当前位置:文档之家› 机器人视觉伺服控制系统研究

机器人视觉伺服控制系统研究

机器人视觉伺服控制系统研究
机器人视觉伺服控制系统研究

自由漂浮空间机器人视觉伺服系统研究

第38卷第2期一一一一一一一一一一一哈一尔一滨一工一程一大一学一学一报一一一一一一一一一一Vol.38?.2 2017年2月一一一一一 一一 一一一 JournalofHarbinEngineeringUniversity一一一一一一一一一一一Feb.2017 自由漂浮空间机器人视觉伺服系统研究 刘阳,谢宗武,王滨,刘宏,蔡鹤皋 (哈尔滨工业大学机器人技术与系统国家重点实验室,黑龙江哈尔滨150001) 摘一要:为了将动力学模块引入传统的视觉伺服控制算法,使其更加符合真实模型三本文以自由漂浮空间机器人视觉伺服为目标,分析了其系统组成与工作原理三采用广义雅克比的方法完成其速度级的运动学建模,并在6D空间下分析其动力学模型三机械臂采用PD与前馈控制完成笛卡尔空间点到点连续路径规划三借助双目手眼相机完成非合作目标位姿的提取,进而完成视觉伺服系统的搭建三本文算法可将机械臂控制算法引入到空间机器人视觉伺服系统,使得机器人控制更加方便,具有结构简单成本低等优点三通过搭建SimMechanics仿真模型,实现了对期望轨迹的跟踪,验证了视觉伺服算法的正确性三 关键词:空间机器人;视觉伺服;自由漂浮;动力学;双目视觉DOI:10.11990/jheu.201605027 网络出版地址:http://www.cnki.net/kcms/detail/23.1390.u.20161116.1613.002.html中图分类号:TP242.3一文献标志码:A一文章编号:1006-7043(2017)02-0153-07 Researchonthevisualservosystemofafree?floatingspacerobot LIUYang,XIEZongwu,WANGBin,LIUHong,CAIHegao (StateKeyLaboratoryofRoboticsandSystem,HarbinInstituteofTechnology,Harbin150001,China) Abstract:Inordertoaddthedynamicmodelofthespacerobottothetraditionalvisualservoalgorithmandenhancetheauthenticityofthesimulationsystem,thispaperanalyzesthecompositionandprincipleofafree?floatingspacerobot,focusingonitsvisualservosystem.GeneralizedJacobianmatrixwasusedtocompletekinematicmodelofthefree?floatingspacerobot,andthedynamicsmodelwasdiscussedundertheconditionof6Dspatialvector.BasedonPDandfeedforwardcontrol,thepathplanningoftherobotwasprogrammedinCartesianspace.Abinocularhand?eyecamerasystemwasbuilttoextracttheposeofthenon?cooperativesatellitewhichfurtherusedtocompletethevisualservosystem.Variousrobotcontrolalgorithmscanbeintroducedtothevisualservosystemthatmakesitmoreconvenientandtakesadvantageofsimplemechanismwithlowcost.BybuildingaSimMechanicsmodel,theexpec?tedtrajectoryhadbeentrackedsuccessfullywhichprovedthevisualservosystemright.Keywords:spacerobot;visualservo;free?floating;dynamics;binocularvision收稿日期:2016-05-09.网络出版日期:2016-11-16.基金项目:国家重点基础研究发展计划(2013CB733105).作者简介:刘阳(1990-),男,博士研究生; 谢宗武(1973-),男,教授,博士生导师;王滨(1973-),男,副教授; 刘宏(1966-),男,教授,博士生导师, 长江学者计划 特聘教授; 蔡鹤皋(1934-),男,教授,博士生导师,中国工程院院士.通信作者:王滨,E?mail:wbhit@hit.edu.cn. 一一随着科学技术水平的发展,每年发射进入太空的航天器数目在逐渐增大三UCS(unionofconcernedscientists)卫星数据显示[1],截止到2016年1月1日,太空中活动卫星的数量为1381,其中493颗卫星运行于同步地球轨道三这些活动卫星中大约有68%的卫星处于不受控状态,如废弃卫星二火箭残留物以及太空垃圾[2]三每年都有卫星由于发射失败 而无法正确进入轨道,从而造成大量的经济损失三此类卫星经过在轨维护,大多可以继续服务三 作为主要的在轨维护设备,空间机器人能够胜任卫星维修二能源补充二货物运输等多项太空任务[3-8]三随着太空任务的复杂化,宇航员的操作风险大大提高,利用空间机器人代替宇航员完成空间工作已成为当前空间探索的新趋势三中国将在未来五年内建成我国独立自主研发的空间站,空间站各舱段之间的组装依赖的也是空间机器人三 空间机器人是一个强非线性系统,其运动学与动力学之间存在着动力学耦合[9]三空间微重力环境下对其进行实时控制存在很大困难,同时风险高二难度大三视觉伺服的引入使得空间机器人在执行空间任务时变得智能化,能够根据不同的环境采取不 万方数据

