当前位置:文档之家› 傅里叶级数的其收敛性及其应用

傅里叶级数的其收敛性及其应用

傅里叶级数的其收敛性及其应用
傅里叶级数的其收敛性及其应用

傅里叶级数的收敛性及其应用

摘要

傅里叶级数是数学分析的一个重要组成部分.本文首先介绍了傅里叶级数的相关知识、以2π为周期函数的傅里叶级数展开式、以2l为周期函数的傅里叶级数展开形式.其次,通过狄利克雷积分和黎曼—勒贝格引理及局部化定理傅里叶

f t展开成傅里叶级数的收敛定理及其证明.级数的收敛定理分析了周期函数()

最后,给出了傅里叶级数一些简单应用,其原理主要是利用傅里叶级数均方误差证明了傅里叶级数部分和趋于无穷大时吉伯斯现象不存在以及利用傅里叶级数展开法研究了平顶高斯光束通过有光阑限制的近轴ABCD光学系统的传输特性问题.

关键词:傅里叶级数;收敛性;积分;周期函数

CONVERGENCE OF FOURIER SERIES AND

ITS APPLICATION

ABSTRACT

Fourier series is an important part in Mathematical Analysis. The first introduced the knowledge of Fourier series, toπ2for the periodic function of the Fourier series expansion, to l2for the periodic function of the Fourier series expansion. Second, analyzed periodic function()x f expand into Fourier series convergence theorem and its proof by Dirichlet integral and Riemann-Lebesgue Lemma and local theorem of Fourier series convergence theorem . Finally, some simple application of Fourier series, and its main principle is to use the mean square error of the Fourier series is proved, and tends to infinity, some of Gibbs phenomenon does not exist and the use of fourier Fourier series expansion of the flattened Gaussian beams through apertured paraxial optical system ABCD, the transmission characteristics of the problem.

Key words:Fourier series; Convergence; Integral; Periodic function

----

傅里叶(Fourier)级数的指数形式与傅里叶变换

傅里叶(Fourier )级数的指数形式与傅里叶变换 专题摘要:根据欧拉(Euler )公式,将傅里叶级数三角表示转化为指数表示,进而得到傅里叶积分定理,在此基础上给出傅里叶变换的定义和数学表达式。 在通信与信息系统、交通信息与控制工程、信号与信息处理等学科中,都需要对各种信号与系统进行分析。通过对描述实际对象数学模型的数学分析、求解,对所得结果给以物理解释、赋予其物理意义,是解决实际问题的关键。这种数学分析方法主要针对确定性信号的时域和频域分析,线性时不变系统的描述以及信号通过线性时不变系统的时域分析与变换域分析。所有这些分析方法都离不开傅里叶变换、拉普拉斯变换和离散时间系统的z 变换。而傅里叶变换的理论基础是傅里叶积分定理。傅里叶积分定理的数学表达式就是傅里叶级数的指数形式。 不但傅里叶变换依赖于傅里叶级数,就是纯数学分支的调和分析也来源于函数的傅里叶级数。因此,傅里叶级数无论在理论研究还是在实际应用中都占有非常重要的地位。我们承认满足狄里克莱(Dirichlet )条件下傅里叶级数的收敛性结果,不去讨论和深究傅里叶展式的唯一性问题。 傅里叶级数的指数形式 一个以T 为周期的函数)(t f ,在]2 ,2[T T 上满足狄里克莱条件:1o

)(t f 连续或只有有限个第一类间断点;2o 只有有限个极值点。那么)(t f 在]2 ,2[T T - 上就可以展成傅里叶级数。在连续点处 ∑∞ =++=1 )sin cos (2)(n n n t n b t n a a t f ωω, (1) 其中 T πω2= , ),2,1,0(,cos )(2 22Λ==?-n dt t n t f T a T T n ω, (2) ),3,2,1(,sin )(2 22 Λ==?-n dt t n t f T b T T n ω, (3) 根据欧拉(Euler )公式:θθθsin cos j e j +=,(1)式化为 ∑∞=--?? ????-+++=10222)(n t jn t jn n t jn t jn n j e e b e e a a t f ωωωω ∑∞=-?? ? ???++-+=10222n t jn n n t jn n n e jb a e jb a a ωω, (4) 若令 dt t f T c T T ?-=22 0)(1 Λ,3,2,1,)(1 ]sin )[cos (1 sin )(1cos )(1222 2222 22==-=-=-=????-----n dt e t f T dt t n j t n t f T dt t n t f T j dt t n t f T jb a c T T t jn T T T T T T n n n ωωωωω Λ,3,2,1,)(1 22 ==?--n dt e t f T c T T t jn n ω 综合n n c c c -,,0,可合并成一个式子 Λ,2,1,0,)(1 22 ±±==?--n dt e t f T c T T t jn n ω, (5)

