当前位置:文档之家› 等差数列讲义(教师版)

等差数列讲义(教师版)

等差数列讲义(教师版)
等差数列讲义(教师版)

2.2 等差数列

2.2.1 等差数列的概念、通项公式

【学习目标】

1.理解等差数列的定义(重点);

2.会推导等差数列的通项公式,能运用等差数列的通项公式解决一些简单的问题;

3.掌握等差中项的概念,深化认识并能运用(重、难点).

【要点整合】

1. 等差数列的概念

2. 等差中项

如果三个数a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.

注意 根据等差中项的定义,a ,A ,b 成等差数列,则A =a +b 2;反之,若A =a +b 2

,也可得到a ,A ,b 成等差数列,所以A 是a ,b 的等差中项?A =a +b 2

3. 等差数列的通项公式

如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d .

上述公式中有4个变量,a 1,d ,n ,a n ,在4个变量中已知其中的三个便可求出其余的一个,即“知三求一”.其作用为:

(1)可以由首项和公差求出等差数列中的任一项;

(2)已知等差数列的任意两项,就可以求出首项和公差,从而可求等差数列中的任一项;

(3)由等差数列的通项公式可求出数列中的任意一项,也可判断某数是否为数列中的项及是第几项. 【典例讲练】

题型一 等差数列的概念

例1 判断下列数列是不是等差数列?

(1)9,7,5,3,…,-2n +11,…;

(2)-1,11,23,35,…,12n -13,…;

(3)1,2,1,2,…;

(4)1,2,4,6,8,10,…;

(5)a ,a ,a ,a ,a ,….

解 由等差数列的定义得(1),(2),(5)为等差数列,(3),(4)不是等差数列.

练习1:数列{a n }的通项公式a n =2n +5,则此数列( )

A.是公差为2的等差数列

B.是公差为5的等差数列

C.是首项为5的等差数列

D.是公差为n 的等差数列

答案 A

题型二 等差中项

例2 在-1与7之间顺次插入三个数a ,b ,c 使这五个数成等差数列,求此数列.

解 ∵-1,a ,b ,c,7成等差数列,

∴b 是-1与7的等差中项,

∴b =-1+72

=3. 又a 是-1与3的等差中项,∴a =-1+32

=1. 又c 是3与7的等差中项,∴c =3+72

=5. ∴该数列为-1,1,3,5,7.

练习2:若m 和2n 的等差中项为4,2m 和n 的等差中项为5,求m 和n 的等差中项.

答案 3

题型三 等差数列的通项公式及应用

例3 (1)若{a n }是等差数列,a 15=8,a 60=20,求a 75.

(2)已知递减等差数列{a n }的前三项和为18,前三项的乘积为66.求数列的通项公式,并判断-34是该数列的项吗?

(3)等差数列2,5,8,...,107共有 项

解 (1)设{a n }的公差为d .

由题意知?????a 15=a 1+14d =8,a 60=a 1+59d =20,解得???a 1=6415,d =415.

所以a 75=a 1+74d =6415+74×415

=24. (2)依题意得?

????a 1+a 2+a 3=18,a 1·a 2·a 3=66,

∴?????3a 1+3d =18,a 1·(a 1+d )·(a 1

+2d )=66, 解得?????a 1=11,d =-5或?

????a 1=1,d =5.∵数列{a n }是递减等差数列, ∴d <0.故取a 1=11,d =-5.

∴a n =11+(n -1)·(-5)=-5n +16.

即等差数列{a n }的通项公式为a n =-5n +16.

令a n =-34,即-5n +16=-34,得n =10.

∴-34是数列{a n }的第10项.

练习3:已知{a n }为等差数列,根据下列条件分别写出它的通项公式.

(1)a 3=5,a 7=13;

(2)前三项为:a ,2a -1,3-a .

答案 (1) a n =2n -1. (2) a n =14

n +1. 题型四 等差数列的判定

例4若a n =7n +

2,b n =lg a n ,证明{b n }为等差数列. 解 证明 b n +1-b n =lg a n +1-lg a n

=(n +3)lg 7-(n +2)lg 7=lg 7.

练习4:已知a 1=2,若a n +1=2a n +2n +1,证明????

??a n 2n 为等差数列,并求{a n }的通项公式. 解 证明 由于a n +1=2a n +2n +

1, 所以a n +12n +1-a n 2n =2a n +2n +

12n +1-a n 2n =1,

∴????

??a n 2n 是以1为首项,1为公差的等差数列. ∴a n 2n =1+(n -1)×1=n .

∴a n =n ·2n .

2.2.2 等差数列的性质

【学习目标】

1.能根据等差数列的定义推出等差数列的重要性质;

2.能运用等差数列的性质解决有关问题.

【要点整合】

1.等差数列与一次函数

(1)等差数列的图象

等差数列的通项公式a n =a 1+(n -1)d =dn +(a 1-d ),当d =0时,a n 是关于n 的常数函数;当d ≠0时,a n 是关于n 的一次函数,点(n ,a n ),(m ,a m )分布在以d 为斜率的直线上,且是这条直线上的一列孤立的点.

(2)公差d 与斜率

等差数列{a n }的图象是一条直线上的孤立的点,而这条直线的斜率即为公差d ,即d =a n -a 1n -1=a n -a m n -m

(m,n≥2,m ≠n ,m,n ∈N *),故等差数列的通项公式也可写为a n =a m +(n -m)d.

2.等差数列的性质

(1)等差数列的项的对称性 ①在有穷等差数列中,与首末两项“等距离”的两项之和等于首项与末项的和,即a 1+a n =a 2+a n -1=a 3+a n -2=…

②下标性质:在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .特别地,若m +n =2p ,则a n +a m =2a p .(2)由等差数列衍生的新数列

若{a n },{b n }分别是公差为d ,d ′的等差数列,则有

【典例讲练】

题型一 等差数列与一次函数的关系

例1 已知数列{a n }的通项公式a n =pn +q ,其中p ,q 为常数,那么这个数列一定是等差数列吗?若是,首项和公差分别是多少?