浅谈机器人智能控制研究.答案

陕西科技大学 2015 级研究生课程考试答题纸 考试科目机械制造与装配自动化 专业机械工程 学号1505048 考生姓名乔旭光 考生类别专业学位硕士

浅谈机器人智能控制研究 摘要:以介绍机器人控制技术的发展及机器人智能控制的现状为基础,叙述了模糊控制和人工神经网络控制在机器人中智能控制的方法。讨论了机器人智能控制中的模糊控制和变结构控制,神经网络控制和变结构控制,以及模糊控制和神经网络控制等几种智能控制技术的融合。并对模糊控制和神经网络控制等方法中的局限性作出了说明。 关键词:机器人;智能控制;模糊控制;人工神经网络 1 智能控制的主要方法 随着信息技术的发展,许多新方法和技术进入工程化、产品化阶段,这对自动控制技术提出崭新的挑战,促进了智能理论在控制技术中的应用,以解决用传统的方法难以解决的复杂系统的控制问题。 智能控制技术的主要方法有模糊控制、基于知识的专家控制、神经网络控制和集成智能控制等,以及常用优化算法有:遗传算法、蚁群算法、免疫算法等。1.1 模糊控制 模糊控制以模糊集合、模糊语言变量、模糊推理为其理论基础,以先验知识和专家经验作为控制规则。其基本思想是用机器模拟人对系统的控制,就是在被控对象的模糊模型的基础上运用模糊控制器近似推理等手段,实现系统控制。在实现模糊控制时主要考虑模糊变量的隶属度函数的确定,以及控制规则的制定二者缺一不可。 1.2 专家控制 专家控制是将专家系统的理论技术与控制理论技术相结合,仿效专家的经验,实现对系统控制的一种智能控制。主体由知识库和推理机构组成,通过对知识的获取与组织,按某种策略适时选用恰当的规则进行推理,以实现对控制对象的控制。专家控制可以灵活地选取控制率,灵活性高;可通过调整控制器的参数,适应对象特性及环境的变化,适应性好;通过专家规则,系统可以在非线性、大偏差的情况下可靠地工作,鲁棒性强。 1.3 神经网络控制 神经网络模拟人脑神经元的活动,利用神经元之间的联结与权值的分布来表

机器人控制系统设计(毕业设计)文献综述

一、前言 1.课题研究的意义,国内外研究现状和发展趋势 1.1课题研究的意义 随着机器人在工业装配线的应用越来越广泛,工业环境对其控制系统的要求也越来越高,所以开放式机器人控制系统的设计具有工程实际意义。 课题以一四自由度关节型机器人研制为背景,设计机器人运动控制系统的硬件电路和软件结构,对机器人的运动控制电路进行设计,实现机器人按照预定轨迹或自主运动控制功能。 在机械工业中,应用机械手的意义可以概括如下: ①以提高生产过程中的自动化程度 应用机械手有利于实现材料的传送、工件的装卸、刀具的更换以及机器的装配等的自动化的程度,从而可以提高劳动生产率和降低生产成本。 ②以改善劳动条件,避免人身事故 在高温、高压、低温、低压、有灰尘、噪声、臭味、有放射性或有其他毒性污染以及工作空间狭窄的场合中,用人手直接操作是有危险或根本不可能的,而应用机械手即可部分或全部代替人安全的完成作业,使劳动条件得以改善。 ③可以减轻人力,并便于有节奏的生产 应用机械手代替人进行工作,这是直接减少人力的一个侧面,同时由于应用机械手可以连续的工作,这是减少人力的另一个侧面。因此,在自动化机床的综合加工自动线上,目前几乎都没有机械手,以减少人力和更准确的控制生产的节拍,便于有节奏的进行工作生产 随着机器人技术的发展,机器人应用领域的不断扩大,对机器人的性能提出了更高的要求,因此,如何有效地将其他领域(如图像处理、声音识别、最优控制、人工智能等)的研究成果应用到机器人控制系统的实时操作中,是一项富有挑战性的研究工作。而具有开放式结构的模块化、标准化机器人,其控制系统的研究无疑对提高机器人性能和自主能力,推动机器人技术的发展具有重大意义。 1.2国内外研究现状和发展趋势 随着机器人控制技术的发展,针对结构封闭的机器人控制器的缺陷,开发“具有开放式结构的模块化、标准化机器人控制器”是当前机器人控制器的一个发展方向。近几年,日本、美国和欧洲一些国家都在开发具有开放式结构的机器人控制器,如日本安川公司基于PC开发的具有开放式结构、网络功能的机器人控制器。我国863计划智能机器人主题也已对这方面的研究立项。 由于适用于机器人控制的软、硬件种类繁多和现代技术的飞速发展,开发一个结构完全开放的标准化机器人控制器存在一定困难,但应用现有技术,如工业PC

喷漆机器人控制系统方案设计

喷涂机器人控制系统初步方案 一、控制系统组成框图 本控制系统采用了以PC104为核心,以步进电机驱动网为低层控制通道的开放式控制器。下图是整个控制系统的组成框图。

二、PC104模块选型 采用PC104是因为它有如下特点:结构小巧紧凑, 仅96 mm ×90 mm面积内集成了PC 机所有功能;采用自栈接的母线结构,级联牢固,易于扩充;整机功耗低;兼容性好,可以借鉴PC机成熟技术;外设丰富,应用简单。 本控制系统PC104模块选用研华PCM-3343F。其组成如下:核心模块DM&P V ortex86DX 的高性能低功耗CPU 模块,CPU 速度1.0 GHz,带有浮点运算单元,在板集成了256MB DDR2 SDRAM(最大可支持512MB)、显示控制器(支持LCD显示,最高分辨率为1024×768),以太网控制器等。带有PA TA硬盘接口1个,PC104扩展插槽1个,KB/MS插槽1个,USB2.0接口4个,16位GPIO口,RS-232接口3个,RS-232/422/485接口1个。 选择该嵌入式主板时,应注意: 1)购买时,要求将系统内存升级到512MB; 2)购买时,要求配齐以下配件: ①键盘及鼠标的接口线共2根(编号及图片如下); p/n: 1703060053p/n: 1700060202 ②VGA接口线1根(编号及图片如下); p/n: 1700000898

