当前位置:文档之家› 机器人视觉伺服技术发展概况综述

机器人视觉伺服技术发展概况综述

机器人视觉伺服技术发展概况综述
机器人视觉伺服技术发展概况综述

机器人视觉伺服技术发展概况综述

目前,在全世界的制造业中,工业机器人已经在生产中起到了越来越重要的作用。为了使机器人能够胜任更复杂的工作,机器人不但要有更好的控制系统,还需要更多地感知环境的变化。其中机器人视觉以其信息量大、信息完整成为最重要的机器人感知功能。

机器人视觉伺服系统是机器视觉和机器人控制的有机结合,是一个非线性、强耦合的复杂系统,其内容涉及图象处理、机器人运动学和动力学、控制理论等研究领域。随着摄像设备性能价格比和计算机信息处理速度的提高,以及有关理论的日益完善,视觉伺服已具备实际应用的技术条件,相关的技术问题也成为当前研究的热点。

本文对机器人视觉伺服技术进行了综述,介绍了机器人视觉伺服系统的概念及发展历程和分类,重点介绍了基于位置的视觉伺服系统和基于图像的视觉伺服系统。对机器人视觉所涉及的前沿问题做了概括,并指出了目前研究中所存在的问题及今后发展方向。

机器人视觉伺服系统

视觉伺服的定义:

人类对于外部的信息获取大部分是通过眼睛获得的,千百年来人类一直梦想着能够制造出智能机器,这种智能机器首先具有人眼的功能,可以对外部世界进行认识和理解。人脑中有很多组织参与了视觉信息的处理,因而能够轻易的处理许多视觉问题,可是视觉认知作为一个过程,人类却知道的很少,从而造成了对智能机器的梦想一直难以实现。随着照相机技术的发展和计算机技术的出现,具有视觉功能的智能机器开始被人类制造出来,逐步形成了机器视觉学科和产业。所谓机器视觉,美国制造工程师协会(sme society of manufacturing engineers)机器视觉分会和美国机器人工业协会(ria robotic industries association) 的自动化视觉分会给出的定义是:

“机器视觉是通过光学的装置和非接触的传感器自动地接收和处理一个真实物体的图像,以获得所需信息或用于控制机器人运动的装置。”

机器视觉作为与人眼类似的机器仿生系统,从广义角度凡是通过光学装置获取真实物体的信息以及对相关信息的处理与执行都是机器视觉,这就包括了可见视觉以及非可见视觉,甚至包括人类视觉不能直接观察到的、物体内部信息的获取与处理等。

机器人视觉发展历程

上个世纪60年代,由于机器人和计算机技术的发展,人们开始研究具有视觉功能的机器人。但在这些研究中,机器人的视觉与机器人的动作,严格上讲是开环的。机器人的视觉系统通过图像处理,得到目标位姿,然后根据目标位姿,计算出机器运动的位姿,在整个过程中,视觉系统一次性地“提供”信息,然后就不参与过程了。在1973年,有人将视觉系统应用于机器人控制系统,在这一时期把这一过程称作视觉反馈(visual feedback)。直到1979年,hill和park提出了“视觉伺服”(visual servo)概念。很明显,视觉反馈的含义只是从视觉信息中提取反馈信号,而视觉伺服则是包括了从视觉信号处理,到机器人控制的全过程,所以视觉伺服比视觉反馈能更全面地反映机器人视觉和控制的有关研究内容。

上个世纪80年以来,随着计算机技术和摄像设备的发展,机器人视觉伺服系统的技术问题吸引了众多研究人员的注意。在过去的几年里,机器人视觉伺服无论是在理论上还是在应用方面都取得了很大进展。在许多学术会议上,视觉伺服技术经常列为会议的一个专题。视觉伺服已逐渐发展为跨机器人、自动控制和图像处理等技术领域的一门独立技术。

机器人视觉伺服系统分类:

目前,机器人视觉伺服控制系统有以下几种分类方式:

·按照摄像机的数目的不同,可分为单目视觉伺服系统、双目视觉伺服系统以及多目视觉伺服系统

单目视觉系统只能得到二维平面图像,无法直接得到目标的深度信息;多目视觉伺服系统可以获取目标多方向的图像,得到的信息丰富,但图像的信息处理量大,且摄像机越多越难以保证系统的稳定性。当前的视觉伺服系统主要采用双目视觉。

·按照摄像机放置位置的不同,可以分为手眼系统(eye in hand)和固定摄像机系统(eye to hand或stand alone)

在理论上手眼系统能够实现精确控制,但对系统的标定误差和机器人运动误差敏感;固定摄像机系统对机器人的运动学误差不敏感,但同等情况下得到的目标位姿信息的精度不如手眼系统,所以控制精度相对也低。

·按照机器人的空间位置或图像特征,视觉伺服系统分为基于位置的视觉伺服系统和基于图像的视觉伺服系统

图1 基于位置控制的动态look and move系统

在基于位置的视觉伺服系统(如图1所示)中,对图像进行处理后计算出目标相对于摄像机和机器人的位姿,所以这就要求对摄像机、目标和机器人的模型进行校准,校准精度影响控制精度,这是这种方法的难点。控制时将需要变化的位姿转化成机器人关节转动的角度,由关节控制器来控制机器人关节转动。

在基于图像的视觉伺服系统(如图2所示)中,控制误差信息来自于目标图像特征与期望图像特征之间的差异。对于这种控制方法,关键的问题是如何建立反映图像差异变化与机器手位姿速度变化之间关系的图

像雅可比矩阵;另外一个问题是,图像是二维的,计算图像雅可比矩阵需要估计目标深度(三维信息),而深度估计一直是计算机视觉中的难点。

图2 基于图像控制的direct visual servo系统

雅可比矩阵的计算方法有公式推导法、标定法、估计方法以及学习方法等,前者可以根据模型推导或标定得到,后者可以在线估计,学习方法主要利用神经网络方法。

·按照采用闭环关节控制器的机器人,视觉伺服系统分为动态观察-移动系统和直接伺服

前者采用机器人关节反馈内环稳定机械臂,由图像处理模块计算出摄像机应具有的速度或位置增量,反馈至机器人关节控制器;后者则由图像处理模块直接计算机器人手臂各关节运动的控制量。

视觉伺服所面临的主要问题

视觉伺服的研究到目前已有近20年的历史,但是由于视觉伺服所涉及的学科众多,所以其发展有赖于这些学科的发展,目前在视觉伺服的研究中仍然有很多问题没有很好地解决。

·图像处理的方法在理论和实际计算处理速度上都是图像伺服最大的难点;

·在图像处理完成后,图像特征与机器人关节运动之间模型的建立是图像伺服的另一难点;