正项级数敛散性地判别方法

正项级数敛散性的判别方法 摘要:正项级数是级数容中的一种重要级数,它的敛散性是其基本性质。正项级数敛散性的判别方法虽然较多,但是用起来仍有一定的技巧,归纳总结正项级数敛散性判别的一些典型方法,比较这些方法的不同特点,总结出一些典型判别法的特点及其适用的正项级数的特征。根据不同级数的特点分析、判断选择适宜的方法进行判别,才能事半功倍。 关键词:正项级数;收敛;方法;比较;应用 1引言 数项级数是伴随着无穷级数的和而产生的一个问题,最初的问题可以追溯到公元前五世纪,而到了公元前五世纪,而到了公元17、18世纪才有了真正的无穷级数的理论。英国教学家Gregory J (1638—1675)给出了级数收敛和发散两个术语从而引发了数项级数敛散性广泛而深入的研究,得到了一系列数项级数的判别法。因而,判断级数的敛散性问题常常被看作级数的首要问题。我们在书上已经学了很多种正项级数敛散性的判定定理,但书上没有做过多的分析。我们在实际做题目时,常会有这些感觉:有时不知该选用哪种方法比较好;有时用这种或那种方法时,根本做不出来,也就是说,定理它本身存在着一些局限性。因此,我们便会去想,我们常用的这些定理到底有哪些局限呢?定理与定理之间会有些什么联系和区别呢?做题目时如何才能更好得去运用这些定理呢?这就是本文所要讨论的。 2正项级数敛散性判别法 2.1判别敛散性的简单方法 由级数收敛的基本判别定理——柯西收敛准则:级数 1 n n u ∞ =∑收敛 ?0,,,,N N n N p N ε+?>?∈?>?∈有12n n n p u u u ε+++++ +<。取特殊的1p =,可 得推论:若级数 1 n n u ∞ =∑收敛,则lim 0n n u →∞ =。 2.2比较判别法 定理一(比较判别法的极限形式): 设 1 n n u ∞=∑和1 n n v ∞ =∑为两个正项级数,且有lim n n n u l v →∞=,于是 (1)若0l <<+∞,则 1 n n u ∞ =∑与 1 n n v ∞ =∑同时收敛或同时发散。 (2)若0l =,则当 1 n n v ∞ =∑收敛时,可得 1 n n u ∞ =∑收敛。

傅里叶分析报告教程(完整版)

傅里叶分析之掐死教程(完整版)更新于2014.06.06 Heinrich · 6 个月前 作者:韩昊知乎:Heinrich 微博:@花生油工人知乎专栏:与时间无关的故事 谨以此文献给大连海事大学的吴楠老师,柳晓鸣老师,王新年老师以及张晶泊老师。 转载的同学请保留上面这句话,谢谢。如果还能保留文章来源就更感激不尽了。 我保证这篇文章和你以前看过的所有文章都不同,这是12年还在果壳的时候写的,但是当时没有来得及写完就出国了……于是拖了两年,嗯,我是拖延症患者…… 这篇文章的核心思想就是: 要让读者在不看任何数学公式的情况下理解傅里叶分析。 傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生

上来就懵圈并从此对它深恶痛绝。老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。(您把教材写得好玩一点会死吗?会死吗?)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。 ——————————————以上是定场诗—————————————— 下面进入正题: 抱歉,还是要啰嗦一句:其实学习本来就不是易事,我写这篇文章的初衷也是希望大家学习起来更加轻松,充满乐趣。但是千万!千万不要把这篇文章收藏起来,或是存下地址,心里想着:以后有时间再看。这样的例子太多了,也许几年后你都没有再打开这个页面。无论如何,耐下心,读下去。这篇文章要比读课本要轻松、开心得多…… p.s.本文无论是cos还是sin,都统一用“正弦波”(Sine Wave)一词来代表简谐波。 一、什么是频域 从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。这种以时间作为参照来观察动态世界的方法我们称其为时域分析。而我们也想当然的认为,世间万物都在随着时间不停的改变,并且永远不会静止下来。但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了?我没有疯,这个静止的世界就叫做频域。 先举一个公式上并非很恰当,但意义上再贴切不过的例子: 在你的理解中,一段音乐是什么呢?

