当前位置:文档之家› 一般n次曲线切线方程的推导

一般n次曲线切线方程的推导

一般n次曲线切线方程的推导
一般n次曲线切线方程的推导

一般n 次曲线切线方程的推导

光信1001 黄飞洪 关键词:一般n 次曲线,某点的切线方程,

提要:在求曲线上某点的切线时,通常会使用先求导得到斜率后再求切线,此法在二次曲线中尚可使用,但如果是n 次曲线就不大现实了,因此如果能找到该类曲线切线的某些规律,在求高次曲线的切线方程时会节省很多时间

首先,我们先来分析几个比较特殊的例子:

○1圆A :x 2+y 2=r 2在(x 0,y 0)处的切线方程为x 0x+ y 0y= r 2

○2椭圆B :A 2a)x +(+B b y 2

)(+=1在(x 0,y 0)处的切线方程为1))(())((00=+++++B

b y b y A a x a x ○3双曲线C :A 2a)x +(-B b y 2

)(+在(x 0,y 0

)处的切线方程为1))(())((00=++-++B

b y b y A a x a x ○4抛物线C :y 2

=2px 在(x 0,y 0)处的切线方程为y 0y=p(x+x 0) 以上都是几个比较典型的二次曲线在某点切线的方程,总结起来就是在原曲线方程框架的基础上将x 2(或y 2)型变为x 0x (或y 0y )型,x(或y)型转变为2

0x x +(或20y y +)型,但在一般的二次曲线中包含了xy 的项,那么,这种一般型曲线的切线是否仍存在某种规律呢? 设f(x,y)=Ax 2+Bxy+Cy 2+Dx+Ey+F=0,求在(x 0,y 0)处的切线方程

方程两边求导得2Ax+By+Bxy ’+2Cyy ’+D+Ey ’=0

y’= -E

Cy Bx D By Ax ++++220 ∴在(x 0,y 0)处的切线方程为y-y 0= -

E Cy Bx D By Ax ++++220(x-x 0)

整理可得Ax 0x+B 200y y x x ++Cy 0.y+D 2

0x x ++E 20y y ++F=0 由分析可发现,一般曲线与特殊曲线的切线在框架上是类似的,只是将xy 项转变为2

00x y y x +若将y 换为x ,得到的仍为x 2→x 的变化。因而二次曲线求某点的切线时,可看作在原 框架上作变化为a 20a a +→,ab 2

00a b b a +→(a,b 为变量) 同样的方法,对于三次曲线

F(x,y)=Ax 3+Bx 2y+Cxy 2+Dy 3+Ex 2+Fxy+Gy 2+Hx+Iy+J

在(x 0,y 0)处的切线方程为

Ax 2

0x+B 320020x y x y x ++C 3200.20y y x x y ++Dy 20y+E 32200x x x ++F 30000x y y x y x +++G 32200y y y ++H 320x x ++I 3

20y y ++J=0 推到这里规律也比较明显了:

对于一个n 次曲线,每一项不含系数部分可看作x 1x 2…x n 型(x 1,x 2,…,x n 为变量或1),再将曲线转化为切线的过程中,可看作在原框架的基础上

x 1x 2…x n n

x x x n i n i ∑=→

11......0 其中当x i =1时,其对应x 0i =1 用过这样一条规律,就可以比较快速的求高次曲线在某一点的切线方程,从而省去了中间较为繁琐的求导过程

2.求曲线经过点P处的切线方程

22.求曲线经过点P 处的切线方程 例2.已知曲线C :3()2f x x x =-+,求经过点(1,2)P 的曲线C 的切线方程 错解:由'2()31f x x =-,得'(1)2k f ==, 所以所求的切线方程为22(1)y x -=-,即2y x =。 错因剖析:此处所求的切线只说经过P 点,而没说P 点一定是切点,于是切线的斜率 k 与'(1)f 不一定相等。比如(如图)当02x π≤≤时,正弦曲线sin y x =在点P 处的切线 只有一条:1l ;而经过点P 的切线却有两条:1l 与2l 。 正解:设经过点P (1,2)的直线与曲线C 相 切于点00(,)x y ,则由'2()31f x x =-, 得在点00(,)x y 处的斜率'200()31k f x x ==-, 有在点00(,)x y 处的切线的方程为 2000(31)()y y x x x -=--。 又因为点00(,)x y 与点P (1,2)均在曲线C 上, 有3000200022(31)(1)y x x y x x ?=-+??-=--??,消去0y 得320000(31)(1)x x x x -=--, 解得01x =或012x =- ,于是2k =或14 -, 所以所求切线方程为2y x =或1944y x =-+。 归纳:求曲线经过点P 处的切线方程的方法 (1)解题步骤:(1)设出切点坐标00(,)x y ;(2)列关于0x 与0y 的方程组,求解方程组,进而求切线斜率;(3)写出问题的结论。 (2)上述列方程组的方法是根据下面三个条件:①切点在曲线上,②已知点在切线上,③切点处的导数等于切线斜率

圆锥曲线的切线问题

圆锥曲线的切线问题 圆锥曲线的切线问题有两种处理思路:思路 1,导数法,将圆锥曲线方程化为函数 y =f (x) ,利用导数法求出函数y =f (x) 在点(x 0 , y ) 处的切线方程,特别是焦点在y 轴 上常用此法求切线;思路 2,根据题中条件设出切线方程,将切线方程代入圆锥切线方程,化为关于x(或y)的一元二次方程,利用切线与圆锥曲线相切的充要条件为判别式?= 0 ,即可解出切线方程,注意关于x (或y)的一元二次方程的二次项系数不为 0 这一条件,圆锥曲线的切线问题要根据曲线不同,选择不同的方法. 类型一 导数法求抛物线切线 例1 【2017 课表1,文 20】设A,B为曲线C:y= x 4 (1)求直线A B的斜率; 上两点,A与B的横坐标之和为 4. (2)设M为曲线C上一点,C在M处的切线与直线A B平行,且A M⊥B M,求直线A B的方程. 类型二椭圆的切线问题 2