·目前的许多控制方法都不能保证系统在工作时是大范围稳定的,所以对有关控制方法的研究也是必要的。

视觉伺服的发展前景

未来视觉伺服的研究方向主要有以下几方面:

·在实际环境下快速、鲁棒地获取图像特征是视觉伺服系统的关键问题

由于图像处理的信息量大和可编程器件技术的发展,近期把通用算法硬件化,以加快信息处理的速度的方法可能会使这一问题的研究取得进展。

·建立适合机器人视觉系统的有关理论和软件

目前的许多机器人视觉伺服系统的图像处理方法都不是针对机器人视觉系统的,如果有这样的专用的软件平台,在完成视觉伺服任务时,就可以减少工作量,甚至可以通过视觉信息处理硬件化来提高视觉伺服系统的性能。

·将各种人工智能方法应用于机器人视觉伺服系统

虽然神经网络在机器人视觉伺服中已得到应用,但许多智能方法在机器人视觉伺服系统中还没有得到充分地应用,而且,目前研究有过于依赖数学建模和数学计算的倾向,这使得机器人视觉伺服系统在工作时计算量太大,目前计算机的处理速度很难满足系统快速性的要求,但是人类在实现有关的功能时并不是通过大量的计算来完成的,这就启发大家是否可以用人工智能的方法降低数学计算量,以满足系统快速性的要求。

·将主动视觉技术应用于机器人视觉伺服系统

主动视觉是当今计算机视觉和机器视觉研究领域中的一个热点,在这里视觉系统能主动地感知环境,按一定规则主动地提取需要的图像特征,这使得在一般情况下难以解决的问题得以解决。

·将视觉传感器与其它外部传感器结合起来

为了使机器人能够更全面地感知环境,特别是对机器人视觉系统起信息补充,可以将多种传感器加入机器人视觉系统,这样做可以克服机器人视觉系统的一些困难,但多传感器的引入,就需要解决机器人视觉系统的信息融合和信息冗余问题。

结语

近年来,机器人视觉伺服技术有了很大发展,国内、外机器人视觉系统的实际应用也越来越多,许多技术难题都有希望在近期的研究中取得进展。在未来一段时间内,机器人视觉伺服系统将在机器人技术中占有突出的地位,机器人视觉伺服系统将会越来越多地应用于工业生产中。

机器人视觉伺服系统综述

机器人视觉伺服系统综述 摘要:对机器人视觉伺服系统进行阐述,介绍了机器人视觉伺服系统的概念、发展历程以及研究背景;并从不同的角度对机器人视觉伺服系统进行了分类。最后介绍了该领域的研究现状、所取得的成就,以及今后的发展趋势。 关键词:机器人;视觉伺服;综述 Survey of robot visual servoing system Abstract:: In this paper,the survey of robot visual servoing system are introduced.The paper reviews the concept and history background of robot visual servoing system.This article also classify the robot visual servo system from different aspects. Finally, it introduce the research status quo, achievements and future trends in the field. Key words:robot, visual servoing, summary 1.引言 随着先进科学技术的不断发展,机器人已经在生产和生活中起到了越来越重要的作用,因次人们不断对机器人技术提出更高的要求。为了使机器人能够完成更加复杂的工作,适应更加复杂的环境,机器人不仅需要更加完善的控制统,还需要能够更多的感知环境的变化。而影响其发展的一个重要原因就是机器人缺少像人一样的感知能力,在人们为机器人添加各种外部传感器的过程中,机器人视觉以其信息大、信息完整成为最重要的机器人感知功能[1]。 机器人的视觉伺服系统是机器人的视觉和机器人控制的相结合的复杂系统。其内容包括了图像的采集与处理、运动学和动力学、自动控制理论及其系统数据实时分析等领域于一体的新兴交叉学科。随着摄像技术和计算机技术的发展,以及相关理论的日益完善和实践的不断检验,视觉伺服已具备了在实际中应用的条件;而随着机器人应用领域的不断扩展,重要性也不断提高,与其相关技术问题已经成为了当前的研究热点[2]。所以实现机器人视觉伺服控制有相当的难度,是机器人研究领域中具有挑战性的课题。 2.机器人视觉伺服系统 2.1机器人视觉伺服系统的定义

自由漂浮空间机器人视觉伺服系统研究

第38卷第2期一一一一一一一一一一一哈一尔一滨一工一程一大一学一学一报一一一一一一一一一一Vol.38?.2 2017年2月一一一一一 一一 一一一 JournalofHarbinEngineeringUniversity一一一一一一一一一一一Feb.2017 自由漂浮空间机器人视觉伺服系统研究 刘阳,谢宗武,王滨,刘宏,蔡鹤皋 (哈尔滨工业大学机器人技术与系统国家重点实验室,黑龙江哈尔滨150001) 摘一要:为了将动力学模块引入传统的视觉伺服控制算法,使其更加符合真实模型三本文以自由漂浮空间机器人视觉伺服为目标,分析了其系统组成与工作原理三采用广义雅克比的方法完成其速度级的运动学建模,并在6D空间下分析其动力学模型三机械臂采用PD与前馈控制完成笛卡尔空间点到点连续路径规划三借助双目手眼相机完成非合作目标位姿的提取,进而完成视觉伺服系统的搭建三本文算法可将机械臂控制算法引入到空间机器人视觉伺服系统,使得机器人控制更加方便,具有结构简单成本低等优点三通过搭建SimMechanics仿真模型,实现了对期望轨迹的跟踪,验证了视觉伺服算法的正确性三 关键词:空间机器人;视觉伺服;自由漂浮;动力学;双目视觉DOI:10.11990/jheu.201605027 网络出版地址:http://www.cnki.net/kcms/detail/23.1390.u.20161116.1613.002.html中图分类号:TP242.3一文献标志码:A一文章编号:1006-7043(2017)02-0153-07 Researchonthevisualservosystemofafree?floatingspacerobot LIUYang,XIEZongwu,WANGBin,LIUHong,CAIHegao (StateKeyLaboratoryofRoboticsandSystem,HarbinInstituteofTechnology,Harbin150001,China) Abstract:Inordertoaddthedynamicmodelofthespacerobottothetraditionalvisualservoalgorithmandenhancetheauthenticityofthesimulationsystem,thispaperanalyzesthecompositionandprincipleofafree?floatingspacerobot,focusingonitsvisualservosystem.GeneralizedJacobianmatrixwasusedtocompletekinematicmodelofthefree?floatingspacerobot,andthedynamicsmodelwasdiscussedundertheconditionof6Dspatialvector.BasedonPDandfeedforwardcontrol,thepathplanningoftherobotwasprogrammedinCartesianspace.Abinocularhand?eyecamerasystemwasbuilttoextracttheposeofthenon?cooperativesatellitewhichfurtherusedtocompletethevisualservosystem.Variousrobotcontrolalgorithmscanbeintroducedtothevisualservosystemthatmakesitmoreconvenientandtakesadvantageofsimplemechanismwithlowcost.BybuildingaSimMechanicsmodel,theexpec?tedtrajectoryhadbeentrackedsuccessfullywhichprovedthevisualservosystemright.Keywords:spacerobot;visualservo;free?floating;dynamics;binocularvision收稿日期:2016-05-09.网络出版日期:2016-11-16.基金项目:国家重点基础研究发展计划(2013CB733105).作者简介:刘阳(1990-),男,博士研究生; 谢宗武(1973-),男,教授,博士生导师;王滨(1973-),男,副教授; 刘宏(1966-),男,教授,博士生导师, 长江学者计划 特聘教授; 蔡鹤皋(1934-),男,教授,博士生导师,中国工程院院士.通信作者:王滨,E?mail:wbhit@hit.edu.cn. 一一随着科学技术水平的发展,每年发射进入太空的航天器数目在逐渐增大三UCS(unionofconcernedscientists)卫星数据显示[1],截止到2016年1月1日,太空中活动卫星的数量为1381,其中493颗卫星运行于同步地球轨道三这些活动卫星中大约有68%的卫星处于不受控状态,如废弃卫星二火箭残留物以及太空垃圾[2]三每年都有卫星由于发射失败 而无法正确进入轨道,从而造成大量的经济损失三此类卫星经过在轨维护,大多可以继续服务三 作为主要的在轨维护设备,空间机器人能够胜任卫星维修二能源补充二货物运输等多项太空任务[3-8]三随着太空任务的复杂化,宇航员的操作风险大大提高,利用空间机器人代替宇航员完成空间工作已成为当前空间探索的新趋势三中国将在未来五年内建成我国独立自主研发的空间站,空间站各舱段之间的组装依赖的也是空间机器人三 空间机器人是一个强非线性系统,其运动学与动力学之间存在着动力学耦合[9]三空间微重力环境下对其进行实时控制存在很大困难,同时风险高二难度大三视觉伺服的引入使得空间机器人在执行空间任务时变得智能化,能够根据不同的环境采取不 万方数据