解 取数列{a n }中任意相邻两项a n 和a n -1(n >1),

求差得a n -a n -1=(pn +q )-[p (n -1)+q ]

=pn +q -(pn -p +q )=p .

它是一个与n 无关的常数,所以{a n }是等差数列.

由于a n =pn +q =q +p +(n -1)p ,

所以首项a 1=p +q ,公差d =p .

练习1 若数列{a n }满足a 1=15,3a n +1=3a n -2(n ∈N *),则使a k ·a k +1<0的k 值为________.

答案 23

解析 由3a n +1=3a n -2,得a n +1-a n =-23,

又a 1=15,∴{a n }是首项为15,公差为-23的等差数列,

∴a n =a 1+(n -1)d =15+(n -1)×????-23

=-23n +473.

令a n =0,解得n =472=23.5,

∵d =-23,数列{a n }是递减数列,

∴a 23>0,a 24<0,∴k =23.

题型二 等差数列性质的应用

例2 在等差数列{a n }中,已知a 2=5,a 8=17,求数列的公差及通项公式.

解 因为a 8=a 2+(8-2)d ,所以17=5+6d ,解得d =2.

又因为a n =a 2+(n -2)d ,所以a n =5+(n -2)×2=2n +1.

练习2 数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 10=12,则a 8等于(

) A.0 B.3 C.8 D.11

答案 B

解析 ∵{b n }为等差数列,设其公差为d ,

则d =b 10-b 3

10-3=12-(-2)7=2,

∴b n =b 3+(n -3)d =2n -8.

∴a 8=(a 8-a 7)+(a 7-a 6)+(a 6-a 5)+(a 5-a 4)+(a 4-a 3)+(a 3-a 2)+(a 2-a 1)+a 1

=b 7+b 6+…+b 1+a 1

=(b 7+b 1)+(b 6+b 2)+(b 5+b 3)+b 4+a 1=7b 4+a 1=7×0+3=3.

例3 已知等差数列{a n }中,a 1+a 4+a 7=15,a 2a 4a 6=45,求此数列的通项公式.

解 方法一 因为a 1+a 7=2a 4,a 1+a 4+a 7=3a 4=15,

所以a 4=5.

又因为a 2a 4a 6=45,所以a 2a 6=9,

所以(a 4-2d )(a 4+2d )=9,即(5-2d )(5+2d )=9,

解得d =±2.

若d =2,a n =a 4+(n -4)d =2n -3;

若d =-2,a n =a 4+(n -4)d =13-2n .

方法二 设等差数列的公差为d ,

则由a 1+a 4+a 7=15,得

a 1+a 1+3d +a 1+6d =15,

即a 1+3d =5,①

由a 2a 4a 6=45,

得(a 1+d )(a 1+3d )(a 1+5d )=45,

将①代入上式,得

(5-2d )×5×(5+2d )=45,

即(5-2d )(5+2d )=9,②

解得a 1=-1,d =2或a 1=11,d =-2,

即a n =-1+2(n -1)=2n -3

或a n =11-2(n -1)=-2n +13.

练习3 已知{a n }为等差数列,a 4+a 7+a 10=30,则a 3-2a 5的值为( )

A.10

B.-10

C.15

D.-15

解析 法一 设等差数列{a n }的公差为d ,则30=(a 1+3d )+(a 1+6d )+(a 1+9d )=3a 1+18d ,即a 1+6d =10.而a 3-2a 5=(a 1+2d )-2(a 1+4d )=-a 1-6d =-10.

法二 由等差数列的性质知30=a 4+a 7+a 10=3a 7,则a 7=10.而a 3-2a 5=a 3-(a 3+a 7)=-a 7=-10.

例4 已知四个数依次成等差数列且是递增数列,四个数的平方和为94,首尾两数之积比中间两数之积少18,求此等差数列.

解 设四个数为a -3d ,a -d ,a +d ,a +3d ,则

?

????(a -3d )2+(a -d )2+(a +d )2+(a +3d )2=94,(a -3d )(a +3d )+18=(a -d )(a +d ),

等差数列讲义(学生版)

2.2 等差数列 2.2.1 等差数列的概念、通项公式 【学习目标】 1.理解等差数列的定义(重点); 2.会推导等差数列的通项公式,能运用等差数列的通项公式解决一些简单的问题; 3.掌握等差中项的概念,深化认识并能运用(重、难点). 【要点整合】 1. 等差数列的概念 2. 等差中项 如果三个数a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项. 注意 根据等差中项的定义,a ,A ,b 成等差数列,则A =a +b 2;反之,若A =a +b 2 ,也可得到a ,A ,b 成等差数列,所以A 是a ,b 的等差中项?A =a +b 2 3. 等差数列的通项公式 如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d . 上述公式中有4个变量,a 1,d ,n ,a n ,在4个变量中已知其中的三个便可求出其余的一个,即“知三求一”.其作用为: (1)可以由首项和公差求出等差数列中的任一项; (2)已知等差数列的任意两项,就可以求出首项和公差,从而可求等差数列中的任一项; (3)由等差数列的通项公式可求出数列中的任意一项,也可判断某数是否为数列中的项及是第几项. 【典例讲练】 题型一 等差数列的概念 例1 判断下列数列是不是等差数列? (1)9,7,5,3,…,-2n +11,…; (2)-1,11,23,35,…,12n -13,…; (3)1,2,1,2,…;