5 + = > > 例 2(2014 广东 20)(14 分)已知椭圆C : x a 2 y 2 + = 1(a > b > 0) 的一个焦点为( 5, 0) , b 2 离心率为 . 3 (1) 求椭圆 C 的标准方程; (2) 若动点 P (x 0 , y 0 ) 为椭圆外一点,且点 P 到椭圆 C 的两条切线相互垂直,求点 P 的轨 迹方程. 类型三 直线与椭圆的一个交点 例 3.【2013 年高考安徽卷】已知椭圆 C : x a 2 y 2 b 2 1(a b 0) 的焦距为 4 , 且过点 (Ⅰ)求椭圆 C 的方程; (Ⅱ)设Q (x 0 , y 0 )(x 0 y 0 ≠ 0) 为椭圆C 上一点,过点Q 作 x 轴的垂线,垂足为 E .取点 A (0, 2 2) ,连接 AE ,过点 A 作 AE 的垂线交 x 轴于点 D .点G 是点 D 关于 y 轴的对称点, 作直 线QG ,问这样作出的直线QG 是否与椭圆 C 一定有唯一的公共点?并说明理由. 【解析】(1)因为椭圆过点 P ( 2,3) ∴ 2 + 3 = 1 a 2 b 2 且a 2 = b 2 + c 2 P ( 2,3) . 2 2

二次曲线化简的方法

二次曲线化简的方法 思维导图 具体方法 相关定义及公式: 移轴公式 1、平面直角坐标变换 转轴公式 一般坐标变换公式: 二次曲线化简的 方法 平面直角坐标变 换 坐标变换 移轴系数变换规 律 转轴系数变换规 律 转轴(主直径) 中心二次曲线 无心二次曲线 线心二次曲线 应用不变量化简二次曲线的方程 中心二次曲线 无心二次曲线 线心二次曲线

其中:l1:A1x+B1y+C1=0;l2:A2x+B2y+C2=0,l1,l2相互垂直 ① ② 这里需要注意的是①中x的系数应和②中y的系数相等,所以在符号选取时要使得这两项系数同号。 2、不变量:由F(x,y)=0的系数组成的一个非常数函数f,如果经过直角坐标变换函数值不变,那么这个函数f叫做二次曲线在直角坐标变换下的不变量;若这个函数f 的值,只是经过转轴变换不变,那么这个函数叫做二次曲线在直角坐标变换下的半不变量。 ① ②

方法介绍: 一、直角坐标变换: 1、坐标变换 一般的,在曲线有中心的前提下,为了计算方便,往往先移轴再转轴 非中心二次曲线先转轴再移轴。 ①移轴下()二次曲线的新方程为: 化简整理得: 这里有: 在移轴下,二次曲线方程系数的变化规律: (1)二次项系数不变 (2)一次项系数变为 2F1(x0,y0)与2F2(x0,y0) ②在转轴()下二次曲线的新方程为: 这里有

在转轴下,二次曲线方程系数的变换规律: (1)二次项系数一般要改变。新方程的二次项系数仅与原方程二次项系数及 旋转角有关,而与一次项系数及常数项无关。 (2)新方程的一次项系数: 在转轴下,二次曲线方程的一次项系数 a13,a23的变换规律是与点的坐标x,y的变换规律完全一样,当原方程有一次项时,通过转轴不难完全消去一次项,当原方程无一次项时,通过转轴也不会产生一次项。 (3)常数项不变。 【例题详解方法】 例1【无心二次曲线】 化简二次曲线方程,并画出它的图形 解: 由于二次曲线方程含有xy项,故可先通过转轴消去xy项。设旋转角为α,则有:

曲线的切线方程

导数的几何意义、曲线的切线方程: 一、框架 1.命题分析:本题型在高考解答题主要是在第(1)问中出现,也有可能在选择题或填空题中出现,若为解答题,主要考点为:(1)导数的几何意义;(2)直线与函数图象相切的条件。 2.几何意义:函数()x f 在0x 处的导数就是曲线()x f y =在点()()00,x f x 处的切线的斜率,即斜率为()0'x f . 3.物理意义:函数()s f t =在0t 处的导数就是曲线()s f t =在0t 时刻的速度. 4.曲线)(x f y =上在点())(,00x f x 处的切线方程为))(()(00'0x x x f x f y -=-. 5.切线方程的求解方程问题: 第一步:判切点:求曲线的切线方程时先分清是“在点处”的切线方程还是“过点”的切线方程。切点已知直接求,切点未知设切点; 第二步:求斜率(导数):通常若切点为())(,00x f x ,则在该点处曲线的斜率为()0'x f ; 第三步:用公式:所对应的曲线)(x f y =上在点())(,00x f x 处的切线方程为))(()(00'0x x x f x f y -=-。 6.利用切线方程(或切线的性质)判断参数的值(或取值范围) 第一步:求斜率(导数):求出函数()x f y =在0=x x 处的导数()0'x f ,即函数()x f y =的图象在点 ())(,00x f x 处切线的斜率; 第二步:列关系式:根据已知条件,列出关于参数的关系式; 第三步:求解即可得出结论。 7.注意点:求曲线的切线方程时先分清是“在点处”的切线方程还是“过点”的切线方程。切点已知直接求,切点未知设切点。 二、方法诠释 类型一:在某点的切线方程 例1.求曲线y =x 3-2x +1在点(1,0)处的切线方程。 解: y ′=3x 2-2,∴k =y ′|x =1=3-2=1,∴切线方程为y =x -1. 类型二:过某点(某点不在曲线上)的切线方程 例2.求过点(2,0)且与曲线y =x 3相切的直线方程. 解:点(2,0)不在曲线y =x 3上,可令切点坐标为(x 0,x 30).由题意, 所求直线方程的斜率k =x 3 0-0x 0-2=y ′|x =x 0=3x 2 0,即x 30x 0-2 =3x 20,解得x 0=0或x 0=3. 当x 0=0时,得切点坐标是(0,0),斜率k =0,则所求直线方程是y =0; 当x 0=3时,得切点坐标是(3,27),斜率k =27,则所求直线方程是y -27=27(x -3), 即27x -y -54=0. 综上,所求的直线方程为y =0或27x -y -54=0. 类型三:过某点(某点在曲线上)的切线方程,例如例3的第(2)问 例3.(1)求曲线f (x )=x 3-3x 2+2x 在原点(0,0)处的切线方程。 (2)求过原点(0,0)且与曲线f (x )=x 3-3x 2+2x 相切的切线方程. 解:(1)f ′(x )=3x 2-6x +2,设切线的斜率为k ,k =f ′(0)=2,f (0)=0,所求的切线方程为y =2x . (2)当切点是原点时k =f ′(0)=2,f (0)=0,所求的切线方程为y =2x . 当切点不是原点时,设切点是(x 0,y 0)(x 0≠0),则有y 0=x 30-3x 20+2x 0,k =f ′(x 0)=3x 2 0-6x 0+2,①又k =y 0x 0 =x 2 0-3x 0+2,② 由①②得x 0=32,k =y 0x 0=-14. 所以所求曲线的切线方程为y =2x 或y =-14x . 三、巩固训练

圆锥曲线的定义方程和性质知识点总结

椭圆的定义、性质及标准方程 1. 椭圆的定义: ⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。 ⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<>=+b a b y a x 中心在原点,焦点在x 轴上 )0(12 2 22>>=+b a b x a y 中心在原点,焦点在y 轴上 图形 范围 x a y b ≤≤, x b y a ≤≤, 顶点 ()()()() 12120000A a A a B b B b --,、,,、, ()()()() 12120000A a A a B b B b --,、,,、, 对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F )0(221>=c c F F 离心率 )10(<<= e a c e )10(<<= e a c e 准线 2 a x c =± 2 a y c =± 参数方程与普通方程 22 22 1x y a b +=的参数方程为 ()cos sin x a y b θ θθ=?? =?为参数 22 22 1y x a b +=的参数方程为 ()cos sin y a x b θ θθ =?? =?为参数

§5.3 二次曲线的切线

§5.3 二次曲线的切线 一、概念 1. 定义1:如果直线与二次曲线交于相互重合的两个点,那么这条直线就叫做二次曲线的切线,这个重合的交点叫做切点;如果直线全部在二次曲线上,我们也称它为二次曲线的切线,直线上的每一个点都可以看作切点. 2.定义2:二次曲线F(x, y)=0上满足条件F1(x0, y0)=F2(x0, y0)=0的点(x0, y0)叫做二次曲线的奇异点,简称奇点;二次曲线的非奇异点叫做二次曲线的正常点. 奇点是中心,但中心不一定是奇点. 注:(1) 二次曲线有奇点的充要条件是I3= 0, (2) 二次曲线的奇点一定是二次曲线的中心,但反之不然. 二、切线求法 1.已知切点求切线: 设点(x0, y0)是二次曲线F(x, y)=0上的点, 则通过点(x0, y0)的直线方程总可以写成 那么此直线成为二次曲线切线的条件,当Φ(X, Y)≠0时 ?=[F1(x0, y0)X +F2(x0, y0)Y]2-Φ(X, Y)?F(x0, y0)=0. 因为点 (x0, y0) 在二次曲线上,所以F(x0, y0)=0;因而上式可化为 F1(x0, y0)X +F2(x0, y0)Y=0. 当Φ(X, Y)= 0时除了F(x0, y0)=0外,唯一的条件仍然是 F1(x0, y0)X +F2(x0, y0)Y=0. (1)如果点(x0, y0)是二次曲线F (x, y)=0的正常点:那么由以上条件得 X:Y = F2(x0, y0):(-F1(x0, y0)), 因此切线方程为 或写成, 或 (x-x0)F1(x0, y0)+(y-y0)F2(x0, y0)=0, 其中 (x0, y0) 是它的切点; (2)如果点 (x0, y0) 是二次曲线F (x, y)=0的奇异点,即F1(x0, y0)=F2(x0, y0)=0,则切线方向X:Y不能唯一地被确定,从而通过点 (x0, y0)的切线不确定,这时通过点 (x0, y0) 的任何直线都和二次曲线F (x, y)=0相交于相互重合的两点,我们把这样的直线也看成是二次曲线的切线. 这样我们就得到 定理1:如果点(x0, y0) 是二次曲线F (x, y)= 0的正常点,则通过点(x0, y0)的切线方程是 (x-x0)F1(x0, y0)+(y-y0)F2(x0, y0)=0,(x0, y0)是它的切点.