(完整版)工业机器人文献综述

工业机器人文献综述 生产力在不断进步,推动养科技的进步与革新,以建立更加合理 的生产关系。自工业革命以来,人力劳动己经逐渐被机械所取代,而这种变革为人类社会创造出巨大的财富,极大地推动了人类社会的进步时至今天,机电一体化,机械智能化等技术应运而生并己经成为时代的主旋律。 1.工业机器人的发展: 1.1 机器人概念的诞生 机器人技术一词虽然出现的较晚,但这一概念在人类的想象中却早已出现。自古以来,有不少科学家和杰出工匠都曾制造出具有人类特点或具有动物特征的机器人雏形。我国西周时期的能工巧匠就研制出了能歌善舞的伶人,这是我国最早的涉及机器人概念的文章记录,此外春秋后期鲁班制造过一只木鸟,能在空中飞行,体现了我国劳动人民的智慧。机器人一词由捷克作家--卡雷尔.恰佩克在他的讽刺剧《罗莎姆的万能机器人》中首次提出,剧中描述了一机器奴仆Robot。此次Robot被沿用下来,中文译成机器人。1942年美国科幻作家埃萨克.阿西莫夫在他的科幻小说《我.机器人》中提出了“机器人三大定律”,这三大定律后来成为学术界默认的研发原则。现代机器人出现于20世纪中期,当计算机技术出现,电子技术的进步,数控机床的出现及与机器人相关的控制技术和零件加工技术的成熟,为现代机器人的发展打下了基础。 1.2 国内机器人的发展史 在我国目前采用工业机器人的行业主要有汽车行业、摩托车、电 器、工程机械、石油化工等行业。我国作为亚洲第三大的工业机器人需求国,对于工业机器人的需求量在逐年增加,从而吸引了大批工业机器人的制造商,加快了我国工业机器人技术的发展第一阶段是20世纪80年代,我国为t跟踪国际机器人技术的道路,当时以原机械工业部为主,航天工业部等部门联合组织国内的相关研究单位开展了工业机器人的研究,先后推出了弧焊、点焊、喷漆等多种工业机器人。直到90年代,通过国家863计划等的K77,我国具备t独!)设计不}}生产工业机器人的能力,培养了一批高水平的研究生产队伍进入21世纪,中国的工业机器人发展进入t一个崭新的阶段,其中最大的特点是以企业为主体,以市场为导向、赢利为目标的机器人产业开发群体止在形成。尽管国外大的工业机器人公司为了占领中国不断扩大的市场,加大了其在中国的经销力度,但是中国的机器人企业以自己独有的市场信息优势、售前售后的服}}c势、针对中国企业的工艺特点的专门化设计优势努力争取自己的市场地位随养全球经济的一体化发展,世界制造中心向中国转移的趋势,中国工业机器人的产业会快速的发展起来,特别重要的是研制单位必须和需求紧密结合,让机器人走进工厂,实现真止的产业化。 经过20多年的探索,我国的工业机器人自动化技术取得t长足的发展,但是与世界发达国家相比,还有不小的差距;机器人应用工程起步也较晚,应用领域窄,生产线系统技术落后随养我国制造业-尤其是汽车行业的发展,对工业机器人的需求日益增长,工业机器人的拥有量远远不能满足需求量。尤其是基础零部件和元器件生产和制造、机器人可靠性以及成木等问题,都存在很多问题。尤其在大负载工业机器人方而,不仅产品长期大量依靠从国外引进,在维护、更新改造方而对国外的依赖也相当严重。 1.3国内外工业机器人的发展方向

机器人发展概况

目录 (一)、机器人运动系统的组成、基本结构 (1) 1、驱动系统 (2) 2、感受系统 (2) 3、机器人——环境交互系统 (3) 4、人机交互系统 (3) 5、控制系统 (3) 6、机械传动结构 (3) (二)、国内外机器人厂家的对比 (4) 1、技术差距 (4) 2、品牌厂家 (5) 3、产品系列 (5) 4、产品价格及成本 (8) (三)机器人控制的智能化、网络化发展 (9) 1、国产机器人的发展状况 (9) 2、应用市场和产品类型的变化 (10) 3、高端智能化机器人将成重点 (11)