正项数收敛判别方法

数学与统计学院应用数学系 综合课程设计成绩评定书设计题目:正项级数收敛的判别方法

摘要: 各项都由正数组成的级数称为正项级数,它是数项级数的特例。本文主要考虑正项级数的收敛问题,通过介绍比较原则、比式判别法、根式判别法以及积分判别法等常用的判别方法,并结合相关实例,判断所给级数的敛散性。 关键字:正项级数 收敛 比较原则 比式判别法 根式判别法 积分判别法 1基本概念 1.1 数项级数及其敛散性 在介绍正项级数之前先引入数项级数的相关概念及收敛级数的基本性质,下面介绍数项级数以及级数敛散的定义。 定义1:给定一个数列{}n u ,对它的各项依次用“+”号连接起来的表达式 12n u u u ++++ (1) 称为数项级数或无穷级数(简称级数),其中n u 称为数项级数的通项。 数项级数(1)的前n 项之和,记为1 n n k k S u == ∑,称为(1)的前n 项部分和。 定义2:若(1)的部分和数列{}n S 收敛于S (即lim n n S S →∞ =),则称数项级数(1)收 敛,并称S 为(1)的和,记为1 n n S u ∞ == ∑,若{}n S 为发散数列,则称数列(1)发散。 根据级数(1)的收敛性,可以得到收敛级数的一些性质: (i) 收敛级数的柯西收敛准则 级数(1)收敛的充要条件是:0ε?>,0N ?>,n N ?>,p Z + ?>,有 12||.n n n p u u u ε++++++< (ii) 级数收敛的必要条件:若级数 1 n n u ∞ =∑收敛,则lim 0n n u →∞ =. (iii)去掉、改变或增加级数的有限项并不改变级数的敛散性。 (iv) 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和(正项级数也满足)。 (v) 运算性质: 若级数 1 n n u ∞ =∑与 1 n n v ∞ =∑都收敛,c d 是常数,则 1 ()n n n cu dv ∞ =+∑收敛,且满足

傅里叶变换和傅里叶级数的收敛问题

1、傅里叶变换和傅里叶级数的收敛问题 由于傅里叶级数是一个无穷级数,因而存在收敛问题。这包含两方面的意思:是否任何周期信号都可以表示为傅里叶级数;如果一个信号能够表示为傅里叶级数,是否对任何t 值级数都收敛于原来的信号。关于傅里叶级数的收敛,有两组稍有不同的条件。 第一组条件:如果周期信号()t x 在一个周期内平方可积,即 ()∞

吉布斯现象: 当简单地把信号频谱截断时,相当于给信号频谱加上了一个矩形窗口函数,正是由于矩形窗口函数的时域特性导致了在间断点处的吉布斯现象的产生。 2、周期序列的傅里叶级数展开和傅里叶变换之间的问题 假定()t x 是一个长度为N 的有限长序列,将()t x 以N 为周期延拓而成的周期序列为()n x ~,则有 ()()∑∞-∞=-= r rN n x n x ~ 或表示为()()()N n x n x =~。于是()n x ~ 与()n x 的关系表示为: ()()()N n x n x =~ ()()()n R n x n x N ~= 将()n x ~表示为离散时间傅里叶级数有: ()()kn N N n W k X N n x --=?=∑10~~ 1 ()()kn N N n W n x k X ?=∑-=10~ ~ 其中()k X ~是傅里叶级数的系数,这样做的目的是使其表达形式与离散时间傅里叶变换的形式相类似。如果将()k X ~的主值周期记为()k X ,10-≤≤N k ,由于以上两式中的求和范围均取为区间0~N-1,在次区间内()n x ~ =()n x ,因此可以得到: ()()kn N N n W n x k X ∑-==10~, 10-≤≤N k ()()kn N N n W k X N n x --=∑=10~1, 10-≤≤N n 表明时域N 点有限长序列()n x 可以变换成频域N 点有限长序列()k X 。显然,DFT 与DFS 之间存在以下关系: ()()()N k X k X =~

比较几种判定正项级数收敛性的方法

比较几种判定正项级数收敛性的方法 【摘要】通过对:1:比较判别法;2:根植判别法3:达朗伯耳判别法的应用范围的比较,加以对其分析, 找出若干类型题加以分类,确定哪类适合这两种判定法,归纳其特点,以便以后做题能够快速入手,遇到题目以后具体运用哪种方法更便捷提供了途径. 【关键词】比较判别法 根植判别法 达朗贝尔 例题 一:比较判别法. 1:定义 若从某一项起11n n n n n n a b a kb a b ++≤≤(或者) (k >0),则由1 n n b ∞ =∑的收敛性可推出1 n n a ∞ =∑收敛,若从某一项起n n a kb ≥11()n n n n a b a b ++≥ 或者 (k >0),则由1 n n b ∞ =∑发散可推出1 n n a ∞ =∑发散. 2:比较判别法的极限形势 设lim n n n a b →∞ =λ(+λ∞为有限数或)则: (i ):0λ<<+∞时,n n a b 则和收敛性相同. (ii ):1 1 =0b n n n n a λ∞ ∞ ==∑∑时,由收敛可推出收敛. (iii ):1 1 b n n n n a λ∞ ∞ ===+∞∑∑时,由发散课推出发散. 3:例题 (1):证明:若级数1 n n a ∞ =∑收敛,则把该级数的项通过组合而不改变其先后顺序所得的级 数1 n n A ∞ =∑其中 1 1 n n p n i i p A a -+==∑ (11p =,12p p <<…)也收敛且具有相同的和,反之不真,举 出例子. 证 设级数1 n n A ∞ =∑的部分和序列为1,2l l ,…,n l ,…,则

傅里叶级数及其应用.