用导数求切线方程的四种类型

用导数求切线方程的四种类型 浙江 曾安雄 求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线 方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =. 下面例析四种常见的类型及解法. 类型一:已知切点,求曲线的切线方程 此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可. 例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A.34y x =- B.32y x =-+ C.43y x =-+ D.45y x =- 解:由2 ()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为 (1)3(1)y x --=--,即32y x =-+,因而选B. 类型二:已知斜率,求曲线的切线方程 此类题可利用斜率求出切点,再用点斜式方程加以解决. 例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( ) A.230x y -+= B.230x y --= C.210x y -+= D.210x y --= 解:设00()P x y ,为切点,则切点的斜率为0022x x y x ='==|. 01x =∴. 由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,故选D. 评注:此题所给的曲线是抛物线,故也可利用?法加以解决,即设切线方程为2y x b =+,代入2y x =,得220x x b --=,又因为0?=,得1b =-,故选D. 类型三:已知过曲线上一点,求切线方程 过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法. 例3 求过曲线32y x x =-上的点(11)-,的切线方程. 解:设想00()P x y ,为切点,则切线的斜率为02032x x y x ='=-|. ∴切线方程为2000(32)()y y x x x -=--.

第五章二次曲线的一般理论

221340;x kt x y xy y y k t =+?+--=? =+?与二次曲线交于一点{}{}()() 00,,1,,1,v X Y k x y k ===第五章 二次曲线的一般理论 §5.1 二次曲线与直线的相关位置 1.求直线x-y-1=0与二次曲线222210x xy y x y -----=的交点. 解: 将y=x-1代入曲线方程,得 ()()()2 22112110,00 x x x x x x --------==即 故直线在二次曲线上. 2.试决定k 的值,使得 (1) 直线50x y -+=与二次曲线230x x y k -++=交于两不同实点; (2) 直线 (3) 直线10x ky --=与二次曲线22(1)10y xy k y ----=交于两个相互重合的实点; (4) 已知直线11x t y t =+??=-? 与二次曲线222420x xy ky x y ++--=有两个共轭虚点,求k 的值 解: (1). 将y=x+5代入二次曲线方程,得 () ()22 250 2450 4160 4,x x k k k k -++>--+>-->∴<-时直线与二次曲线有两个不同的实交点. (2). 二次曲线的矩阵为1 2 231/201/20 ---- 且 .

()()1,,1120,k X Y k k φφ===-≠时,()()5,,,1120, k X Y k k φφ===-≠时1,5k ∴=当()()()2 210,11210,650,4 k k k k ?=+---=-+=即 即{}{}()()00,,1,,1,0, v X Y k x y ==121,5, k k ==()2 2 21 1 ,2011 01 1 X Y X XY Y X Y I φ=++==-==时,::,同时, ()()()()()21211002002100200430,1,3, 11).1,,10,213 2).3,,,150, 2 1,3,k k k k k F x y X F x y Y k F x y X F x y Y k φ=-+====+=-+ ≠=+=-+≠∴=k,1则当时当时时原直线与二次曲线交于一个实点. (3). 二次曲线的矩阵为1 1 1 1(1)/20(1)/21 k k ----- 且 令 解之,得 1) 当 2) 当 时,直线与二次曲线有二重合实交点. (4). 二次曲线的系数矩阵为 2 21/2 211/21 k ----且:1:(1)X Y =- 取00(,)(1,1),0,x y =<令即27 [(1)(1)](2)(3)02 k k k ++---+< 解得 49 24 k > ,且此时1(1,1)24(1)2024k k Φ-=+-+=->≠, 49 24 k ∴> 时, 直线与二次曲线有两个共轭虚交点。 §5.2 二次曲线的渐进方向、中心、渐进线 1. 求下列二次曲线的渐进方向,并指出曲线是属于何种类型的. ()()()22221230; 23426250;324230.x xy y x y x xy y x y xy x y ++++=++--+=--+= 解:(1) ∴曲线有一个实渐进方向,是抛物型的.

过一点求曲线的切线方程的三种类型

过一点求曲线的切线方程的三种类型 舒云水 过一点求曲线的切线方程有三种不同的类型,下面举例说明﹒ 1.已知曲线)(x f y =上一点))(,(00x f x P ,求曲线在该点处的切线方程﹒ 这是求曲线的切线方程的基本类型,课本上的例、习题都是这种类型﹒其求法为:先求出函数)(x f 的导数)(x f ',再将0x 代入)(x f '求出)(0x f ',即得切线的斜率,后写出切线方程)(0x f y -=)(0x f ')(0x x -,并化简﹒ 例1 求曲线33)(23+-=x x x f 在点)1,1(P 处的切线方程﹒ 解:由题设知点P 在曲线上, ∵x x y 632-=',∴曲线在点)1,1(P 处的切线斜率为3)1(-='f ,所求的切线方程为)1(31--=-x y ,即43+-=x y ﹒ 2. 已知曲线)(x f y =上一点))(,(11x f x A ,求过点A 的曲线的切线方程﹒ 这种类型容易出错,一般学生误认为点A 一定为切点,事实上可能存在过点A 而点A 不是切点的切线,如下面例2,这不同于以前学过的圆、椭圆等二次曲线的情况,要引起注意,这类题型的求法为:设切点为))(,(00x f x P ,先求出函数)(x f 的导数)(x f ',再将0x 代入)(x f '求出)(0x f ',即得切线的斜率(用0x 表示),写出切线方程 )(0x f y -=)(0x f ')(0x x -,再将点A 坐标),(11y x 代入切线方程得)(01x f y -=)(0x f ')(01x x -,求出0x ,最后将0x 代入方程