智能机器人运动控制系统的综述及发展摘要:本文简述了机器人控制系统,讨论了该系统的分类。综述了机器人控制系统最新的研究内容和成果,调研了机器人控制系统的市场应用。发现,机器人在工业、国防、科研、教育以及人们的日常生活等诸多领域都已广泛应用,并向着标准化、模块化、智能化不展。 关键词:机器人控制系统研究市场 (一)、机器人运动系统的组成、基本结构如图1和图2所示,机器人由机械部分、传感部分、控制部分三大部分组成。这三大部分可以分成驱动系统、机械结构系统、感受系统、机器人—环境交互系统六个子系统。

图1 机器人的基本结构示意图 图2 机器人基本组成示意图 1、驱动系统 要使机器人运作起来,各需各个关节即每个运动自由度安置传动装置。这就是驱动系统。驱动系统可以是液压传动、气压传动、电动传动、或者把它们结合起来应用综合系统,可以是直接驱动或者通过同步带、链条、轮系、谐波齿轮等机械传动机构进行间接传动。 2、感受系统 它由内部传感器模块和外部传感器模块组成,获取内部和外部环境状态中有意义的信息。智能化传感器的使用提高了机器人的机动性、适应性和智能化水准。人类的感受系统对感知外部世界信息是极其灵巧

视觉伺服控制算法优化综述

视觉伺服控制算法优化综述 摘要:系统论述了视觉伺服控制的应用现状。重点介绍了针对不同的实际情况,提出优化的基于位置的视觉伺服系统和基于图像的视觉伺服系统的控制算法。优化后的算法效率高,具有很强的有效性和可行性。优化后的控制系统功能更强,更精确有效。 关键词:视觉伺服;优化;算法 Survey of Visual Servoing control algorithm Abstract:The application status of the visual servo control are reviewed . For different realities , we put fortward an improved position-based visual servo systems and image -based visual servo control algorithm of the system. High efficiency of the improved algorithm has strong effectiveness and feasibility. The improved control system functions stronger, and become more precise and effective. Keywords:Visual Servoing;improve;Algorithm

1 引言 随着科技的快速发展,在现代工业自动化生产过程中,机器视觉正成为一种提高生产效率和保证产品质量的关键技术,如机械零件的自动检测、智能机器人控制及生产线的自动监控等。 基于视觉的伺服策略是采用相机所观察的特征来控制机器人移动的一种灵活有效的方法。视觉伺服主要分为3种:基于位置的视觉伺服(PBVS)、基于图像的视觉伺服(IBVS)和混合控制视觉伺服。早期的研究主要是基于位置的视觉伺服研究,近年来主要是基于图像的视觉伺服研究。 PBVS的反馈偏差在3D笛卡尔空间进行计算,IBVS的反馈偏差在2D图像平面空间进行计算。PBVS 的控制方式直接在笛卡尔空间下进行位姿估计和运动控制,具有很好的直观性和简单有效性。IBVS的控制方式其期望给定值直接以图像特征信息表示,所以不需要将特征信息投影逆变换到工作空间的过程,因此基于图像的控制方式对标定误差和空间模型误差不敏感,具有更高地定位精度,为多数的视觉伺服系统所采用。 2 视觉伺服控制算法 在进行任何一个基于伺服控制的控制系统的分析、综合或设计时,首先应建立该系统的数学模型,确定其控制算法。它反映了系统输入、内部状态和输出之间的数量和逻辑关系,这些关系式为计算机进行运算处理提供了依据。控制算法的正确与否直接影响控制系统的品质,甚至决定整个系统的成败。 2.1 基于位置的视觉伺服算法的优化 对于不同的功能要求,采用传统的基于位置的视觉伺服控制算法,常常造成稳定性不够、精度不够、准确性不足等问题,我们需要对算法进行优化处理,来满足要求。 例如,针对家庭环境中服务机器人物品的抓取问题,提出一种改进的基于位置的视觉伺服抓取算法。该算法主要包括4个部分: 1.基于Naomark 标签的物体识别,根据Naomark的ID确定抓取方式,并利用世界单应分解算法对目标物位姿进行估计。 通过在具有不同形状和特征的各类物品上布置Naomark 标签的方式,可以实现被操作物的快速识别与定位,从而解决家庭环境中物品种类多、操作方式复杂带来的困难。 利用Hough 变换和边缘检测可以得到Naomark 的各特征点。 2.对NAO机器人的五自由度手臂进行运动学建模,计算出运动学正解和逆解。

毕业设计(论文)机器人行走机构 文献综述

重庆理工大学 毕业设计(论文)文献综述题目机器人行走机构设计 二级学院重庆汽车学院 专业机械设计制造及其自动化班级 姓名学号 指导教师系主任 时间

评阅老师签字:

机器人行走机构 吴俊 摘要:行走机器人是机器人学中的一个重要分支。行走机构可以是轮式的、履带式的 和腿式的等,能适应地上、地下、水中、空中、宇宙等作业环境的各种移动机构。本 文从国内外的研究状况着手,介绍了行走机器人的发展历史,研究现状和发展趋势。本文还介绍了国内最新的研究成果。 关键字:机器人行走机构发展现状应用 Keyword:robot travelling mechanism developing current situation application 一,前言 行走机器人是机器人学中的一个重要分支。关于行走机器人的研究涉及许多方面,首先,要考虑移动方式,可以是轮式的、履带式的和腿式的等;其次,必须考虑 驱动器的控制,以使机器人达到期望的行为;第三,必须考虑导航或路径规划。因此,行走机器人是一个集环境感知、动态决策与规划、行为控制与执行等多种功能于一体 的综合系统。机器人的机械结构形式的选型和设计,应该根据实际需要进行。在机器 人机构方面,应当结合机器人在各个领域及各种场合的应用,开展丰富而富有创造性 的工作。对于行走机器人,研究能适应地上、地下、水中、空中、宇宙等作业环境的 各种移动机构。当前,对足式步行机器人、履带式和特种机器人研究较多,但大多数 仍处于实验阶段,而轮式移动机器人由于其控制简单,运动稳定和能源利用率高等特点,正在向实用化迅速发展,从阿波罗登月计划中的月球车到美国最近推出的NASA 行星漫游计划中的六轮采样车,从西方各国正在加紧研制的战场巡逻机器人、侦察车 到新近研制的管道清洗检测机器人,都有力地显示出行走机器人正在以其使用价值和 广阔的应用前景而成为智能机器人发展的方向之一。 二、课题国内外现状 多足步行机器人是一种具有冗余驱动、多支链、时变拓扑运动机构, 是模仿多足 动物运动形式的特种机器人, 是一种足式移动机构。所谓多足一般指四足及四足其以上, 常见的多足步行机器人包括四足步行机器人、六足步行机器人、八足步行机器人等。 步行机器人历经百年的发展, 取得了长足的进步, 归纳起来主要经历以下几个 阶段: 第一阶段, 以机械和液压控制实现运动的机器人。 第二阶段, 以电子计算机技术控制的机器人。 第三阶段, 多功能性和自主性的要求使得机器人技术进入新的发展阶段。 三、研究主要成果 国内多足步行机器人的研究成果[1]: 1991年,上海交通大学马培荪等研制出JTUWM[1]系列四足步行机器人。JTUWM-III是模仿马等四足哺乳动物的腿外形制成,每条腿有3个自由度,由直流伺服