③US B×2接口线1根(编号及图片如下); p/n: 1703100260 ④RS-232×2接口线1根(编号及图片如下); p/n: 1701200220 ⑤RS-422/485接口线1根(编号及图片如下);p/n: 1703040157 ⑥IDE接口线1根(编号及图片如下); p/n: 1701440350 ⑦外接Li电池1个(编号及图片如下); p/n: 1750129010

基于图像的视觉伺服系统

基于图像的机器人视觉伺服系统研究 班级:自121 姓名:成佳宇 学号:3120413006

基于图像的机器人视觉伺服系统 摘要本文采用基于图像的眼在手(eye in hand)视觉伺服结构,通过计算图像雅克比矩阵实现机械手的定位任务。本文采用应用最广泛的机器人工具箱(Robotics Toolbox for Matlab),在该工具箱的基础上,运用Sub-system实现Matlab和Simulink的有机结合,建立基于图像反馈的六自由度PUMA560机器人视觉伺服系统Simulink模型,仿真验证该模型的有效性。 关键字:puma560机器人;视觉伺服;图像的雅可比矩阵Abstract:In this paper,we use Image-based visual servoing control system, via image jacobin matrix function the positioning of the manipulator by calculation task. on the basis of Robotics Toolbox for Matlab, and using Sub - system to realize the organic combination of Matlab and Simulink, based on the image feedback Simulink model of six degrees of freedom PUMA560 robot visual servoing system, the simulation verify the validity of the model. Keyword:PUMA560robot;IBVS;Image jacobin 引言: 机器人视觉伺服己成为机器人领域重要的研究内容之一,但是机器人视觉伺服系统是一个十分复杂的非线性系统。视觉是一种复杂的感官,视觉信息中包含有大量的数据,要从 中提取特征信息,需要复杂的算法及耗费大量的运算时间,

机器人视觉伺服系统综述

机器人视觉伺服系统综述 摘要:对机器人视觉伺服系统进行阐述,介绍了机器人视觉伺服系统的概念、发展历程以及研究背景;并从不同的角度对机器人视觉伺服系统进行了分类。最后介绍了该领域的研究现状、所取得的成就,以及今后的发展趋势。 关键词:机器人;视觉伺服;综述 Survey of robot visual servoing system Abstract:: In this paper,the survey of robot visual servoing system are introduced.The paper reviews the concept and history background of robot visual servoing system.This article also classify the robot visual servo system from different aspects. Finally, it introduce the research status quo, achievements and future trends in the field. Key words:robot, visual servoing, summary 1.引言 随着先进科学技术的不断发展,机器人已经在生产和生活中起到了越来越重要的作用,因次人们不断对机器人技术提出更高的要求。为了使机器人能够完成更加复杂的工作,适应更加复杂的环境,机器人不仅需要更加完善的控制统,还需要能够更多的感知环境的变化。而影响其发展的一个重要原因就是机器人缺少像人一样的感知能力,在人们为机器人添加各种外部传感器的过程中,机器人视觉以其信息大、信息完整成为最重要的机器人感知功能[1]。 机器人的视觉伺服系统是机器人的视觉和机器人控制的相结合的复杂系统。其内容包括了图像的采集与处理、运动学和动力学、自动控制理论及其系统数据实时分析等领域于一体的新兴交叉学科。随着摄像技术和计算机技术的发展,以及相关理论的日益完善和实践的不断检验,视觉伺服已具备了在实际中应用的条件;而随着机器人应用领域的不断扩展,重要性也不断提高,与其相关技术问题已经成为了当前的研究热点[2]。所以实现机器人视觉伺服控制有相当的难度,是机器人研究领域中具有挑战性的课题。 2.机器人视觉伺服系统 2.1机器人视觉伺服系统的定义

工业机器人视觉系统

工业机器人及机器人视觉系统 人类想要实现一系列的基本活动,如生活、工作、学习就必须依靠自身的器官,除脑以外,最重要的就是我们的眼睛了,(工业)机器人也不例外,要完成正常的生产任务,没有一套完善的,先进的视觉系统是很难想象的。 机器视觉系统就是利用机器代替人眼来作各种测量和判断。它是计算科的一个重要分支,它综合了光学、机械、电子、计算机软硬件等方面的技术,涉及到计算机、图像处理、模式识别、人工智能、信号处理、光机电一体化等多个领域。图像处理和模式识别等技术的快速发展,也大大地推动了机器视觉的发展。 机器视觉系统的应用 在生产线上,人来做此类测量和判断会因疲劳、个人之间的差异等产生误差和错误,但是机器却会不知疲倦地、稳定地进行下去。一般来说,机器视觉系统包括了照明系统、镜头、摄像系统和图像处理系统。对于每一个应用,我们都需要考虑系统的运行速度和图像的