(4)1,2,4,6,8,10,…; (5)a,a,a,a,a,…. 练习1:数列{a n}的通项公式a n=2n+5,则此数列() A.是公差为2的等差数列 B.是公差为5的等差数列 C.是首项为5的等差数列 D.是公差为n的等差数列 题型二等差中项 例2在-1与7之间顺次插入三个数a,b,c使这五个数成等差数列,求此数列. 练习2:若m和2n的等差中项为4,2m和n的等差中项为5,求m和n的等差中项. 题型三等差数列的通项公式及应用 例3(1)若{a n}是等差数列,a15=8,a60=20,求a75. (2)已知递减等差数列{a n}的前三项和为18,前三项的乘积为66.求数列的通项公式,并判断-34是该数列的项吗? (3)等差数列2,5,8,...,107共有项

等差数列习题课(教师版)

等差数列习题课 1. 进一步了解等差数列的定义,通项公式及前n 项和公式; 2. 理解等差数列的性质,等差数列前n 项和公式的性质应用; 项和之比问题,以及实际应用。 一、知识回顾 1.等差数列的定义用递推公式表示为: )(1++∈=-N n d a a n n 或),2(1+-∈≥=-N n n d a a n n ,其中d 为常数,叫这个数列的公差。 2.等差数列的通项公式:d n a a n )1(1-+=, 3.等差数列的分类: 当0>d 时,}{n a 是递增数列;当0

21等差数列

第二十一讲:等差数列 一、知识提纲 1.等差数列的有关概念 (1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做等差数列的公差,符号表示为a n +1-a n =d (n ∈N *,d 为常数). (2)等差中项:数列a ,A ,b 成等差数列?A =a +b 2 ,其中A 叫做a ,b 的等 差中项. 2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+ n n -1 2 d = n a 1+a n 2 . 3.等差数列的通项公式及前n 项和公式与函数的关系 (1)a n =a 1+(n -1)d 可化为a n =dn +a 1-d 的形式.当d ≠0时,a n 是关于n 的一次函数;当d >0时,数列为递增数列;当d <0时,数列为递减数列. (2)数列{a n }是等差数列,且公差不为0?S n =An 2+Bn (A ,B 为常数). 4.常用结论 已知{a n }为等差数列,d 为公差,S n 为该数列的前n 项和. (1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *). (2)在等差数列{a n }中,当m +n =p +q 时,a m +a n =a p +a q (m ,n ,p ,q ∈N *).特别地,若m +n =2p ,则2a p =a m +a n (m ,n ,p ∈N *). (3)a k ,a k +m ,a k +2m ,…仍是等差数列,公差为md (k ,m ∈N *). (4)S n ,S 2n -S n ,S 3n -S 2n ,…也成等差数列,公差为n 2d . (5)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列. (6)若{a n }是等差数列,则?????? ??? ?S n n 也成等差数列,其首项与{a n }首项相同,公差 是{a n }公差的1 2 . (7)若项数为偶数2n ,则S 2n =n (a 1+a 2n )=n (a n +a n +1);S 偶-S 奇=nd ;S 奇S 偶 =

等差数列练习题(教师版,附详细答案)

等差数列练习题 1、数列的概念:数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n })的特殊函数,数列的通项公式也就是相应函数的解析式。 例1.根据数列前4项,写出它的通项公式: (1)1,3,5,7……; (2)2212-,2313-,2414-,251 5-; (3)11*2-,12*3,13*4-,1 4*5 。 解析:(1)n a =21n -; (2)n a = 2(1)11n n +-+; (3)n a = (1)(1) n n n -+。 点评:每一项序号与这一项的对应关系可看成是一个序号到另一个数集的对应关系,这对考生的归纳推理能力有较高的要求。 如(1)已知* 2 ()156 n n a n N n = ∈+,则在数列{}n a 的最大项为__ ; (2)数列}{n a 的通项为1 +=bn an a n ,其中 b a ,均为正数,则n a 与1+n a 的大小关系为 __ ; (3)已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围; 2、等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。 例2.设S n 是数列{a n }的前n 项和,且S n =n 2,则{a n }是( ) A.等比数列,但不是等差数列 B.等差数列,但不是等比数列 C.等差数列,而且也是等比数列 D.既非等比数列又非等差数列 答案:B ; 解法一:a n =???≥-==??? ?≥-=-)2( 12) 1( 1) 2( )1( 11n n n a n S S n S n n n ∴a n =2n -1(n ∈N ) 又a n+1-a n =2为常数, 1 21 21-+= +n n a a n n ≠常数 ∴{a n }是等差数列,但不是等比数列. 解法二:如果一个数列的和是一个没有常数项的关于n 的二次函数,则这个数列一定是等差数列。 点评:本题主要考查等差数列、等比数列的概念和基本知识,以及灵活运用递推式a n =S n -S n -1的推理能力.但

数列求和讲义及练习题

数列求和 数列求和这类问题在初中、高中乃至大学的课本里都占有一定的比例,我们在小学学习数列求和问题的目的旨在发散思维,断炼学生观察事物的能力,通过观察,得以揭示出事物的发展和变化规律。 【知识要点】 数列:若干个数排成一列称为数列。 项:数列中的每一个数称为一项。其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。特殊的数列——等差数列:数列中任意相邻两项的差相当 公差:等差数列中相邻两项的差称为公差。 在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。 通项公式:第n项=首项+(项数-1)×公差 项数公式:项数=(末项-首项)÷公差+1 【例题讲解及思维拓展训练题】 例1:有一等差数列:3,7,11,15,……,这个等差数列的第100项是多少? 分析:这个等差数列的首项是3.公差是4,项数是100。要求第100项 列表分析找规律: 解:第100项=3+(100-1)×4=399. 总结:通项公式:第n项=首项+(项数-1)×公差 思维拓展训练一: 1.一等差数列,首项=3.公差= 2.项数=10,它的末项是多少? 2.求1,4,7,10……这个等差数列的第30项。

3.求等差数列2,6,10,14……的第100项。 例2:有一个数列:4,10,16,22,…,52.这个数列共有多少项? 分析:容易看出这是一个等差数列,公差为6,首项是4,末项是52. 总结例1:要求一列数有多少项,可以先求出末项比首项多的公差的个数,再加1.解:项数=(52-4)÷6+1=9,即这个数列共有9项。 总结:项数公式:项数=(末项-首项)÷公差+1 思维拓展训练二: 1.等差数列中,首项=1.末项=39,公差= 2.这个等差数列共有多少项? 2.有一个等差数列:2,5,8,11.…,101.这个等差数列共有多少项? 3.已知等差数列11,16,21,26,…,1001.这个等差数列共有多少项?

