热过程中 表现出明显的周期性,可大大强化热物质交换,从而降低燃料消耗,避免不充分 燃烧产品的出现。此外,该机器依靠脉动气流作功、强化声音掁动和颤动的作用 确实能够提高工艺处理效率。 脉动燃烧发热机构造简单,主要由圆柱形燃烧室组成。燃烧室内的端部有燃料递送装置和截管式空气动力阀。谐振管切向连接到燃烧室内。 脉动燃烧发热机的循环工作情况如下。起动时,利用外部通风装置经空气动力阀将燃料和空气混合送进燃烧室,借助电火花塞将其点燃,使燃烧室内压力骤 然增加,室内气体高速从谐振管排出,燃烧物的惯性溢出使燃烧室内压力减小, 这又使新气体通过空气动力阀进入,而新送入的混合物燃料会因燃烧室壁加热或 残留燃烧物而再次燃烧。这样,机器就会不断地循环工作。当想停止脉动发热机 的稳定脉动加热状态时,切断火塞电源和外部气门既可。 脉动燃烧发热机在工作状态下完全能够保障燃烧加热所需的空气供应。该机器使用和维护简单,体积小。 技术特点 以下为已经研制、试验并通过试用的改进型脉动加热设备。 20千瓦功率的脉动燃烧发热机 技术性能规格数值 外形尺寸米0.95×0.15× 0.25 重量千克6 柴油燃料消耗量升/小时2-2.2

富氧燃烧锅炉初探

第39卷第1期2008年1月 锅 炉 技 术 BOIL ER T ECH NO L OGY Vol.39,No.1 Jan.,2008 收稿日期:2007-08-08 作者简介:牛天况(1940-),男,工学博士,教授级高级工程师。 文章编号: CN31-1508(2008)01-0025-07 富氧燃烧锅炉初探 牛天况 (上海锅炉厂有限公司,上海200245) 关键词: 富氧;膜法富氧;富氧燃烧;锅炉 摘 要: 介绍了不同目的的锅炉富氧燃烧技术,重点分析了膜法富氧对于锅炉性能所带来的影响,对于进一步发展膜法富氧锅炉技术和扩大应用提出了建议。中图分类号: T K 227.1 文献标识码: B 1 前 言 近年来,富氧燃烧出现在各类刊物的场合逐渐增多。可是时至今日,国内主流的专业刊物还是缺少由锅炉专业的视角来分析探讨这个新出现的技术。笔者根据近几年以来所接触的有关信息,在这里做个初步的探讨,希望能起抛砖引玉的作用。 2 富氧燃烧的分类 根据富氧燃烧的目的不同,大体可以分作以下3类: 2.1捕获CO 2为目的的富氧燃烧 现在气候变暖、降低CO 2的排放已经成为家喻户晓的国际性的重大课题。解决方案中的一个措施是,将锅炉排出的含有CO 2的烟气深埋在地下。普通锅炉采用空气为介质进行燃烧,其中大量的是氮气,这样对于深埋的方案来说,必须先除去氮气。目前,国外正在实施中的300M W 等级的项目中,采用空气分离系统向锅炉供给纯氧。锅炉设有烟气再循环,用燃烧产物(主要是CO 2)来稀释供给锅炉的纯氧,使得用于燃烧气体(O 2+CO 2)中氧的浓度大约在27%上下。使用这类工艺的发电厂示意图见图1。 2.2降低有害气体的排放为目的的富氧燃烧 另外一类富氧燃烧的目的是为了降低有害 物质的排放。 图1 捕获CO 2的富氧燃烧发电厂系统 三菱重工的富氧燃烧垃圾焚烧炉就是一个例子,见图2 。 图2 应用PSA (变压吸附法)富氧装置的垃圾焚烧炉 氧气由PSA(变压吸附法)装置产生,作为一次风送入炉排下面;再循环烟气作为二次风送入