)(0x f y -=)(0x f ')(0x x -求出切线方程﹒ 例2 求过曲线x x y 23-=上的点)1,1(-的切线方程﹒ 解:设切点为点)2,(0300x x x -,232-='x y ,切线斜率为2320-x , 切线方程为))(23()2(020030x x x x x y --=--﹒ 又知切线过点)1,1(-,把它代入上述方程,得 )1)(23()2(100030x x x x --=---﹒ 解得10=x ,或2 10-=x ﹒ 所求切线方程为)1)(23()21(--=--x y ,或)21)(243()181(+-=+--x y ,即02=--y x ,或0145=-+y x ﹒ 上面所求出的两条直线中,直线02=--y x 是以)1,1(-为切点的切线,而切线0145=-+y x 并不以)1,1(-为切点,实际上它是经过了点)1,1(-且以)87,21(-为切点的直线,如下图所示﹒这说明过曲线上一点的切线,该点未必是切点﹒ 3. 已知曲线)(x f y =外一点))(,(11x f x A ,求过点A 作的曲线的切线方程﹒ 这种类型的题目的解法同上面第二种类型﹒ 例3 过原点O 作曲线6324+-=x x y 的切线,求切线方程﹒(2009年全国卷Ⅰ文21题改编 )

求曲线在点某处或过某点的切线方程

2求曲线在点某处或过某点的切线方程 1.求曲线在某点处的切线 例1.求曲线33y x x =+在点(2,14)P --处的切线方程 分析:由在点(2,14)P --处的切线,可知(2,14)P --是切线的切点。由导数的几何意,可得切线的斜率等于函数33y x x =+在2x =-处的导数,再由直线的点斜式方程可求得切线方程 解:由'2()33f x x =+,得切线的斜率为'(2)15k f =-=, 所以切线方程为1415(2)y x +=+,即1516y x =+ 归纳:这类问题就是已知点P 是切点,求切线方程。可以先求出函数在该点处的导数,它也就是切线的斜率,再运用直线的点斜式方求出切线方程 练习:求曲线12ln(21)y x =++在点(0,1)P 处的切线方程 解:由14()2(21)2121 f x x x x ''=??+=++,得 切线的斜率为(0)4k f '==,故所求的切线方程为 14(0)y x -=-,即410x y -+= 2.求曲线经过点P 处的切线方程 例2.已知曲线C :3()2f x x x =-+,求经过点(1,2)P 的曲线C 的切线方程 错解:由'2()31f x x =-,得'(1)2k f ==, 所以所求的切线方程为22(1)y x -=-,即2y x =。 错因剖析:此处所求的切线只说经过P 点,而没说P 点一定是切点,于是切线的斜率 k 与'(1)f 不一定相等。比如(如图)当02x π≤≤时,正弦曲线sin y x =在点P 处的切线 只有一条:1l ;而经过点P 的切线却有两条:1l 与2l 。 正解:设经过点P (1,2)的直线与曲线C 相 切于点00(,)x y ,则由'2()31f x x =-, 得在点00(,)x y 处的斜率'200()31k f x x ==-,

高考★圆锥曲线★的基本公式推导(学长整合版)

圆锥曲线的几大大题特征公式:焦半径、准线、弦长、切线方程、弦中点公式、极线方程 令狐采学 /*另外,针对“计算不好”的同学,本人提供“硬解定理”供大家无脑使用。具体的请参考本目录下的【硬解定理的推导和使用】文章。*/ 圆锥 曲线 的切 线 方程 在 历年高考题中出现,但是在高中教材及资料都涉及较少。本文主要探索圆锥曲线的切线方程及其应用。从而为解这一类题提供统一、清晰、简捷的解法。 【基础知识1:切线方程、极线方程】 【1-0】公式小结:x2换成xx0,y2换成yy0,x 换成(x+x0)/2,y 换成(y+y0)/2. 【1-1】 椭圆的切线方程 : ①椭圆 12222=+b y a x 上一点),(00y x P 处的切线方程是 12020=+b yy a xx 。 ②过椭圆 122 22=+b y a x 外一点),(00y x P 所引两条切线的切点弦方程是 120 20=+b yy a xx 。 ③椭圆 12 2 22=+b y a x 与直线0=++C Bx Ax 相切的条件是 022222=-+C b B a A (也就是下篇文档所讲的硬解定理公式△=0的充要条件) 【1-2】双曲线的切线方程: ①双曲线12222=-b y a x 上一点),(00y x P 处的切线方程是 12020=-b yy a xx 。 ②过椭圆 122 22=-b y a x 外一点),(00y x P 所引两条切线的切点弦方程是

120 20=-b yy a xx 。 ③椭圆 12 2 22=-b y a x 与直线0=++C Bx Ax 相切的条件是 022222=--C b B a A 【1-3】抛物线的切线方程: 物线 px y 22= 上一点),(00y x P 处的切线方程是 )(200x x p yy += ②过抛物线px y 22=外一点 处所引两条切线是)(200x x p yy += ③抛物线 px y 22=与直线0=++C Bx Ax 相切的条件是AC pB 22= 【1-4】 基础知识的证明: 【公式一:曲线C 上切点公式证明】 1、第1种证明思路:过曲线上一点的切线方程 设曲线C 上某一点处 ),(00y x P 的 切 线 方 程 为 )(00x x k y y -=-, 联立方程,令0=?,得到k 的表达式,再代入原 始式,最后得切线方程式1)()(22 02202020=+=+b y a x b yy a xx (注:k 的表达式可以在草稿中巧用点差法求,具体见下) 2、第2种证明思路:点差法(求斜率,其余跟第一种方法一样) 证明:设某直线与曲线C 交于M 、N 两点坐标分别为),(11y x 、 ),(22y x ,中点 P ),(00y x 则有???????=+=+) 2(.1)1(,122 22 2222 1221 b y a x b y a x ?)2()1(-,得.022 22122221=-+-b y y a x x 22 12121212a b x x y y x x y y -=++?--∴ 又.22,0 0021211212x y x y x x y y x x y y k MN ==++--= 2 200a b x y k MN -=?∴ (弦中点公式的椭圆基本表达式。双曲线则是

