当前位置:文档之家› 吉林省长白山一高2012-2013学年上学期高二数学必修5第二章数列综合素质能力检测试题

吉林省长白山一高2012-2013学年上学期高二数学必修5第二章数列综合素质能力检测试题

吉林省长白山一高2012-2013学年上学期高二数学必修5第二章数列综合素质能力检测试题
吉林省长白山一高2012-2013学年上学期高二数学必修5第二章数列综合素质能力检测试题

吉林省长白山一高2012-2013上学期高二数学必修5第二章

数列综合素质能力检测试题

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的.)

1.(2010~2011·河南汤阴县一中高二期中)等比数列{a n }中,a 7·a 11

=6,a 4+a 14=5,则a 20a 10

=( ) A.23或32 B.23

C.32

D.13或-12

2.已知等比数列{a n }的前n 项和为S n ,a 1=1,且满足S n ,S n +2,S n +1成等差数列,则a 3等于( )

A.12 B .-12

C.14 D .-14

3.(2012·辽宁理,6)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=( )

A .58

B .88

C .143

D .176

4.已知-1,a 1,a 2,8成等差数列,-1,b 1,b 2,b 3,-4成等

比数列,那么a 1a 2b 2

的值为( ) A .-5 B .5

C .-52 D.52

5.等差数列{a n }中,a 1=-8,它的前16项的平均值是7,若从中抽取一项,余下的15项的平均值为7.2,则抽取的是( )

A .第7项

B .第8项

C .第15项

D .第16项

6.(2012·新课标全国理,5)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( )

A .7

B .5

C .-5

D .-7

7.(2011·北京朝阳区期末)已知数列{a n }的前n 项和为S n ,且S n =2a n -2,则a 2等于( )

A .4

B .2

C .1

D .-2

8.某工厂去年产值为a ,计划今后5年内每年比上年产值增加10%,则从今年起到第5年,这个厂的总产值为( )

A .1.14a

B .1.15a

C .11×(1.15-1)a

D .10(1.16-1)a

9.一个等差数列共有10项,其中奇数项的和为26,偶数项的和为15,则这个数列的第6项是( )

A .3

B .4

C .5

D .6

10.(2010·江西文,7)等比数列{a n }中,|a 1|=1,a 5=-8a 2,a 5>a 2,则a n =( )

A .(-2)n -1

B .-(-2)n -1

C .(-2)n

D .-(-2)n

11.已知数列{a n }中,a 1=3,a 2=6,a n +2=a n +1-a n ,则a 2009=( )

A .6

B .-6

C .3

D .-3

12.等比数列{a n }中,a 1=512,公比q =-12,用M n 表示它的前

n 项之积,即M n =a 1·a 2·a 3…a n ,则数列{M n }中的最大项是( )

A .M 11

B .M 10

C .M 9

D .M 8

二、填空题(本大题共4小题,每小题4分,共16分.将正确答案填在题中横线上)

13.(2012·辽宁文,14)已知等比数列{a n }为递增数列,若a 1>0,且2(a n +a n +2)=5a n +1,则数列{a n }的公比q =________.

14.在等比数列{a n }中,前n 项和S n =3n +a ,则通项公式为__________.

15.有三个数成等比数列,其和为21,若第三个数减去9,则它们成等差数列,这三个数分别为__________.

16.等差数列{a n }前n 项和S n ,若S 10=S 20,则S 30=__________.

三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤)

17.(本题满分12分)若{a n }是公差d ≠0的等差数列,通项为a n ,{b n }是公比q ≠1的等比数列,已知a 1=b 1=1,且a 2=b 2,a 6=b 3.

(1)求d 和q .

(2)是否存在常数a ,b ,使对一切n ∈N *都有a n =log a b n +b 成立,若存在求之,若不存在说明理由.

18.(本题满分12分)已知数列{a n }的前n 项和S n =10n -n 2(n ∈N *),又b n =|a n |(n ∈N *),求{b n }的前n 项和T n .

[分析] 本题求数列{b n }的前n 项和,应首先确定数列{b n }的特性,由题意可得{b n }是由一个首项为正值,而公差为负的一个等差数列,{a n }的各项取绝对值后得到的一个新数列,因此求{b n }的前n 项和可转化为求数列{a n }的和的问题.

19.(本题满分12分)一个等差数列前12项的和为354,前12项中偶数项的和与奇数项的和的比为32 27,求公差d .

20.(本题满分12分)在4月份(共30天),有一新款服装投放某专卖店销售,日销售量(单位:件)f (n )关于时间n (1≤n ≤30,n ∈N *)的关系如图所示,其中函数f (n )图象中的点位于斜率为5和-3的两条直线上,两直线的交点的横坐标为m ,且第m 天日销售量最大.

(1)求f (n )的表达式,及前m 天的销售总数;

(2)按规律,当该专卖店销售总数超过400件时,社会上流行该服装,而日销售量连续下降并低于30件时,该服装的流行会消失.试问该服装在社会上流行的天数是否会超过10天?并说明理由.

21.(本题满分12分)已知数列{a n }是等差数列,且a 1=2,a 1+

a 2+a 3=12.

(1)求数列{a n }的通项公式;

(2)令b n =a n x n (x ∈R ),求数列{b n }的前n 项和.

22.(本题满分14分)已知正项数列{a n }的前n 项和为S n ,且a n 和S n 满足:4S n =(a n +1)2(n =1,2,3……),

(1)求{a n }的通项公式;

(2)设b n =1a n ·a n +1

,求{b n }的前n 项和T n ; (3)在(2)的条件下,对任意n ∈N *,T n >m 23都成立,求整数m 的最

大值.