考点4 等差数列(学生版)

考点4 等差数列 [玩前必备] 1.数列的定义 按一定次序排列的一列数叫作数列,数列中的每一个数叫作这个数列的项. 2.数列的通项公式 如果数列{a n }的第n 项与序号n 之间的函数关系可以用一个式子表示成a n =f (n ),那么这个式子叫作这个数列的通项公式. 3.已知数列{a n }的前n 项和S n , 则a n =????? S 1 (n =1)S n -S n -1 (n ≥2). 4.等差数列的定义 如果一个数列从第2项起,每一项与前一项的差是同一个常数,我们称这样的数列为等差数列,这个常数叫作等差数列的公差,通常用字母d 表示. 5.等差数列的通项公式 如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d . 说明:等差数列{a n }的通项公式可以化为a n =pn +q (其中p ,q 为常数)的形式,即等差数列的通项公式是关于n 的一次表达式,反之,若某数列的通项公式为关于n 的一次表达式,则该数列为等差数列. 6.等差数列的前n 项和公式 设等差数列{a n }的公差为d ,其前n 项和S n ,则S n =n (a 1+a n )2=na 1+n (n -1)2 d . 说明:数列{a n }是等差数列?S n =An 2+Bn (A 、B 为常数).这表明d ≠1时,等差数列的前n 项和公式是关于n 的二次表达式,并且没有常数项. 7.等差中项 如果A =a +b 2 ,那么A 叫作a 与b 的等差中项. 8.等差数列的常用性质 (1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N +). (2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N +),则a k +a l =a m +a n . [玩转典例] 题型一 数列的概念 例1 根据下面数列{a n }的通项公式,写出它的前5项: (1)a n =n 2-12n -1 ;(2)a n =n(n+2). [玩转跟踪]

高二数学C数列、等差数列(教师版)

学科教师辅导讲义

f.若数列中含有偶数项(2n 项),则nd s s =-奇偶; g.n n n n n s s s s s 232,,--成等差数列,且公差为d n 2 。 (4)等差数列判断的方法:(先让学生总结,老师再进行补充) a.定义法:a n+1-a n =d (常数)?{a n }为等差数列; b.中项公式法:2a n =a n-1+a n+1(n ≥2,n ∈N +)?{a n }为等差数列; c.通项公式法:a n =an+b ,即a n 是n 的一次型函数,则{a n }为公差是a 的等差数列; d.前n 项和公式法: S n =an 2 +bn ,即S n 是n 的不含常数项的二次函数,则{a n }为等差数列。 【典型例题分析】 例1、已知数列的前项和,数列 的每一项都有 ,求数列 的前项和 . 解析: ,当 时, . 又当, . ∴ 数列的通项公式为. 故数列是首项为9,公差为 的等差数列. 在中. 由二次函数的性质知, 当时, 最大(若令 则 ). 而 . ∴ 的前五项为正, 故,从第6项起又组成一个首项为1, 公差为2的等差数列, 其和为 又. 故当 时, .

综合上述,可得数列的前项和为 点评 对于数列的问题要注意从函数的观点去认识.因为的前五项为正,从第六项起为负,所以 的前项 和 只能用分段函数加以表述. 变式练习:已知数列{a n }的前n 项和S n =12n -n 2,求数列{|a n |}的前n 项和T n .(只是数值上有所改变,让学生独立完成) 解析:由S n =12n -n 2知S n 是关于n 的无常数项的二次函数(n ∈N *),可知{a n }为等差数列,求出a n ,然后再判断哪些项为正,哪些项为负,最后求出T n . 解:当n =1时,a 1=S 1=12-12=11; 当n ≥2时,a n =S n -S n -1=12n -n 2-[12(n -1)-(n -1)2]=13-2n . ∵n =1时适合上式, ∴{a n }的通项公式为a n =13-2n . 由a n =13-2n ≥0,得n ≤ 2 13, 即当 1≤n ≤6(n ∈N *)时,a n >0;当n ≥7时,a n <0. (1)当 1≤n ≤6(n ∈N *)时, T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =12n -n 2. (2)当n ≥7(n ∈N *)时, T n =|a 1|+|a 2|+…+|a n | =(a 1+a 2+…+a 6)-(a 7+a 8+…+a n ) =-(a 1+a 2+…+a n )+2(a 1+…+a 6) =-S n +2S 6=n 2-12n +72. ∴T n =?????+--72121222 n n n n ). ,7(),,61(**N N ∈≥∈≤≤n n n n 评述:此类求和问题先由a n 的正负去掉绝对值符号,然后分类讨论转化成{a n }的求和问题. 例2、等差数列{a n }中,前m 项的和为77(m 为奇数),其中偶数项的和为33,且a 1-a m =18,求这个数列的通项公式。 解析: 利用前奇数项和和与中项的关系 令m=2n-1,n ∈N + 则 ???=-==-=-33a )1n (S 77a )1n 2(S n n 1n 2偶 ∴ 33771n 1n 2= --∴ n=4∴ m=7 ∴ a n =11∴ a 1+a m =2a n =22 又a 1-a m =18∴ a 1=20,a m =2∴ d=-3∴ a n =-3n+23 变式练习:已知一个等比数列首项为1,项数是偶数,其奇数项之和为85,偶数项之和为170,求这个数列的公比和项数。