一般n次曲线切线方程的推导

一般n 次曲线切线方程的推导 光信1001 黄飞洪 关键词:一般n 次曲线,某点的切线方程, 提要:在求曲线上某点的切线时,通常会使用先求导得到斜率后再求切线,此法在二次曲线中尚可使用,但如果是n 次曲线就不大现实了,因此如果能找到该类曲线切线的某些规律,在求高次曲线的切线方程时会节省很多时间 首先,我们先来分析几个比较特殊的例子: ○1圆A :x 2+y 2=r 2在(x 0,y 0)处的切线方程为x 0x+ y 0y= r 2 ○2椭圆B :A 2a)x +(+B b y 2 )(+=1在(x 0,y 0)处的切线方程为1))(())((00=+++++B b y b y A a x a x ○3双曲线C :A 2a)x +(-B b y 2 )(+在(x 0,y 0 )处的切线方程为1))(())((00=++-++B b y b y A a x a x ○4抛物线C :y 2 =2px 在(x 0,y 0)处的切线方程为y 0y=p(x+x 0) 以上都是几个比较典型的二次曲线在某点切线的方程,总结起来就是在原曲线方程框架的基础上将x 2(或y 2)型变为x 0x (或y 0y )型,x(或y)型转变为2 0x x +(或20y y +)型,但在一般的二次曲线中包含了xy 的项,那么,这种一般型曲线的切线是否仍存在某种规律呢? 设f(x,y)=Ax 2+Bxy+Cy 2+Dx+Ey+F=0,求在(x 0,y 0)处的切线方程 方程两边求导得2Ax+By+Bxy ’+2Cyy ’+D+Ey ’=0 y’= -E Cy Bx D By Ax ++++220 ∴在(x 0,y 0)处的切线方程为y-y 0= - E Cy Bx D By Ax ++++220(x-x 0)

求曲线 的切线方程的几种方法

2017届高三数学二轮复习——求曲线)(x f y =的切线方程的 几种方法 课前预习 1、已知函数()ln (,)f x m x nx m n =+∈R ,曲线()y f x =在点(1,(1))f 处的切线方程为220x y --=,则m n += 2、若x 轴是曲线 3ln )(+-=kx x x f 的一条切线,则=k 3、已知曲线x y =与x y 8=的交点为P ,两曲线在点P 处的切线分别为21,l l ,则切线21,l l 与y 轴所围成的三角形的面积为 4、已知函数x x f =)(,x a x ln )(g =,R a ∈.若曲线)(x f y =与曲线)(x g y =相交,且在交点处有相同的切线,则切线方程为 5、在平面直角坐标系xOy 中,直线l 与曲线)0(2>= x x y 和)0(3>=x x y 均相切,切点分别为),(11y x A 和),(22y x B ,则=2 1x x 典型例题 例1、已知函数 x x x f 32)(3-=. (1)求)(x f 在点)1,1(-处的切线方程; (2)若过点)1(t P ,存在3条直线与曲线)(x f y =相切,求t 的取值范围.

例2、已知函数为常数)b a b ax x x x f ,(2 5)(23+++=,其图象是曲线C . (1)当2-=a 时,求函数)(x f 的单调递减区间; (2)已知点A 为曲线C 上的动点,在点A 处作曲线C 的切线1l 与曲线C 交于另一个点B ,在点B 处作曲线C 的切线2l ,设切线21l l ,的斜率分别为21,k k .问:是否存在常数λ,使得12 k k λ=?若存在,求出λ的值;若不存在,请说明理由. 例3、对于函数 )(x f ,)(g x ,如果它们的图象有公共点P ,且在点P 处的切线相同,则称函数)(x f 和)(g x 在点P 处相切,称点P 为这两个函数的切点.设函数)0()(2≠-=a bx ax x f ,()x x ln g =. (1)当0,1=-=b a 时,判断函数 )(x f 和)(g x 是否相切,并说明理由; (2)已知0>=a b a ,,且函数)(x f 和)(g x 相切,求切点P 的坐标.

圆锥曲线方程知识点总结

§8.圆锥曲线方程 知识要点 一、椭圆方程. 1. 椭圆方程的第一定义:为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2, 2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+ ⑴①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12 222 b a b y a x =+ . ii. 中心在原点,焦点在y 轴上:)0(12 22 2 b a b x a y =+ . ②一般方程:)0,0(122 B A By Ax =+. ③椭圆的标准方程:122 2 2=+ b y a x 的参数方程为?? ?==θ θsin cos b y a x (一象限θ应是属于20π θ ). ⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±. > ②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2. ③焦点:)0,)(0,(c c -或),0)(,0(c c -. ④焦距:2221,2b a c c F F -==. ⑤准线:c a x 2±=或c a y 2 ±=. ⑥离心率:)10( e a c e =. ⑦焦点半径: i. 设),(00y x P 为椭圆 )0(12222 b a b y a x =+ 上的一点,21,F F 为左、右焦点,则 》 ii.设),(00y x P 为椭圆)0(12 22 2 b a a y b x =+ 上的一点,21,F F 为上、下焦点,则 由椭圆第二定义可知:)0()(),0()(0002 200201 x a ex x c a e pF x ex a c a x e pF -=-=+=+=归结起来为“左加右减”. 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:),(222 2a b c a b d -=和),(2a b c ⑶共离心率的椭圆系的方程:椭圆 )0(12 22 2 b a b y a x =+的离心率是)(22b a c a c e -== ,方程t t b y a x (2 22 2=+是大于0的参数,)0 b a 的离心率也是a c e = 我们称此方程为共离心率的椭圆系方程. ⑸若P 是椭圆: 12 22 2=+b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ?的面积为2 tan 2θ b (用 ? -=+=0201,ex a PF ex a PF ? -=+=0201,ey a PF ey a PF