毕业论文 题目:傅里叶级数及其应用作者:姜广辉 指导教师:李博 职称:讲师 院系:理学院数学系 专业:数学与应用数学 班级:10级1班 日期: 2014年5月

傅里叶级数及其应用 摘要:傅里叶级数是数学分析中的一个重要概念,具有较好的几何和代数性质,伴随着科技的进步与发展,涉及了许多数学命题的讨论和应用,傅里叶级数的相关知识已经成为从事科学研究和工程设计等科技人员必备的数学基础.通过对傅里叶、拉格朗日、狄利克雷、黎曼等人在傅里叶级数方面的贡献,介绍了傅里叶级数起源和发展历程.同时文章以在图案设计和铁路客运量预测上的应用说明了傅里叶级数的价值.在图案设计设计方面,运用MATLAB软件,编写傅里叶级数的程序语言,通过自定义函数、编写画图函数程序、对图形多余部分处理、图形线条加粗等步骤,进而得到傅里叶级数的图形.通过对最基本的傅里叶级数的图形的组合、排列可以构成丰富的图案.在铁路客运量预测方面,基于傅里叶级数预测模型,以我国2004—2009年铁路客运量为数据基础,通过将时间序列划分为趋势性和季节性部分,分别采用最小二乘法和傅里叶级数预测法对两者进行拟合,应用MATLAB软件,求出预测模型,并进行预测.通过对预测结果的误差分析,表明:采用傅里叶级数预测法预测我国铁路客运量的效果较好.因此傅里叶级数在一定程度上受到了很多数学家的欢迎. 关键词:傅里叶级数;收敛性;MATLAB软件;图案设计;预测模型

Fourier series and its applications Abstract:Fourier series is a mathematical analysis of an important concept,and has good geometry and algebraic properties,along with the progress and development of technology,involving a lot of discussion and application of mathematical propositions,Fourier series of relevant knowledge has become a mathematical foundation for scientific research and engineering design and other technical personnel necessary. Through Fourier,Lagrange,Dirichlet, Riemann,who contribute in terms of Fourier series,Fourier series introduces the origin and development process,while the article in the graphic design and rail application passenger traffic forecast illustrates the value of the Fourier series. In the design of graphic design,the use of MATLAB software program written in the language of Fourier series,via a custom function,the preparation process of drawing functions,the excess part of the graphics processing,graphics,bold lines and other steps,then get the Fourier series pattern by the combination of the basic pattern of the Fourier series,the arrangement may constitute a rich patterns. Railway passenger traffic forecast,prediction model based on Fourier series to the railway passenger traffic volume of 2004-2009 data base,by the time series into trend and seasonal part,respectively,using the least squares method and fourier Fourier series prediction method for both fitting using MATLAB software,find the prediction model and predict the outcome of the prediction error by analysis showed that:Fourier series prediction method to predict the effect of China's railway passenger volume better. So to some extent,the Fourier series has been welcomed by many mathematicians. Keywords:Fourier series;convergence;MATLAB software;graphic design;prediction model

傅里叶级数

傅里叶级数(Fourier Series ) 引言 正弦函数是一种常见而简单的周期函数,例如描述简谐振动的函数 就是一个以ωπ 2为周期的函数。其中y 表示动点的位置,t 表示时间,A 为振幅,ω为 角频率,?为初相。 但在实际问题中,除了正弦函数外,还会遇到非正弦的周期函数,它们反映了较复杂的周期运动,我们也想将这些周期函数展开成由简单的周期函数例如三角函数组成的级数。具体地说,将周期为)2(ωπ =T 的周期函数用一系列以T 为周期的正弦函数 )sin(n n t n A ?ω+组成的级数来表示,记为 其中),3,2,1(,,0 =n A A n n ?都是常数。 将周期函数按上述方式展开,它的物理意义就是把一个比较复杂的周期运动看成是许多不同频率的简谐振动的叠加。在电工学上,这种展开称为谐波分析。其中常数项0A 称为 )(t f 的直流分量;)sin(11?ω+t A 称为一次谐波(又叫做基波) ;而)2sin(22?ω+t A , )3sin(33?ω+t A 依次称为二次谐波,三次谐波,等等。 为了下面讨论方便起见,我们将正弦函数)sin(n n t n A ?ω+按三角公式变形,得 t n A t n A t n A n n n n n n ω?ω??ωsin cos cos sin )sin(+=+, 令x t A b A a A a n n n n n n ====ω??,cos ,sin ,2 00,则上式等号右端的级数就可以改写成 这个式子就称为周期函数的傅里叶级数。 1.函数能展开成傅里叶级数的条件 (1) 函数)(x f 须为周期函数; (2) 在一个周期内连续或只有有限个第一类间断点;(如果0x 是函数)(x f 的间断点,但 左极限)0(0-x f 及右极限)0(0+x f 都存在,那么0x 称为函数)(x f 的第一类间断点) (3) 在一个周期内至多只有有限个极值点。