吉林省长白山一高2012-2013上学期高二数学必修5第二章

数列综合素质能力检测试题答案

1[答案] A

[解析] 在等比数列{a n }中,a 7·a 11=a 4·a 14=6,又a 4+a 14=5,∴????? a 4=2a 14=3或?????

a 4=3a 14=2

,又a 14=a 4·q 10, ∴q 10=23或32,∴a 20a 10

=q 10=23或32. 2[答案] C

[解析] ∵S n 、S n +2、S n +1成等差数列,∴S n +2-S n =S n +1-S n +2.

∴a n +2+a n +1=-a n +2,∴a n +2a n +1

=-12. 又a 1=1,∴a 3=14.

3[答案] B

[解析] 本题主要考查等差数列的性质及求和公式.

由条件知a 4+a 8=a 1+a 11=16,S 11=11(a 1+a 11)2

=11×162=88. [点评] 注意等差数列的性质应用:若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m +a n =a p +a q .

4[答案] A

[解析] ∵-1,a 1,a 2,8成等差数列,设公差d ,

∴8-(-1)=3d ,∴d =3,

∴a 1=2,a 2=5,

∵-1,b 1,b 2,b 3,-4成等比数列,b 22=4,

又b 2=-1·q 2<0,∴b 2=-2,∴a 1a 2b 2

=-5. 5[答案] A

[解析] S 16=(a 1+a 16)×162

=7×16,7×16-x =7.2×15,∴x =4,又a 1=-8,∴a 16=22,d =115(a 16-a 1)=2,∴a n =-8+(n -1)·2=4,

∴n =7.

6[答案] D

[解析] 本题考查了等比数列的性质及分类讨论思想.

a 4+a 7=2,a 5a 6=a 4a 7=-8?a 4=4,a 7=-2或a 4=-2,a 7=4, a 4=4,a 7=-2?a 1=-8,a 10=1?a 1+a 10=-7,

a 4=-2,a 7=4?a 10=-8,a 1=1?a 1+a 10=-7.

7[答案] A

[解析] S 1=2a 1-2=a 1,∴a 1=2,S 2=2a 2-2=a 1+a 2,∴a 2=4.

8[答案] C

[解析] 设从去年开始,每年产值构成数列为{a n },则a 1=a , a n =a (1+10%)n -1(1≤n ≤6),从今年起到第5年是求该数列a 2到

a 6的和,应为S 6-a 1=a (1.16-1)1.1-1

-a =11×(1.15-1)a . 9[答案] A

[解析] 由题意,S 偶-S 奇=5d ,∴d =-2.2,S 10=10(a 5+a 6)2

=5(a 5+a 6)=5(2a 6+2.2)=41,∴a 6=3.

10[答案] A

[解析] ∵|a 1|=1,∴a 1=1或-1,∵a 5=-8a 2=a 2q 3,a 2≠0,∴q 3=-8,∴q =-2,

又a 5>a 2,∴a 2q 3>a 2,∴a 2<0,

∵a 2=a 1q <0,∴a 1>0,∴a 1=1,∴a n =(-2)n -1.

11[答案] B

[解析] 由条件a n +2=a n +1-a n 可得:a n +6=a n +5-a n +4=(a n +4-a n +3)-a n +4=-a n +3=-(a n +2-a n +1)=-[(a n +1-a n )-a n +1]=a n ,于是可知数列{a n }的周期为6,∴a 2009=a 5,又a 1=3,a 2=6,∴a 3=a 2-a 1=3,a 4=a 3-a 2=-3,a 5=a 4-a 3=-6.

12[答案] C

[解析] 由题设a n =512·(-12)n -1.∴M n =a 1·a 2·a 3…a n =[512×(-

12)0]×[512×(-12)1]×[512×(-12)2]×…×[512×(-12)n -1]

=512n ×(-12)1+2+3+…+(n -1)

[点评] 此题若直接用列举法可很简明求解:

a 1=512,a 2=-256,a 3=128,a 4=-64,a 5=32,a 6=-16,

a 7=8,a 8=-4,a 9=2,a 10=-1,

当n ≥11时,|a n |<1,又M 9>0,M 10<0,∴M 9最大. 13[答案] 2

[解析] 本题考查了等比数列的通项公式.

∵{a n }是递增的等比数列,且a 1>0,

∴q >1,

又∵2(a n +a n +2)=5a n +1,

∴2a n +2a n q 2=5a n q ,

∵a n ≠0,

∴2q 2-5q +2=0,

∴q =2或q =12(舍去),

∴公比q 为2.

[点评] 一定要注意数列{a n }是递增数列且a 1>0,则公比q 大于1.

14[答案] a n =2×3n -1

[解析] a n =S n -S n -1=(3n +a )-(3n -1+a )=2×3n -1,∴a 1=2.又a 1=S 1=3+a ,∴3+a =2,∴a =-1.

15[答案] 16,4,1

[解析] 设三个数为a ,b ,c ,由题意可知

????? a +b +c =212b =a +(c -9)b 2=ac ,

解之得:b =4,a =1,c =16或b =4,a =16,c =1. 16[答案] 0

[解析] ∵S 10=S 20,∴10a 1+10×92d =20a 1+20×192d ,∴2a 1=

-29d .

∴S 30=30a 1+10×292d =15×(-29d )+15×29d =0.

[点评] 既可以运用一般方法求解,也可以充分利用等比数列的性质求解,设数列{a n }第一个10项的和为b 1,第二个10项的和为b 2,第三个10项的和为b 3,则∵S 10=S 20,∴b 2=0,由条件知b 1,b 2,b 3成等差,∴2b 2=b 1+b 3,∴b 3=-b 1,∴S 30=b 1+b 2+b 3=0.

17[解析] (1)a 2=1+d =b 2=q ,a 6=1+5d =b 3=q 2,∴q =4,d =3.