曲线方程及圆锥曲线的综合问题

普通高中课程标准实验教科书一数学[人教版] 高三新数学第一轮复习教案(讲座35)—曲线方程及圆锥曲线的综 合问题 一.课标要求: 1 ?由方程研究曲线,特别是圆锥曲线的几何性质问题常化为等式解决,要加强等价转化思想的训练; 2?通过圆锥曲线与方程的学习,进一步体会数形结合的思想; 3.了解圆锥曲线的简单应用。 二.命题走向 近年来圆锥曲线在高考中比较稳定,解答题往往以中档题或以押轴题形式出现,主要考 察学生逻辑推理能力、运算能力,考察学生综合运用数学知识解决问题的能力。但圆锥曲线 在新课标中化归到选学内容,要求有所降低,估计2007年高考对本讲的考察,仍将以以下 三类题型为主。 1.求曲线(或轨迹)的方程,对于这类问题,高考常常不给出图形或不给出坐标系,以考察学生理解解析几何问题的基本思想方法和能力; 2?与圆锥曲线有关的最值问题、参数范围问题,这类问题的综合型较大,解题中需要根据具体问题、灵活运用解析几何、平面几何、函数、不等式、三角知识,正确的构造不等式或方程,体现了解析几何与其他数学知识的联系。 预测07年高考: 1.出现1道复合其它知识的圆锥曲线综合题; 2?可能出现1道考查求轨迹的选择题或填空题,也可能出现在解答题中间的小问。 .要点精讲 1.曲线方程 (1)求曲线(图形)方程的方法及其具体步骤如下: 这五个步骤(不包括证明)可浓缩为五字“口诀”:建设现(限)代化” (2)求曲线方程的常见方法: 直接法:也叫“五步法”,即按照求曲线方程的五个步骤来求解。这是求曲线方程的基本方法。 转移代入法:这个方法又叫相关点法或坐标代换法。即利用动

点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解。 几何法:就是根据图形的几何性质而得到轨迹方程的方法。 参数法:根据题中给定的轨迹条件,用一个参数来分别动点的坐标,间接地把坐标x,y 联系起来,得到用参数表示的方程。如果消去参数,就可以得到轨迹的普通方程。 2 ?圆锥曲线综合问题 (1)圆锥曲线中的最值问题、范围问题 通常有两类:一类是有关长度和面积的最值问题;一类是圆锥曲线中有关的几何元素的 最值问题。这些问题往往通过定义,结合几何知识,建立目标函数,利用函数的性质或不等 式知识,以及观形、设参、转化、替换等途径来解决。解题时要注意函数思想的运用,要注意观察、分析图形的特征,将形和数结合起来。 圆锥曲线的弦长求法: 设圆锥曲线C: f(x, y)=0与直线I :y=kx+b相交于A(x1, y1)、B(x2, y2)两点,则弦 长| AB|为: (1) 1 AB|= Jl + k" ■ |至]一葢jL + k? * J(签i+窿])】_4耳]嘉 或|AB|二J1 +存I珀-讣J1 +占》丁⑦+力尸-细诙. 若弦AB过圆锥曲线的焦点F,则可用焦半径求弦长,|AB|=|AF|+|BF|. 在解析几何中求最值,关键是建立所求量关于自变量的函数关系,再利用代数方法求出 相应的最值.注意点是要考虑曲线上点坐标(x, y)的取值范围。 (2)对称、存在性问题,与圆锥曲线有关的证明问题 它涉及到线段相等、角相等、直线平行、垂直的证明方法,以及定点、定值问题的判断方法。 (3)实际应用题 数学应用题是高考中必考的题型,随着高考改革的深入,同时课本上也出现了许多与圆 锥曲线相关的实际应用问题,如桥梁的设计、探照灯反光镜的设计、声音探测,以及行星、人造卫星、彗星运行轨道的计算等。 涉及与圆锥曲线有关的应用问题的解决关键是建立坐标系,合理选择曲线模型,然后转 化为相应的数学问题作出定量或定性分析与判断,解题的一般思想是: 建立坐标系 (4)知识交汇题 圆锥曲线经常和数列、三角、平面向量、不等式、推理知识结合到一块出现部分有较强 区分度的综合题。 四.典例解析 题型1 :求轨迹方程 例1. (1) 一动圆与圆x2 y2 6x 5 0外切,同时与圆x2 y2 6x 91 0内切,求动圆圆心M的轨迹方程,并说明它是什么样的曲线。