机器人研究现状及发展趋势

机器人发展历史、现状、应用、及发展 趋势 院系:信息工程学院 专业:电子信息工程 姓名:王炳乾

机器人发展历史、现状、应用、及发展趋势 摘要:随着计算机技术不断向智能化方向发展,机器人应用领域的不断扩展和深化,机器人已成为一种高新技术产业,为工业自动化发挥了巨大作用,将对未来生产和社会发展起越来越重要的作用。文章介绍了机器人的国内国外的发展历史、状况、应用、并对机器人的发展趋势作了预测。 关键词:机器人;发展;现状;应用;发展趋势。 1.机器人的发展史 1662年,日本的竹田近江利用钟表技术发明了自动机器玩偶并公开表演。 1738年,法国技师杰克·戴·瓦克逊发明了机器鸭,它会嘎嘎叫、进食和游泳。 1773年,瑞士钟表匠杰克·道罗斯发明了能书写、演奏的玩偶,其体内全是齿轮和发条。它们手执画笔、颜料、墨水瓶,在欧洲很受青睐。 保存至今的、最早的机器人是瑞士的努萨蒂尔历史博物馆里少女形象的玩偶,有200年历史。她可以用风琴演奏。 1893年,在机械实物制造方面,发明家摩尔制造了“蒸汽人”,它靠蒸汽驱动行走。 20世纪以后,机器人的研究与开发情况更好,实用机器人问世。 1927年,美国西屋公司工程师温兹利制造了第一个机器人“电报箱”。它是电动机器人,装有无线电发报机。 1959年第一台可以编程、画坐标的工业机器人在美国诞生。 现代机器人 有关现代机器人的研究始于20世纪中期,计算机以及自动化技术的发展、原子能的开发利用是前提条件。1946年,第一台数字电子计算机问世。随后,计算机大批量生产的需要推动了自动化技术的发展。1952年,数控机床诞生,随后相关研究不断深入;同时,各国原子能实验室需要代替人类处理放射性物质的机械。

基于图像的视觉伺服系统

基于图像的机器人视觉伺服系统研究 班级:自121 姓名:成佳宇 学号:3120413006

基于图像的机器人视觉伺服系统 摘要本文采用基于图像的眼在手(eye in hand)视觉伺服结构,通过计算图像雅克比矩阵实现机械手的定位任务。本文采用应用最广泛的机器人工具箱(Robotics Toolbox for Matlab),在该工具箱的基础上,运用Sub-system实现Matlab和Simulink的有机结合,建立基于图像反馈的六自由度PUMA560机器人视觉伺服系统Simulink模型,仿真验证该模型的有效性。 关键字:puma560机器人;视觉伺服;图像的雅可比矩阵Abstract:In this paper,we use Image-based visual servoing control system, via image jacobin matrix function the positioning of the manipulator by calculation task. on the basis of Robotics Toolbox for Matlab, and using Sub - system to realize the organic combination of Matlab and Simulink, based on the image feedback Simulink model of six degrees of freedom PUMA560 robot visual servoing system, the simulation verify the validity of the model. Keyword:PUMA560robot;IBVS;Image jacobin 引言: 机器人视觉伺服己成为机器人领域重要的研究内容之一,但是机器人视觉伺服系统是一个十分复杂的非线性系统。视觉是一种复杂的感官,视觉信息中包含有大量的数据,要从 中提取特征信息,需要复杂的算法及耗费大量的运算时间,

机器人视觉伺服技术发展概况综述

机器人视觉伺服技术发展概况综述 目前,在全世界的制造业中,工业机器人已经在生产中起到了越来越重要的作用。为了使机器人能够胜任更复杂的工作,机器人不但要有更好的控制系统,还需要更多地感知环境的变化。其中机器人视觉以其信息量大、信息完整成为最重要的机器人感知功能。 机器人视觉伺服系统是机器视觉和机器人控制的有机结合,是一个非线性、强耦合的复杂系统,其内容涉及图象处理、机器人运动学和动力学、控制理论等研究领域。随着摄像设备性能价格比和计算机信息处理速度的提高,以及有关理论的日益完善,视觉伺服已具备实际应用的技术条件,相关的技术问题也成为当前研究的热点。 本文对机器人视觉伺服技术进行了综述,介绍了机器人视觉伺服系统的概念及发展历程和分类,重点介绍了基于位置的视觉伺服系统和基于图像的视觉伺服系统。对机器人视觉所涉及的前沿问题做了概括,并指出了目前研究中所存在的问题及今后发展方向。 机器人视觉伺服系统 视觉伺服的定义: 人类对于外部的信息获取大部分是通过眼睛获得的,千百年来人类一直梦想着能够制造出智能机器,这种智能机器首先具有人眼的功能,可以对外部世界进行认识和理解。人脑中有很多组织参与了视觉信息的处理,因而能够轻易的处理许多视觉问题,可是视觉认知作为一个过程,人类却知道的很少,从而造成了对智能机器的梦想一直难以实现。随着照相机技术的发展和计算机技术的出现,具有视觉功能的智能机器开始被人类制造出来,逐步形成了机器视觉学科和产业。所谓机器视觉,美国制造工程师协会(sme society of manufacturing engineers)机器视觉分会和美国机器人工业协会(ria robotic industries association) 的自动化视觉分会给出的定义是: “机器视觉是通过光学的装置和非接触的传感器自动地接收和处理一个真实物体的图像,以获得所需信息或用于控制机器人运动的装置。”

攀爬机器人文献综述

攀爬机器人文献综述 攀爬机器人文献综述 对攀登机器人结构点性能计算和实验的研究 摘要 本文介绍了并联攀爬机器人性能的运动学和动力学研究,从而避免结构框架上的节点。为了避免结构节点,攀爬并联机器人可以取得某种确定的动作。一系列的动作组合起来,可以方便沿着结构节点的攀登运动。必须对并联攀爬机器人的姿态予以研究,因为在其独特的配置下,姿势能够驱动机器人。此外,需要对执行机构为了避免机构节点而产生的力进行评估。因此本文的目的要表明,Stewart–Gough 并行平台能够作为攀爬机器人,与其他机器人相反,并行攀爬机器人能后轻易而优雅地避免结构节点。为了支持第一部分中描述的模拟结果,实验测试平台已经发展到围绕结构节点对并联攀爬机器人地动力性能进行研究。获得的结果非常有趣,显示了潜在的在工业中使用平行S-G机器人作为攀岩机器人的存在。 关键词:爬壁机器人、动力学、并联机器人、奇点