(2)假设存在常数a 、b 满足等式,由a n =1+(n -1)d =3n -2,b n =q n -1=4n -1及a n =log a b n +b 得(3-log a 4)n +log a 4-b -2=0,

∵n ∈N *

,∴????? 3-log a 4=0log a 4-b -2=0,∴a =34,b =1,故存在. 18[解析] 由S n =10n -n 2可得,

a n =11-2n ,故

b n =|11-2n |.

显然n ≤5时,b n =a n =11-2n ,T n =10n -n 2.

n ≥6时,b n =-a n =2n -11,

T n =(a 1+a 2+…+a 5)-(a 6+a 7+…+a n )

=2S 5-S n =50-10n +n 2

故T n =?

????

10n -n 2 (n ≤5),50-10n +n 2 (n ≥6). 19[解析] 设首项为a 1,公差为d ,则由题意: ????? S 奇+S 偶=354,S 奇S 偶=2732.

∴?????

S 偶=192,S 奇=162. 又S 偶-S 奇=6d ,∴d =5.

20[解析] (1)由题意57-2m -1

=5解得:m =12. f (n )=?????

5n -3 (1≤n ≤12,n ∈N *),93-3n (12

=354. (2)∵S 12=354<400,∴前12天不流行.

∵S 13=354+f (13)=408,

且f (21)=30,f (22)=27.

∴从第13天到第21天,服装销售总数超过400件,日销售量不低于30件,

∴该服装在社会上流行不会超过10天.

21[解析] (1)设数列{a n }的公差为d ,则

?????

a 1+a 2+a 3=3a 1+3d =12,a 1=2.

解得:d =2. ∴a n =a 1+(n -1)d =2n .

(2)令S n =b 1+b 2+…+b n ,其中b n =2nx n ,

则S n =2x +4x 2+…+(2n -2)x n -1+2nx n .①

当x =0时,S n =0.

当x =1时,S n =n (n +1).

当x ≠0且x ≠1时,xS n =2x 2+4x 3+…+(2n -2)x n +2nx n +1② ①-②得:(1-x )S n =2(x +x 2+…+x n )-2nx n +1.

∴S n =2x (1-x n )(1-x )2-2nx n +1

1-x

. 22[解析] (1)∵4S n =(a n +1)2, ① ∴4S n -1=(a n -1+1)2(n ≥2), ② ①-②得

4(S n -S n -1)=(a n +1)2-(a n -1+1)2. ∴4a n =(a n +1)2-(a n -1+1)2.

化简得(a n +a n -1)·(a n -a n -1-2)=0. ∵a n >0,∴a n -a n -1=2(n ≥2). ∴{a n }是以1为首项,2为公差的等差数列. ∴a n =1+(n -1)·2=2n -1.

(2)b n =1a n ·a n +1=1(2n -1)(2n +1)=12(12n -1-12n +1). ∴T n =12〔〕

(1-13)+(13-14)+…+(12n -1-12n +1) =12(1-12n +1)=n 2n +1

. (3)由(2)知T n =12(1-12n +1

), T n +1-T n =12(1-12n +3)-12(1-12n +1

) =12(12n +1-12n +3

)>0. ∴数列{T n }是递增数列.

∴[T n ]min =T 1=13.

∴m 23<13,∴m <233.

∴整数m 的最大值是7.

高二数学必修5数列单元测试.doc

________ 高二数学必修 5 数列单元测试 一、选择题: 时间 120 分钟 满分 100 分 3 分,共 30 分 . ) (本大题共 10 小题,每小题 1. 在数列- 1, 0, 1 , 1 , , n 2 中,是它的 9 8 n 2 A .第 100 项 B .第 12 项 C .第 10项 D .第 8项 2. 在数列 { a n } 中, a 1 2 , 2a n 1 2a n 1,则 a 101 的值为 A . 49 B . 50 C . 51 D .52 3. 等差数列 { a n } 中, a 1 a 4 a 7 39 , a 3 a 6 a 9 27 ,则数列 { a n } 的前 9 项的和等于 A . 66 B . 99 C . 144 D . 297 4. 设数列 {a n } 、 {b n } 都是等差数列,且 a 1=25,b 1=75,a 2+b 2=100,那么 a n +b n 所组成的数列的第 37 项的值是 ( ) .37 C 5.已知- 7, a 1, a 2,- 1 四个实数成等差数列,- 4, b 1, b 2, b 3,- 1 五个实数成等比数列,则 a 2a 1 = b 2 A . 1 B .- 1 C . 2 D .± 1 6. 等比数列 {a n } 中,前 n 项和 S n =3n +r ,则 r 等于 ( ) .0 C 7.已知数列 { a n } 的前 n 项和为 S 1 5 9 13 17 21 ( 1) n 1 (4n 3) , n 则 S 15 S 22 S 31 的值是( ) A. -76 B. 76 C. 46 D. 13 8. 6.已知等差数列 {a n } 的公差 d ≠0, 若 a 5、a 9、 a 15 成等比数列 , 那么公比为 A . 3 B . 2 C . 3 D . 4 4 3 2 3 9.若数列 { a } 是等比数列 , 则数列 { a +a } n n n+1 A .一定是等比数列 C .一定是等差数列 10.等比数列 {a n } 中, a 1 =512,公比 q= 1 2 B .可能是等比数列 , 也可能是等差数列 D .一定不是等比数列 ,用Ⅱ n 表示它的前 n 项之积:Ⅱ n =a 1 · a 2 a n 则Ⅱ 1 ,Ⅱ 2 , ,中最大的是 A .Ⅱ 11 B .Ⅱ 10 C .Ⅱ 9 D .Ⅱ 8 题号 1 2 3 4 5 6 7 8 9 10 答案 二、填空题 :( 本大题共 5 小题,每小题 4 分,共 20分。) 11.在数 {a n } 中,其前 n 项和 S n =4n 2- n - 8,则 a 4= 。 12. 设 S n 是等差数列 a 5 5 S 9 的值为 ________. a n 的前 n 项和,若 ,则 S 5 13.在等差数列 { a } 中,当 a = a a 3 9 { a } 中,对某些正整数 r 、s ( r ≠ s ) ,当 a ( r ≠ s ) 时, { a } 必定是常数数列。然而在等比数列 r n r s n n =a s 时,非常数数列 { a n } 的一个例子是 ____________. 14. 已知数列 1, ,则其前 n 项的和等于 。 15. 观察下列的图形中小正方形的个数,则第 n 个图中有 个小正方形 . 三、解答题:(本大题共 5 小题,共 50 分。解答应写出文字说明,或演算步骤) 16. (本小题满分 8 分)已知 a n 是等差数列,其中 a 1 25, a 4 16