傅里叶级数和应用毕业论文

傅里叶级数及其应用 专业:数学与应用数学 班级: 姓名:

目录 引言 (3) 1 傅立叶级数的计算 (5) 1.1 傅立叶级数的几何意义 (5) 1.2 傅里叶级数的敛散性问题 (10) 1.3 傅里叶级数的展开 (11) 1.4 关于傅里叶级数展开的个别简便算法 (16) 1.5 利用二元函数微分中值定理研究函数性质 (19) 2 傅里叶级数的相关定理及其应用 (21) 2.1 n元函数中值定理及其几何意义 (21) 2.2 利用n元函数微分中值定理研究函数的性质 (28) 3 微分中值定理在复数域上的推广 (32) 3.1 复数域上的中值定理 (32) 3.2 利用复数域内中值定理研究函数性质 (36) 结论 (39) 致谢 (40) 参考文献 (41)

为了更好地认识和应用微分中值定理,使微分中值定理能够最大的发挥其重要作用,在深刻理解和掌握教材内微分中值定理的基础上,将微分中值定理在n元函数以及复数域内推广及应用加以探讨.首先根据一元函数微分中值定理的内容,给出了罗尔定理、拉格朗日定理、柯西中值定理、泰勒中值定理公式的统一形式.而后又仿照一元函数微分中值定理的形式对教材中二元函数微分中值定理进行补充,给出了二元函数罗尔定理、柯西中值定理和二元函数泰勒中值定理的表述,并且构造“辅助函数”给出了证明过程,然后讨论了二元函数罗尔定理与拉格朗日定理的几何意义.接着通过对比一元函数与二元函数微分中值定理,给出了n元函数罗尔定理、拉格朗日定理、柯西中值定理和泰勒中值定理的表述形式,而后同样借助构造的“辅助函数”把n元函数转化为一元函数,进而给出了四个定理的证明,并通过几个典型例题验证了n元函数微分中值定理的可用性.最后从二元函数微分中值定理着手,给出了复数域上的罗尔定理、拉格朗日定理、柯西中值定理的表述形式,同时通过几个例题验证了复数域上微分中值定理的可用性. 关键词: n元函数;微分中值定理;几何意义;复数域

傅里叶级数通俗解析

傅里叶级数 本文意在阐述傅里叶级数是什么,如何通过数学推导得出,以及傅里叶级数代表的物理含义。 1.完备正交函数集 要讨论傅里叶级数首先得讨论正交函数集。如果n个函数 φ1t,φ2t,…,φn t构成一个函数集,若这些函数在区间t1,t2上满足 φi tφj t t2 t1dt= 0 ,i≠j K i ,i=j(1) 如果是复数集,那么正交条件是 φi tφj?t t2 t1dt= 0 ,i≠j K i ,i=j(2) φj?t为函数φj t的共轭复函数。 有这个定义,我们可以证明出一些函数集是完备正交函数集。比如三角函数集和复指数函数集在一个周期内是完备正交函数集。 先证明三角函数集: 设φn t=cos nωt,φm t=cos mωt,把φn t,φm t代入(1)得 φi tφj t t0+T t0dt=cos nωt cos mωt dt t0+T t0 当n≠m时 =1 2 cos n+mωt+cos n?mωt t0+T t0 dt =1 2sin n+mωt (n+m)ω +sin n?mωt (n?m)ωt t0+T =0 (n,m=1,2,3,…,n≠m) 当n=m时 =1 2 cos2nωt t0+T t0 dt =T 2 再证两个都是正弦的情况 设φn t=sin nωt,φm t=sin mωt,把φn t,φm t代入(1)得 φi tφj t t0+T t0dt=sin nωt sin mωt dt t0+T t0 当n≠m时