2015届高考数学总复习 基础知识名师讲义 第五章 第五节数列的求和 文

第五节 数列的求和 掌握等差数列、等比数列的前n 项和公式,能把某些不是等差和等比数列的求和问题转化为等差、等比数列来解决;掌握裂项求和的思想方法,掌握错位相减法求和的思想方法,并能灵活地运用这些方法解决相应问题. 知识梳理 一、直接用等差、等比数列的求和公式求和 1.等差数列{}a n 的前n 项和公式. S n =n (a 1+a n )2=na 1+n (n -1)2 d . 2.等比数列{}a n 的前n 项和公式. S n =????? na 1 ,q =1,a 1(1-q n )1-q ,q ≠1. (注意:公比含字母时一定要分类讨论) 二、错位相减法求和 例如{}a n 是等差数列,{}b n 是等比数列,求a 1b 1+a 2b 2+…+a n b n 的和就适用此法.做法是先将和的形式写出,再给式子两边同乘或同除以公比q ,然后将两式相减,相减后以“q n ”为同类项进行合并得到一个可求和的数列(注意合并后有两项不能构成等比数列中的项,不要遗漏掉). 三、分组求和 把数列的每一项分成若干项,使其转化为等差或等比数列,再求和. 四、并项求和 例如求1002-992+982-972+…+22-12的和可用此法. 五、裂项相消法求和 把数列的通项拆成两项之差,正负相消,剩下首尾若干项. 1.特别是对于???? ??c a n a n +1,其中{}a n 是各项均不为0的等差数列,通常用裂项相消法,即

利用c a n a n +1=c d ??? ?1a n -1a n +1(其中d =a n +1-a n ). 2.常见的拆项. 1n (n +1)=1n -1n +1;1(2n -1)(2n +1)=12? ???12n -1-12n +1; 1n (n +1)(n +2)=12? ???1n (n +1)-1(n +1)(n +2); 六、公式法求和 ∑k =1n k =n (n +1)2;∑k =1n ()2k -1=n 2;∑k =1n k 2=n (n +1)(2n +1)6; ∑k =1n k 3=????n (n +1)22. 七、倒序相加法求和 如果一个数列{a n }多与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和就是用此法推导的. 八、其他求和法 如归纳猜想法、奇偶分拆法等. 基础自测 1.(2012·南阳一中考试)设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9=( ) A .63 B .45 C .36 D .27 解析:由等差数列的性质知,S 3,S 6-S 3,S 9-S 6成等差数列,∴9,36-9,S 9-36成等差数列,即54=9+S 9-36.∴S 9=81.∴a 7+a 8+a 9=81-36=45.故选B. 答案:B 2.(2013·三亚质检)若数列{a n }的通项公式是a n =(-1)n (2n -1),则a 1+a 2+a 3+…+a 100=( ) A .-200 B .-100 C .200 D .100 解析:由题意知,a 1+a 2+a 3+…+a 100 =-1+3-5+7+…+(-1)100(2×100-1)

等差数列(学生版)

等差数列 导引: 若干个数排成一列,称为数列。数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项,数列中数的个数称为项数。从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。 例如:等差数列:3、6、9、…、96,这是一个首项为3,末项为96,项数为32,公差为3的数列。 计算等差数列的相关公式: 通项公式:第几项=首项+(项数-1)×公差 项数公式:项数=(末项-首项)÷公差+1 求和公式:总和=(首项+末项)×项数÷2 在等差数列中,如果已知首项、末项、公差,求总和时,应先求出项数,然后再利用等差数列求和公式求和。 例题1有一个数列:4、7、10、13、…、25,这个数列共有多少项 练习: 1、有一个数列:2,6,10,14,…,106,这个数列共有多少项?。 2、有一个数列:5,8,11,…,92,95,98,这个数列共有多少项? 3、在等差数列中,首项=1,末项=57,公差=2,这个等差数列共有多少项?

例题2 有一等差数列:2,7,12,17,…,这个等差数列的第100项是多少? 练习: 1、求1,5,9,13,…,这个等差数列的第3O项。 2、求等差数列2,5,8,11,…的第100项。 3、一等差数列,首项=7,公差=3,项数=15,它的末项是多少? 例题3 计算2+4+6+8+…+1990的和。 练习: 1、计算1+2+3+4+…+53+54+55的和。 2、计算5+10+15+20+? +190+195+200的和。

3、计算100+99+98+…+61+60的和 例题4计算(1+3+5+...+l99l)-(2+4+6+ (1990) 练习: 1、计算(1+3+5+7+...+2003)-(2+4+6+8+ (2002) 2、计算(2+4+6+...+100)-(1+3+5+ (99) 3、计算(2OO1+1999+1997+1995)-(2OOO+1998+1996+1994)。 例题5 已知一列数:2,5,8,11,14,…,80,…,求80是这列数中第几个数。 练习: 1、有一列数是这样排列的:3,11,19,27,35,43,51,…,求第12个数是多少。

三年级等差数列教师版

三年级等差数列教师版 https://www.doczj.com/doc/3713704504.html,work Information Technology Company.2020YEAR

小学三年级奥数专项练题《等差数列》 【知识要点屋】 1.定义:如果一个数列从第二项起,每一项与它的前一项的差等于同一个数,这个数列就叫做等差数列。 2.特点:①相邻两项差值相等;②要么递增,要么递减。 3.名词:公差,首项,末项,项数 ★按一定次序排列的一列数叫做数列。 ★数列中的数称为项,第一个数叫第一项,又叫首项;第二个数叫第二项;最后一个数叫末项。 ★如果一个数列从第二项开始,每一项与它前一项的差都相等,就称这个数列为等差数列。 ★后项与前项的差就叫做这个数列的公差。如: 1,2,3,4,是等差数列,公差是 1; 1,3,5,7,是等差数列,公差是 2; 5,10,15,20,是等差数列,公差是 5. ★由高斯的巧算可知,在等差数列中,由如下规律: 通项公式:末项=首项+(项数-1)×公差 第几项 = 首项+(项数-1)×公差; 项数公式:项数=(末项-首项)÷公差+1 求和公式:总和=(首项+末项)×项数÷2 = 平均数×项数 平均数公式:平均数=(首项+末项)÷2 (★★★) ⑴一个等差数列共有15项,每一项都比它的前一项大3,它的首项是4,那么末项是______;

