当前位置:文档之家› 初中数学一题多变一题多解(二)

初中数学一题多变一题多解(二)

初中数学一题多变一题多解(二)
初中数学一题多变一题多解(二)

一题多解一题多变(二)

1、一题多解,培养思维的发散性

一题多解实际上是解题或证明定理、公式的变式,因为它的实质是以不同的论证方式反映条件和结论问的同一必然的本质联系,运用这种变式教学,可以引导学生对同一材料,从不同角度、从不同方位、用各种途径、多种方法思考问题,探求不同的解答方案,这样,既可暴露学生解题的思维过程,增加教学透明度,又能够拓广学生思路,使学生熟练掌握知识的内在联系,使思维向多方向发展,培养思维的发散性。这方面的例子很多,尤其是几何证明题。

已知:点O是等边△ABC内一点,

OA=4,OB=5,OC=3

求∠AOC的度数。

练习:把此题适当变式:

变式在△ABC中,AB=AC,∠BAC=90°

OA=4,OB=6,OC=2

求∠AOC的度数。

变式2:如图,点O是等边△ABC内一点,∠AOB=110°, ∠BOC=135°

试问:(1)以OA、OB、OC为边能否构成一个三角形?若能,请求出三角形各内角的度数;若不能,请说明理由.

(2)如果∠AOB的大小保持不变,那么当∠BOC等于多少度时, 以OA、OB、OC为边的三角

形是一个直角三角形?

2、一题多变,培养思维的灵活性

一题多变是题目结构的变式,是指变换题目的条件或结论,或者变换题目的形式,而题目的实质不变,以便从不同角度,不同方面揭示题目的本质,用这种方式进行教学,能使学生随时根据变化了的情况积极思索,设法想出解决的办法,从而防止和消除呆板和僵化,培养思维的灵活性。一题多变可以改变条件,保留结论;也可以保留条件,改变结论;或者同时改变条件和结论;也可以将某项条件与结论对换等等。 例如:已知:C 为AB 上一点,△ACM 和△CBN 为等边三角形(如图所示)

求证:AN=BM

(分析:如对此题多做一些引申,既可以培养学生的探索能力,又可培养学生的创新素质)

探索一:设CM 、CN 分别交AN 、BM 于P 、Q ,AN 、BM 交于点R 。问此题中还有其他的边相等以及特殊角、特殊图形吗?给予证明。

探索二:△ACM 和△BCN 如在AB 两旁,其它条件不变,AN=BM 成立吗? 探索三:△ACM 和△BCN 分别为以AC 、BC 为底且顶角相等的等腰三角形,其它条件不变,AN=BM 成立吗?

探索四:A 、B 、C 三点不在一条直线上时,其它条件不变,AN=BM 成立吗? 探索五:A 、B 、C 三点不在一条直线上时,△ACM 和△BCN 分别变为正方形ACME 和正方形BCNF ,其它条件不变,AN=BM 成立吗?

这样教学,不仅提高了学生运用所学知识解决数学问题的能力,而且培养了学生的创新能力,发展了学生的求异思维。

练习:(1)如图,在△ABC 中,AB=AC ,点P 是BC 边上任意一点,PE ⊥AB 于E ,PF ⊥AC 于F ,BD ⊥AC 于D 求证:BD=PE+PF

M

N

C

变式1:△ABC 变为等边三角形变式2:P在△ABC内

变式3:P在△ABC外

(2)轴对称:已知直线l及同侧两点A、B,试在直线l上选一点C,使点C到点A、B的距离和最小。

变式1:如图,请你设计出两种方案的路线和最短的行走路线(画图并说明理由)方案1:小华由家先去河边,再去姥姥家;

方案2:小华由家先去姥姥家,再去河边;

小华家

姥姥家

河流

B

A

l

变式2:已知: AB、AC表示两条交叉的小河, P点是河水化验室, 现想从P点出发, 先到AB

河取点水样, 然后再到AC河取点水样, 最后回到P处化验河水, 怎么走路程最短呢?实验

员小王说:“我从P点笔直向A走, 同时取好两河水样再原路返回, 这样走, 路最近。”化验

员小吴否定了小王的路线, 提出了自己的想法, 请同学们想一想, 小吴走怎样的路线?

式3:

P

A

A

B C

A D

变式4:如图,在定直线XY外有一点P,试于XY上求两点A、B,使PA+PB为最短,而AB等于定长a.

变式5:如图,在河的两侧有A、B两个村庄,现要在河上修一座桥,规定桥必须与河岸垂直,要使A村到B村的路程最短,问桥应修在何处?(河宽为定长为m)

解:(1)过B作BC⊥a,且使BC = m;

(2)连接AC交b于P;

(3)过点P作PQ⊥a,垂足为点Q,那么PQ就是桥的位置.

a

X Y

·P

·B

a

b

(3)如图,公路MN 和PQ 在P 点处交汇,且∠QPN=30°点A 处有一所中学,AP=160米,

假设拖拉机行驶时,周围100米内会受到噪音的影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否会受到噪音的影响,请说明理由,若影响,求出影响时间。(拖拉机的速度是12米/秒)

变式1:如图,A 城气象台测得台风中心在A 城正西方300千米处,以107千米/时的速

度向北偏东60°的BF 方向移动,距台风中心200千米的范围内是受台风影响的区域。 (1)问A 城是否受到台风影响?为什么?

(2)若A 城受到台风影响,那么A 城受到台风影响的时间多长?

变式2:据气象观测,距沿海某城市A 的正南方向220千米B 处有一台风中心,其中心最

大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现在以15千米/时的速度沿北偏东30°方向往C 移动,且台风中心风力不变,若城市所受风力达到或超过四级,则称为受台风影响。(1)该城市是否会受到这次台风影响?请说明理由。(2)若受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力有几级?

M

P

A

Q

N

3、一题多思,培养思维的独创性

牛顿说过:“没有大胆的猜想就做不出伟大的发现。”中学生的想象力丰富,因此,可以通过例题所提供的结构特点,鼓励、引导学生大胆地猜想,以培养学生的创造性思维和发散思维。

例如:如图, 过线段AB的两个端点作射线AM、BN, 使AM∥BN, 请照图思考下列问题, 并证明你的猜想。

(1) ∠MAB, ∠ABC的平分线AE、BE交于点E, 则∠AEB是什么角, 并证之。

(2)过E点任作一条直线交AM于D, 交BN于C, 请问线段DE, CE什么关系, 并证明。

(3)请证明: 无论DC的两个端点在AM、BN上如何移动, 只要DC过点E,AD + BC

是个定值。

1、题型有何特征,解法有何规律?

2、题目有哪些证法,其中哪些方法最简便?

3、题目的几种证法中,辅助线添置有何规律?