处理速度、使用彩色还是黑白摄像机、检测目标的尺寸还是检测目标有无缺陷、视场需要多大、分辨率需要多高、对比度需要多大等。从功能上来看,典型的机器视觉系统可以分为:图像采集部分、图像处理部分和运动控制部分 工作过程 ?一个完整的机器视觉系统的主要工作过程如下: ?1、工件定位检测器探测到物体已经运动至接近摄像系统的视野中心,向图像采集部分发送触发脉冲。 ?2、图像采集部分按照事先设定的程序和延时,分别向摄像机和照明系统发出启动脉冲。 ?3、摄像机停止目前的扫描,重新开始新的一帧扫描,或者摄像机在启动脉冲来到之前处于等待状态,启动脉冲到来后启动一帧扫描。 ?4、摄像机开始新的一帧扫描之前打开曝光机构,曝光时间可以事先设定。

机器人分布式控制系统设计与实现

机器人分布式控制系统设计与实现 1引言 目前,机器人系统的特点是开放式机器人控制,强调结构化、模块化、 可扩展性、交互性,是对机器人设计结构单一、信息封闭、缺少交互性缺点的突破。分层分布式控制系统采用集中管理,分散控制方式,这种控制方法优点体 现在:集中监控和管理,管理和现场分离,管理更加综合化和系统化;实现分 散控制可使各功能模块的设计、装配、调试以及维护相互独立,系统控制的危 险性分散,可靠性提高,投资减小;采用网络通信技术,可根据需要增加以微 处理器为核心的功能模块,具有良好的系统开放性、扩展性和升级特性。 本论文详细介绍了一种分层分布式控制系统的设计方案,系统由上到下分 为主控中心决策层、车载PC运算层、下位机驱动子层以及位置反馈子层。主 控中心决策层是系统的主层,可以是台式机或笔记本电脑,基于VC++编译环 境设计的人机交互界面,满足友好、便于操作的要求,主控中心决策层的功能 是总体规划和分配任务,对机器人进行远程监控;车载PC运算层为一台笔记 本电脑,基于VC++编译环境设计了控制界面,通过无线网卡与主控中心决策 层进行数据传输,采用面向连接可靠的TCP传输控制协议,保证数据传输的可 靠性;下位机驱动子层和位置反馈子层是相互独立的功能模块,与车载PC运 算层之间通过串口进行通信;下位机驱动子层是一个完整的直流电 机闭环控制系统,包括CPU、控制芯片、驱动芯片以及增量式光电编码器;位置反馈子层通过CPU的I/O口和中断得到机器人车轮轴转角信息,结合机器 人机械系统的实际尺寸计算机器人中心的实际位置信息,处理好的位置信息通 过串口反馈给车载PC运算层。该控制系统应用在国家自然科学基金资助项目 和国家重点基础研究发展计划973项目的移动机器人平台上,运动控制测试结 果表明,分层分布式控制方式控制精度高,稳定性好,系统响应迅速;同时该 控制系统具有超强的计算能力和二次开发潜力,根据项目研究需要可在各个子 层进行分布式扩展,比如在下位机驱动子层和位置反馈子层的同级层中扩展传 感器功能子层,增加机器人的智能。该控制系统为项目的实验工作奠定基础。 2分层分布式控制系统设计 1. 基于VC++的主控中心决策层设计 主控中心决策层的作用是总体规划和分配任务,对机器人进行远程监控。 基于VC++编译环境,采用模块化方法对人机交互系统进行设计,分为网络数 据传输模块、运动参数输入模块、轨迹显示模块、视觉监控模块。如图

视觉伺服控制算法优化综述

视觉伺服控制算法优化综述 摘要:系统论述了视觉伺服控制的应用现状。重点介绍了针对不同的实际情况,提出优化的基于位置的视觉伺服系统和基于图像的视觉伺服系统的控制算法。优化后的算法效率高,具有很强的有效性和可行性。优化后的控制系统功能更强,更精确有效。 关键词:视觉伺服;优化;算法 Survey of Visual Servoing control algorithm Abstract:The application status of the visual servo control are reviewed . For different realities , we put fortward an improved position-based visual servo systems and image -based visual servo control algorithm of the system. High efficiency of the improved algorithm has strong effectiveness and feasibility. The improved control system functions stronger, and become more precise and effective. Keywords:Visual Servoing;improve;Algorithm

1 引言 随着科技的快速发展,在现代工业自动化生产过程中,机器视觉正成为一种提高生产效率和保证产品质量的关键技术,如机械零件的自动检测、智能机器人控制及生产线的自动监控等。 基于视觉的伺服策略是采用相机所观察的特征来控制机器人移动的一种灵活有效的方法。视觉伺服主要分为3种:基于位置的视觉伺服(PBVS)、基于图像的视觉伺服(IBVS)和混合控制视觉伺服。早期的研究主要是基于位置的视觉伺服研究,近年来主要是基于图像的视觉伺服研究。 PBVS的反馈偏差在3D笛卡尔空间进行计算,IBVS的反馈偏差在2D图像平面空间进行计算。PBVS 的控制方式直接在笛卡尔空间下进行位姿估计和运动控制,具有很好的直观性和简单有效性。IBVS的控制方式其期望给定值直接以图像特征信息表示,所以不需要将特征信息投影逆变换到工作空间的过程,因此基于图像的控制方式对标定误差和空间模型误差不敏感,具有更高地定位精度,为多数的视觉伺服系统所采用。 2 视觉伺服控制算法 在进行任何一个基于伺服控制的控制系统的分析、综合或设计时,首先应建立该系统的数学模型,确定其控制算法。它反映了系统输入、内部状态和输出之间的数量和逻辑关系,这些关系式为计算机进行运算处理提供了依据。控制算法的正确与否直接影响控制系统的品质,甚至决定整个系统的成败。 2.1 基于位置的视觉伺服算法的优化 对于不同的功能要求,采用传统的基于位置的视觉伺服控制算法,常常造成稳定性不够、精度不够、准确性不足等问题,我们需要对算法进行优化处理,来满足要求。 例如,针对家庭环境中服务机器人物品的抓取问题,提出一种改进的基于位置的视觉伺服抓取算法。该算法主要包括4个部分: 1.基于Naomark 标签的物体识别,根据Naomark的ID确定抓取方式,并利用世界单应分解算法对目标物位姿进行估计。 通过在具有不同形状和特征的各类物品上布置Naomark 标签的方式,可以实现被操作物的快速识别与定位,从而解决家庭环境中物品种类多、操作方式复杂带来的困难。 利用Hough 变换和边缘检测可以得到Naomark 的各特征点。 2.对NAO机器人的五自由度手臂进行运动学建模,计算出运动学正解和逆解。