⑵一个等差数列共有13项,每一项都比它的前一项小5,它的第1项是121,那么它的末项是_______。 (3)一个等差数列的首项是12,第20项等于392,那么这个等差数列的公差=_____;第19项=______,212是这个数列的第_____项。 (★★) 计算下面的数列和: ⑴1+2+3+4+…+23+24+25= ⑵1+5+9+13+…+33+37+41= (3)3+7+11+15+19+23+27+31= 拓展练习: 1、在10和40之间插入四个数,使得这六个数构成一个等差数列。那么应插入哪些数? 解答:d=(40-10)÷(4+1)=6,插入的数是:16、22、28、34。 2、一个等差数列的首项是6,第8项是55,公差是()。 解答:d=(55-6)÷(8-1)=7 3、(1)2、 4、6、8、……、28、30这个等差数列有( )项。

2020届高考数学一轮复习通用版讲义数列求和

第四节数列求和 一、基础知识批注——理解深一点 1.公式法 (1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d 2 . 推导方法:倒序相加法. (2)等比数列{a n }的前n 项和S n =????? na 1 ,q =1,a 1(1-q n )1-q ,q ≠1. 推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n = n (n +1) 2 ; ②2+4+6+…+2n =n (n +1); ③1+3+5+…+2n -1=n 2. 2.几种数列求和的常用方法 (1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减. (2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和. (3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n (4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 二、基础小题强化——功底牢一点 (一)判一判(对的打“√”,错的打“×”) (1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +1 1-q .( ) (2)当n ≥2时, 1n 2 -1=12? ???1 n -1-1n +1.( ) (3)求S n =a +2a 2+3a 2+…+na n 之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )

四年级等差数列综合练习题

四年级等差数列练习题(1) 1.找出规律后填出下面数列中括号里的数: (1) 1, 3, 5, 7, ( ), 11, 13, ( ),… (2) 1, 4, 7, 10, ( ), 16, 19,… (3) 1, 3, 6, 10, 15, ( ), 28,… (4) l, 2, 4, 5, 7, 8, ( ), ( ),… (5) 5, 7, 11, 19, 35, ( ), 131; 259,… 2.已知等差数列2,7,12,…,122,这个等差数列共有_____项。 3. 请问13,15,17,19,21,23,25,27,29,31,33,35,37共有()项? 4.那么126,128,130, ……,148,150共有()项? 5.那么16,18,20, ……,162,164共有()项? 6.那么120,124,138, ……,280,284共有()项? 7.练习5(1)1+2+3……+998+999+1000 8、求等差数列46,52,58,……,172共有()项?

9、6+7+8+9+……+74+75= 10、2+6+10+14+……+122+126= 11、1+2+3+4+……+2007+2008= 12.小王看一本书第一天看了20页,以后每天都比前一天多看2页,第30看了78 页正好看完。这本书共有( )页? 13.文丽学英语单词,第一天学会了3个,以后每天都比前一天多学会1个,最后一天学会了21个。文丽在这些天中共学会了( )个英语单词? 14.李师傅做一批零件,第一天做了25 个,以后每天都比前一天多做2个,第20天做了63个正好做完。这批零件共有( )个? 15.建筑工地上堆着一些钢管(如图所示),求这堆钢管一共有( )根。

第34讲 数列的概念与等差数列(学生版) 备战2021年新高考数学微专题讲义

第34讲:数列的概念与等差数列 一、课程标准 1、通过实例,了解数列的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊函数. 2、通过实例,理解等差数列的概念. 3、探索并掌握等差数列的通项公式与前n 项和的公式. 4、.能在具体的问题情境中,发现数列的等差关系,并能用有关知识解决相应的问题. 5、体会等差数列与一次函数的关系. 二、基础知识回顾 知识梳理 1. 数列的概念 (1)按照一定次序排列的一列数称为数列,数列中的每个数都叫做这个数列的项.数列可以看做是定义域为N *或其非空子集的函数,当自变量按照从小到大的顺序依次取值时所对应的一列函数值,其图像是一群孤立的点. 注:数列是特殊的函数,应注意其定义域,不要和函数的定义域混淆. (2)数列的一般形式可以写成a 1,a 2,a 3,…,a n ,…,简记为{a n },其中a 1称为数列{a n }的第1项(或称为首项),a 2称为第2项,…,a n 称为第n 项. 2. 数列的分类 (1)数列按项数的多少来分:项数有限的数列叫做有穷数列,项数无限的数列叫做无穷数列. (2)按前后项的大小来分:从第二项起,每一项都大于它的前一项的数列叫做递增数列;从第二项起,每一项都小于它的前一项的数列叫做递减数列;各项相等的数列叫做常数列. 3. 数列的通项公式 一般地,如果数列{}a n 的第n 项与序号n 之间的关系可以用一个公式来表示,那么这个公式叫做这个数列{}a n 的通项公式. 注:并不是每一个数列都有通项公式,有通项公式的数列,其通项公式也不一定唯一. 4. 数列的表示方法 数列可以用通项公式来描述,也可以通过图像或列表来表示. 5.等差数列的有关概念 (1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等

小学三年级上学期思维逻辑训练第12讲--等差数列(一)【教师版】

第12讲——等差数列 【精讲精练】 例1、有一个等差数列:4,7,10,13……,这个等差数列的第28项是多少?【答案】85 【解析】 4+(28-1)×3=85 练1、有一个等差数列:10、16、22、28……,这个等差数列的第42项是多少?【答案】256 【解析】 10+(42-1)×6=256 例2、一个等差数列有12项,每一项都比它的前一项小2,并且首项为55,那么末项是多少? 【答案】77 【解析】 55-(12-1)×2=33 练2、一个等差数列共有15项,每一项都比它的前一项大2,并且首项为30,那么末项是多少? 【答案】58 【解析】 30+(15-1)×2=58