一简介 当需要在一些危险或者难以到达的地方执行任务时,具有在不同结构上攀爬和滑行能力的机器人是非常重要的,比如在检查和维修金属桥梁、通信天线以及深入核工业结构内部过程中使用的机器人。通常,这些类型的金属结构是由聚合在一起的杆构成,是一种联合机械,每一个都可以描述为棱柱元素变截面和尺寸的扩展。所有这些元素组合产生晶格不同的几何结构,其中结构性因素在不同点的结合称为结构节点。这类结构的尺寸和形状取决于它应用的设计。在这一类型设置中不同任务的机器人化已经被广泛地记载在文献中。在许多情况下,有人提出使用连接机构和多腿机器人来实现位移的随即移动。另外,许多这些机器人是被设计用来在墙壁或管道攀爬和工作。一些建议的解决方案在机械上是非常复杂的,需要在运动控制方面有高水平的发展和阐述。一种用来给双层底部板件焊接的机器人正在研制当中。该型机器人是由一种有选择顺应性装配机器手臂配置的四足机器组成。该机器人通过抓住加强筋移动,但由于其几何结构不能移动通过结构节点。Balaguer提出了一种能够在复杂的三维金属基结构的爬壁机器人。该机器人采用“毛毛虫“的概念来取代这些结构,并实时生成控制设计从而确保稳定的自我支持。Longo建议一个城市侦察双足机器人。这种机器人能够在表面上实现交替移动,并且小到足以穿越密闭空间。Minor and Rossman 提出了一种有腿的机器人,能够通过移动其身体从而产生推力。这些机器人的结构让它们沿着管道和梁结构,并通过内爬管道,但机器人不能够避免节点。在本篇论文中提出的机器人能够围绕结构节点移动。 对于位移和攀爬金属结构的最优解问题在理论上是基于一种原理,动力执行机构是机器人结构的一部分,直接连接到并联机器人地末端,并用一种几何技巧克服了用于微小运动时的障碍。此外,机器人要轻便,机械结构简单,具有大的载荷和高速运转能力。这些条件基本都是由并联机器人实现。基于这个原因,用一种改进的的并联机器人作为攀爬机器人完全是有可能的。 基本上,并联机器人用于攀登必须用适当的夹具系统改变两个环中的一个,并取代另一个环,并通过预先设定的位移方向实现几何构型的动作。对并联机器人而言,这个过程简单且自然。

工业机器人发展现状与趋势

工业机器人发展现状与趋势 工业机器人是集机械、电子、控制、计算机、传感器、人工智能等多学科先进技术于一体的现代制造业重要的自动化装备。自从1962年美国研制出世界上第一台工业机器人以来,机器人技术及其产品发展很快,已成为柔性制造系统(FMS)、自动化工厂(FA)、计算机集成制造系统(CIMS)的自动化工具。 广泛采用工业机器人,不仅可提高产品的质量与产量,而且对保障人身安全,改善劳动环境,减轻劳动强度,提高劳动生产率,节约原材料消耗以及降低生产成本,有着十分重要的意义。和计算机、网络技术一样,工业机器人的广泛应用正在日益改变着人类的生产和生活方式。 一、工业机器人技术现状及国内外发展的趋势 工业机器人是最典型的机电一体化数字化装备,技术附加值很高,应用范围很广,作为先进制造业的支撑技术和信息化社会的新兴产业,将对未来生产和社会发展起着越来越重要的作用。国外专家预测,机器人产业是继汽车、计算机之后出现的一种新的大型高技术产业。据联合国欧洲经济委员会(UNECE)和国际机器人联合会(IFR)的统计,世界机器人市场前景看好,从20世纪下半叶起,世界机器人产业一直保持着稳步增长的良好势头。进入20世纪90年代,机器人产品发展速度加快,年增长率平均在10%左右。2004年增长率达到创记录的20%。其中,亚洲机器人增长幅度最为突出,高达43%,如图1所示。

各区域用户工业机器人定购指数(以1996年作为100) 国外机器人领域发展近几年有如下几个趋势: 1.工业机器人性能不断提高(高速度、高精度、高可*性、便于操作和维修),而单机价格不断下降,平均单机价格从91年的10.3万美元降至97年的6.5万美元。 2.机械结构向模块化、可重构化发展。例如关节模块中的伺服电机、减速机、检测系统三位一体化;由关节模块、连杆模块用重组方式构造机器人整机;国外已有模块化装配机器人产品问市。 3.工业机器人控制系统向基于PC机的开放型控制器方向发展,便于标准化、网络化;器件集成度提高,控制柜日见小巧,且采用模块化结构;大大提高了系统的可*性、易操作性和可维修性。 4.机器人中的传感器作用日益重要,除采用传统的位置、速度、加速度等传感器外,装配、焊接机器人还应用了视觉、力觉等传感器,而遥控机器人则采用视觉、声觉、力觉、触觉等多传感器的融合技术来进行环境建模及决策控制;多传感器融合配置技术在产品化系统中已有成熟应用。

工业网络控制

机器视觉技术及其工业应用 学院: 学号: 姓名: 导师:

摘要 机器视觉是一门交叉学科,有着广泛的应用领域。近年来,随着理论的创新和技术的发展,该学科发展迅猛。本文介绍了机器视觉的关键技术,如光源照明、光学镜头、摄像机、图像采集、信号处理、执行机构等的发展状况。同时,从自动检测、智能装配、视觉伺服三个方面对工业机器视觉应用系统进行了综述。 关键词:机器视觉;工业应用

0 引言: 机器视觉是一门涉及人工智能、神经生物学、心理物理学、计算机科学、图像处理、模式识别等诸多领域的交叉学科。它综合了各种技术, 其中包括数字图像处理技术、机械工程技术、控制技术、光源照明技术、光学成像技术、传感器技术、模拟与数字视频技术、计算机软、硬件技术和人机接口技术等。机器视觉主要用计算机来模拟人的视觉功能,但并不仅仅是人眼的简单延伸,更重要的是具有人脑的一部分功能从客观事物的图像中提取信息,进行处理并加以理解,最终用于实际检测、测量和控制。它是实现精确定位、精密检测、自动化生产的有效途径, 同时它具有实现非接触测量、具有较宽光谱相应范围、可长时间工作等优点。 近年来,随着计算机技术尤其是多媒体技术以及数字图像处理与分析理论的不断发展完善,加之大规模集成电路的飞速发展与应用,机器视觉技术得到了广泛的应用研究,如工业制造、医学、导航和遥感图像分析等。特别是近几年发展十分迅速。本文在查阅大量文献资料的基础上,对机器视觉的技术发展及其工业应用作一综述。 1关键技术: 图1 典型工业机器视觉系统 参见图 1 ,我们可以发现机器视觉是一项综合技术, 它包括图像处理、机械工程技术、控制、电光源照明、光学成像、传感器、模拟与数字视频技术、计算机软硬件技术( 图像增强和分析算法、图像卡、I/ O 卡等)。这些技术在机器