=1 2 cos n+mωt?cos n?mωt t0+T t0 dt =1 2sin n+mωt (n+m)ω ?sin n?mωt (n?m)ωt t0+T =0 (n,m=1,2,3,…,n≠m) 当n=m时 =1 2 cos2nωt t0+T t0 dt =T 2 最后证明两个是不同名的三角函数的情况 设φn t=cos nωt,φm t=sin mωt,把φn t,φm t代入(1)得 φi tφj t t0+T t0dt=cos nωt sin mωt dt t0+T t0 =1 2 sin n+mωt?sin n?mωt t0+T t0 dt =1 2 ?cos n+mωt (n+m)ω +cos n?mωt (n?m)ωt t0+T =0 (n,m为任意整数) 因为两个三角函数相乘只有以上三种情况:两个皆为余弦函数相乘;两个皆为正弦函数相乘;一个为正弦函数,另一个为余弦函数相乘;三种情况皆满足正交函数集的定义,所以三角函数集为正交函数集。至于三角函数集的完备性可以从n,m的取值为任意整数可以得出,三角函数集是完备正交函数集。证毕。 由于三角函数集是完备正交函数集,而根据欧拉公式,我们容易联想到复指数函数集是否也是完备正交函数集呢。 接着是复指数函数集的证明 设φn t=?jnωt,φm t=?jmωt,则φj?t=??jmωt把φn t,φj?t代入(2)得 φi tφj?t t0+T t0dt=?jnωt t0+T t0 ??jmωt dt =?j(n?m)ωt t0+T t0 dt 当n≠m时,根据欧拉公式 =cos n?mωt+j sin?(n?m)ωt t0+T t0 dt =sin n?mωt n?mω?j cos?(n?m)ωt n?mωt t0+T =0 (n,m=1,2,3,…,n≠m)

傅里叶变换及应用

傅里叶变换在MATLZB里的应用 摘要:在现代数学中,傅里叶变换是一种非常重要的变换,且在数字信号处理中有着广泛的应用。本文首先介绍了傅里叶变换的基本概念、性质及发展情况;其次,详细介绍了分离变数法及积分变换法在解数学物理方程中的应用。傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号,再利用傅立叶反变换将这些频域信号转换成时域信号。应用MATLAB实现信号的谱分析和对信号消噪。 关键词:傅里叶变换;MA TLAB软件;信号消噪 Abstract: In modern mathematics,Fourier transform is a transform is very important ,And has been widely used in digital signal processing.This paper first introduces the basic concepts, properties and development situation of Fourier transform ;Secondly, introduces in detail the method of separation of variables and integral transform method in solving equations in Mathematical Physics.Fourier transformation makes the original time domain signal whose analysis is difficult easy, by transforming it into frequency domain signal that can be transformed into time domain signal by inverse transformation of Fourier. Using Mat lab realizes signal spectral analysis and signal denoising. Key word: Fourier transformation, software of mat lab ,signal denoising 1、傅里叶变换的提出及发展 在自然科学和工程技术中为了把较复杂的运算转化为较简单的运算,人们常常采用所谓变换的方法来达到目的"例如在初等数学中,数量的乘积和商可以通过对数变换化为较简单的加法和减法运算。在工程数学里积分变换能够将分析运算(如微分,积分)转化为代数运算,正是积分变换这一特性,使得它在微分方程和其它方程的求解中成为重要方法之一。 1804年,法国科学家J-.B.-J.傅里叶由于当时工业上处理金属的需要,开始从事热流动的研究"他在题为<<热的解析理论>>一文中,发展了热流动方程,并且指出如何求解"在求解过程中,他提出了任意周期函数都可以用三角级数来表示的想法。他的这种

正项级数收敛及其应用公式版

公式为正常公式,不是图片版 正项级数收敛性判别法的比较及其应用 一、引言 数学分析作为数学专业的重要基础课程。级数理论是数学分析的重要组成部分,在实际生活中的运用也较为广泛,如经济问题等。而正项级数又是级数理论中重要的组成部分,级数的收敛性更是级数理论的核心问题,要想解决正项级数的求和问题必须先解决正项级数收敛性判断。正项级数收敛性判断的方法虽然较多,但使用起来仍有一定的技巧,根据不同的题目特点分析、判断选择适宜的方法进行判断,能够最大限度的节约时间,提高效率,特别是一些典型问题,运用典型方法,才能事半功倍。 二、预备知识 1、正项级数收敛的充要条件 部分和数列{}n S有界,即存在某正数M,对0>n?,有n SN都有 n n v u≤, 那么 (1)若级数∑∞ =1 n n v收敛,则级数∑∞ =1 n n u也收敛; (2)若级数∑∞ =1 n n u发散,则级数∑∞ =1 n n v也发散; 即∑∞ =1 n n u和∑∞ =1 n n v同时收敛或同时发散。 比较判别法的极限形式: 设∑∞ =1 n n u和∑∞ =1 n n v是两个正项级数。若l v u n n n = +∞ → lim,则 (1)当时,∑∞ =1 n n u与∑∞ =1 n n v同时收敛或同时发散;