4、在题目的解决过程中,解题的关键何在?涉及哪些基础知识?

5、在题目的解决过程中,有哪些地方容易发生错误?应注意什么问题?

通过一题多思,不但能开阔学生的解题思路,而且启发学生建立了课本例题,习题之间的联系,使学生在做题时做到“遇新题,忆旧题,多思考,善联想、多变换、找规律”。从而培养了学生的应变能力和创造性思维能力。

4、多题一法,培养思维的深刻性

初中数学有很多问题,表面上看相互各异,但实质上结构却是相同的,因而它们可用同一种方法去解答,让学生演作这样的题组并作比较,可使学生透表求里,自觉地从本质上看问题,从而培养思维的深刻性。

例如:(1)一个多边形除一个内角外,其余所有内角和等于2200°,则这个多边形的边数为_____。

(2)一个多边形所有内角与一个外角的和是2380°,则这个多边形的边数为___。

以上两题表面上看不同,实际是同一道题,应注意引导学生进行对比、消化,促使学生对相通的知识归纳成体系。避免“只见树木不见森林”的现象。

练习:(1)如图,正方形网格中的每个小正方形边长都是1,任意连接这些小正方形的顶点,可得到一些线段.

(1)请在左图中分别画出长度为26、25、32的线段.

(2)已知△ABC的三边长分别为AB=26cm、BC=25cm、AC=32cm,求△ABC的面积.(可以利用右图,也可以用其它方法)

6与17+5+10

变式:比较大小:2

(2)勾股定理:

1、如图①,一架梯子长2.5米,顶端A靠在墙AC上,梯子下端B与墙角C相距1.5米.

(1) 这架梯子的顶端距地面多高?

(2)如果这架梯子滑动后停留在DE位置(如图②所示),测得BD长为0.5米,这时梯子顶端下落多少米?

变式:梯子靠在墙上,梯子的底端A 到墙根O 的距离2米,梯子的顶端B 到地面的距离为7米,现将梯子的底端向外移动到C ,使梯子底端C 到墙根O 的距离等于3米,同时梯子的顶端B 下降至D ,那么BD ( )

A 、等于1米;

B 、大于1米;

C 、小于1米;

D 、以上结果都不对。 注:把问句略做一下变化,就综合了二次根式的比较大小的知识点。

2、小明把一根70cm 长的木棒放到一个长、宽、高分别为30cm 、40cm 、50cm 的木箱中,他能放进去吗?答:_______________(填“能”、或“不能”)

3、有一个长、宽各2米,高3米且封闭的长方形纸盒,一只昆虫从顶点A 要爬到与A 点相对的顶点B ,那么这只昆虫爬行的最短路程为( )米。 A 、3;B 、4;C 、5;D 、6。

变式1:一个圆柱的高为36,底面圆的半径为5,一只蚂蚁从上底面的点A 处爬到与点A

相对应的下底面点B 处的最端路程是多少?Π值取3。

变式2:如图是一个三级台阶,它的每一级的长宽和高分别为20dm 、3dm 、2dm ,A 和B 是

这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程是_____________.

变式3:如图,沿OA 将圆锥侧面剪开,展开成平面图形是扇形OAB.

(1) 扇形的弧AB 的长与圆锥底面圆周的长是怎样的关系?点A 和点B 在圆锥的侧面上是

怎样的位置关系?

(2) 若角∠AOB=90°,则圆锥底面圆半径r 与扇形OAB 的半径R 之间有怎样的关系? (3) 若点A 在圆锥侧面上运动一圈后又回到原位,则点A 运动的最短路程应该怎样设计?

若5.02

x ,且∠AOB=90°,求点A 运动的最短路程。

20

3

2A

B

A

O

B

5、设计猜想,培养思维的创造性

衡量学生思维水平的最终要素是思维的创造性,即善于探索、突破、创新,能够发现和解决自己或别人所未发现或未解决的问题,要培养这种可贵的品质,学生必须占有可供发现的有价值的材料,但教材在这方面往往存在着缺欠,因为在阐述数学原理和规律时,一般都把数学家们当初的真实发现过程给抽掉了,这就需要教师弥补这个不足。为此,我们可以利用研究对象的变式,设计出现隐藏着规律的材料,去引导学生发现。 例如:昨天在10中听张老师教学矩形的判定定理1和判定定理2一节,深有感触,现时很

“流行”的做法是把性质定理和判定定理的互逆关系作为重点和切入点,往往都是先复习性质定理,然后考虑其逆定理,让学生猜想其正确性,从而归纳出判定定理。但张老师从另一个角度入手,先给出:

引例1:如图,在四边形ABCD 中,∠A =∠B =∠C = 90°

求证:四边形ABCD 是矩形。

引例2:如图,在平行四边形ABCD 中,

AC=BD

求证:平行四边形ABCD 是矩形。

通过让学生实际推证,从而得出结论,在总结归纳为判定定理,以这样的方式让学生经理了知识的发生发展过程。这种方法,是让学生对教师提供的材料,利用自己已有的知识去探索、猜想,从而有所发现。这是培养学生思维创造性的一种有效途径。

C D

D

C

初中数学一题多解与一题多变详解

初中数学一题多解与一题多变 时代在变迁,教育在进步,理念在更新。前两年提出考试要改革,有了《指导意见》,于是一批批探索性、开放性和应用性试题不断涌现;如今又提出课程要改革,有了《课程标准》,其中突出了学生自主探索的学习过程,强调应用数学和创新能力的培养,鼓励教师创造性教学,学生学会学习。 面临这种崭新的教育形势,我们会思考这样一些问题:教学要如何从静态转为动态?怎样有效地指导学生独立地分析问题、解决问题,形成有效的学习策略,提高效益?该如何引导和组织学生从事观察、实验、猜想、验证、推理与交流等数学活动,激发学生的学习兴趣和创新意识,培养创新能力?等等。我个人在实际教学过程中,对这些问题作过一些深思和一些尝试,其中比较突出的是引导学生进行一题多解和一题多变的训练。下面,我提出几个实例来分析其引导过程与方法,抛砖引玉,仅供参考。 一、一题多解,多解归一 对于"一题多解",我是从两个方面来认识和解释的:其一,同一个问题,用不同的方法和途径来解决;其二,同一个问题,其结论是多元的,即结论开放性问题。一题多解,有利于沟通各知识的内涵和外延,深化知识,培养发散性和创造性思维;多解归一,有利于提炼分析问题和解决问题的通性、通法,从中择优,培养聚合思维。 例1:如图,已知D 、E 在BC 上,AB=AC ,AD=AE , 求证:BD=CE. E D C B A

(本题来自《几何》第2册69页例3) 思路与解法一:从△ABC和△ADE是等腰三角形这一角度出发,利用"等腰三角形底边上的三线合一"这一重要性质,便得三种证法,即过点A作底边上的高,或底边上的中线或顶角的平分线。其通法是"等腰三角形底边上的三线合一",证得BH=CH. 思路与解法二:从证线段相等常用三角形全等这一角度出发,本题可设法证△ABD≌△ACE或证△ABE≌△ACD,于是又得两种证法,而证这两对三角形全等又都可用AAS、ASA、SAS进行证明,所以实际是六种证法。其通性是"全等三角形对应边相等"。 思路与解法三:从等腰三角形的轴对称性这一角度出发,于是用叠合法可证。 例2:已知,如图,在⊙O中,AD是直径,BC是弦,AD⊥BC,E 添加字母,不写推理过程) D 思路与解法一:从相等的线段这一角度出发,可得如下结论: 1.OA=OD; 2.BE=CE; 3.AB=AC; 4.BD=CD.