机器人视觉伺服系统的控制结构

机器人视觉伺服系统的控制结构

机器人视觉伺服系统的控制结构 1 前言 对机器人视觉伺服系统的研究是机器人领域中的重要内容之一,其研究成果可直接用于机器人手—眼系统、移动机器人的自动避障及对周围环境的自适应、轨线跟踪等问题中。通常所说的机器视觉是指:自动获取并分析图像,以得到一组可对景物描述的数据或控制某种动作的数据。而视觉伺服则不同于机器视觉,它利用机器视觉的原理对图像进行自动获取与分析,以实现对机器人的某项控制为目的。正是由于系统以实现某种控制为目的,所以视觉伺服系统中的图像处理过程必须快速准确。 视觉伺服系统采用视觉反馈环形成闭环,在视觉反馈环中抽取某种图像特征。图像特征可以是点、曲线、图像上的某一区域等,比如,它可以是点在图像平面的坐标位置,或投影面的形心及其惯量的高次幂。 2 视觉伺服系统的分类 视觉伺服的控制策略主要基于以下两个问题: 1)是否采用分层控制结构?即机器人是否需要闭环关节控制器?进一步说,就是系统的视觉反馈是为机器人的关节控制闭环提供输入量,还是由视觉控制器直接控制机器人各关节。 2)误差输入量是以机器人所在空间的三维坐标表示,还是以图像特征? 按控制策略2)区分,视觉伺服系统分为两类:基于位置的控制系统(position-based control,又称3D视觉伺服,3Dvisualservoing),基于图像的控制系统(image-base control,或称2D视觉伺服,2Dvisualservoing)。由于基于位置和基于图像的视觉伺服各有其优缺点,于是近年有学者综合上述两类视觉伺服系统的优点,设计出2-1/2D视觉伺服系统。 按控制策略1)区分,视觉伺服系统可分为动态观察—移动系统和直接视觉伺服。前者采用机器人关节反馈内环稳定机械臂,由图像处理模块计算出摄像机应具有的速度或位置增量,反馈至机器人关节控制器;后者则由图像处理模块直接计算机械壁各关节运动的控制量。 3 视觉伺服系统的控制结构 3.1 基于位置的视觉伺服控制结构

六自由度机器人控制系统设计

1前言 1.1 焊接机器人的发展历史与现状 现代机器人的研究始于20世纪中期,其技术背景是计算机和自动化的发展,以及原子能的开发利用。美国原子能委员会下属的阿尔贡研究所为解决可代替人进行放射性物质的处理问题,在1947年研制了遥控式机械手臂;1948年又相继开发了电气驱动式的主从机械手臂,从而解决了对放射性物质的进行远距离操作的问题。1954年,美国科学家戴沃尔最先提出工业机器人的概念,并申请了新的专利。其主要特点是借助伺服技术来控制机器人的关节,并利用人手对机械手臂进行动作示教,机械手臂能实现人物动作的记录和再现。这就是示教再现机械臂,现在所用的机械手臂差不多都采用这种控制方式。伴随着现代社会的发展,为了提高生产效率,稳定和提高产品的质量,加快实现工业生产机械化,改善工人劳动条件,已经大大改进了机械手臂的性能,并大量应用于实际生产中,尤其是在高压、高温、多粉尘、高噪音和重度污染的场合。焊接机器人的诞生可以追溯到上世纪70年代,是由日本发那科(FANUC)公司生产的小型机器人改进的,受限于当时的技术手段以及高昂的造价,使得当时的焊接机器人不能得到很好的应用。机械手臂是一种工业机器人,它由控制器、操作机、检测传感装置和伺服驱动系统组成,是一种可以自动控制、仿人手操作、可以重复编程、可以在三维空间进行各种动作的自动化生产设备。机械手臂首先是在汽车制造工业中使用的,它一般可进行焊接、上下料、喷漆以及搬运。它可代替人们进行从事繁重、单调的重复劳动作业,并且能够大大改善劳动生产率,提高产品的质量[1]。 到了90年代初,随着计算机技术、微电子技术、网络技术等的快速发展,机器人技术也得到了飞速发展。工业机器人的制造水平、控制速度和控制精度、可靠性等不断提高,而机器人的制造成本和价格却不断下降。在西方国家,由于劳动力成本的提高为企业带来了不小的压力,而机器人价格指数的降低又恰巧为其进一步推广应用带来了契机,采用机器人的利润显然要比采用人工所带来的利大,使得焊机机器人得到了推广,同时技术的进步也使得焊机机器人技术得到很大提高。 进入新世纪之后,由于各国对焊接机器人的不断重视,使得焊接机器人技术取得了很大的进步。同时由于其焊机精度及更低的生产成本,也使得它得到了越来越多的应用。目前,焊接机器人主要用于装卸、搬运、焊接、铸锻以及热处理等方面,无论数量、品种和性能方面都还不能满足工业生产发展需要。在一些特殊的行业,使用它来代替人工操作的,主要是在危险作业、多粉尘、高温、噪声、工作空间小等的不适于人工作业的环境。 1.2 焊接机器人发展趋势