(2)当0=l 且级数∑∞ =1 n n v 收敛时,∑∞ =1 n n u 也收敛; (3)当∞→l 且∑∞=1 n n v 发散时,∑∞ =1 n n u 也发散。 2.2 比值判别法 设∑∞ =1n n u 为正项级数,若从某一项起成立着 11 ,成立不等式q u u n n ≤+1 ,则级数∑∞ =1i n u 收敛; (2)若对一切0N n >,成立不等式11 ≥+n n u u ,则级数∑∞=1 i n u 发散。 比值判别法的极限形式: 若∑∞ =1 n n u 为正项级数,则 (1) 当1lim ,成立不等式1,成立不等式1≥n n u ,则级数∑∞ =1 i n u 收敛 根式判别法的极限形式: 设∑∞ =1 n n u 是正项级数,且l u n n n =+∞ →lim ,则 (1)当1l 时,级数∑∞ =1 n n u 发散; (3)当1=l 时,级数的敛散性进一步判断。

傅里叶级数的其收敛性及其应用

傅里叶级数的收敛性及其应用 摘要 傅里叶级数是数学分析的一个重要组成部分.本文首先介绍了傅里叶级数的相关知识、以2π为周期函数的傅里叶级数展开式、以2l为周期函数的傅里叶级数展开形式.其次,通过狄利克雷积分和黎曼—勒贝格引理及局部化定理傅里叶 f t展开成傅里叶级数的收敛定理及其证明.级数的收敛定理分析了周期函数() 最后,给出了傅里叶级数一些简单应用,其原理主要是利用傅里叶级数均方误差证明了傅里叶级数部分和趋于无穷大时吉伯斯现象不存在以及利用傅里叶级数展开法研究了平顶高斯光束通过有光阑限制的近轴ABCD光学系统的传输特性问题. 关键词:傅里叶级数;收敛性;积分;周期函数

CONVERGENCE OF FOURIER SERIES AND ITS APPLICATION ABSTRACT Fourier series is an important part in Mathematical Analysis. The first introduced the knowledge of Fourier series, toπ2for the periodic function of the Fourier series expansion, to l2for the periodic function of the Fourier series expansion. Second, analyzed periodic function()x f expand into Fourier series convergence theorem and its proof by Dirichlet integral and Riemann-Lebesgue Lemma and local theorem of Fourier series convergence theorem . Finally, some simple application of Fourier series, and its main principle is to use the mean square error of the Fourier series is proved, and tends to infinity, some of Gibbs phenomenon does not exist and the use of fourier Fourier series expansion of the flattened Gaussian beams through apertured paraxial optical system ABCD, the transmission characteristics of the problem. Key words:Fourier series; Convergence; Integral; Periodic function ----

数学分析15.3傅里叶级数收敛定理的证明

第十五章 傅里叶级数 3收敛定理的证明 预备定理1:(贝塞尔不等式)若函数f 在[-π,π]上可积,则 2a 20+∑∞=1n 2 n 2n )b +(a ≤?ππ-2(x)f π1dx ,其中a n , b n 为f 的傅里叶系数. 证:令S m (x)=2a 0+∑=+m 1 n n n sinnx )b cosnx (a ,则 ? π π-2m (x )]S -[f(x )dx=?ππ -2(x )f dx-2?ππ -m (x )f(x )S dx+?π π -2m (x )S dx. 其中 ?π π -m (x )f(x )S dx=?π π-0 f(x)2 a dx+dx cosnx f(x )a m 1 n π π-n ∑?= ??+????sinnxdx f(x)b ππ-n =20a 2π+π∑=m 1 n 2n 2n )b +(a . 由三角函数的正交性,有 ?π π-2 m (x )S dx=?∑?? ????++=π π-2 m 1n n n 0sinnx)b cosnx (a 2a dx =??? ? ??π π-2 02a dx+?∑??=??????+ππ-m 1n ππ-22n ππ-22n nx dx sin b nx dx cos a dx=20a 2π+π∑=m 1n 2n 2n )b +(a . ∴?π π-2 m (x )]S -[f(x )dx=?π π-2 (x )f dx-2 πa -2π∑∞ =1n 2n 2n )b +(a +20a 2π+π∑=m 1n 2 n 2n ) b +(a =?π π-2 (x )f dx-???20a 2π+π???∑=m 1n 2n 2n )b +(a ≥0. ∴2a 20+∑=m 1n 2 n 2n )b +(a ≤?ππ-2(x)f π 1dx 对任何正整数m 都成立. 又 ?ππ-2(x)f π 1dx 为有限值,∴正项级数2a 20+∑∞ =1n 2 n 2n )b +(a 的部分和数列有界, ∴2a 20+∑∞=1n 2n 2n )b +(a 收敛且有2a 20+∑∞=1n 2 n 2n )b +(a ≤?ππ-2(x)f π 1dx. 推论1:(黎曼-勒贝格定理)若f 为可积函数,则