初中数学十大常见解题方法

初中数学十大常见解题方法 1、配方法:所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 2、因式分解法:因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角函数等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法:换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 4、判别式法与韦达定理:一元二次方程ax2+bx+c=0(a、b、c∈R,a≠0)根的判别式△=b2-4ac,不仅用来判定根的性质,

而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至解析几何、三角函数运算中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。 5、待定系数法:在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的重要方法之一。 6、构造法:在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。 7、反证法:反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的

初中数学说题

初中数学教师基本功比赛一等奖说题稿 中考数学压轴题历来是初三师生关注的焦点,它一般有动态问题、开放性题型、探索性题型、存在性题型等类型,涉及到代数、几何多个知识点,囊括初中重要的数学思想和方法。对于考生而言,中考压轴题是一根标尺,可以比较准确的衡量学生综合解题能力以及数学素养,同时它的得失,可以直接影响到学生今后的发展。下面我就2012年德州市数学中考第23题第2问进行讲评。 中考题 如图所示,现有一张边长为4的正方形纸片ABCD ,点P 为正方形AD 边上的一点(不与点A 、点D 重合)将正方形纸片折叠,使 点B 落在P 处,点C 落在G 处,PG 交DC 于H ,折痕为EF ,连接BP 、BH . (1)求证:∠APB =∠BPH ; (2)当点P 在AD 边上移动时,△PDH 的周长是否发生变化?并证明你 的结论; (3)设AP 为x ,四边形EFGP 的面积为S ,求出S 与x 的函数关系式,试问S 是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由. 1.审题分析 本题涉及的知识点有:折叠问题;勾股定理;全等三角形的判定与性质;相似三角形的判定与性质;正方形的性质。本题通过翻折将全等变换,相似构造,勾股定理运用,融进正方形,不失一道好的压轴题,很值得推敲。由于此图形是正方形,因此里面隐含着很多直角,这是学生所不注意的地方,也正是解决问题的突破口和切入点。题目的难点是学生无法将分散的条件集中到有效的图形上进行解决,总有“老虎吃天无从下口”的感觉。用好直角三角形和构造直角三角形是解决此题的关键。由于此题综合性较强,条件较分散,对学生分析问题的能力要求较高,因此难度较大,难度系数是0.19。 2.解题过程 同一个问题,从不同的角度探究与分析,可有不同的解法。一题多解,有利于沟通各知识的联系,培养学生思维的发散性和创造性。 思路与解法一:从线段AD 上有三个直角这一条件出发,运用“一线三角两相似”这一规律(见课件),可将条件集中到△EAP 与△PDH 上,通过勾股定理、相似三角形的判定与性质来解决。 解法如下: P H G F E D C B A 图1

初中数学典型错题分析报告

初中数学解答错典型例题分析与反思 杨青春 众所周知,初中学生的心理正从依赖向独立过度,因此这正是培养学生自信心和自我调节能力的时机。在新课程教学的要求下,数学教学变得更加强调学生的自主学习和自主探究。因此,在这个过程中,出现认知上的偏差也是正常的。作为教师,就应该深刻认识到这个时期的学生的心理特征以及从提高学生数学素质的根本点出发,对学生出现的错题进行深刻分析和反思。相信这样的一个分析和反思,是可以成为学生以后学习的积极动力的。在下面的文章中,将具体从初中一些数学典型错题进行分析与反思。 (一)解答错典型题——几何证明题 初中数学涉及到几何证明的问题。对于几何,很多学生都会感到比较困扰。因此,在初中几何数学的教学中,教师应该针对学生的特点,找出适合学生的教学方法。 【典型解答错例题】在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF;如图所示: (1)求证BD=CD; (2)AB=AC,试判断四边形AFBD的形状。 【错解】(1)证明:∵AF//BC ∴∠AFE=∠DCE 又∵∠AFE=∠CED ∵E是AD的中点

∴AE=DE ∴△AEF≌△CED ∴AF=CD 又∵AF=BD ∴BD=CD (2)四边形AFBD是平行四边形 证明:∵AF//BC即AF//BD 又∵AF=BD ∴四边形AFBD是平行四边形 【错误原因】题目主要考查的是几何图形边相等的证明以及判断图形形状。错解的答案中(2)的结论是错误的。从边平行和对应边相等推出图形是平行四边形是正确的,可是题目中还给出了△ABC中,D是BC边上的一点,还给出如果AB=AC这一条件,学生在完成这一题时忽视了给的如果这一已知条件,考虑和分析问题不全面。 【正解】四边形AFBD是矩形 证明:∵AF//BC即AF//BD 又∵AF=BD ∴四边形AFBD是平行四边形 又∵AB=AC ∴△ABC是等腰三角形 又∵BD=CD即D是BC的中点 ∴AD是BC边上的高