机器人视觉伺服技术发展概况综述

机器人视觉伺服技术发展概况综述 目前,在全世界的制造业中,工业机器人已经在生产中起到了越来越重要的作用。为了使机器人能够胜任更复杂的工作,机器人不但要有更好的控制系统,还需要更多地感知环境的变化。其中机器人视觉以其信息量大、信息完整成为最重要的机器人感知功能。 机器人视觉伺服系统是机器视觉和机器人控制的有机结合,是一个非线性、强耦合的复杂系统,其内容涉及图象处理、机器人运动学和动力学、控制理论等研究领域。随着摄像设备性能价格比和计算机信息处理速度的提高,以及有关理论的日益完善,视觉伺服已具备实际应用的技术条件,相关的技术问题也成为当前研究的热点。 本文对机器人视觉伺服技术进行了综述,介绍了机器人视觉伺服系统的概念及发展历程和分类,重点介绍了基于位置的视觉伺服系统和基于图像的视觉伺服系统。对机器人视觉所涉及的前沿问题做了概括,并指出了目前研究中所存在的问题及今后发展方向。 机器人视觉伺服系统 视觉伺服的定义: 人类对于外部的信息获取大部分是通过眼睛获得的,千百年来人类一直梦想着能够制造出智能机器,这种智能机器首先具有人眼的功能,可以对外部世界进行认识和理解。人脑中有很多组织参与了视觉信息的处理,因而能够轻易的处理许多视觉问题,可是视觉认知作为一个过程,人类却知道的很少,从而造成了对智能机器的梦想一直难以实现。随着照相机技术的发展和计算机技术的出现,具有视觉功能的智能机器开始被人类制造出来,逐步形成了机器视觉学科和产业。所谓机器视觉,美国制造工程师协会(sme society of manufacturing engineers)机器视觉分会和美国机器人工业协会(ria robotic industries association) 的自动化视觉分会给出的定义是: “机器视觉是通过光学的装置和非接触的传感器自动地接收和处理一个真实物体的图像,以获得所需信息或用于控制机器人运动的装置。”

基于单片机智能机器人控制系统研究设计

引言 单片机技术作为自动控制技术的核心之一,被广泛应用于工业控制、智能仪器、机电产品、家用电器等领域。随着微电子技术的迅速发展,单片机功能也越来越强大,本设计基于单片机技术、红外技术完成智能机器人控制系统设计。智能机器人研究在当前机器人研究领域具有十分突出的地位, 其显著的特点是具有环境感知、判断决策、人机交互等功能[1]。本智能机器人系统主要实现了步行、跟踪、避障、步伐调整、语音、声控、液晶显示,地面探测等功能。在遇到外界条件发生变化时,该机器人将采取不同的措施对待,较好地表现出该机器人的思考能力。 1 智能机器人简介 1.1 系统框图 该智能机器人控制系统采用两片AT89C51[2]控制,一片单片机MCU1用于整个系统的控制,另一片单片机MCU2用于驱动液晶屏LCM1602工作,它们之间通过I/O口通讯,以实现两片单片机共同工作的相互协调控制。系统框图[3]如图1所示。

图1 机器人控制系统结构图 设计中,MCU1的P1.0、P1.3分别接触觉传感器,P1.6-P1.7接视觉红外传感器,P2.0-P2.4口控制继电器驱动电路,P2.5口接地面探测传感器,P2.6-P2.7接步伐校正光耦器,P3.0-P3.5接I SD25120语音芯片。 1.2 实现功能 机器人在移动过程中,会发出语音提示:“目标搜索中”,同时液晶显示:“Target is in searchi ng”;前进过程中发现目标,语音提示:“发现目标”;液晶显示:“Find object”,机器人自动向该目标转向;对准目标后,语音提示:“锁定目标”,液晶显示:“Lock it”,同时机器人向目标继续前进;如机器人撞上目标,语音提示:“前方有障碍物”,液晶显示:“Obstacles impending”,机器人根据触角碰撞的先后顺序,向该相反的方向转角约100度,继续前进;当前方地面出现断层,语音提示:“危险,前方地面有断层”,液晶显示:“Warning,fault ahead”,同时机器人会向后退几步,转向后继续前进;如果机器人在转向过程中,步伐错乱,便会自动执行步伐调整程序,以校正步伐。 2 系统设计 2.1 驱动电路