高中数学必修5 数列经典例题集锦

高中数学必修5数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足 1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+=Q . (2)证明:由已知1 13--=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=---Λ 1 2 1313 3 312n n n a ---+=++++=L , 所以证得312n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{ }n a 的通项公式; (Ⅱ)等差数列{ }n b 的各项为正, 其前n 项和为n T ,且315T =,又112233 ,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3n n a -= (Ⅱ)设{}n b 的公比为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{ }n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式, 可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=.

人教版高中数学必修5《数列》练习题(有答案)

必修5数列 2.等差数列{}n a 中,()46810129111120,3 a a a a a a a ++++=-则的值为 A .14 B .15 C .16 D . 17 3.等差数列{}n a 中,12910S S a =>,,则前项的和最大. 解:0912129=-=S S S S , 10111211111030,00a a a a a a ∴++=∴=∴=>, ,又 4.已知等差数列{}n a 的前10项和为100,前100项和为10,则前110项和为. 解:∵ ,,, ,,1001102030102010S S S S S S S --- 成等差数列,公差为D 其首项为10010=S , 6.设等差数列{}n a 的前n 项和为n S ,已知001213123<>=S S a ,,. ①求出公差d 的范围; ②指出1221S S S ,, , 中哪一个值最大,并说明理由. 解:①)(6)(610312112a a a a S + =+=36(27)0a d =+> ② 12671377666()013000 S a a S a a a S =+>=<∴<>∴, 最大。 1. 已知等差数列{}n a 中,12497116a a a a ,则,===+等于() A .15 B .30 C .31 D .64 794121215a a a a a +=+∴= A 2. 设n S 为等差数列{}n a 的前n 项和,971043014S S S S ,则,=-==. 54

3. 已知等差数列{}n a 的前n 项和为n S ,若=+++=118521221a a a a S ,则. 4. 等差数列{}n a 的前n 项和记为n S ,已知50302010==a a ,. ①求通项n a ;②若n S =242,求n . 解:d n a a n )1(1-+= 1 1 10201930 123050 21019502 n a d a a a a n a d d +==??==∴∴=+??+==??,解方程组 5.甲、乙两物体分别从相距70m 的两处同时相向运动,甲第一分钟走2m ,以后每分钟比前一分 钟多走1m ,乙每分钟走5m ,①甲、乙开始运动后几分钟相遇?②如果甲乙到对方起点后立即折返,甲继续每分钟比前一分钟多走1m ,乙继续每分钟走5m ,那么,开始运动几分钟后第二次相遇? 故第一次相遇是在开始运动后7分钟. 故第二次相遇是在开始运动后15分钟 10.已知数列{}n a 中,,31=a 前n 和1)1)(1(2 1 -++= n n a n S . ①求证:数列{}n a 是等差数列; ②求数列{}n a 的通项公式; ③设数列? ?? ?? ? +11n n a a 的前n 项和为n T ,是否存在实数M ,使得M T n ≤对一切正整数n 都成立? 若存在,求M 的最小值,若不存在,试说明理由. 12122(1)(1)() 2n n n n n n n a n a a a a a ++++∴+=++∴=+∴数列{}n a 为等差数列. ②1)1(311-+==+n n a n na a ,

高中数学必修五数列知识点

一、知识纲要 (1)数列的概念,通项公式,数列的分类,从函数的观点看数列. (2)等差、等比数列的定义. (3)等差、等比数列的通项公式. (4)等差中项、等比中项. (5)等差、等比数列的前n 项和公式及其推导方法. 二、方法总结 1.数列是特殊的函数,有些题目可结合函数知识去解决,体现了函数思想、数形结合的思想. 2.等差、等比数列中,1a 、n a 、n 、)(q d 、n S “知三求二”,体现了方程(组)的思想、整体思想,有时用到换元法. 3.求等比数列的前n 项和时要考虑公比是否等于1,公比是字母时要进行讨论,体现了分类讨论的思想. 4.数列求和的基本方法有:公式法,倒序相加法,错位相减法,拆项法,裂项法,累加法,等价转化等. 三、知识内容: 1.数列 数列的通项公式:?? ?≥-===-)2() 1(111n S S n S a a n n n 数列的前n 项和:n n a a a a S ++++= 321 1、数列:按照一定顺序排列着的一列数. 2、数列的项:数列中的每一个数. 3、有穷数列:项数有限的数列. 4、无穷数列:项数无限的数列. 5、递增数列:从第2项起,每一项都不小于它的前一项的数列. 6、递减数列:从第2项起,每一项都不大于它的前一项的数列. 7、常数列:各项相等的数列. 8、摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 9、数列的通项公式:表示数列 {}n a 的第n 项与序号n 之间的关系的公式. 10、数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式. 例1.已知数列{}n a 的前n 项和为n n S n -=2 2,求数列{}n a 的通项公式. 当1=n 时,111==S a ,当2n ≥时,34)1()1(222 2-=-+---=n n n n n a n ,经检验 1=n 时 11=a 也适 合34-=n a n ,∴34-=n a n ()n N +∈ 2.等差数列 等差数列的定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。 等差数列的判定方法: (1)定义法:对于数列 {}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列。 (2)等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列。 等差数列的通项公式: 如果等差数列 {}n a 的首项是1a ,公差是d ,则等差数列的通项为d n a a n )1(1-+=。 说明:该公式整理后是关于n 的一次函数。 等差数列的前n 项和:①2)(1n n a a n S += ②d n n na S n 2 ) 1(1-+ = 说明:对于公式②整理后是关于n 的没有常数项的二次函数。 等差中项: 如果a , A ,b 成等差数列,那么A 叫做a 与b 的等差中项。即:2 b a A += 或b a A +=2 说明:在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项。 等差数列的性质: (1)等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有 d m n a a m n )(-+=