热风炉富氧燃烧特性与操作策略研究

热风炉富氧燃烧特性与操作策略研究 孟凡双金国一 (鞍钢股份有限公司炼铁总厂,辽宁鞍山 114021) 摘要:介绍了富氧燃烧技术的基本特性,根据富氧燃烧的特性,分析了采用单一燃料——高炉煤气燃烧的热风炉,其富氧混合操作、空燃比设定、废气和拱顶温度的变化,及运行效果,对采用富氧燃烧技术热风炉的操作和使用有一定的指导意义。关键词:热风炉富氧燃烧操作 1 前言 燃料燃烧是燃料与助燃剂在一定条件下发生放热和发光的剧烈氧化反应。通常的燃料燃烧都以空气作为助燃剂,而空气中参与燃烧反应的O2含量仅为21%,不参与燃烧反应的N2含量却高达79%,这些N2吸收了大量的燃烧反应热,最终随烟气排人大气中,造成了很大的能源浪费。富氧燃烧就是助燃剂中的O2含量大于21%的燃料燃烧。这种燃烧方式提高了助燃剂中的有用成分O2的含量,降低了助燃剂中的无用成分N2的含量,对于稳定燃烧过程,提高燃烧效率,改善炉内传热具有积极意义。 根据燃料燃烧的基本理论知识,阐述了采用高炉煤气作为燃料,增加助燃空气中含氧量时,燃烧反应速度、空气消耗系数、燃耗产物生成量和理论燃烧温度等,一些燃烧的基本特性;通过燃烧的基本特性分析,针对热风炉的实际操作带来的变化;同时对于同种结构的热风炉,同时采用双预热和富氧燃烧技术,其运行情况进行了分析,提出了富氧燃烧技术对热风炉的适用性,对采用富氧燃烧技术热风炉的操作和使用有一定的指导意义。 2 富氧燃烧特性 2.1燃烧反应速度 应用燃烧反应动力学原理,分析富氧燃烧反应速度。热风炉的主要燃料为高炉煤气,高炉煤气的主要成份为CO,其化学反应计量式为: 2CO+O2→2CO2 其反应速度为[1]: W=PK0m co m o20.25T-2.25exp(-2300/T) (1) W——反应速度,mol/s PK——比例系数,s-1 m co m o2——CO和O2的相对浓度,mol T——混合气体温度,K 由式(1)分析可知,高炉煤气在富氧空气助燃时,在反应物压力、温度不变的条件下,燃烧反应速度

产业园区规划 无锡国家高新技术产业开发区案例

无锡国家高新技术产业开发区案例 一、项目背景 无锡国家高新技术产业开发区是1992年11月经国务院批准的国家级高新技术产业开发区。1995年在无锡高新区和无锡新加坡工业园快速发展的基础上设立无锡新区,无锡新区是无锡市最重要的经济增长极、改革开放的重要窗口和参加国际竞争的产业高地。无锡新区下辖无锡国家高新技术产业开发区、无锡出口加工区、无锡新加坡工业园等多个专业科技园区和四个镇、三个街道,辖区面积200平方公里,人口25万。 无锡是一座有着3000年历史的古城,吴文化的发祥地之一,是中国著名俄鱼米之乡。无锡地处长江三角洲,是全国15个经济中心城市和全国优秀的旅游城市之一,连续多年居全国城市国内生产总值前十位,跻身全国综合实力50强和投资环境40优行列。 无锡高新区加强招商引资,提供一系列的优惠政策。加大对电子信息、机电一体化及精密机械、生物医药、精细化工、新材料和其他先进适用技术等领域的鼓励投资,对进区入驻的外商投资企业给予所得税、海关关税和其他税收方面的保税减免等优惠待遇。 无锡高新区设立相关配套资金,通过投资、补贴、配套和奖励等多种方式,整合现有资源,集中加大对科技创新和产业升级的财政资金扶持,同时加大对引导和促进各类社会资本的投入。设立了市科技成果产业化资金、市人才资金、市物联网与云计算产业资金。鼓励引进新兴产业重大项目,扶持产业龙头企业,按照其销售收入、产品市场占有率水平及对地方贡献等,给予支持。 该高新区,大力发展科技金融,壮大地方法人金融企业,拓宽企业融资渠道。加强工作协调推进,加强重点项目要素保障,对评估为“特级”的重大产业项目,享受用地指标市级全力确保、“一事一议”落实祥光扶持政策。在经济环境困难时期,经市政府批准,对于企业部分应收费项目可实行暂缓征收。加快提高服务效能,扩大重点项目审批“绿色通道”服务内容。 二、项目意义 十多年来,无锡新区认真贯彻落实中央关于发展高新技术产业的一系列重大决策和部署,积极顺应先进生产力和发展要求,解放思想,与时俱进,抓住机遇、开拓创新,区域经济保持快速增长的势头,高新技术产业的迅速聚集,已经成为国际化、现代化、特征鲜明的科技产业城,被国家科技部授予“全国先进高新区”的称号,经济发展和创新能力居全国高新区第二位,赢得了“璀璨的太湖明珠”等美誉。 该高新区,实行全方位、宽领域、多层次的对外开放战略,已经建成了在长江三角洲具有重要影响力的国际制造业基地。形成了以电子信息、精密机械及机电一体化、生物医药、精细化工和新材料为重点的五大支柱产业。