中考数学专题训练---一题多变

中考数学专题训练-------一题多变 1、已知如图:在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 边上的中点,求证:四边形EFGH 是平行四边形。 分析:欲证四边形EFGH 是平行四边形,根据条件需从边上着手分析,由E 、F 、G 、H 分别是各边上的中点,可联想到三角形的中位线定理,连结AC 后,EF 和GH 的关系就明确了,此题也便得证。(证明略) 变式1:顺次连结矩形四边中点所得的四边形是菱形。 变式2:顺次连结菱形四边中点所得的四边形是矩形。 变式3:顺次连结正方形四边中点所得的四边形是正方形。 变式4:顺次连结等腰梯形四边中点所得的四边形是菱形。 变式5:若AC =BD ,AC ⊥BD ,则四边形EFGH 是正方形。 变式6:在四边形ABCD 中,若AB =CD ,E 、F 、G 、H 分别为AD 、BC 、BD 、AC 的中点,求证:EFGH 是菱形。 娈式6图 娈式7图 变式7:如图:在四边形ABCD 中,E 为边AB 上的一点,△ADE 和△BCE 都是等边三角形,P 、Q 、M 、N 分别是AB 、BC 、CD 、DA 边上的中点,求证:四边形PQMN 是菱形。 2、在正方形ABCD 的CD 边上取一点G ,在CG 上向原正方形外作正方形GCEF , 求证:DE ⊥BG ,DE=BG 。 变式:如图,ABCD 、CEFG 是正方形,E 在CD 上,直线BE 、DG 交于H ,且HE ·HB =4-BD 、AH 交于M ,当E 在线段CD (不与C 、D 重合)上运动时,下列四个结论:① BE ⊥GD ;② AH 、GD 所夹的锐角为45°;③ ;④ 若BE 平分∠DBC ,则正方形ABCD 的面积为4。其中正确的结论个数有(D ) A. 1个 B. 2个 C. 3个 D. 4个 由①对,知∠BHD=90,由∠BAD=90知:A 、B 、H 、D 四点共圆,∴∠AHD=∠ABD=45.∴②对。 由△DBE ∽△DAM ∴AM BE AD BD AM BE 22=∴==∵DG=BE ∴AM DG 2=∴③对。 由BE 平分∠DBC 知:∠HDE=∠DBH ,∴△HDE ∽△HBD ∴2242-=?=HB HE DH .∴DH=2816212-=∴DG DG ()CG BC CG BC BG BD DG CG DC =-∴+===+12222 , 例2图

初中数学一题多变、一题多解

C B A S 2 S 3 S 1 C B A S 3 S 2 S 1 S 3 S 2S 1 C B A 一题多解、一题多变 原题条件或结论的变化 所谓条件或结论的变化,就是对某一问题的条件或结论进行变化探讨,并针对问题的内涵与外延进行深入与拓展,从而得到一类变式题组。通过对问题的分析解决,使我们掌握某类问题的题型结构,深入认识问题的本质,提高解题能力。 例1 求证:顺次连接平行四边形各边中点所得的四边形是平行四边形。 变式1 求证:顺次连接矩形各边中点所得的四边形是菱形。 变式2 求证:顺次连接菱形各边中点所得的四边形是矩形。 变式3 求证:顺次连接正方形各边中点所得的四边形是正方形。 变式4 顺次连接什么四边形各边中点可以得到平行四边形? 变式5 顺次连接什么四边形各边中点可以得到矩形? 变式6 顺次连接什么四边形各边中点可以得到菱形? …… 通过这样一系列变式训练,使学生充分掌握了四边形这一章节所有基础知识和基本概念,强化沟通了常见特殊四边形的性质定理、判定定理、三角形中位线定理等,极大地拓展了学生的解题思路,活跃了思维,激发了兴趣。 一、几何图形形状的变化 如图1,分别以Rt ABC 的三边为边向外作三个正方形,其面积分别为321S S S 、、,则 321S S S 、、之间的关系是 图1 图2 图3

E S 3 S 2 S 1 D C B A S 3S 2 S 1 A B C D A B C D S 3S 2 S 1 变式1:如图2,如果以Rt ?ABC 的三边为直径向外作三个半圆,其面积分别为321S S S 、、,则321S S S 、、之间的关系是 变式2:如图3,如果以Rt ?ABC 的三边为边向外作三个正三角形,其面积分别为 321S S S 、、,则321S S S 、、之间的关系是 变式3:如果以Rt ?ABC 的三边为边向外作三个一般三角形,其面积分别为321S S S 、、,为使321S S S 、、之间仍具有上述这种关系,所作三角形应满足什么条件?证明你的结论。 ,2,90,//,44321321S S S S S S BC AB DA AB DC BCD ADC DC AB ABCD 、、,则、、,其面积分别为为边向梯形外作正方形、、分别以且中,梯形:如图变式=?=∠+∠之间的关系是 图4 图5 图6 ,2,90,//,55321321S S S S S S BC AB DA AB DC BCD ADC DC AB ABCD 、、,则、、形,其面积分别为为边向梯形外作正三角、、分别以 且中,梯形:如图变式=?=∠+∠之间的关系是 ,2,90,//,66321321S S S S S S BC AB DA AB DC BCD ADC DC AB ABCD 、、,则、、,其面积分别为为直径向梯形外作半圆、、分别以且中,梯形:如图变式=?=∠+∠之间的关系是 上述题组设置由易到难,层次分明,把学生的思维逐渐引向深入。这样的安排不仅使学生复习了勾股定理,又在逐渐深入的问题中品尝到成功的喜悦;既掌握了基础知识,也充分认识了问题的本质,可谓是一举两得。 二、图形内部结构的变化 例2.已知:如图7,点C 为线段AB 上一点,?ACM 、?CBN 是等边三角形。

初中数学一题多解与一题多变

____________________________________________________________________________________________ 初中数学一题多解与一题多变 时代在变迁,教育在进步,理念在更新。前两年提出考试要改革,有了《指导意见》,于是一批批探索性、开放性和应用性试题不断涌现;如今又提出课程要改革,有了《课程标准》,其中突出了学生自主探索的学习过程,强调应用数学和创新能力的培养,鼓励教师创造性教学,学生学会学习。 面临这种崭新的教育形势,我们会思考这样一些问题:教学要如何从静态转为动态?怎样有效地指导学生独立地分析问题、解决问题,形成有效的学习策略,提高效益?该如何引导和组织学生从事观察、实验、猜想、验证、推理与交流等数学活动,激发学生的学习兴趣和创新意识,培养创新能力?等等。我个人在实际教学过程中,对这些问题作过一些深思和一些尝试,其中比较突出的是引导学生进行一题多解和一题多变的训练。下面,我提出几个实例来分析其引导过程与方法,抛砖引玉,仅供参考。 一、一题多解,多解归一 对于"一题多解",我是从两个方面来认识和解释的:其一,同一个问题,用不同的方法和途径来解决;其二,同一个问题,其结论是多元的,即结论开放性问题。一题多解,有利于沟通各知识的内涵和外延,深化知识,培养发散性和创造性思维;多解归一,有利于提炼分析问题和解决问题的通性、通法,从中择优,培养聚合思维。 例1:如图,已知D 、E 在BC 上,AB=AC ,AD=AE , E D C B A

求证:BD=CE. (本题来自《几何》第2册69页例3) 思路与解法一:从△ABC和△ADE是等腰三角形这一角度出发,利用"等腰三角形底边上的三线合一"这一重要性质,便得三种证法,即过点A作底边上的高,或底边上的中线或顶角的平分线。其通法是"等腰三角形底边上的三线合一",证得BH=CH. 思路与解法二:从证线段相等常用三角形全等这一角度出发,本题可设法证△ABD≌△ACE或证△ABE≌△ACD,于是又得两种证法,而证这两对三角形全等又都可用AAS、ASA、SAS进行证明,所以实际是六种证法。其通性是"全等三角形对应边相等"。 思路与解法三:从等腰三角形的轴对称性这一角度出发,于是用叠合法可证。 例2:已知,如图,在⊙O中,AD是直径,BC是弦,AD⊥BC,E 添加字母,不写推理过程) D 思路与解法一:从相等的线段这一角度出发,可得如下结论: 1.OA=OD; 2.BE=CE; ____________________________________________________________________________________________