高中数学必修5数列知识点总结

数列 1. 等差数列 通项公式:1(1),n a a n d n *=+-∈N 等差中项:如果2 a b A += ,那么A 是a 与b 的等差中项 前n 项和:11()(1)22n n n a a n n S na d +-==+ 若n a 是等差数列,且k l m n +=+,则k l m n a a a a +=+ ? 等差数列的通项求法应该围绕条件结合1,a d ,或是利用特殊项。 ? 等差数列的最值问题求使0(0)n n a a ≥≤成立的最大n 值即可得n S 的最值。 例1.{}n a 是等差数列,538,6a S ==,则9a =_________ 解析:513113248,33362 a a d S a d a d ?=+==+ =+=,解得10,2a d ==,916a = 例2.{}n a 是等差数列,13110,a S S >=,则当n 为多少时,n S 最大? 解析:由311S S =得1213 d a =- ,从而 21111(1)249()(7)2131313n a n n S na a n a -=+?-=--+,又10a >所以1013 a -< 故7n = 2. 等比数列 通项公式:11(0)n n a a q q -=≠ 等比中项:2G ab = 前n 项和:111(1)(1)(1)11n n n na q S a a q a q q q q =??=--?=≠?--? 若{}n a 是等比数列,且m n p q +=+,则m n p q a a a a ?=? 例.{}n a 是由正数组成的等比数列,2431,7a a S ==,则5S =__________

高一必修五数学数列全章知识点(完整版)

高一数学数列知识总结 知识网络

二、知识梳理 ①),2(1为常数d n d a a n n ≥=-- ②211-++=n n n a a a (2≥n ) ③b kn a n +=(k n ,为常数). 二、看数列是不是等比数列有以下两种方法: ①)0,,2(1≠≥=-且为常数q n q a a n n ②112 -+?=n n n a a a (2≥n ,011≠-+n n n a a a ) 三、在等差数列{n a }中,有关S n 的最值问题:(1)当1a >0,d<0时,满足?? ? ≤≥+0 01m m a a 的项数m 使得m s 取最大值. (2)当1a <0,d>0时,满足???≥≤+0 1m m a a 的项数m 使得m s 取最小值。在解含绝对值

的数列最值问题时,注意转化思想的应用。 四.数列通项的常用方法: (1)利用观察法求数列的通项. (2)利用公式法求数列的通项:①???≥-==-) 2()111n S S n S a n n n (;②{}n a 等差、等比数列{}n a 公式. (3)应用迭加(迭乘、迭代)法求数列的通项: ①)(1n f a a n n +=+;②).(1n f a a n n =+ (4)造等差、等比数列求通项: ① q pa a n n +=+1;②n n n q pa a +=+1;③)(1n f pa a n n +=+;④n n n a q a p a ?+?=++12. 第一节通项公式常用方法 题型1 利用公式法求通项 例1:1.已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 2.已知n S 为数列{}n a 的前n 项和,求下列数列{}n a 的通项公式: ⑴ 1322-+=n n S n ; ⑵12+=n n S . 总结:任何一个数列,它的前n 项和n S 与通项n a 都存在关系:???≥-==-) 2() 1(11n S S n S a n n n 若1a 适 合n a ,则把它们统一起来,否则就用分段函数表示. 题型2 应用迭加(迭乘、迭代)法求通项 例2:⑴已知数列{}n a 中,)2(12,211≥-+==-n n a a a n n ,求数列{}n a 的通项公式; ⑵已知n S 为数列{}n a 的前n 项和,11=a ,n n a n S ?=2 ,求数列{}n a 的通项公式. 总结:⑴迭加法适用于求递推关系形如“)(1n f a a n n +=+”; 迭乘法适用于求递推关系形如“)(1n f a a n n ?=+“;⑵迭加法、迭乘法公式: ① 11232211)()()()(a a a a a a a a a a n n n n n n n +-++-+-+-=----- ② 11 22332211a a a a a a a a a a a a n n n n n n n ??????= ----- . 题型3 构造等比数列求通项 例3已知数列{}n a 中,32,111+==+n n a a a ,求数列{}n a 的通项公式. 总结:递推关系形如“q pa a n n +=+1” 适用于待定系数法或特征根法:

高二数学知识点总结高二数学必修5等比数列知识点总结

高二数学知识点总结高二数学必修5等比数列 知识点总结 等比数列在人们的日常生活中运用比较广泛,也是高二数学课本重点知识点,下面是WTT给大家带来的高二数学必修5等比数列知识点总结,希望对你有帮助。 高二数学必修5等比数列知识点 高二数学学习方法 (1)记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。 (2)建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。 (3)熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。 (4)经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由