机器人视觉系统方案

机器人视觉系统 在现代工业自动化生产中,涉及到各种各样的检验、生产监视及零件识别应用,例如零配件批量加工的尺寸检查,自动装配的完整性检查,电子装配线的元件自动定位,IC上的字符识别等。通常人眼无法连续、稳定地完成这些带有高度重复性和智能性的工作,其它物理量传感器也难有用武之地。由此人们开始考虑利用光电成像系统采集被控目标的图像,而后经计算机或专用的图像处理模块进行数字化处理,根据图像的像素分布、亮度和颜色等信息,来进行尺寸、形状、颜色等的判别。这样,就把计算机的快速性、可重复性,与人眼视觉的高度智能化和抽象能力相结合,由此产生了机器视觉的概念。 一个成功的机器视觉系统是一个经过细致工程处理来满足一系列明确要求的系统。当这些要求完全确定后,这个系统就设计并建立来满足这些精确的要求。机器视觉的优点包括以下几点: ■精度高 作为一个精确的测量仪器,设计优秀的视觉系统能够对一千个或更多部件的一个进行空间测量。因为此种测量不需要接触,所以对脆弱部件没有磨损和危险。 ■连续性 视觉系统可以使人们免受疲劳之苦。因为没有人工操作者,也就没有了人为造成的操作变化。多个系统可以设定单独运行。 ■成本效率高 随着计算机处理器价格的急剧下降,机器视觉系统成本效率也变得越来越高。一个价值10000美元的视觉系统可以轻松取代三个人工探测者,而每个探测者每年需要20000美元的工资。另外,视觉系统的操作和维持费用非常低。 ■灵活性 视觉系统能够进行各种不同的测量。当应用变化以后,只需软件做相应变化或者升级以适应新的需求即可。 许多应用满意过程控制(SPC)的公司正在考虑应用机器视觉系统来传递持续的、协调的和精确的测量SPC 命令。在SPC中,制造参数是被持续监控的。整个过程的控制就是要保证这些参数在一定的围。这使制造者在生产过程失去控制或出现坏部件时能够调节过程参数。 机器视觉系统比光学或机器传感器有更好的可适应性。它们使自动机器具有了多样性、灵活性和可重组性。当需要改变生产过程时,对机器视觉来说“工具更换”仅仅是软件的变换而不是更换昂贵的硬件。当生产线重组后,视觉系统往往可以重复使用 机器视觉系统的构成 机器视觉技术用计算机来分析一个图像,并根据分析得出结论。现今机器视觉有两种应用。机器视觉系统可以探测部件,在此光学器件允许处理器更精确的观察目标并对哪些部件可以通过哪些需要废弃做出有效的决定;机器视觉也可以用来创造一个部件,即运用复杂光学器件和软件相结合直接指导制造过程。

机器人视觉伺服系统

机器人视觉伺服系统 2014-2-18 15:28:29 浏览:112 目前,在全世界的制造业中,工业机器人已经在生产中起到了越来越重要的作用。为了使机器人能够胜任更复杂的工作,机器人不但要有更好的控制系统,还需要更多地感知环境的变化。其中机器人视觉以其信息量大、信息完整成为最重要的机器人感知功能。 机器人视觉伺服系统是机器视觉和机器人控制的有机结合,是一个非线性、强耦合的复杂系统,其内容涉及图象处理、机器人运动学和动力学、控制理论等研究领域。随着摄像设备性能价格比和计算机信息处理速度的提高,以及有关理论的日益完善,视觉伺服已具备实际应用的技术条件,相关的技术问题也成为当前研究的热点。 本文对机器人视觉伺服技术进行了综述,介绍了机器人视觉伺服系统的概念及发展历程和分类,重点介绍了基于位置的视觉伺服系统和基于图像的视觉伺服系统。对机器人视觉所涉及的前沿问题做了概括,并指出了目前研究中所存在的问题及今后发展方向。 机器人视觉伺服系统 视觉伺服的定义: 人类对于外部的信息获取大部分是通过眼睛获得的,千百年来人类一直梦想着能够制造出智能机器,这种智能机器首先具有人眼的功能,可以对外部世界进行认识和理解。人脑中有很多组织参与了视觉信息的处理,因而能够轻易的处理许多视觉问题,可是视觉认知作为一个过程,人类却知道的很少,从而造成了对智能机器的梦想一直难以实现。随着照相机技术的发展和计算机技术的出现,具有视觉功能的智能机器开始被人类制造出来,逐步形成了机器视觉学科和产业。所谓机器视觉,美国制造工程师协会(sme society of manufacturing engineers)机器视觉分会和美国机器人工业协会(ria robotic industries association) 的自动化视觉分会给出的定义是: “机器视觉是通过光学的装置和非接触的传感器自动地接收和处理一个真实物体的图像,以获得所需信息或用于控制机器人运动的装置。” 机器视觉作为与人眼类似的机器仿生系统,从广义角度凡是通过光学装置获取真实物体的信息以及对相关信息的处理与执行都是机器视觉,这就包括了可见视觉以及非可见视觉,甚至包括人类视觉不能直接观察到的、物体内部信息的获取与处理等。 机器人视觉发展历程 上个世纪60年代,由于机器人和计算机技术的发展,人们开始研究具有视觉功能的机器人。但在这些研究中,机器人的视觉与机器人的动作,严格上讲是开环的。机器人的视觉系统通过图像处理,得到目标位姿,然后根据目标位姿,计算出机器运动的位姿,在整个过程中,视觉系统一次性地“提供”信息,然后就不参与过程了。在1973年,有人将视觉系统应用于机器人控制系统,在这一时期把这一过程称作视觉反馈(visual feedback)。直到1979年,hill和park提出了“视觉伺服”(visual servo)概念。很明显,视觉反馈的含义只是从视觉信息中提取反馈信号,而视觉伺服则是包括了从视觉信号处理,到机器人控制的全过程,所以视觉伺服比视觉反馈能更全面地反映机器人视觉和控制的有关研究内容。 上个世纪80年以来,随着计算机技术和摄像设备的发展,机器人视觉伺服系统的技术问题吸引了众多研究人员的注意。在过去的几年里,机器人视觉伺服无论是在理论上还是在应用方面都取得了很大进展。在许多学术会议上,视觉伺服技术经常列为会议的一个专题。视觉伺服已逐渐发展为跨机器人、自动控制和图像