例3、一个等差数列共有10项,每一项都比它的前一项小2,末项为75,那么首项是多少? 【答案】57 【解析】 75-(10-1)×2=57 练3、某露天剧场有30排座位,最后一排座位有86个,后面每排比前排多2个座位,第一排有多少个座位? 【答案】28个 【解析】 86-(30-1)×2=28(个) 例4、(1)一个等差数列首项为13,第9项为29,这个等差数列的公差是多少?【答案】2 【解析】 (29-13)÷(9-1)=2 (2)一个等差数列第5项是16,第11项是70,那么这个等差数列的公差是多少? 【答案】9 【解析】 (70-16)÷(11-5)=9

练4、一个等差数列第4项是19,第14项是79,那么这个等差数列的公差是多少? 【答案】6 【解析】 (79-19)÷(14-4)=6 例5、(1)一个等差数列首项为13,末项为85,公差为8,那么这个等差数列一共有多少项? 【答案】10项 【解析】 (85-13)÷8+1=10(项) (2)一个等差数列第3项为40,末项为100,公差为6,那么这个等差数列一共有多少项? 【答案】13项 【解析】 (100-40)÷6+3=13(项) 练5、已知等差数列2,9,16,23,30,…那么93是其中的第几项? 【答案】14 【解析】 (93-2)÷7+1=14

三年级计算等差数列学生版

知识要点 1.按一定次序排列的一列数叫做数列.数列中的数称为项,第一个数叫第一项,又叫首项;第二个数叫第二项;……,最后一个数叫末项.如果一个数列从第二项开始,每一项与它前一项的差都相等,就称这个数列为等差数列.后项与前项的差叫做这个数列的公差. 如:1,2,3,4, 是等差数列,公差为1;2,4,6,8, 是等差数列,公差为2;5,15,20, 是等差数列,公差为5. 等差数列的相关公式 (1)三个重要的公式 ① 通项公式:递增数列:末项=首项+(项数1-)?公差,11n a a n d =+ -?() 递减数列:末项=首项-(项数1-)?公差,11n a a n d =- -?() 同时还可延伸出来这样一个有用的公式:n m a a n m d -=-?(),n m >() ② 项数公式:项数=(末项-首项)÷公差+1 由通项公式可以得到: 11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >). 找项数还有一种配组的方法,其中运用的思想我们是常常用到的. 譬如:找找下面数列的项数:4、7、10、13、 、40、43、46 , 分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、 、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法. ③ 求和公式:和=(首项+末项)?项数÷2 对于这个公式的得到可以从两个方面入手: (思路1) 1239899100++++++ 11002993985051=++++++++ 共50个101 ()()()()101505050=?= (思路2)这道题目,还可以这样理解: 等差数列

数列求和与综合(讲义)

数列求和与综合(讲义) 知识点睛 一、数列求和 1. 公式法: (1)等差数列前n 项和公式; (2)等比数列前n 项和公式. 2. 错位相减法: 适用于形如{}n n a b ?的数列,其中{}n a 是公差为d 的等差数列,{}n b 是公比q ≠1的等比数列. 方法: 设1122n n n S a b a b a b =+++… ① 则12231 n n n qS a b a b a b +=+++… ② ①-②得:11231(1)()n n n n q S a b d b b b a b +-=++++-…,转化为公式法求和. 3. 裂项相消法: 把数列的通项拆分为两项之差,使之在求和时产生前后相互抵消的项的求和方法.常见类型有: (1) 1111 ()()n n k k n n k =-++; (2) 21 111()4122121 n n n =---+; (31 k =; (4)1 log (1)log (1)log a a a n n n +=+-. 4. 其他方法: (1)分解法:分解为基本数列求和,比如数列{}n n a b +,其中{}n a 是等差数列,{}n b 是等比数列. (2)分组法:分为若干组整体求和,经常分为偶数项之和与奇数项之和, 比如通项公式为(1)n n a n =-的数列{}n a . (3)倒序相加法:把求和式倒序后两和式相加,适用于具有对称性质的数列求和. 二、 数列综合 1. 已知n S 求n a 的三个步骤: (1)先利用11a S =,求出1a ;

(2)用1n -替换n S 中的n 得到一个新的关系式, 利用1(2)n n n a S S n -=-≥求出当2n ≥时n a 的表达式; (3)对1n =时的结果进行检验,看是否符合2n ≥时n a 的表达式, 如果符合,则可以把数列的通项公式合写; 如果不符合,则应该分1n =与2n ≥两段来写,即 11 1 2n n n a n a S S n -=?=?-?≥, ,. 2. 非等差或等比数列的转化: (1 )转化为1{} n a 2 {}n a 、1{}n n a a +-等形式的等差、等比数列; (2)形如1=(010)n n a pa q p q ++≠≠,,的数列,转化为等比数列,设1+=()n n a p a λλ++,可解得= 1 q p λ-,则数列{}n a λ+为等比数列; (3)形如11=(010)n n n a pa qp p q +++≠≠,,的数列,转化为等差数列,两端同时除以1n p +,即得11n n n n a a q p p ++-=,则数列{}n n a p 为等差数列. 精讲精练 1. 在数列{}n a 中,1(1)n a n n = +,若它的前n 项和为2 014 2 015 , 则项数n 为( ) A .2 013 B .2 014 C .2 015 D .2 016