全氧燃烧、纯氧助燃及富氧燃烧节能技术比较

全氧燃烧、纯氧助燃及富氧燃烧节能技术比较 玻璃熔窑的节能降耗一直是业内关注的重大课题,在能源危机日益加重的今天,玻璃熔窑对高品质能源的过度依赖已经制约了玻璃行业的发展。玻璃熔窑燃烧过程中,空气成分中占78%的氮气不参加燃烧反应,大量的氮气被无谓地加热,在高温下排入大气,造成大量的热量损失,氮气在高温下还与氧气反应生成NOx,NOx气体排入大气层极易形成酸雨造成环境污染。另一方面随着高科技和经济社会的发展,要求制造各种低成本、高质量的玻璃,而全氧燃烧技术正是解决节能、环保和高熔化质量这几大问题的有效手段,被誉为玻璃熔制技术的第二次革命。纯氧燃烧技术最早主要被应用于增产、延长窑炉使用寿命以及减少NOx排放,但随着制氧技术的发展以及电力成本的相对稳定,纯氧燃烧技术正在成为取代常规空气助燃的更好选择,这得益于纯氧燃烧技术在节能、环保、质量、投资等方面的优势。 氧气燃烧的应用分为整个熔化部使用纯氧燃烧的全氧燃烧技术、纯氧辅助燃烧技术以及局部增氧富氧燃烧技术等几种方式。 1、全氧燃烧技术的优点 1)玻璃熔化质量好。全氧燃烧时玻璃粘度降低,火焰稳定,无换向,燃烧气体在窑内停留时间长,窑内压力稳定,有利于玻璃的熔化、澄清,减少玻璃的气泡及条纹。 2)节能降耗。全氧燃烧时废气带走的热量和窑体散热同时下降。研究和实践表明,熔制普通钠钙硅平板玻璃熔窑可节能约30%以上。3)减少NOx排放。全氧燃烧时熔窑废气中NOx排放量从2200mg/Nm3降低到500mg/Nm3以下,粉尘排放减少约80%,SO2排放量减少30%。 4)改善了燃烧,提高了熔窑熔化能力,可使熔窑产量得以提高。玻璃熔窑采用全氧燃烧时,燃料燃烧完全,火焰温度高,配合料熔融速度加快,可提高熔化率10%以上。 5)熔窑建设费用低。全氧燃烧窑结构近似于单元窑,无金属换热器及小炉、蓄热室。窑体呈一个熔化部单体结构,占地小,建窑投资费用低。

相关主题
文本预览
相关文档 最新文档