机器人视觉伺服系统的控制结构

机器人视觉伺服系统的控制结构

机器人视觉伺服系统的控制结构 1 前言 对机器人视觉伺服系统的研究是机器人领域中的重要内容之一,其研究成果可直接用于机器人手—眼系统、移动机器人的自动避障及对周围环境的自适应、轨线跟踪等问题中。通常所说的机器视觉是指:自动获取并分析图像,以得到一组可对景物描述的数据或控制某种动作的数据。而视觉伺服则不同于机器视觉,它利用机器视觉的原理对图像进行自动获取与分析,以实现对机器人的某项控制为目的。正是由于系统以实现某种控制为目的,所以视觉伺服系统中的图像处理过程必须快速准确。 视觉伺服系统采用视觉反馈环形成闭环,在视觉反馈环中抽取某种图像特征。图像特征可以是点、曲线、图像上的某一区域等,比如,它可以是点在图像平面的坐标位置,或投影面的形心及其惯量的高次幂。 2 视觉伺服系统的分类 视觉伺服的控制策略主要基于以下两个问题: 1)是否采用分层控制结构?即机器人是否需要闭环关节控制器?进一步说,就是系统的视觉反馈是为机器人的关节控制闭环提供输入量,还是由视觉控制器直接控制机器人各关节。 2)误差输入量是以机器人所在空间的三维坐标表示,还是以图像特征? 按控制策略2)区分,视觉伺服系统分为两类:基于位置的控制系统(position-based control,又称3D视觉伺服,3Dvisualservoing),基于图像的控制系统(image-base control,或称2D视觉伺服,2Dvisualservoing)。由于基于位置和基于图像的视觉伺服各有其优缺点,于是近年有学者综合上述两类视觉伺服系统的优点,设计出2-1/2D视觉伺服系统。 按控制策略1)区分,视觉伺服系统可分为动态观察—移动系统和直接视觉伺服。前者采用机器人关节反馈内环稳定机械臂,由图像处理模块计算出摄像机应具有的速度或位置增量,反馈至机器人关节控制器;后者则由图像处理模块直接计算机械壁各关节运动的控制量。 3 视觉伺服系统的控制结构 3.1 基于位置的视觉伺服控制结构

仿人机器人发展概况-调查

仿人机器人发展概况 摘要:介绍了国内外仿人机器人的发展特点,以行走机构为主要内容详细分析了日本、美国等几种仿人机器人的主要技术及其技术指标,根据国外的样机设计,分析了仿人机器人的控制设计中的一些问题,就国外仿人机器人发展对中国仿人机器人发展的差异提出了看法。 关键词: 仿人机器人,技术,双足步行 1概述 仿人机器人在过去的10多年特别是近5年中发展迅猛,自从有关综述文章发表以来,情况有了很大改变。 行走机构是仿人机器人的关键技术,对于仿人机器人的研究是从对行走机构的研究开始的,日本旱稻田大学在1973年研制成功了最早具有记载的双足步行人形机构WABOT-1。本文重点论述世界范围内仿人机器人的近期发展,对行走机构的发展做重点介绍。 2 仿人机器人近期发展特点 现如今,世界各个国家都进行仿人机器人的研究,据韩国的一个经常更新的仿人机器人网站统计,2005年3月5日,世界上共有76各仿人机器人项目正在进行中,其中日本36个,美国10个,韩国7个,英国4个,中国3个,瑞典2个,澳大利亚、泰国、新加坡、保加利亚、伊朗、意大利、奥地利、俄罗斯等国各有1个,从统计数字可以看出当时日本在此领域的领先地位及其他各国的竞争实力。 2005年2月18日出版的《科学》杂志上介绍了一种全新的行走机构,康奈尔大学、麻省理工学院和荷兰Delft理工大学的研究人员分别展示了基于这种行走机构的样机。

这种行走机构的概念来自一个简单的玩具:行走企鹅。这个企鹅臀部有两个没有动力的关节分别支撑两条直腿,该企鹅可以沿着斜坡摇摇晃晃的行走而下,这就是被动动力行走者。问题是在平地上企鹅不会行走,研究人员贡献在于设计了仅用少量驱动器就可以在平地上行走的行走机构。以Asimo为代表的传统仿人机器人每一个关节都用一个驱动器。新行走机构则不同,它的关节分为有驱动和无驱动两种,以康奈尔的设计为例,机器人每条腿的自由度为5个(臀1,膝2,踝2),其中只有一个踝关节用电机驱动,其他都是被动的,双手摆动各有一个自由度,通过机械结构由双腿带动,左腿带动右臂,右腿带动左臂。走动时,感知到左足触地时,右踝驱动右足踢开地面,使右腿摆动至左腿前方,完成一步,反之亦然。新行走机构的特点是节省能源,据说只需要通常行走机构的十分之一的动力,另外,新型步行机器人走路时一起一伏,跟人没什么两样。Delft设计和康奈尔的设计大致相同,只是采用气动驱动,MIT的设计则为每条腿有6个自由度,其中两个踝部关节用电机驱动,其他都是被动的。从录像看,康奈尔和Delft的机器人的行走姿态是令人满意的,但似乎它们只能有一种走法.不象每个关节都采用独立驱动方式的传统仿人机器人那样可以通过编程获得不同的步态.至于MIT模型,虽然采用了先进的控制方法,但其蹒跚的步态令观看者对其机构设计难以接受.实际上,研究者不止以上3家,日本Asano等人的被动动力步行模型基于能量约束并考虑了ZMP判据。 传统行走机构的研究继续瞄准动作的质量。本田提出新一代Asimo的步行速度要增加到2.5公里/小时,跑步速度增加到3公里/时,主要措施是添加腰部关节以在行进时扭摆.太极拳要求动作连贯均匀,协调完整.打太极拳是对仿人机器人动作质量的最好检验.各公司和业余爱好者正在寻找更好的设计和控制,以便在今后的机器人太极拳比赛中一决高低。探讨人类行走和奔跑时的各种动作方式。研究仿人机器人动态步行控制方法是研究重点2004年底前,本田公司宣布了新一代Asimo计划,寻求更强的行动能力,更佳的与人沟通,以及在真实世界中更机敏的反应能力。ZMP判据仍是二足步行机器人各种控制方法的基本依据.最早提出ZMP判据的南斯拉夫学者Vukobratovic最近对ZMP判据35年来的发展作了总结,Lim和他的同事除了以仿人机器人上身躯干的摆动来补偿下