一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。 (5)阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。 (6)及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。 (7)学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。 (8)经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。 (9)无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,这是学好数学的重要问题。 看了“高二数学必修5等比数列知识点总结”的人还看了: 1.高二数学等比数列公式归纳 2.高中数学必修五等比数列及其前n项和知识点总结 3.高二数学必修5等差数列知识点 4.高中数学必修5等比数列练习 5.高一数学必修5等比数列的前n项和知识点总结

(word完整版)高中数学必修五数列测试题

必修五阶段测试二(第二章 数列) 时间:120分钟 满分:150分 一、选择题(本大题共12小题,每小题5分,共60分) 1.(2017·山西朔州期末)在等比数列{a n }中,公比q =-2,且a 3a 7=4a 4,则a 8等于( ) A .16 B .32 C .-16 D .-32 2.已知数列{a n }的通项公式a n =????? 3n +1(n 为奇数),2n -2(n 为偶数),则a 2·a 3等于( ) A .8 B .20 C .28 D .30 3.已知等差数列{a n }和等比数列{b n }满足a 3=b 3,2b 3-b 2b 4=0,则数列{a n }的前5项和S 5为( ) A .5 B .10 C .20 D .40 4.(2017·山西忻州一中期末)在数列{a n }中,a n =-2n 2+29n +3,则此数列最大项的值是( ) A .102 B.9658 C.9178 D .108 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ) A .81 B .120 C .168 D .192 6.等差数列{a n }中,a 10<0, a 11>0, 且a 11>|a 10|, S n 是前n 项的和,则( ) A .S 1, S 2, S 3, …, S 10都小于零,S 11,S 12,S 13,…都大于零 B .S 1,S 2,…,S 19都小于零,S 20,S 21,…都大于零 C .S 1,S 2,…,S 5都大于零,S 6,S 7,…都小于零 D .S 1,S 2,…,S 20都大于零,S 21,S 22,…都小于零 7.(2017·桐城八中月考)已知数列{a n }的前n 项和S n =an 2+bn (a ,b ∈R ),且S 25=100,则a 12+a 14等于( ) A .16 B .8 C .4 D .不确定 8.(2017·莆田六中期末)设{a n }(n ∈N *)是等差数列,S n 是其前n 项和,且S 5S 8,则下列结论错误的是( ) A .d <0 B .a 7=0 C .S 9>S 5 D .S 6和S 7均为S n 的最大值 9.设数列{a n }为等差数列,且a 2=-6,a 8=6,S n 是前n 项和,则( ) A .S 4<S 5 B .S 6<S 5 C .S 4=S 5 D .S 6=S 5 10.(2017·西安庆安中学月考)数列{a n }中,a 1=1,a 2=23,且1a n -1+1a n +1=2a n (n ∈N *,n ≥2),则a 6等于( )

人教版高中数学必修5数列教案

m n a a d n a a d d n a a d m n a a d n a a d a a m n n n m n n n n --=--=--=-+=-+==-+1 ; )1()()1(1 111变式:推广:通项公式:递推关系:必修5 数列 二、等差数列 知识要点 1.数列的通项n a 与前n 项和n S 的关系 ∑==++++=n i i n n a a a a a S 1321 ?? ?≥-==-2 111n S S n S a n n n 2.递推关系与通项公式 ()1(),(),,n n a dn a d a f n kn b k b =+-==+特征:即:为常数 (),,n a kn b k b =+为常数?数列{}n a 成等差数列. 3.等差中项: 若c b a ,,成等差数列,则b 叫做c a 与的等差中项,且2c a b += ;c b a ,,是等差数列?c a b +=2. 4.前n 项和公式:2)(1n a a S n n += ; 2 )1(1d n n na S n -+= 221(),()22 n n d d S n a n S f n An Bn =+-==+特征:即 2,(,)n S An Bn A B =+为常数?数列{}n a 成等差数列. 5.等差数列{}n a 的基本性质),,,(* ∈N q p n m 其中 ⑴q p n m a a a a q p n m +=++=+,则若,反之不成立; ⑵d m n a a m n )(-=-; ⑶m n m n n a a a +-+=2; ⑷n n n n n S S S S S 232,,--仍成等差数列. 6.判断或证明一个数列是等差数列的方法: ①定义法:()()1n n a a d n N *+-=∈常数 ?{}n a 是等差数列

高中数学必修5数列题目精选精编

金太阳教育网 高中数学必修5数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312 n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312 n n n a ---+=++++= , 所以证得 312 n n a -= . 例题2. 数列{} n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{ } n a 的通项公式; (Ⅱ)等差数列{} n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公比为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{} n b 的各项为正,∴0d > ∴2d = ∴2 (1) 3222 n n n T n n n -=+ ?=+ 例题3. 已知数列{ } n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 1 2 8n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{ } n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)21 12322 (2) 8n n a a a a n -++++=左边相当于是数列{} 1 2 n n a -前n 项和的形式, 可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=.

高一数学必修五数列知识点

高一数学必修五数列知识点 1.数列的函数理解: ①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。②用函数的 观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解 析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。 ③函数不一定有解析式,同样数列也并非都有通项公式。 2.通项公式:数列的第N项an与项的序数n之间的关系可以用 一个公式an=f(n)来表示,这个公式就叫做这个数列的通项公式(注:通项公式不唯一)。 数列通项公式的特点: (1)有些数列的通项公式可以有不同形式,即不唯一。 (2)有些数列没有通项公式(如:素数由小到大排成一列2,3,5,7,11,...)。 3.递推公式:如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。 数列递推公式特点: (1)有些数列的递推公式可以有不同形式,即不唯一。 (2)有些数列没有递推公式。 有递推公式不一定有通项公式。 注:数列中的项必须是数,它可以是实数,也可以是复数。 1、ABC的三边a,b,c既成等比数列又成等差数列,则三角 形的形状是()