圆锥曲线的切线方程总结

运用联想探究圆锥曲线的切线方程 现行人教版统编教材高中数学第二册上、第75页例题2,给出了经过圆2 22r y x =+上 一点),(00y x M 的切线方程为2 00r y y x x =+;当),(00y x M 在圆外时,过M 点引切线有且只有两条,过两切点的弦所在直线方程为2 00r y y x x =+。那么,在圆锥曲线中,又 将如何?我们不妨进行几个联想。 联想一:(1)过椭圆)0(122 22>>=+b a b y a x 上一点),(00y x M 切线方程为 1202 0=+b y y a x x ;(2)当),(00y x M 在椭圆122 22=+b y a x 的外部时,过M 引切线有两条,过两切点的弦所在直线方程为:12020=+b y y a x x 证明:(1)2222 1x y a b +=的两边对x 求导,得22220x yy a b ' +=,得020 2 x x b x y a y ='=-,由点斜式得切线方程为20 0020 ()b x y y x x a y -=--,即22000022221x x y y x y a b a b +=+= 。 (2)设过椭圆)0(122 22>>=+b a b y a x 外一点),(00y x M 引两条切线,切点分别 为),(11y x A 、),(22y x B 。由(1)可知过A 、B 两点的切线方程分别为:12121=+b y y a x x 、 12222=+b y y a x x 。又因),(0 0y x M 是两条切线的交点,所以有1201201=+b y y a x x 、120 2202=+b y y a x x 。观察以上两个等式,发现),(11y x A 、),(22y x B 满足直线12020=+b y y a x x ,所以过两切点A 、B 两点的直线方程为12020=+b y y a x x 。 评注:因),(00y x M 在椭圆)0(12222>>=+b a b y a x 上的位置(在椭圆上或椭圆 外)的不同,同一方程12020=+b y y a x x 表示直线的几何意义亦不同。 联想二:(1)过双曲线)0,0(122 22>>=-b a b y a x 上一点),(00y x M 切线方程为 1202 0=-b y y a x x ;(2)当),(00y x M 在双曲线122 22=-b y a x 的外部时,过M 引切线有两条,过两切点的弦所在直线方程为:12020=-b y y a x x 。(证明同上) 联想三:(1)过圆锥曲线2 2 0Ax Cy Dx Ey F ++++=(A ,C 不全为零)上的点 ),(00y x M 的切线方程为00 00022 x x y y Ax x Cy y D E F ++++++=;(2)当

曲线上一点处的切线教案

曲线上一点处的切线 响水县第二中学 授课人:陈强 时间:2016.11.19 教学目标 1、知识技能目标:理解并掌握曲线在一点处的切线的斜率概念及求法. 2、过程方法目标:掌握“局部以直代曲”和“用割线逼近切线”的思想方法. 3、情感态度价值观目标:培养学生从实际问题中去发现问题、解决问题(数学思想)的能力. 教学重点 理解曲线在一点处的切线的斜率的定义,掌握曲线在一点处切线斜率及切线方程的求法。 教学难点 对“无限逼近”、“局部以直代曲”的理解以及会求在某点处的切线斜率. 教学过程 一、情境导入 1.函数()f x 在区间[]12x x ,上的平均变化率为2121 ()()f x f x x x --. 即:曲线上两点的连线(割线)的斜率(平均变化率)近似地刻画了曲线在某个区间上的变化趋势. 2.如何精确地刻画曲线上某一点处的变化趋势呢?(点P 附近的曲线的研究) 从直线上某点的变化趋势的研究谈起,结合“天圆地方”的故事带来“宏观上曲,微观上直”,“曲绝对,直相对”的初步感受,后提出“放大图形”的朴素方法. (1)观察“点P 附近的曲线”你看到了怎样的现象? (2)“几乎成了一条直线”,有明确位置么?(趋势)又为什么说是“几乎”近) 二、建构数学 1.割线逼近切线 动画演示,观察点Q 的运动,直线PQ 线PQ 斜率的变化,生成概念. Q 为曲线上不同于点P 的一点,这时, 直线PQ 称为曲线的割线; 随着点Q 沿曲线向点P 运动, 割线PQ 在点P 附近越来越逼近曲线, 当点Q 无限逼近点P 时,直线PQ 最 终成为点P 处最逼近曲线的直线l ,

这条直线l 也称为曲线在点P 处的切线. 2.割线斜率逼近切线斜率 切线的概念提供了求切线斜率的方法. 再提中心问题:对比平均变化率这一近似刻画曲线在某个区间上的变化趋势的数学模型,在这里平均变化率表示为什么?我又用怎样数学模型来刻画曲线上P 点处的变化趋势呢? 为了更好地反映点Q 沿曲线向点P 运动,我们选择了一个变量x ?. 不妨设(())P x f x ,,(())Q x x f x x +?+?,,则割线PQ 的斜率为 ()()()()()PQ f x x f x f x x f x k x x x x +?-+?-==+?-?,当点Q 沿着曲线向点P 无限靠近时,割线PQ 的斜率 就会无限逼近点P 处切线斜率,即当x ?无限趋近于0时,()()f x x f x x +?-?无限趋近点(())P x f x ,处切线斜率. 三、例题展示: 例1:已知2()f x x =,求曲线()y f x =在2x =处的切线斜率. 变式1:已知2()f x x =,求曲线()y f x =在1x =-处的切线斜率和切线方程 变式2:已知1()f x x -=,求曲线()y f x =在1x =-处的切线斜率和切线方程. 例2:一跳水运动员从10m 高跳台腾空到入水的过程中,不同时刻的速度是不同的,假设()t s 后 运动员相对于水面的高度为 2() 4.9 6.510H t t t =-++,试确定2t s =时运动员的速度。 练习:练习:已知f(x)= x ,求曲线y=f(x)在x=0.5处的切线斜率是什么?

相关主题
文本预览
相关文档 最新文档