机械手控制一个通过视觉伺服

通过视觉伺服系统的机械手控制 文摘:在本文中,我们提出一个方法通过传感器来控制机器人手臂位移。因为该机械手通常是开环控制关节定位是无法利用的,所以为了获得更有效的控制界面,我们还提出了一种闭环系统的基础在一个眼对手视觉伺服方法。我们发现通过使用这样的一个方法,就是测量机械手的运动传感器的下意识不能精确控制机器人末端执行器运动。我们提出的解决方案,就是控制基础位置的机械手的速度控制。为了保持最后控制装置的视觉领域,相机方向也要被控制,其结果表明了该算法的有效性和效率的方法。 关键词:眼,手视觉伺服;无本体传感器;构成的计算; 1介绍 视觉伺服【哈钦森96】长期以来被证明是一种在恶劣的环境中非常有效地来控制机械手方法(核环境、空间、水下机器人等)。在本文中我们提出了一个通用的框架来控制一个大致的模型和使用一个眼对手视觉伺服系统校准机械手【艾伦93年,黑格95年,Horaud 98】。推动力是维克多6000机械手的控制。维克多6000[诺金 97]是一个深海远程操作工具,通过法国海洋研究所建造和营运,被用来探索海洋的地板。这是一个可以用船控制的海底车,目的是进行光学调查,进行局部作业、执行仪器仪表控制和样品水、沉积物或岩石鉴定采集。维克多6000配备两臂:6自由度机械手叫迈斯卓,一个四自由度的机械手叫夏尔巴人。在这个水下环境,眼对手视觉伺服已经用来控制远程操作工具(如【河流 97 地段 00 地段 01 范德荷兰尼克森 01】)。正如已经开始的,目标不止是控制远程操作工具本身,而是利用由一个相机提供的信息来控制机械手的运动。这台相机是安装在一个带有掀动头效果水下机器人上并遵守机械手的末端手爪控制。为了降低成本,这机械手并不灵敏,没有加装某些装置。并且由于缺乏本体感受的传感器,在量距和一些个别关节位置并不适合有效的,所以机器人通常是通过操纵杆开环控制着。因此如果没有外部传感器是用来提供的一个闭环系统是没有办法衡量机械手,并且任何运动控制将会是不精确的。这更促进一种通过在视觉伺服的框架下的移动相机到一个通用的框架来控制移动机械的方法引入。 该基准方法的几种主要利益特征和贡献。恶劣的环境(如,深海压力条件)在这种情况下的传感器可能会有剧烈损耗。我们在本文中说明的这些传感器使用方法是不需要精准的控制 一个手末端爪的。事实上,控制环路是被相机“封闭”的,现在由有效的传感器代替。这个控治可以被实现,即使相机本身就是运动。最后,这个方法能很好地抑制坏/粗略校准系统。此外,一个主要的利处是决定于手臂所达到的独立的位置以及不同建模和校准的错误,还有手臂上的的传感器,它有可能通机械手传达所指派的工作,由传感器直接在空间进行测量。

大数据下民用机器人的运用及发展的文献综述演示教学

大数据下民用机器人的运用及发展的文献综述 李论 摘要:在人工智能大热的背景下,机器人的发展也日新月异,迅速渗透到各行各业中。机器人不仅改变着人类生活方式,也是先进制造业的关键支撑装备,其研发和产业化应用是衡量一个国家科技创新、高端制造发展水平的重要标志。近年来,随着机器人逐渐走入百姓的视野和生活,一系列政策扶持及市场需求拉动,使得中国民用机器人产业飞速发展。 关键词:大数据民用机器人研究综述 一、国内外民用机器人的现状与发展 通常所说的机器人主要指的是工业机器人,不仅仅是因为工业机器人起步较早,运用领域较广,更重要的是工业机器人已经比较成熟,在很多领域都能够得到应用。服务机器人则不然,日本早在20多年前就开始涉足服务机器人的研究,为什么迟迟没有成熟的产品问世?最近一年来,服务机器人却异军突起?主要有两个原因:一是大数据、云计算、精密传感等技术取得重大突破;二是日本进入老龄化社会以后,巨大的市场刚需倒逼行业发展。 服务机器人是一种半自主或全自主工作的机器人,完成有益于人类健康的服务工作。医用机器人是具有最好应用前景的服务机器人,它能够完成或辅助完成常规医疗方法和设备难以完成的复杂诊断和手术,已在神经外科手术、胸(含心脏)外科手术、遥控外科手术、人工关节置换和无损伤检测等方面引起重大变革,极大地提高医疗水平,为病人带来福音。医疗机器人主要研究开发手术机器人及其相关先进医用技术和设备,包括开展手术规划与导航、高精度和高可靠性的定位操作医用机器人机构、灵巧微操作手(机械手)、人机交互导航控制等关键技术。医用机器人的研究开发,不仅对常规医疗带来一系列技术变革,对临床和家庭护理及康复工程的发展产生深远影响,而且将推动智能机器人、计算机、虚拟现实、微机械电子等学科的发展。除手术机器人、诊断机器人、护理机器人、康复机器人等医用机器人外,服务机器人还包括各种家用机器人、娱乐机器人、体育机器人、玩具机器人、导游机器人、保安机器人、排险机器人、清洁机器人、秘书机器人、建筑机器人、邮拾和送信机器人以及加油机器人等。随着开发研究的进一步开展和价格的大幅度下降,服务机器人将广泛进入医院、家庭、工地、办公室和体育娱乐场馆,直接与人类共处,为人类排忧解难。 过去,日本开发了许多服务机器人,特别是陪护老人、情感、娱乐、教育等领域的机器人,与老人聊天,帮助老人拿东西,帮助老人做饭倒水、照顾孩子等,由于技术不成熟,不敢推向社会。他们认为,要推出与人打交道的产品是非常谨慎的事情。如果机器人不但没有陪护好老人,反而还伤害老人,这将是巨大的社会问题。最近几年,在互联网、物联网、图像识别、语音识别等技术有了快速发展的背景下,我们过去的困难变得迎刃而解。当然,目前的服务机器人还只是一个初级阶段的产物,智能化水平比较低,还需要不断完善。1 1胡跃明,丁维中等.吸尘机器人的研究现状与展望.计算机测量与控制,2002.10(10):631—633页 2蒋新松.未来机器人技术发展方向的探讨.机器人.1996(5):285—291页 3王炎,周大威.移动式服务机器人的发展现状及我们的研究门.电气传动.2000(4): 精品文档

相关主题
文本预览
相关文档 最新文档