A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.等边三角形 2、在等比数列{an}中,a6a5a7a548,则S10等于() A.1023 B.1024 C.511 D.512 3、三个数成等比数列,其积为1728,其和为38,则此三数为() A.3,12,48 B.4,16,27 C.8,12,18 D.4,12,36 4、一个三角形的三内角既成等差数列,又成等比数列,则三内角的公差等于() A.0 B.15 C.30 D.60 5、等差数列{an}中,a1,a2,a4恰好成等比数列,则a1的值是()a4 A.1 B.2 C.3 D.4 6、某种电讯产品自投放市场以来,经过三年降价,单价由原来的174元降到58元,这种电讯产品平均每次降价的百分率大约是() A.29% B.30% C.31% D.32% 7、若log4(x+2y)+log4(x-2y)=1,则∣x∣-∣y∣的最小值是。 (1)记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。 (2)建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。 (3)熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。

人教A版高中数学必修五数列综合训练题

数列综合训练题 ()1.在等差数列}{n a 中,836a a a +=,则=9S (A )0(B )1(C )1-(D )以上都不对 A ()2.在等比数列}{n a 中,3a 和5a 是二次方程052 =++kx x 的两个根,则642a a a 的值为(A )5 5±(B )55(C )55-(D )25 【答案】A ()3.设n S 为等差数列}{n a 的前n 项和。已知)6(144,324,3666>===-n S S S n n 。则n 等于(A )16(B )17(C )18(D )19 【答案】B 解析:216)144324(36)(6)(166=-+=+=-+-n n n a a S S S ,361=+n a a , 3242 ) (1=+= n n a a n S ()4.在数列}{n a 中,已知)(,5,1* 1221N n a a a a a n n n ∈-===++,则2013a 等于 (A )4-(B )5-(C )4(D )1- 【答案】C 解析:n n n n a a a a -=-=+++123Θ,n n n a a a =-=∴++36,200845a a ==。 ()5.由公差为d 的等差数列a 1、a 2、a 3…重新组成的数列a 1+a 4,a 2+a 5,a 3+a 6…是 A .公差为d 的等差数列 B .公差为2d 的等差数列 C .公差为3d 的等差数列 D .非等差数列 考查等差数列的性质. 【答案】B (a 2+a 5)-(a 1+a 4)=(a 2-a 1)+(a 5-a 4)=2d .(a 3+a 6)-(a 2+a 5)=(a 3-a 2)+(a 6-a 5)=2d .依次类推.

高中数学必修5数列知识点总结及题型归纳

数列 一、数列的概念 (1)数列定义:按一定次序排列的一列数叫做数列; (2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫 这个数列的通项公式。 例如:①:1 ,2 ,3 ,4, 5 ,… ②:5 1 4131211,,,,… (3)数列的函数特征与图象表示: 4 5 6 7 8 9 序号:1 2 3 4 5 6 项 :4 5 6 7 8 9 (4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关 系分:单调数列(递增数列、递减数列)、常数列和摆动数列。 例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列? (1)1,2,3,4,5,6,… (2)10, 9, 8, 7, 6, 5, … (3) 1, 0, 1, 0, 1, 0, … (4)a, a, a, a, a,… (5)数列{n a }的前n 项和n S 与通项n a 的关系:1 1(1)(2)n n n S n a S S n -=?=?-?≥ 例:已知数列}{n a 的前n 项和322+=n s n ,求数列}{n a 的通项公式 二、等差数列 题型一、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。用递推公式表示为 1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥。 例:等差数列12-=n a n ,=--1n n a a 题型二、等差数列的通项公式:1(1)n a a n d =+-; 等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列。 例:1.已知等差数列{}n a 中,12497116a a a a ,则,==+等于( ) A .15 B .30 C .31 D .64 2.{}n a 是首项11a =,公差3d =的等差数列,如果2005n a =,则序号n 等于 (A )667 (B )668 (C )669 (D )670

人教版高中数学必修五数列知识点及习题详解

人教版数学高中必修5数列习题及知识点 第二章 数列 1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2005,则序号n 等于(). A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=(). A .33 B .72 C .84 D .189 3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则(). A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8=a 4a 5 4.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为 41的等差数列,则 |m -n |等于(). A .1 B .43 C .21 D .8 3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为(). A .81 B .120 C .168 D .192 6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是(). A .4005 B .4006 C .4007 D .4008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=(). A .-4 B .-6 C .-8 D .-10 8.设S n 是等差数列{a n }的前n 项和,若 35a a =95,则59S S =(). A .1 B .-1C .2 D .2 1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则 212b a a 的值是(). A .21B .-21C .-21或2 1D .41 10.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =(). A .38 B .20 C .10 D .9 二、填空题

高一数学必修5数列经典例题(裂项相消法)

2.(2014?成都模拟)等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6, (Ⅰ)求数列{a n}的通项公式; (Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{}的前n项和. 解:(Ⅰ)设数列{a n}的公比为q,由a32=9a2a6有a32=9a42,∴q2=. 由条件可知各项均为正数,故q=. 由2a1+3a2=1有2a1+3a1q=1,∴a1=. 故数列{a n}的通项式为a n=. (Ⅱ)b n=++…+=﹣(1+2+…+n)=﹣, 故=﹣=﹣2(﹣)则++…+=﹣2[(1﹣)+(﹣)+…+(﹣)]=﹣, ∴数列{}的前n项和为﹣. 7.(2013?江西)正项数列{a n}满足﹣(2n﹣1)a n﹣2n=0. (1)求数列{a n}的通项公式a n; (2)令b n=,求数列{b n}的前n项和T n. 解:(1)由正项数列{a n}满足:﹣(2n﹣1)a n﹣2n=0, 可有(a n﹣2n)(a n+1)=0∴a n=2n. (2)∵a n=2n,b n=, ∴b n===, T n===. 数列{b n}的前n项和T n为. 6.(2013?山东)设等差数列{a n}的前n项和为S n,且S4=4S2,a2n=2a n+1. (Ⅰ)求数列{a n}的通项公式; (Ⅱ)设数列{b n}满足=1﹣,n∈N*,求{b n}的前n项和T n. (Ⅰ)设等差数列{a n}的首项为a1,公差为d,由S4=4S2,a2n=2a n+1有:,解: 解有a1=1,d=2. ∴a n=2n﹣1,n∈N*. (Ⅱ)由已知++…+=1﹣,n∈N*,有: 当n=1时,=, 当n≥2时,=(1﹣)﹣(1﹣)=,∴,n=1时符合. ∴=,n∈N*