初中数学一题多解与一题多变(1)

初中数学一题多解与一题多变 北兴中学 王成录 时代在变迁,教育在进步,理念在更新。前两年提出考试要改革,有了《指导意见》,于是一批批探索性、开放性和应用性试题不断涌现;如今又提出课程要改革,有了《课程标准》,其中突出了学生自主探索的学习过程,强调应用数学和创新能力的培养,鼓励教师创造性教学,学生学会学习。 面临这种崭新的教育形势,我们会思考这样一些问题:教学要如何从静态转为动态?怎样有效地指导学生独立地分析问题、解决问题,形成有效的学习策略,提高效益?该如何引导和组织学生从事观察、实验、猜想、验证、推理与交流等数学活动,激发学生的学习兴趣和创新意识,培养创新能力?等等。我个人在实际教学过程中,对这些问题作过一些深思和一些尝试,其中比较突出的是引导学生进行一题多解和一题多变的训练。下面,我提出几个实例来分析其引导过程与方法,抛砖引玉,仅供参考。 一、一题多解,多解归一 对于"一题多解",我是从两个方面来认识和解释的:其一,同一个问题,用不同的方法和途径来解决;其二,同一个问题,其结论是多元的,即结论开放性问题。一题多解,有利于沟通各知识的内涵和外延,深化知识,培养发散性和创造性思维;多解归一,有利于提炼分析问题和解决问题的通性、通法,从中择优,培养聚合思维。 例1:如图,已知D 、E 在BC 上,AB=AC ,AD=AE , 求证:BD=CE. E D C B A

(本题来自《几何》第2册69页例3) 思路与解法一:从△ABC和△ADE是等腰三角形这一角度出发,利用"等腰三角形底边上的三线合一"这一重要性质,便得三种证法,即过点A作底边上的高,或底边上的中线或顶角的平分线。其通法是"等腰三角形底边上的三线合一",证得BH=CH. 思路与解法二:从证线段相等常用三角形全等这一角度出发,本题可设法证△ABD≌△ACE或证△ABE≌△ACD,于是又得两种证法,而证这两对三角形全等又都可用AAS、ASA、SAS进行证明,所以实际是六种证法。其通性是"全等三角形对应边相等"。 思路与解法三:从等腰三角形的轴对称性这一角度出发,于是用叠合法可证。 例2:已知,如图,在⊙O中,AD是直径,BC是弦,AD⊥BC,E 为垂足,由这些条件你能推出哪些结论?(要求:不添加辅助线,不添加字母,不写推理过程) 思路与解法一:从相等的线段这一角度出发,可得如下结论: 1.OA=OD; A Array 2.BE=CE; 3.AB=AC; 4.BD=CD. D

初中数学一题多变一题多解(二)

一题多解一题多变(二) 1、一题多解,培养思维的发散性 一题多解实际上是解题或证明定理、公式的变式,因为它的实质是以不同的论证方式反映条件和结论问的同一必然的本质联系,运用这种变式教学,可以引导学生对同一材料,从不同角度、从不同方位、用各种途径、多种方法思考问题,探求不同的解答方案,这样,既可暴露学生解题的思维过程,增加教学透明度,又能够拓广学生思路,使学生熟练掌握知识的内在联系,使思维向多方向发展,培养思维的发散性。这方面的例子很多,尤其是几何证明题。 已知:点O是等边△ABC内一点, OA=4,OB=5,OC=3 求∠AOC的度数。 练习:把此题适当变式: 变式在△ABC中,AB=AC,∠BAC=90° OA=4,OB=6,OC=2 求∠AOC的度数。 变式2:如图,点O是等边△ABC内一点,∠AOB=110°, ∠BOC=135° 试问:(1)以OA、OB、OC为边能否构成一个三角形?若能,请求出三角形各内角的度数;若不能,请说明理由. (2)如果∠AOB的大小保持不变,那么当∠BOC等于多少度时, 以OA、OB、OC为边的三角 形是一个直角三角形?

2、一题多变,培养思维的灵活性 一题多变是题目结构的变式,是指变换题目的条件或结论,或者变换题目的形式,而题目的实质不变,以便从不同角度,不同方面揭示题目的本质,用这种方式进行教学,能使学生随时根据变化了的情况积极思索,设法想出解决的办法,从而防止和消除呆板和僵化,培养思维的灵活性。一题多变可以改变条件,保留结论;也可以保留条件,改变结论;或者同时改变条件和结论;也可以将某项条件与结论对换等等。 例如:已知:C 为AB 上一点,△ACM 和△CBN 为等边三角形(如图所示) 求证:AN=BM (分析:如对此题多做一些引申,既可以培养学生的探索能力,又可培养学生的创新素质) 探索一:设CM 、CN 分别交AN 、BM 于P 、Q ,AN 、BM 交于点R 。问此题中还有其他的边相等以及特殊角、特殊图形吗?给予证明。 探索二:△ACM 和△BCN 如在AB 两旁,其它条件不变,AN=BM 成立吗? 探索三:△ACM 和△BCN 分别为以AC 、BC 为底且顶角相等的等腰三角形,其它条件不变,AN=BM 成立吗? 探索四:A 、B 、C 三点不在一条直线上时,其它条件不变,AN=BM 成立吗? 探索五:A 、B 、C 三点不在一条直线上时,△ACM 和△BCN 分别变为正方形ACME 和正方形BCNF ,其它条件不变,AN=BM 成立吗? 这样教学,不仅提高了学生运用所学知识解决数学问题的能力,而且培养了学生的创新能力,发展了学生的求异思维。 练习:(1)如图,在△ABC 中,AB=AC ,点P 是BC 边上任意一点,PE ⊥AB 于E ,PF ⊥AC 于F ,BD ⊥AC 于D 求证:BD=PE+PF M N C

初中数学一题多解题

初中数学一题多解题例题一、两个连续奇数的积是323,求出这两个数方法一、 设较小的奇数为x,另外一个就是x+2 x(x+2)=323 解方程得:x1=17,x2=-19 所以,这两个奇数分别是: 17、19,或者-17,-19 方法二、 设较大的奇数x,则较小的奇数为323/x 则有:x-323/x=2 解方程得:x1=19,x2=-17 同样可以得出这两个奇数分别是: 17、19,或者-17,-19 方法三、 设x为任意整数,则这两个连续奇数分别为: 2x-1,2x+1 (2x-1)(2x+1)=323 即4x^2-1=323 x^2=81 x1=9,x2=-9