二阶等差数列及其通项公式

二阶等差数列及其通项公式 ⑷ 1,2,4,7,11,16,22,… ⑸ 1,3,6,10,15,21,28,… ⑹ 1,3,7,13,21,31,43,… 通过观察分析,也能发现上面三个数列有其内在规律与特点,但若想轻易写出通项公式却有难处。 本文旨在由等差数列推导出如⑷、⑸、⑹这样的一类数列的通项公式,并给出一个相关定义。 二、 预备知识: 1、 等差数列的定义:如果一个数列 a 1,a 2,a 3,…,a n ,…, 从第二项起,每一项与它的前一项的差都等于同一个常数d ,即a 2 - a 1 = a 3 - a 2=… = a n - a n-1 = d ,则称此数列为等差数列,常数d 叫等差数列的公差。 2、 等差数列的通项公式:a n =a 1 + ( n - 1 ) d , 公 差: d = a 2 - a 1. 三、 二阶等差数列的定义及其通项公式: a) 定义:如果一个数列 a 1,a 2,a 3,…,a n ,…, (★) 从第二项起,每一项与它的前一项的差按照前后次序排成新的数列,即 a 2 - a 1,a 3 - a 2,a 4 - a 3,…, a n - a n-1,…成为一个等差数列,则称数列(★)为二阶等差数列。

相应地,d =(a 3 - a 2) - (a 2 - a 1)= a 3 + a 1 - 2a 2 称为二阶等差数列的二阶公差。 显然,依此定义可以判断,⑷、⑸、⑹均是二阶等差数列。其二阶公差分别为1、1、2. 说明:⑴、为区别于二阶等差数列,可把通常定义的等差数列称为一阶等差数列. ⑵、二阶与一阶等差数列的相互关系: 二阶等差数列不一定是一阶等差数列,但一阶等差数列肯定是二阶等差数列。 b) 二阶等差数列的通项公式: 设数列a 1,a 2,a 3,…,a n ,…是一个二阶等差数列,为了书写的方便,我们记数列 a 2 - a 1,a 3 - a 2,a 4 - a 3,…,a n - a n-1,… 为 b 1 , b 2 , b 3 , …,b n-1 , …, (☆) 即记b n = a n+1 - a n , (n ≥1,n ∈Z) 则数列 (☆) 是一个一阶等差数列。 显然,对于数列(☆),d = b 2 - b 1 = a 1 + a 3 - 2a 2, 根据等差数列的通项公式,则有 b n = a n+1 - a n = b 1 + (n-1) d ,(n ≥1,n ∈Z ) 由此得,a n +1= a n + b 1 + (n-1) d 依此规律,则有 a 2 = a 1 + b 1,

1-2-1-1等差数列的认识与公式运用学生版

本讲知识点属于计算板块的部分,难度较三年级学到的该内容稍大,最突出一点就是把公式用字母表示。要求学生熟记等差数列三个公式,并在公式中找出对应的各个量进行计算。 一、等差数列的定义 ⑴ 先介绍一下一些定义和表示方法 定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列. 譬如:2、5、8、11、14、17、20、L 从第二项起,每一项比前一项大3 ,递增数列 100、95、90、85、80、L 从第二项起,每一项比前一项小5 ,递减数列 ⑵ 首项:一个数列的第一项,通常用1a 表示 末项:一个数列的最后一项,通常用n a 表示,它也可表示数列的第n 项。 项数:一个数列全部项的个数,通常用n 来表示; 公差:等差数列每两项之间固定不变的差,通常用d 来表示; 和 :一个数列的前n 项的和,常用n S 来表示 . 二、等差数列的相关公式 (1)三个重要的公式 ① 通项公式:递增数列:末项=首项+(项数1-)?公差,11n a a n d =+-?() 递减数列:末项=首项-(项数1-)?公差,11n a a n d =--?() 回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-?(),n m >() ② 项数公式:项数=(末项-首项)÷公差+1 由通项公式可以得到:11n n a a d = -÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >). 找项数还有一种配组的方法,其中运用的思想我们是常常用到的. 譬如:找找下面数列的项数:4、7、10、13、L 、40、43、46 , 分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、L 、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145 -+=知识点拨 教学目标 等差数列的认识与公式运用

统考版2022届高考数学一轮复习第6章数列第2节等差数列及其前n项和教师用书教案北师大版

等差数列及其前n 项和 [考试要求] 1.理解等差数列的概念. 2.掌握等差数列的通项公式与前n 项和公式. 3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题. 4.了解等差数列与一次函数的关系. 1.等差数列 (1)定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.数学语言表示为a n +1-a n =d (n ∈N *),d 为常数. (2)等差中项:如果在a 与b 中间插入一个数A ,使a ,A ,b 成等差数列,那么A 叫作 a 与 b 的等差中项,即A = a +b 2 . 2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+ n n -1 2 d = n a 1+a n 2 . 3.等差数列的通项公式及前n 项和公式与函数的关系 (1)当d ≠0时,等差数列{a n }的通项公式a n =dn +(a 1-d )是关于d 的一次函数. (2)当d ≠0时,等差数列{a n }的前n 项和S n =d 2 n 2+? ?? ??a 1-d 2n 是关于n 的二次函数. 4.等差数列的前n 项和的最值 在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.

[常用结论] 等差数列的常用性质 (1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *). (2)若{a n }为等差数列,且m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *). (3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (4)数列S m ,S 2m -S m ,S 3m -S 2m ,…(m ∈N *)也是等差数列,公差为m 2d . (5)若{a n }是等差数列,则???? ?? S n n 也是等差数列,其首项与{a n }的首项相同,公差是{a n }的公 差的12 . (6)若等差数列{a n }的项数为偶数2n ,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 偶-S 奇=nd , S 奇 S 偶= a n a n +1 . (7)若{a n },{b n }均为等差数列且其前n 项和为S n ,T n ,则. (8)若等差数列{a n }的项数为奇数2n +1,则 ①S 2n +1=(2n +1)a n +1;② S 奇S 偶 = n +1n . 一、易错易误辨析(正确的打“√”,错误的打“×”) (1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( ) (2)等差数列{a n }的单调性是由公差d 决定的. ( )

相关主题
文本预览
相关文档 最新文档