人教版高中数学必修5数列单元测试题

盘县第五中学高一数学 (数列)检测 盘县五中数学组:晏波(命题) 一.选择题(每小题5分,共60分) 1. 已知数列{n a }的通项公式)(43*2N n n n a n ∈--=,则4a 等于 ( ). A 、1 B 、 2 C 、 0 D 、 3 2. 在等比数列{n a }中,已知9 1 1= a ,95=a ,则=3a ( ) A .1 B .3 C . 1± D .±3 3. 等比数列{}n a 中, ,243,952==a a 则{}n a 的前4项和为 ( ) A . 81 B .120 C .168 D .192 4. 数列1,3,6,10,…的一个通项公式是 ( ) A .n a =n 2-(n-1) B .n a =n 2-1 C.n a =2)1(+n n D.n a =2) 1(-n n 5. 已知等差数列{}n a 中,288a a +=,则该数列前9项和9S 等于 ( ) A.18 B.27 C.36 D.45 6. 设n S 是等差数列{}n a 的前n 项和,若735S =,则4a = ( ) A .8 B .7 C .6 D .5 7. 已知数列3,3,15,…,)12(3-n ,那么9是数列的 ( ) A .第12项 B .第13项 C .第14项 D .第15项 8. 等差数列{}n a 的前m 项和为30,前2m 项和为100,则它的前3m 项和是 ( ) A.130 B.170 C.210 D.260 9. 设{}n a 是等差数列,1359a a a ++=,69a =,则这个数列的前6项和等于( ) A.12 B.24 C.36 D.48

高中数学必修5用构造法求数列的通项公式

用构造法求数列的通项公式 在高中数学教材中,有很多已知等差数列的首项、公比或公差(或者通过计算可以求出数列的首项,公比),来求数列的通项公式。但实际上有些数列并不是等差、等比数列,给出数列的首项和递推公式,要求出数列的通项公式。而这些题目往往可以用构造法,根据递推公式构造出一个新数列,从而间接地求出原数列的通项公式。对于不同的递推公式,我们当然可以采用不同的方法构造不同的类型的新数列。下面给出几种我们常见的构造新数列的方法: 一.利用倒数关系构造数列。 例如:}{n a 数列中,若),(41 1, 21 1N n a a a n n ∈+= =+求a n n n n n b b a b == +1,1 则设+4, 即n n b b -+1=4, n b {∴}是等差数列。 可以通过等差数列的通项公式求出n b ,然再求后数列{ a n }的通项。 练习:1)数列{ a n }中,a n ≠0,且满足),(,311 ,2 111N n a a a n n ∈+==+求a n 2)数列{ a n }中,,2 2,111+= =+n n n a a a a 求a n 通项公式。 3)数列{ a n }中,),,2(02,0,1111N n n a a a a a a n n n n n ∈≥=-?+≠=--且求a n . 二.构造形如2 n n a b =的数列。 例:正数数列{ a n }中,若n n n a N n a a a 求),(4,52 2 11∈-==+ 解:设4,4,112 -=--==++n n n n n n b b b b a b 即则 ) ,71(,429429429)4()1(25254}{2 2 11N n n n a n a n n b a b b n n n n ∈≤≤-=∴-=-=-?-+=∴==-即,是等差数列,公差是数列 练习:已知正数数列{ a n }中,),2(2,211N n n a a a n n ∈≥==-, 求数列{ a n }的通项公式。 三.构造形如n n a b lg =的数列。 例:正数数列{ a n }中,若a 1=10,且),,2(,lg 2 1 lg 1N n n a a n n ∈≥=-求a n . 解:由题意得: n n n n a b a a lg 2 1 lg lg 1=∴=-可设,, 即 ,2 1 1=-n n b b 110lg 2 1 1==∴b b n ,是等比数列,公比为 )(,)2 1 ()21(111N n b n n n ∈=?=∴--. 即1)21 (1 10,)2 1(lg -=∴=-n n n n a a 练习:(选自2002年高考上海卷) 数列{ a n }中,若a 1=3,2 1n n a a =+,n 是正整数,求数列{ a n }的通项公式。 四.构造形如m a b n n +=的数列。 例:数列{ a n }中,若a 1=6,a n+1=2a n +1, 求数列{ a n }的通项公式。 解:a n+1+1=2a n +2, 即a n+1+1=2(a n +1) 设 b n = a n +1, 则b n = 2 b n-1 则数列{ b n }是等比数列,公比是2,首项b 1= a 1+1=7, 11271,27--?=+?=∴n n n n a b 即 1271-?=∴-n n a ,)(N n ∈ 构造此种数列,往往它的递推公式形如: 的形式和2)1(,1+=+≠+?=+n a S c d a c a n n n n 。 如:a n+1=c a n +d,设可化成a n+1+x=c(a n +x), a n+1=c a n +(c-1)x 用待定系数法得: (c-1)x =d

相关主题
文本预览
相关文档 最新文档