2x1-1=17,2x1+1=19 2x2-1=-19,2x2+1=-17 所以,这两个奇数分别是: 17、19,或者-17,-19 方法四、 设两个连续奇数为x-1,x+1 则有x^2-1=323 x^2=324=4*81 x1=18,x2=-18 x1-1=17,x1+1=19 x2-1=-19,x2+1=-17 所以,这两个奇数分别是: 17、19,或者-17,-19 例题二、某人买13个鸡蛋、5个鸭蛋、9个鹌鹑蛋,共用去9.25元;如果买2个鸡蛋,4个鸭蛋,3个鹌鹑蛋,则共用去3.20元,试问只买鸡蛋、鸭蛋、鹌鹑蛋各一个,共需多少钱? 解:设鸡、鸭、鹌鹑三种蛋的单价分别为x 、y 、z 元,则根据题意,得 13599251243320 2x y z x y z ++=<>++=<> ?? ?.. 分析:此方程组是三元一次方程组,由于只有两个三元一次方程,因而要分别求出x 、y 、z 的值是不可能的,但注意到所求的是x y z ++的代数和,因此,我们可通过变形变换得到多种解法。 1. 凑整法 解1: <>+<> 123 ,得5344153x y z ++=<>. <>+<>23,得7735().x y z ++= ∴++=x y z 105. 答:只买鸡蛋、鸭蛋、鹌鹑蛋各一个,共需1.05元(下面解法后的答均省略) 解2:原方程组可变形为

初中数学基础知识及经典题型

综合知识讲解 目录 第一章绪论 (2) 1.1初中数学的特点 (2) 1.2怎么学习初中数学 (2) 1.3如何去听课 (5) 1.4几点建议 (6) 第二章应知应会知识点 (8) 2.1代数篇 (8) 2.2几何篇 (12) 第三章例题讲解 (19) 第四章兴趣练习 (38) 4.1代数部分 (38) 4.2几何部分 (60) 第五章复习提纲 (65)

第一章绪论 1.1初中数学的特点 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 1.2怎么学习初中数学 1,培养良好的学习兴趣。 两千多年前孔子说过:“知之者不如好之者,好之者不如乐之者。”意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。“好”和“乐”就是愿意学,喜欢学,这就是兴趣。兴趣是最好的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性。

在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的“认识”过程,这自然会变为立志学好数学,成为数学学习的成功者。那么如何才能建立好的学习数学兴趣呢? (1)课前预习,对所学知识产生疑问,产生好奇心。 (2)听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。 (3)思考问题注意归纳,挖掘你学习的潜力。 (4)听课中注意老师讲解时的数学思想,多问为什么要这样思考,这样的方法怎样是产生的? (5)把概念回归自然。所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、直角坐标系的产生都是从实际生活中抽象出来的。只有回归现实才能对概念的理解切实可*,在应用概念判断、推理时会准确。2,建立良好的学习数学习惯。 习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。良好的学习数学习惯还包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。 3,有意识培养自己的各方面能力。 数学能力包括:逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力共五大能力。这些能力是在不同的数学学习环境中得到培养的。在平时学习中要注意开发不同的学习场所,参与一切有益的学习实践活动,如数学第二课堂、数学竞赛、智力竞赛等活动。平时注意观察,比如,空间想象能力是通过实例净化思维,把空间中的实体高度抽象在大脑中,并在大脑中进行分析推理。其它能力的培养都必须学习、理解、训练、应用中得到发展。特别

初中数学一题多解题

初中数学一题多解题 例题一、两个连续奇数的积是323,求出这两个数 方法一、 设较小的奇数为x,另外一个就是x+2 x(x+2)=323 解方程得:x1=17,x2=-19 所以,这两个奇数分别是: 17、19,或者-17,-19 方法二、 设较大的奇数x,则较小的奇数为323/x 则有:x-323/x=2 解方程得:x1=19,x2=-17 同样可以得出这两个奇数分别是: 17、19,或者-17,-19 方法三、 设x为任意整数,则这两个连续奇数分别为: 2x-1,2x+1 (2x-1)(2x+1)=323 即4x^2-1=323 x^2=81 x1=9,x2=-9 2x1-1=17,2x1+1=19 2x2-1=-19,2x2+1=-17 所以,这两个奇数分别是: 17、19,或者-17,-19 方法四、 设两个连续奇数为x-1,x+1 则有x^2-1=323 x^2=324=4*81 x1=18,x2=-18 x1-1=17,x1+1=19 x2-1=-19,x2+1=-17 所以,这两个奇数分别是: 17、19,或者-17,-19 例题二、某人买13个鸡蛋、5个鸭蛋、9个鹌鹑蛋,共用去9.25元;如果买2个鸡蛋,4个鸭蛋,3个鹌鹑蛋,则共用去3.20元,试问只买鸡蛋、鸭蛋、鹌鹑蛋各一个,共需多少钱?

解:设鸡、鸭、鹌鹑三种蛋的单价分别为x 、y 、z 元,则根据题意,得 1359925 1243320 2x y z x y z ++=<> ++=<> ?? ?.. 分析:此方程组是三元一次方程组,由于只有两个三元一次方程,因而要分别求出x 、y 、z 的值是不可能的,但注意到所求的是x y z ++的代数和,因此,我们可通过变形变换得到多种解法。 1. 凑整法 解1: <>+<> 123 ,得5344153x y z ++=<>. <>+<>23,得7735().x y z ++= ∴++=x y z 105. 答:只买鸡蛋、鸭蛋、鹌鹑蛋各一个,共需1.05元(下面解法后的答均省略) 解2:原方程组可变形为 1342925 22320 ()().()().x y z y z x y z y z ++-+=++++=?? ? 解之得:x y z ++=105. 2. 主元法 解3:视x 、y 为主元,视z 为常数,解<1>、<2> 得x z =-0505..,y z =-05505.. ∴++=+-+=x y z z z 05505105... 解4:视y 、z 为主元,视x 为常数,解<1>、<2> 得y x z x =+=-00512., ∴++=+-+=x y z x x x 1052105.. 解5:视z 、x 为主元,视y 为常数,解<1>、<2> 得x y z y =-=-00511 2.., ∴++=-++-=x y z y y y 005112105... 3. “消元”法 解6:令x =0,则原方程组可化为 5992543320051y z y z y z +=+=????==?? ? ... ∴++=x y z 105. 解7:令y =0,则原方程组可化为 1399252332000511x z x z x z +=+=????=-=?? ? .... ∴++=x y z 105. 解8:令z =0,则原方程组可化为

初中数学一题多变一题多解(六)