面向智能家居的机器人控制系统设计

摘要 机器人技术涉及领域众多,包括电子、机械学、自动控制、传感器技术等,是一门多技术集合的领域。随着工业自动化在世界的飞速发展,移动机器人在生产生活中的地位逐渐提高。文章主要讲述了家庭机器人的设计过程,以及机械手的设计方案。 以AT89C51 单片机作为本次设计核心,借助L298N电机控制芯片以完成对直流电机的控制,比如如何启停,如何改变方向,改变行驶速度。以应对移动机器人所需完成任务动作的要求。在如何选择合适的机器人设计中,采用了脉冲宽度调制技术对电机进行控制,为了达到期望值采用调节占空比大小来实现。 关键词:智能家居机器人;AT89C51 单片机;L298N电机控制芯片;PWM控制;电机控制。 ABSTRACT Robot technology involves many fields, including electronics, mechanics, automatic control, sensor technology and so on. It is a field of multi technology collection. With the rapid development of industrial automation in the world, the position of mobile robots in production and life is gradually improving. This article mainly describes the design process of the family robot and the design plan of the manipulator. With the AT89C51 MCU as the core of this design, the control chip of L298N motor is used to control the DC motor, such as how to start and stop, how to change direction and change the speed of driving. In order to meet the requirements of mobile robot for completing tasks. In how to choose the suitable robot design, the pulse width modulation technology is used to control the motor. In order to achieve the desired value, the size of the duty ratio is realized. Key words:Screening manipulator;AT89C51 monolithic integrated circuit,;LN298 motor control chip,;PWM technology;motor control. 第一章绪论 1.1 智能家居机器人的发展现状 机器人大家都不陌生,我们首先来谈谈移动机器人。移动机器人是一个集环境感知、动态决策与规划、行为控制与执行等多种功能于一体的综合系统。[12]随着传感器技术和自动控制技术的不断发展,机器人的性能得到不断提高。机器人的应用也不再局限与工业生产以及军事领域,它同时还广泛于民用领域,如除草、灌溉、导航、室内清洗和安全防范等等。

机器人视觉伺服控制外文文献翻译、中英文翻译

附录1:外文翻译 摘要 本文介绍了机器人视觉伺服控制的入门教程,由于该课题涉及许多学科,我们的目标仅限于提供一个基本的概念框架工作。首先,我们从机器人学和计算机视觉的前提条件,包括坐标变换,速度表示,以及图像形成过程的几何方面的描述进行简要回顾。然后,我们提出了视觉伺服控制系统的分类。然后详细讨论了基于位置和基于图像的系统的两大类。由于任何视觉伺服系统必须能够跟踪图像序列中的图像特征,所以我们还包括基于特征和基于相关性的跟踪方法的概述。我们结束了教程与一些服务的当前方向的研究领域的视觉伺服控制 当今绝大多数增长的机器人人口都在工厂里工作,在那里工厂可以制造出适合机器人的环境。在工作环境和物体放置不能精确控制的应用中,机器人的影响要小得多。这种局限性很大程度上是由于现代商业机器人系统固有的感觉能力不足。人们早已认识到,传感器集成是提高机器人的通用性和应用领域的基础,但迄今为止,这还没有证明在制造业中大量的机器人应用是有效的。 机器人在日常生活中的“前沿”为这项研究提供了新的动力。与制造业的应用不同,重新设计“我们的世界”并不适合于机器人。视觉是一种有用的机器人传感器,因为它模仿人类的视觉,并允许对环境进行非接触测量。自从Shirai 和伊努埃(1)的早 ,期工作(谁描述了如何使用视觉反馈回路来校正机器人的位置以提高任务精度)大量的EORT 一直致力于机器人的视觉控制。机器人控制器完全集成的视觉系统现在可以从多个供应商获得。通常,视觉感知和操作以开环的方式组合,“看”然后“移动”。所得到的操作的精度直接取决于视觉传感器和机器人末端Ecter 的精度。增加这些子系统的精度的一个替代方法是使用视觉反馈控制回路,这将增加系统的整体精度,这是大多数应用中的一个主要问题。极端地,机器视觉可以为机器人端部控制器提供闭环位置控制。这被称为视觉伺服。这个词似乎已经被RHT 和Park(2)在1979 中介绍了,以区别他们的方法与先前的“块世界”实验,其中系统在拍照和移动之间交替。在引入这个术语之前,一般使用较少的视觉术语视觉反馈。为了这篇文章的目的,视觉伺服中的任务是使用视觉信息来控制机器人的末端ECT 相对于目标对象或一组目标特征的姿态。该任务也可用于移动机器人,其中,它成为控制车辆的姿态相对于一些地标。 视觉伺服是融合许多领域的结果,包括高速图像处理、运动学、动力学、控制理论和实时计算。它与主动视觉和运动结构的研究有很多共同点,但与在分层任务级机器人控制系统中经常使用的视觉非常不同。许多控制和视觉问题类似于那些正在建造“机器人头”的主动视觉研究者所反对的。然而,视觉伺服中的任务是控制机器人利用视觉来操纵环境,而不是仅仅观察环境。 本课程的教程介绍。我们的目标是帮助其他人通过提供一致的术语和术语来

相关主题
文本预览
相关文档 最新文档