傅里叶级数的三角形式和傅里叶级数的指数形式

周期信号的傅里叶级数分析 连续时间LTI 系统的时域分析: 以冲激函数为基本信号 系统零状态响应为输入信号与系统冲激响应之卷积 傅立叶分析 以正弦函数或复指数函数作为基本信号 系统零状态响应可表示为一组不同频率的正弦函数或复指数函数信号响应的加权和或积分; 周期信号: 定义在区间 (,)-∞∞ ,每隔一定时间 T ,按相同 规律重复变化的信号,如图所示 。它可表示为 f (t )=f ( t +m T ) 其中 m 为正整数, T 称为信号的周期,周期的倒数称为频率。 t ()t f 1 1 -T 2 /T 0 周期信号的特点: (1) 它是一个无穷无尽变化的信号,从理论上也是无始无终的,时 间范围为(,)-∞∞ (2) 如果将周期信号第一个周期内的函数写成 ,则周期信 号 ()f t 可以写成

0()() n f t f t nT ∞ =-∞ = -∑ (3)周期信号在任意一个周期内的积分保持不变,即有 ()()()a T b T T a b f t dt f t dt f t dt ++= =? ? ? 1. 三角形式的傅立叶级数 周期信号 f t () ,周期为1T ,角频率 11122T f π πω= = 该信号可以展开为下式三角形式的傅立叶级数。 []∑∞ =++ =++++++++=1 1 1 011121211110)sin()cos(...)sin()cos(... )2sin()2cos()sin()cos()(n n n n n t n b t n a a t n b t n a t b t a t b t a a t f ωωωωωωωω 式中各正、余弦函数的系数 n n b a , 称为傅立叶系数,函数通过它可以完全表示。 傅立叶系数公式如下

漫谈正项级数的收敛性及收敛速度

漫谈正项级数的收敛性及收敛速度 ++++=∑∞ =n n n a a a a 211 称为无穷级数。当0≥n a 时,此级数称为正项级数。记 n n a a a S +++= 21, ,2,1=n ,则}{n S 为部分和数列。级数∑∞ =1 n n a 的敛散性是通过数列}{n S 的敛 散性来定义。显然,级数∑∞=1 n n a 时,有0lim =∞ →n n a 。因此,0lim ≠→∞ n n a 时,必有级数∑∞ =1 n n a 发散。但是 0lim =∞ →n n a 未必有∑∞=1n n a 收敛。只有当无穷小n a 的阶高到一定的程度时,∑∞ =1 n n a 才收敛。可以证明: 几何级数∑∞ =1 n n q ,当1||p 时收敛;当1≤p 时发散。 由p -级数∑ ∞ =1 1 n p n 的敛散性及比较判别法,可以看出,当n a 趋于0的速度快于n 1时,级数∑∞ =1n n a 收敛;而当n a 趋于0的速度不快于n 1时,级数∑∞=1n n a 发散。因而,无穷小n 1 是衡量级数∑∞ =1 n n a 敛散性的一把“尺子”。可是,这把“尺子”有点粗糙了。事实上,尽管无穷小 n n ln 1 趋于0的速度远远快于n 1,但是级数∑∞=1ln 1n n n 仍然发散。可以证明,级数∑∞ =1ln 1 n p n n ,当1>p 时收敛;当1≤p 时发散。于是,无穷小 n n ln 1 是衡量级数敛散性的一把精度较高的一把新“尺子”:当n a 趋于0的速度快于n n ln 1时,级数∑∞=1n n a 收敛;而当n a 趋于0的速度不快于n n ln 1 时,级数∑∞ =1n n a 发散。可是,马 上又面临新问题:无穷小n n n ln ln ln 1趋于0的速度远远快于n n ln 1,但是∑∞ =1ln ln ln 1 n n n n 仍然发散级 数。于是需要更为精细的判断级数敛散的“尺子”。这样,我们会得到一系列判断级数敛散的“尺 子”:n 1 ,n n ln 1, n n n ln ln ln 1。这些 “尺子”可以无限的精细,一直进行下去。实际上,按这种方式,只能够找到越来越精细的“尺子”,但是永远找不到最为精细的“尺子”——“没有最好,只有更好”。 由几何级数的∑∞ =-11n n q 的敛散性,可以看出,粗略的讲,当n 充分大时,正项级数的后一 项小于前一项时,该级数就收敛,否则就发散。在此基础上,有了判断正项级数敛散性的比值(达

相关主题
文本预览
相关文档 最新文档