一题多解,一题多变(六) 中考几何母题的一题多解(多变) 一、三角形一题多解 如图:已知AB=AC,E是AC延长线上一点,且有BF=CE,连接FE交BC 于D。求证:FD=DE。 证法一 证明:过E点作EM ∥AB交DC延长线于M点,则∠M=∠B,又因为∠ ACB=∠B ∠ACB=∠ECM=∠M,所以CE=EM,又EC=BF 从而EM=BF, ∠BFD=∠DEM 则△DBF≌△DME,故FD=DE; 证法二 证明:过E点作EM ∥AB交DC延长线于M点,则∠M=∠B,又 因为∠ACB=∠B ∠ACB=∠ECM=∠M,所以CE=EM,又EC=BF 从而EM=BF, ∠BFD=∠DEM 则△DBF≌△DME,故 FD=DE; 证法二 证明:过F点作FM∥AE,交BD于点M, 则∠1=∠2 = ∠B 所以BF=FM, 又∠4=∠3 ∠5=∠E 所以△DMF≌△DCE,故 FD=DE。 二、平行四边形一题多解 如图4,平行四边形ABCD中AD=2AB,E、F在直线AB上, 且AE=BF=AB,求证:DF⊥CE.

证法一、易知ΔADF、ΔBCE为等腰三角形,故∠1=∠F, ∠2=∠E,又CD∥AB,故∠3=∠F, ∠4=∠E,从而∠1=∠3,∠2=∠4,而∠1+∠2+∠3+∠4=1800,故∠3+∠4=900,表明∠COD=900,所以DF⊥CE。 证法二、如图5,连接MN,则CD=BF,且CD∥BF,故BFCD为平行四边形,则CN=BN=AB,同理,DM=MA=AB,故CN=DM且CN∥ DM,得平行四边形CDMN,易见CD=DM,故CDMN也是菱形,根 据菱形的对角线互相垂直,结论成立。 证法三、如图6,连接BM、AN, 可证ΔAFN中,BN=BF=BA,则Δ AFN为直角三角形,即DF⊥AN,利用中位线定理可知AN∥CE,故DF ⊥CE。 证法四、如图7,作DG∥CE交AE延长线于G,则EG=CD=AB=AE,故AD=AG=AF,从而DF⊥DG,而DGCE,故DF⊥CE 四\一题多解、多变《四边形面积》 1.如图所示,一个长为a,宽为b的矩形,两个阴影 都是长为c的矩形与平行四边形,则阴影部分面 积是多少。 解法一 将大矩形进行平移将平行四边形 进行转换。

初中平面几何一题多变(1)

平面几何一题多变 在完成一个数学题的解答时,有必要对该题的内容、形式、条件、结论,做进一步的探讨,以真正掌握该题所反映的问题的实质。如果能对一个普通的数学题进行一题多变,从变中总结解题方法;从变中发现解题规律,从变中发现“不变”,必将使人受益匪浅。 “一题多变”的常用方法有: 1、变换命题的条件与结论; 2、保留条件,深化结论; 3、减弱条件,加强结论; 4、探讨命题的推广; 5、考查命题的特例; 6、生根伸枝,图形变换; 7、接力赛,一变再变; 8、解法的多变等。

19、(增加题1的条件)AE平分∠BAC交BC于E, 求证:CE:EB=CD:CB 20、(增加题1的条件)CE平分∠BCD,AF平分∠BAC交BC于F

求证:(1)BF·CE= BE·DF (2)AE⊥CF (3)设AE与CD交于Q,则FQ‖BC 21、已知,△ABC中,∠ACB=90度,CD⊥AB,D为垂足,以CD为直径的圆交AC、BC 于E、F, 求证:CE:BC=CF:AC(注意本题和16题有无联系) 22、已知,△ABC中,∠ACB=90度,CD⊥AB,D为垂足,以AD为直径的圆交AC于E,以BD为直径的圆交BC于F, 求证:EF是⊙O1和⊙O2的一条外公切线 23、已知,△ABC中,∠ACB=90度,CD⊥AB,D为垂足,作以AC为直径的圆O1,和以CD为弦的圆O2, 求证:点A到圆O2的切线长和AC相等(AT=AC)

24、已知,△ABC中,∠ACB=90度,CD⊥AB,D为垂足, E为ACD的中点,连ED并延长交CB的延长线于F, 求证:DF:CF=BC:AC 25、如图,⊙O1与⊙O2外切与点D,内公切线DO交外公切线EF于点O,求证:OD是两圆半径的比例中项。 题14解答: 因为CD^2=AD·DB AC^2=AD·AB BC^2=BD·AB 所以1/AC^2+1/BC^2 =1/(AD·AB)+1/(BD·AB) =(AD+DB)/(AD·BD·AB) =AB/AD·BD·AB

“一题多变”发散思维

“一题多变”发散思维 从初中数学现状来看,“教师教,学生学;教师讲,学生听”仍是主导模式,基本上是“把学生当作消极、被动地接受知识的容器”,“狂轰乱炸”的“题海”战术“淹没”了生动活泼的数学思维过程,这种“重复低效”的数学课堂教学,使相当一部分学生“丧失”了数学学习的兴趣。思维变的狭窄,学知识只知其一,不知其二,稍有变化,就不知所云。这些促使我们思考:如何提高学生的数学学习兴趣,如何提高数学课堂的有效性?而反复进行的一题多变的训练,是帮助学生克服思维狭窄性有效方法。 一、“一题多变”的作用: 在平时的数学教学过程中实施一题多变的训练,可以提高学生学习数学的积极性,增强学习数学的兴趣: 1、新课中,实施一题多变,以简单题入手由浅入深,可使大部分学生对当堂课内容产生兴趣。 2、习题课中,把较难题改成多变题目,让学生找到突破口,对难题也产生兴趣。 3、学生自己能够将题目中的问题或某一条件改变,对知识进行重组,自己将题目中的问题或某一条件进行改变,对已学知识进行重组,探索出新知识,解决新问题。不就题论题,能多思多变。 在完成一个数学题的解答时,有必要对该题的内容、形式、条件、结论,做进一步的探讨,以真正掌握该题所反映的问题的实质。如果能对一个普通的数学题进行一题多变,从变中总结解题方法;从变中

发现解题规律,从变中发现“不变”,必将使人受益匪浅。 二、“一题多变”的常用方法有: 1、变换命题的条件与结论; 2、变换题型; 3、深化条件,保留结论; 4、减弱条件,加强结论; 5、探讨命题的推广; 6、考查命题的特例; 7、生根伸枝,图形变换; 8、接力赛,一变再变等等。 三、一题多变,挖掘习题涵量: 1、变换命题的条件与结论 即通过对习题的条件或结论进行变换,而对同一 个问题从多个角度来研究。这种训练可以增强学生解 题的应变能力,培养思维的广阔性和深刻性,从而培 养创新思维的品质。 例1、如图,在梯形ABCD中,AB∥CD,BC=AB+CD,E是AD 中点。求证:∠BEC=90°. 变换1:如图,在梯形ABCD中,AB∥CD,BC=AB+CD,E是AD 中点。求证:CE⊥BE. 变换2:如图,在梯形ABCD中,AB∥CD,CE⊥BE., E是AD中点.求证:BC=AB+CD.

初中数学“一题多变”小课题研修报告

一、课题名称 初中数学“一题多变”的有效教学小课题研究 二、课题的提出 在数学教学实践中,许多我们认为学生应该练熟的知识,在一次次考试中,只要对问题的背景或数量关系稍作演变,有的学生就无所适从,在多变的真实情境中,常常不能有效迁移、灵活应用。学生逐步丧失学习数学的兴趣,思维变得狭窄,学知识只知其一,不知其二。许多教师曾意识到此类问题,因此在课堂教学中频频提醒学生解题学习要触类旁通,懂一题会解一片。但究竟如何对数学问题进行举一反三,深入挖掘,充分演变,教师自己也很困惑。 三、课题研究的目的、意义 数学《新课程标准》明确指出:“义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。”学生存在着个性差异,面向全体学生就不能无视这种差异。所以现代教育过程中根据学生个性差异因材施教,促进学生个性发展,尊重学生个性的独创性教育显得十分重要。教育者要为每一位学生提供同样的学习机会,也要帮助每一位学生充分发展。究其核心就是要尊重学生个性差异,运用各种方法、创造各种条件引导学生主动探究和创造学习。“学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程”。数学教学是需要在学生形成初步知

识和技能后加以应用的实践训练,即解题,以其来加深和巩固已获知识,数学课堂的“一题多变”,既让学生理解数学知识、数学思想与数学方法,又能深刻体会数学思想的核心作用,提高数学能力。“一题多变”围绕一两道数学问题中所需反映的数学实质进行一系列的问题变化,使学生得以掌握与提高,是培养学生举一反三、灵活转换、独立思考能力,从而减轻学生学业负担,培养创新能力的有益途径之一。 四、课题研究的方法 文献研究法。通过吸收其他教师及教学资料的理论及经验,为在课堂实施一题多变提供依据。 行动研究法。坚持边实践、边探索、边研究、边总结,在备课中把变式题溶入课堂中,课后有反思,有总结。 个案分析法。不断地收集各个教师课中的典型习题,从中发掘和提炼科学有效的实施举措,及时予以推广。 五、课题研究过程 (一)研究步骤与实施过程 1、准备阶段 本阶段的主要任务是建立课题组,明确研究目标和任务,开展前期研究。主要工作包括: ⑴成立课题组,明确研究思路,研究实施方案,制定实施计划; ⑵查阅相关资料,加强理论学习,提升研究水平;

初中数学一题多变一题多解(四)

一题多解,一题多变(四) 一、一题多解,拓宽解题思路 一题多解是从不同的视角、不同的方位审视分析同一问题中的数量、位置关系,用不同解法求得相同结果的思维过程。通过探求同一问题的不同解法,可以引出相关的多个知识点和解题方案,有助于培养学生的洞察力和思维的变通性、独创性,从而培养学生的创新思维的意识。 比如,我在华师版八年级数学第二十章《平行四边形的判定》曾举到这样一道例题:如图1,在梯形ABCD中,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD中点.求证:CE⊥BE. 2,又E是证法一:如图2,作CE⊥AB,在Rt△CBF中,由勾股定理易得:CF=2 CE=3,AD的中点,故DE=AE=2,分别在Rt△CDE和Rt△BEA中,由勾股定理易得:2 2 BE=6,在Rt△CBE中,由勾股定理的逆定理可得: △CEB是Rt△,即CE⊥BE得证. 证法二:如图3,分别延长CE、BA交于点F,易得△CDE≌△FEF,则CE=FE,AF=1,又AB=2,所以BF=3,又因为BC=3,所以BC=BF,在△BFC中,由三线合一定理得:CE ⊥BE. 证法三:如图4,取CB的中点F,连结EF,则EF是梯形CDAB的中位线,易得EF=2,则EF=CF=BF,则∠CEF=∠FCE, ∠FEB=∠FBE,在△CEB中,由三角形内角和定理易得∠CFB=90°,即CE⊥BE。 二、一题多变,挖掘习题涵量 1.变换题设或结论 比如,同样对上述问题,我还对该题进行了多种角度的变式讨论,开阔了学生的眼界,活跃了学生的思维。 变换1:在梯形ABCD中,AB∥CD,BC=AB+CD,E是AD中点。求证:CE⊥BE.

《初中数学“一题多变”策略研究》

《初中数学“一题多变”策略研究》 第一学期总结(2012年9月—2013年1月) 课题组全体成员认真学习和课题有关的理论,研读《数学课程标准》、学习《解读自觉数学课堂—“以学习为中心”理念下的教学现实》和《数学研究与学习》、《课程与教学》等专著和杂志。通过学习,积极撰写读书心得,研究制定课题研究方案,积极更新教学思想,强化课改意识,转变教学方式,明确课标要求,充分挖掘教材潜力,创造性的运用教材,适当拓展教材习题,积极在课堂教学、试卷、例题、习题中体现“一题多变”,渗透“一题多变”的数学思想,拓展学生的思维,培养学生的创造能力和解决问题的能力。 通过学习教师要认识到“一题多变”实际上是一种精选、精讲、精练,不仅能向学生展现知识之间的联系与区别,更好地建构知识体系,可以避免“题海战术”,避免过多枯燥、重复、机械的训练,做到精选、精讲、精练,也就能真正减轻学生的学业负担。“一题多变”可以让学生体会数学千变万化的魅力,改变学生对数学学科特别是初中平面几何的看法,激发学生学习数学的兴趣。“一题多变”,条件可以变,结论可以变,形式可以变等等,这样就可以让学生不断接受新的任务,不断探索、解决,在探索、解决问题的过程中体验成功的喜悦。“一题多变”不仅可以提高学生解决问题的能力,还可以激活学生的思维,激发学生发现问题、提出问题的能力。“一题多变”这种训练多了以后,学生自然而然也会提出“我还可以怎么变”,“我还可以得到什么结论,什么规律”等等这样的问题来。 课题组成员多次在校内开设研讨课。其中樊翠霞和蔡娟娟老师分别开设了市级公开课《中心对称和中心对称图形》、《合并同类项》,还积极撰写了反思和论文。例如沈君贤老师《初中数学智慧课堂教学的思考》和《数学学习的生命线》、樊翠霞《论农村初中数学作业的设计与优化》、金建华《浅谈“一题多变”在初中数学中的应用》。

相关主题
文本预览
相关文档 最新文档